]> git.proxmox.com Git - ovs.git/blob - vswitchd/bridge.c
Merge citrix into master.
[ovs.git] / vswitchd / bridge.c
1 /* Copyright (c) 2008, 2009 Nicira Networks
2 *
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at:
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15
16 #include <config.h>
17 #include "bridge.h"
18 #include <assert.h>
19 #include <errno.h>
20 #include <arpa/inet.h>
21 #include <ctype.h>
22 #include <inttypes.h>
23 #include <net/if.h>
24 #include <openflow/openflow.h>
25 #include <signal.h>
26 #include <stdlib.h>
27 #include <strings.h>
28 #include <sys/stat.h>
29 #include <sys/socket.h>
30 #include <sys/types.h>
31 #include <unistd.h>
32 #include "bitmap.h"
33 #include "cfg.h"
34 #include "coverage.h"
35 #include "dirs.h"
36 #include "dpif.h"
37 #include "dynamic-string.h"
38 #include "flow.h"
39 #include "hash.h"
40 #include "list.h"
41 #include "mac-learning.h"
42 #include "netdev.h"
43 #include "odp-util.h"
44 #include "ofp-print.h"
45 #include "ofpbuf.h"
46 #include "ofproto/ofproto.h"
47 #include "packets.h"
48 #include "poll-loop.h"
49 #include "port-array.h"
50 #include "proc-net-compat.h"
51 #include "process.h"
52 #include "socket-util.h"
53 #include "stp.h"
54 #include "svec.h"
55 #include "timeval.h"
56 #include "util.h"
57 #include "unixctl.h"
58 #include "vconn.h"
59 #include "vconn-ssl.h"
60 #include "xenserver.h"
61 #include "xtoxll.h"
62
63 #define THIS_MODULE VLM_bridge
64 #include "vlog.h"
65
66 struct dst {
67 uint16_t vlan;
68 uint16_t dp_ifidx;
69 };
70
71 extern uint64_t mgmt_id;
72
73 struct iface {
74 /* These members are always valid. */
75 struct port *port; /* Containing port. */
76 size_t port_ifidx; /* Index within containing port. */
77 char *name; /* Host network device name. */
78 tag_type tag; /* Tag associated with this interface. */
79 long long delay_expires; /* Time after which 'enabled' may change. */
80
81 /* These members are valid only after bridge_reconfigure() causes them to
82 * be initialized.*/
83 int dp_ifidx; /* Index within kernel datapath. */
84 struct netdev *netdev; /* Network device. */
85 bool enabled; /* May be chosen for flows? */
86 };
87
88 #define BOND_MASK 0xff
89 struct bond_entry {
90 int iface_idx; /* Index of assigned iface, or -1 if none. */
91 uint64_t tx_bytes; /* Count of bytes recently transmitted. */
92 tag_type iface_tag; /* Tag associated with iface_idx. */
93 };
94
95 #define MAX_MIRRORS 32
96 typedef uint32_t mirror_mask_t;
97 #define MIRROR_MASK_C(X) UINT32_C(X)
98 BUILD_ASSERT_DECL(sizeof(mirror_mask_t) * CHAR_BIT >= MAX_MIRRORS);
99 struct mirror {
100 struct bridge *bridge;
101 size_t idx;
102 char *name;
103
104 /* Selection criteria. */
105 struct svec src_ports;
106 struct svec dst_ports;
107 int *vlans;
108 size_t n_vlans;
109
110 /* Output. */
111 struct port *out_port;
112 int out_vlan;
113 };
114
115 #define FLOOD_PORT ((struct port *) 1) /* The 'flood' output port. */
116 struct port {
117 struct bridge *bridge;
118 size_t port_idx;
119 int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */
120 unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1. */
121 char *name;
122
123 /* An ordinary bridge port has 1 interface.
124 * A bridge port for bonding has at least 2 interfaces. */
125 struct iface **ifaces;
126 size_t n_ifaces, allocated_ifaces;
127
128 /* Bonding info. */
129 struct bond_entry *bond_hash; /* An array of (BOND_MASK + 1) elements. */
130 int active_iface; /* Ifidx on which bcasts accepted, or -1. */
131 tag_type active_iface_tag; /* Tag for bcast flows. */
132 tag_type no_ifaces_tag; /* Tag for flows when all ifaces disabled. */
133 int updelay, downdelay; /* Delay before iface goes up/down, in ms. */
134 bool bond_compat_is_stale; /* Need to call port_update_bond_compat()? */
135
136 /* Port mirroring info. */
137 mirror_mask_t src_mirrors; /* Mirrors triggered when packet received. */
138 mirror_mask_t dst_mirrors; /* Mirrors triggered when packet sent. */
139 bool is_mirror_output_port; /* Does port mirroring send frames here? */
140
141 /* Spanning tree info. */
142 enum stp_state stp_state; /* Always STP_FORWARDING if STP not in use. */
143 tag_type stp_state_tag; /* Tag for STP state change. */
144 };
145
146 #define DP_MAX_PORTS 255
147 struct bridge {
148 struct list node; /* Node in global list of bridges. */
149 char *name; /* User-specified arbitrary name. */
150 struct mac_learning *ml; /* MAC learning table, or null not to learn. */
151 bool sent_config_request; /* Successfully sent config request? */
152 uint8_t default_ea[ETH_ADDR_LEN]; /* Default MAC. */
153
154 /* Support for remote controllers. */
155 char *controller; /* NULL if there is no remote controller;
156 * "discover" to do controller discovery;
157 * otherwise a vconn name. */
158
159 /* OpenFlow switch processing. */
160 struct ofproto *ofproto; /* OpenFlow switch. */
161
162 /* Kernel datapath information. */
163 struct dpif *dpif; /* Datapath. */
164 struct port_array ifaces; /* Indexed by kernel datapath port number. */
165
166 /* Bridge ports. */
167 struct port **ports;
168 size_t n_ports, allocated_ports;
169
170 /* Bonding. */
171 bool has_bonded_ports;
172 long long int bond_next_rebalance;
173
174 /* Flow tracking. */
175 bool flush;
176
177 /* Flow statistics gathering. */
178 time_t next_stats_request;
179
180 /* Port mirroring. */
181 struct mirror *mirrors[MAX_MIRRORS];
182
183 /* Spanning tree. */
184 struct stp *stp;
185 long long int stp_last_tick;
186 };
187
188 /* List of all bridges. */
189 static struct list all_bridges = LIST_INITIALIZER(&all_bridges);
190
191 /* Maximum number of datapaths. */
192 enum { DP_MAX = 256 };
193
194 static struct bridge *bridge_create(const char *name);
195 static void bridge_destroy(struct bridge *);
196 static struct bridge *bridge_lookup(const char *name);
197 static void bridge_unixctl_dump_flows(struct unixctl_conn *, const char *);
198 static int bridge_run_one(struct bridge *);
199 static void bridge_reconfigure_one(struct bridge *);
200 static void bridge_reconfigure_controller(struct bridge *);
201 static void bridge_get_all_ifaces(const struct bridge *, struct svec *ifaces);
202 static void bridge_fetch_dp_ifaces(struct bridge *);
203 static void bridge_flush(struct bridge *);
204 static void bridge_pick_local_hw_addr(struct bridge *,
205 uint8_t ea[ETH_ADDR_LEN],
206 struct iface **hw_addr_iface);
207 static uint64_t bridge_pick_datapath_id(struct bridge *,
208 const uint8_t bridge_ea[ETH_ADDR_LEN],
209 struct iface *hw_addr_iface);
210 static struct iface *bridge_get_local_iface(struct bridge *);
211 static uint64_t dpid_from_hash(const void *, size_t nbytes);
212
213 static void bridge_unixctl_fdb_show(struct unixctl_conn *, const char *args);
214
215 static void bond_init(void);
216 static void bond_run(struct bridge *);
217 static void bond_wait(struct bridge *);
218 static void bond_rebalance_port(struct port *);
219 static void bond_send_learning_packets(struct port *);
220
221 static void port_create(struct bridge *, const char *name);
222 static void port_reconfigure(struct port *);
223 static void port_destroy(struct port *);
224 static struct port *port_lookup(const struct bridge *, const char *name);
225 static struct iface *port_lookup_iface(const struct port *, const char *name);
226 static struct port *port_from_dp_ifidx(const struct bridge *,
227 uint16_t dp_ifidx);
228 static void port_update_bond_compat(struct port *);
229 static void port_update_vlan_compat(struct port *);
230 static void port_update_bonding(struct port *);
231
232 static void mirror_create(struct bridge *, const char *name);
233 static void mirror_destroy(struct mirror *);
234 static void mirror_reconfigure(struct bridge *);
235 static void mirror_reconfigure_one(struct mirror *);
236 static bool vlan_is_mirrored(const struct mirror *, int vlan);
237
238 static void brstp_reconfigure(struct bridge *);
239 static void brstp_adjust_timers(struct bridge *);
240 static void brstp_run(struct bridge *);
241 static void brstp_wait(struct bridge *);
242
243 static void iface_create(struct port *, const char *name);
244 static void iface_destroy(struct iface *);
245 static struct iface *iface_lookup(const struct bridge *, const char *name);
246 static struct iface *iface_from_dp_ifidx(const struct bridge *,
247 uint16_t dp_ifidx);
248
249 /* Hooks into ofproto processing. */
250 static struct ofhooks bridge_ofhooks;
251 \f
252 /* Public functions. */
253
254 /* Adds the name of each interface used by a bridge, including local and
255 * internal ports, to 'svec'. */
256 void
257 bridge_get_ifaces(struct svec *svec)
258 {
259 struct bridge *br, *next;
260 size_t i, j;
261
262 LIST_FOR_EACH_SAFE (br, next, struct bridge, node, &all_bridges) {
263 for (i = 0; i < br->n_ports; i++) {
264 struct port *port = br->ports[i];
265
266 for (j = 0; j < port->n_ifaces; j++) {
267 struct iface *iface = port->ifaces[j];
268 if (iface->dp_ifidx < 0) {
269 VLOG_ERR("%s interface not in datapath %s, ignoring",
270 iface->name, dpif_name(br->dpif));
271 } else {
272 if (iface->dp_ifidx != ODPP_LOCAL) {
273 svec_add(svec, iface->name);
274 }
275 }
276 }
277 }
278 }
279 }
280
281 /* The caller must already have called cfg_read(). */
282 void
283 bridge_init(void)
284 {
285 struct svec dpif_names;
286 size_t i;
287
288 unixctl_command_register("fdb/show", bridge_unixctl_fdb_show);
289
290 svec_init(&dpif_names);
291 dp_enumerate(&dpif_names);
292 for (i = 0; i < dpif_names.n; i++) {
293 const char *dpif_name = dpif_names.names[i];
294 struct dpif *dpif;
295 int retval;
296
297 retval = dpif_open(dpif_name, &dpif);
298 if (!retval) {
299 struct svec all_names;
300 size_t j;
301
302 svec_init(&all_names);
303 dpif_get_all_names(dpif, &all_names);
304 for (j = 0; j < all_names.n; j++) {
305 if (cfg_has("bridge.%s.port", all_names.names[j])) {
306 goto found;
307 }
308 }
309 dpif_delete(dpif);
310 found:
311 svec_destroy(&all_names);
312 dpif_close(dpif);
313 }
314 }
315
316 unixctl_command_register("bridge/dump-flows", bridge_unixctl_dump_flows);
317
318 bond_init();
319 bridge_reconfigure();
320 }
321
322 #ifdef HAVE_OPENSSL
323 static bool
324 config_string_change(const char *key, char **valuep)
325 {
326 const char *value = cfg_get_string(0, "%s", key);
327 if (value && (!*valuep || strcmp(value, *valuep))) {
328 free(*valuep);
329 *valuep = xstrdup(value);
330 return true;
331 } else {
332 return false;
333 }
334 }
335
336 static void
337 bridge_configure_ssl(void)
338 {
339 /* XXX SSL should be configurable on a per-bridge basis.
340 * XXX should be possible to de-configure SSL. */
341 static char *private_key_file;
342 static char *certificate_file;
343 static char *cacert_file;
344 struct stat s;
345
346 if (config_string_change("ssl.private-key", &private_key_file)) {
347 vconn_ssl_set_private_key_file(private_key_file);
348 }
349
350 if (config_string_change("ssl.certificate", &certificate_file)) {
351 vconn_ssl_set_certificate_file(certificate_file);
352 }
353
354 /* We assume that even if the filename hasn't changed, if the CA cert
355 * file has been removed, that we want to move back into
356 * boot-strapping mode. This opens a small security hole, because
357 * the old certificate will still be trusted until vSwitch is
358 * restarted. We may want to address this in vconn's SSL library. */
359 if (config_string_change("ssl.ca-cert", &cacert_file)
360 || (cacert_file && stat(cacert_file, &s) && errno == ENOENT)) {
361 vconn_ssl_set_ca_cert_file(cacert_file,
362 cfg_get_bool(0, "ssl.bootstrap-ca-cert"));
363 }
364 }
365 #endif
366
367 /* iterate_and_prune_ifaces() callback function that opens the network device
368 * for 'iface', if it is not already open, and retrieves the interface's MAC
369 * address and carrier status. */
370 static bool
371 init_iface_netdev(struct bridge *br UNUSED, struct iface *iface,
372 void *aux UNUSED)
373 {
374 if (iface->netdev) {
375 return true;
376 } else if (!netdev_open(iface->name, NETDEV_ETH_TYPE_NONE,
377 &iface->netdev)) {
378 netdev_get_carrier(iface->netdev, &iface->enabled);
379 return true;
380 } else {
381 /* If the network device can't be opened, then we're not going to try
382 * to do anything with this interface. */
383 return false;
384 }
385 }
386
387 static bool
388 check_iface_dp_ifidx(struct bridge *br, struct iface *iface, void *aux UNUSED)
389 {
390 if (iface->dp_ifidx >= 0) {
391 VLOG_DBG("%s has interface %s on port %d",
392 dpif_name(br->dpif),
393 iface->name, iface->dp_ifidx);
394 return true;
395 } else {
396 VLOG_ERR("%s interface not in %s, dropping",
397 iface->name, dpif_name(br->dpif));
398 return false;
399 }
400 }
401
402 static bool
403 set_iface_policing(struct bridge *br UNUSED, struct iface *iface,
404 void *aux UNUSED)
405 {
406 int rate = cfg_get_int(0, "port.%s.ingress.policing-rate", iface->name);
407 int burst = cfg_get_int(0, "port.%s.ingress.policing-burst", iface->name);
408 netdev_set_policing(iface->netdev, rate, burst);
409 return true;
410 }
411
412 /* Calls 'cb' for each interfaces in 'br', passing along the 'aux' argument.
413 * Deletes from 'br' all the interfaces for which 'cb' returns false, and then
414 * deletes from 'br' any ports that no longer have any interfaces. */
415 static void
416 iterate_and_prune_ifaces(struct bridge *br,
417 bool (*cb)(struct bridge *, struct iface *,
418 void *aux),
419 void *aux)
420 {
421 size_t i, j;
422
423 for (i = 0; i < br->n_ports; ) {
424 struct port *port = br->ports[i];
425 for (j = 0; j < port->n_ifaces; ) {
426 struct iface *iface = port->ifaces[j];
427 if (cb(br, iface, aux)) {
428 j++;
429 } else {
430 iface_destroy(iface);
431 }
432 }
433
434 if (port->n_ifaces) {
435 i++;
436 } else {
437 VLOG_ERR("%s port has no interfaces, dropping", port->name);
438 port_destroy(port);
439 }
440 }
441 }
442
443 void
444 bridge_reconfigure(void)
445 {
446 struct svec old_br, new_br;
447 struct bridge *br, *next;
448 size_t i;
449
450 COVERAGE_INC(bridge_reconfigure);
451
452 /* Collect old and new bridges. */
453 svec_init(&old_br);
454 svec_init(&new_br);
455 LIST_FOR_EACH (br, struct bridge, node, &all_bridges) {
456 svec_add(&old_br, br->name);
457 }
458 cfg_get_subsections(&new_br, "bridge");
459
460 /* Get rid of deleted bridges and add new bridges. */
461 svec_sort(&old_br);
462 svec_sort(&new_br);
463 assert(svec_is_unique(&old_br));
464 assert(svec_is_unique(&new_br));
465 LIST_FOR_EACH_SAFE (br, next, struct bridge, node, &all_bridges) {
466 if (!svec_contains(&new_br, br->name)) {
467 bridge_destroy(br);
468 }
469 }
470 for (i = 0; i < new_br.n; i++) {
471 const char *name = new_br.names[i];
472 if (!svec_contains(&old_br, name)) {
473 bridge_create(name);
474 }
475 }
476 svec_destroy(&old_br);
477 svec_destroy(&new_br);
478
479 #ifdef HAVE_OPENSSL
480 /* Configure SSL. */
481 bridge_configure_ssl();
482 #endif
483
484 /* Reconfigure all bridges. */
485 LIST_FOR_EACH (br, struct bridge, node, &all_bridges) {
486 bridge_reconfigure_one(br);
487 }
488
489 /* Add and delete ports on all datapaths.
490 *
491 * The kernel will reject any attempt to add a given port to a datapath if
492 * that port already belongs to a different datapath, so we must do all
493 * port deletions before any port additions. */
494 LIST_FOR_EACH (br, struct bridge, node, &all_bridges) {
495 struct odp_port *dpif_ports;
496 size_t n_dpif_ports;
497 struct svec want_ifaces;
498
499 dpif_port_list(br->dpif, &dpif_ports, &n_dpif_ports);
500 bridge_get_all_ifaces(br, &want_ifaces);
501 for (i = 0; i < n_dpif_ports; i++) {
502 const struct odp_port *p = &dpif_ports[i];
503 if (!svec_contains(&want_ifaces, p->devname)
504 && strcmp(p->devname, br->name)) {
505 int retval = dpif_port_del(br->dpif, p->port);
506 if (retval) {
507 VLOG_ERR("failed to remove %s interface from %s: %s",
508 p->devname, dpif_name(br->dpif),
509 strerror(retval));
510 }
511 }
512 }
513 svec_destroy(&want_ifaces);
514 free(dpif_ports);
515 }
516 LIST_FOR_EACH (br, struct bridge, node, &all_bridges) {
517 struct odp_port *dpif_ports;
518 size_t n_dpif_ports;
519 struct svec cur_ifaces, want_ifaces, add_ifaces;
520
521 dpif_port_list(br->dpif, &dpif_ports, &n_dpif_ports);
522 svec_init(&cur_ifaces);
523 for (i = 0; i < n_dpif_ports; i++) {
524 svec_add(&cur_ifaces, dpif_ports[i].devname);
525 }
526 free(dpif_ports);
527 svec_sort_unique(&cur_ifaces);
528 bridge_get_all_ifaces(br, &want_ifaces);
529 svec_diff(&want_ifaces, &cur_ifaces, &add_ifaces, NULL, NULL);
530
531 for (i = 0; i < add_ifaces.n; i++) {
532 const char *if_name = add_ifaces.names[i];
533 bool internal;
534 int error;
535
536 /* It's an internal interface if it's marked that way, or if
537 * it's a bonded interface for which we're faking up a network
538 * device. */
539 internal = cfg_get_bool(0, "iface.%s.internal", if_name);
540 if (cfg_get_bool(0, "bonding.%s.fake-iface", if_name)) {
541 struct port *port = port_lookup(br, if_name);
542 if (port && port->n_ifaces > 1) {
543 internal = true;
544 }
545 }
546
547 /* Add to datapath. */
548 error = dpif_port_add(br->dpif, if_name,
549 internal ? ODP_PORT_INTERNAL : 0, NULL);
550 if (error == EXFULL) {
551 VLOG_ERR("ran out of valid port numbers on %s",
552 dpif_name(br->dpif));
553 break;
554 } else if (error) {
555 VLOG_ERR("failed to add %s interface to %s: %s",
556 if_name, dpif_name(br->dpif), strerror(error));
557 }
558 }
559 svec_destroy(&cur_ifaces);
560 svec_destroy(&want_ifaces);
561 svec_destroy(&add_ifaces);
562 }
563 LIST_FOR_EACH (br, struct bridge, node, &all_bridges) {
564 uint8_t ea[8];
565 uint64_t dpid;
566 struct iface *local_iface;
567 struct iface *hw_addr_iface;
568 uint8_t engine_type, engine_id;
569 bool add_id_to_iface = false;
570 struct svec nf_hosts;
571
572 bridge_fetch_dp_ifaces(br);
573 iterate_and_prune_ifaces(br, init_iface_netdev, NULL);
574
575 iterate_and_prune_ifaces(br, check_iface_dp_ifidx, NULL);
576
577 /* Pick local port hardware address, datapath ID. */
578 bridge_pick_local_hw_addr(br, ea, &hw_addr_iface);
579 local_iface = bridge_get_local_iface(br);
580 if (local_iface) {
581 int error = netdev_set_etheraddr(local_iface->netdev, ea);
582 if (error) {
583 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
584 VLOG_ERR_RL(&rl, "bridge %s: failed to set bridge "
585 "Ethernet address: %s",
586 br->name, strerror(error));
587 }
588 }
589
590 dpid = bridge_pick_datapath_id(br, ea, hw_addr_iface);
591 ofproto_set_datapath_id(br->ofproto, dpid);
592
593 /* Set NetFlow configuration on this bridge. */
594 dpif_get_netflow_ids(br->dpif, &engine_type, &engine_id);
595 if (cfg_has("netflow.%s.engine-type", br->name)) {
596 engine_type = cfg_get_int(0, "netflow.%s.engine-type",
597 br->name);
598 }
599 if (cfg_has("netflow.%s.engine-id", br->name)) {
600 engine_id = cfg_get_int(0, "netflow.%s.engine-id", br->name);
601 }
602 if (cfg_has("netflow.%s.add-id-to-iface", br->name)) {
603 add_id_to_iface = cfg_get_bool(0, "netflow.%s.add-id-to-iface",
604 br->name);
605 }
606 if (add_id_to_iface && engine_id > 0x7f) {
607 VLOG_WARN("bridge %s: netflow port mangling may conflict with "
608 "another vswitch, choose an engine id less than 128",
609 br->name);
610 }
611 if (add_id_to_iface && br->n_ports > 0x1ff) {
612 VLOG_WARN("bridge %s: netflow port mangling will conflict with "
613 "another port when 512 or more ports are used",
614 br->name);
615 }
616 svec_init(&nf_hosts);
617 cfg_get_all_keys(&nf_hosts, "netflow.%s.host", br->name);
618 if (ofproto_set_netflow(br->ofproto, &nf_hosts, engine_type,
619 engine_id, add_id_to_iface)) {
620 VLOG_ERR("bridge %s: problem setting netflow collectors",
621 br->name);
622 }
623
624 /* Update the controller and related settings. It would be more
625 * straightforward to call this from bridge_reconfigure_one(), but we
626 * can't do it there for two reasons. First, and most importantly, at
627 * that point we don't know the dp_ifidx of any interfaces that have
628 * been added to the bridge (because we haven't actually added them to
629 * the datapath). Second, at that point we haven't set the datapath ID
630 * yet; when a controller is configured, resetting the datapath ID will
631 * immediately disconnect from the controller, so it's better to set
632 * the datapath ID before the controller. */
633 bridge_reconfigure_controller(br);
634 }
635 LIST_FOR_EACH (br, struct bridge, node, &all_bridges) {
636 for (i = 0; i < br->n_ports; i++) {
637 struct port *port = br->ports[i];
638 port_update_vlan_compat(port);
639 port_update_bonding(port);
640 }
641 }
642 LIST_FOR_EACH (br, struct bridge, node, &all_bridges) {
643 brstp_reconfigure(br);
644 iterate_and_prune_ifaces(br, set_iface_policing, NULL);
645 }
646 }
647
648 static void
649 bridge_pick_local_hw_addr(struct bridge *br, uint8_t ea[ETH_ADDR_LEN],
650 struct iface **hw_addr_iface)
651 {
652 uint64_t requested_ea;
653 size_t i, j;
654 int error;
655
656 *hw_addr_iface = NULL;
657
658 /* Did the user request a particular MAC? */
659 requested_ea = cfg_get_mac(0, "bridge.%s.mac", br->name);
660 if (requested_ea) {
661 eth_addr_from_uint64(requested_ea, ea);
662 if (eth_addr_is_multicast(ea)) {
663 VLOG_ERR("bridge %s: cannot set MAC address to multicast "
664 "address "ETH_ADDR_FMT, br->name, ETH_ADDR_ARGS(ea));
665 } else if (eth_addr_is_zero(ea)) {
666 VLOG_ERR("bridge %s: cannot set MAC address to zero", br->name);
667 } else {
668 return;
669 }
670 }
671
672 /* Otherwise choose the minimum MAC address among all of the interfaces.
673 * (Xen uses FE:FF:FF:FF:FF:FF for virtual interfaces so this will get the
674 * MAC of the physical interface in such an environment.) */
675 memset(ea, 0xff, sizeof ea);
676 for (i = 0; i < br->n_ports; i++) {
677 struct port *port = br->ports[i];
678 uint8_t iface_ea[ETH_ADDR_LEN];
679 uint64_t iface_ea_u64;
680 struct iface *iface;
681
682 /* Mirror output ports don't participate. */
683 if (port->is_mirror_output_port) {
684 continue;
685 }
686
687 /* Choose the MAC address to represent the port. */
688 iface_ea_u64 = cfg_get_mac(0, "port.%s.mac", port->name);
689 if (iface_ea_u64) {
690 /* User specified explicitly. */
691 eth_addr_from_uint64(iface_ea_u64, iface_ea);
692
693 /* Find the interface with this Ethernet address (if any) so that
694 * we can provide the correct devname to the caller. */
695 iface = NULL;
696 for (j = 0; j < port->n_ifaces; j++) {
697 struct iface *candidate = port->ifaces[j];
698 uint8_t candidate_ea[ETH_ADDR_LEN];
699 if (!netdev_get_etheraddr(candidate->netdev, candidate_ea)
700 && eth_addr_equals(iface_ea, candidate_ea)) {
701 iface = candidate;
702 }
703 }
704 } else {
705 /* Choose the interface whose MAC address will represent the port.
706 * The Linux kernel bonding code always chooses the MAC address of
707 * the first slave added to a bond, and the Fedora networking
708 * scripts always add slaves to a bond in alphabetical order, so
709 * for compatibility we choose the interface with the name that is
710 * first in alphabetical order. */
711 iface = port->ifaces[0];
712 for (j = 1; j < port->n_ifaces; j++) {
713 struct iface *candidate = port->ifaces[j];
714 if (strcmp(candidate->name, iface->name) < 0) {
715 iface = candidate;
716 }
717 }
718
719 /* The local port doesn't count (since we're trying to choose its
720 * MAC address anyway). Other internal ports don't count because
721 * we really want a physical MAC if we can get it, and internal
722 * ports typically have randomly generated MACs. */
723 if (iface->dp_ifidx == ODPP_LOCAL
724 || cfg_get_bool(0, "iface.%s.internal", iface->name)) {
725 continue;
726 }
727
728 /* Grab MAC. */
729 error = netdev_get_etheraddr(iface->netdev, iface_ea);
730 if (error) {
731 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
732 VLOG_ERR_RL(&rl, "failed to obtain Ethernet address of %s: %s",
733 iface->name, strerror(error));
734 continue;
735 }
736 }
737
738 /* Compare against our current choice. */
739 if (!eth_addr_is_multicast(iface_ea) &&
740 !eth_addr_is_reserved(iface_ea) &&
741 !eth_addr_is_zero(iface_ea) &&
742 memcmp(iface_ea, ea, ETH_ADDR_LEN) < 0)
743 {
744 *hw_addr_iface = iface;
745 }
746 }
747 if (eth_addr_is_multicast(ea) || eth_addr_is_vif(ea)) {
748 memcpy(ea, br->default_ea, ETH_ADDR_LEN);
749 *hw_addr_iface = NULL;
750 VLOG_WARN("bridge %s: using default bridge Ethernet "
751 "address "ETH_ADDR_FMT, br->name, ETH_ADDR_ARGS(ea));
752 } else {
753 VLOG_DBG("bridge %s: using bridge Ethernet address "ETH_ADDR_FMT,
754 br->name, ETH_ADDR_ARGS(ea));
755 }
756 }
757
758 /* Choose and returns the datapath ID for bridge 'br' given that the bridge
759 * Ethernet address is 'bridge_ea'. If 'bridge_ea' is the Ethernet address of
760 * an interface on 'br', then that interface must be passed in as
761 * 'hw_addr_iface'; if 'bridge_ea' was derived some other way, then
762 * 'hw_addr_iface' must be passed in as a null pointer. */
763 static uint64_t
764 bridge_pick_datapath_id(struct bridge *br,
765 const uint8_t bridge_ea[ETH_ADDR_LEN],
766 struct iface *hw_addr_iface)
767 {
768 /*
769 * The procedure for choosing a bridge MAC address will, in the most
770 * ordinary case, also choose a unique MAC that we can use as a datapath
771 * ID. In some special cases, though, multiple bridges will end up with
772 * the same MAC address. This is OK for the bridges, but it will confuse
773 * the OpenFlow controller, because each datapath needs a unique datapath
774 * ID.
775 *
776 * Datapath IDs must be unique. It is also very desirable that they be
777 * stable from one run to the next, so that policy set on a datapath
778 * "sticks".
779 */
780 uint64_t dpid;
781
782 dpid = cfg_get_dpid(0, "bridge.%s.datapath-id", br->name);
783 if (dpid) {
784 return dpid;
785 }
786
787 if (hw_addr_iface) {
788 int vlan;
789 if (!netdev_get_vlan_vid(hw_addr_iface->netdev, &vlan)) {
790 /*
791 * A bridge whose MAC address is taken from a VLAN network device
792 * (that is, a network device created with vconfig(8) or similar
793 * tool) will have the same MAC address as a bridge on the VLAN
794 * device's physical network device.
795 *
796 * Handle this case by hashing the physical network device MAC
797 * along with the VLAN identifier.
798 */
799 uint8_t buf[ETH_ADDR_LEN + 2];
800 memcpy(buf, bridge_ea, ETH_ADDR_LEN);
801 buf[ETH_ADDR_LEN] = vlan >> 8;
802 buf[ETH_ADDR_LEN + 1] = vlan;
803 return dpid_from_hash(buf, sizeof buf);
804 } else {
805 /*
806 * Assume that this bridge's MAC address is unique, since it
807 * doesn't fit any of the cases we handle specially.
808 */
809 }
810 } else {
811 /*
812 * A purely internal bridge, that is, one that has no non-virtual
813 * network devices on it at all, is more difficult because it has no
814 * natural unique identifier at all.
815 *
816 * When the host is a XenServer, we handle this case by hashing the
817 * host's UUID with the name of the bridge. Names of bridges are
818 * persistent across XenServer reboots, although they can be reused if
819 * an internal network is destroyed and then a new one is later
820 * created, so this is fairly effective.
821 *
822 * When the host is not a XenServer, we punt by using a random MAC
823 * address on each run.
824 */
825 const char *host_uuid = xenserver_get_host_uuid();
826 if (host_uuid) {
827 char *combined = xasprintf("%s,%s", host_uuid, br->name);
828 dpid = dpid_from_hash(combined, strlen(combined));
829 free(combined);
830 return dpid;
831 }
832 }
833
834 return eth_addr_to_uint64(bridge_ea);
835 }
836
837 static uint64_t
838 dpid_from_hash(const void *data, size_t n)
839 {
840 uint8_t hash[SHA1_DIGEST_SIZE];
841
842 BUILD_ASSERT_DECL(sizeof hash >= ETH_ADDR_LEN);
843 sha1_bytes(data, n, hash);
844 eth_addr_mark_random(hash);
845 return eth_addr_to_uint64(hash);
846 }
847
848 int
849 bridge_run(void)
850 {
851 struct bridge *br, *next;
852 int retval;
853
854 retval = 0;
855 LIST_FOR_EACH_SAFE (br, next, struct bridge, node, &all_bridges) {
856 int error = bridge_run_one(br);
857 if (error) {
858 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
859 VLOG_ERR_RL(&rl, "bridge %s: datapath was destroyed externally, "
860 "forcing reconfiguration", br->name);
861 if (!retval) {
862 retval = error;
863 }
864 }
865 }
866 return retval;
867 }
868
869 void
870 bridge_wait(void)
871 {
872 struct bridge *br;
873
874 LIST_FOR_EACH (br, struct bridge, node, &all_bridges) {
875 ofproto_wait(br->ofproto);
876 if (br->controller) {
877 continue;
878 }
879
880 if (br->ml) {
881 mac_learning_wait(br->ml);
882 }
883 bond_wait(br);
884 brstp_wait(br);
885 }
886 }
887
888 /* Forces 'br' to revalidate all of its flows. This is appropriate when 'br''s
889 * configuration changes. */
890 static void
891 bridge_flush(struct bridge *br)
892 {
893 COVERAGE_INC(bridge_flush);
894 br->flush = true;
895 if (br->ml) {
896 mac_learning_flush(br->ml);
897 }
898 }
899
900 /* Returns the 'br' interface for the ODPP_LOCAL port, or null if 'br' has no
901 * such interface. */
902 static struct iface *
903 bridge_get_local_iface(struct bridge *br)
904 {
905 size_t i, j;
906
907 for (i = 0; i < br->n_ports; i++) {
908 struct port *port = br->ports[i];
909 for (j = 0; j < port->n_ifaces; j++) {
910 struct iface *iface = port->ifaces[j];
911 if (iface->dp_ifidx == ODPP_LOCAL) {
912 return iface;
913 }
914 }
915 }
916
917 return NULL;
918 }
919 \f
920 /* Bridge unixctl user interface functions. */
921 static void
922 bridge_unixctl_fdb_show(struct unixctl_conn *conn, const char *args)
923 {
924 struct ds ds = DS_EMPTY_INITIALIZER;
925 const struct bridge *br;
926
927 br = bridge_lookup(args);
928 if (!br) {
929 unixctl_command_reply(conn, 501, "no such bridge");
930 return;
931 }
932
933 ds_put_cstr(&ds, " port VLAN MAC Age\n");
934 if (br->ml) {
935 const struct mac_entry *e;
936 LIST_FOR_EACH (e, struct mac_entry, lru_node, &br->ml->lrus) {
937 if (e->port < 0 || e->port >= br->n_ports) {
938 continue;
939 }
940 ds_put_format(&ds, "%5d %4d "ETH_ADDR_FMT" %3d\n",
941 br->ports[e->port]->ifaces[0]->dp_ifidx,
942 e->vlan, ETH_ADDR_ARGS(e->mac), mac_entry_age(e));
943 }
944 }
945 unixctl_command_reply(conn, 200, ds_cstr(&ds));
946 ds_destroy(&ds);
947 }
948 \f
949 /* Bridge reconfiguration functions. */
950
951 static struct bridge *
952 bridge_create(const char *name)
953 {
954 struct bridge *br;
955 int error;
956
957 assert(!bridge_lookup(name));
958 br = xcalloc(1, sizeof *br);
959
960 error = dpif_create(name, &br->dpif);
961 if (error == EEXIST || error == EBUSY) {
962 error = dpif_open(name, &br->dpif);
963 if (error) {
964 VLOG_ERR("datapath %s already exists but cannot be opened: %s",
965 name, strerror(error));
966 free(br);
967 return NULL;
968 }
969 dpif_flow_flush(br->dpif);
970 } else if (error) {
971 VLOG_ERR("failed to create datapath %s: %s", name, strerror(error));
972 free(br);
973 return NULL;
974 }
975
976 error = ofproto_create(name, &bridge_ofhooks, br, &br->ofproto);
977 if (error) {
978 VLOG_ERR("failed to create switch %s: %s", name, strerror(error));
979 dpif_delete(br->dpif);
980 dpif_close(br->dpif);
981 free(br);
982 return NULL;
983 }
984
985 br->name = xstrdup(name);
986 br->ml = mac_learning_create();
987 br->sent_config_request = false;
988 eth_addr_random(br->default_ea);
989
990 port_array_init(&br->ifaces);
991
992 br->flush = false;
993 br->bond_next_rebalance = time_msec() + 10000;
994
995 list_push_back(&all_bridges, &br->node);
996
997 VLOG_INFO("created bridge %s on %s", br->name, dpif_name(br->dpif));
998
999 return br;
1000 }
1001
1002 static void
1003 bridge_destroy(struct bridge *br)
1004 {
1005 if (br) {
1006 int error;
1007
1008 while (br->n_ports > 0) {
1009 port_destroy(br->ports[br->n_ports - 1]);
1010 }
1011 list_remove(&br->node);
1012 error = dpif_delete(br->dpif);
1013 if (error && error != ENOENT) {
1014 VLOG_ERR("failed to delete %s: %s",
1015 dpif_name(br->dpif), strerror(error));
1016 }
1017 dpif_close(br->dpif);
1018 ofproto_destroy(br->ofproto);
1019 free(br->controller);
1020 mac_learning_destroy(br->ml);
1021 port_array_destroy(&br->ifaces);
1022 free(br->ports);
1023 free(br->name);
1024 free(br);
1025 }
1026 }
1027
1028 static struct bridge *
1029 bridge_lookup(const char *name)
1030 {
1031 struct bridge *br;
1032
1033 LIST_FOR_EACH (br, struct bridge, node, &all_bridges) {
1034 if (!strcmp(br->name, name)) {
1035 return br;
1036 }
1037 }
1038 return NULL;
1039 }
1040
1041 bool
1042 bridge_exists(const char *name)
1043 {
1044 return bridge_lookup(name) ? true : false;
1045 }
1046
1047 uint64_t
1048 bridge_get_datapathid(const char *name)
1049 {
1050 struct bridge *br = bridge_lookup(name);
1051 return br ? ofproto_get_datapath_id(br->ofproto) : 0;
1052 }
1053
1054 /* Handle requests for a listing of all flows known by the OpenFlow
1055 * stack, including those normally hidden. */
1056 static void
1057 bridge_unixctl_dump_flows(struct unixctl_conn *conn, const char *args)
1058 {
1059 struct bridge *br;
1060 struct ds results;
1061
1062 br = bridge_lookup(args);
1063 if (!br) {
1064 unixctl_command_reply(conn, 501, "Unknown bridge");
1065 return;
1066 }
1067
1068 ds_init(&results);
1069 ofproto_get_all_flows(br->ofproto, &results);
1070
1071 unixctl_command_reply(conn, 200, ds_cstr(&results));
1072 ds_destroy(&results);
1073 }
1074
1075 static int
1076 bridge_run_one(struct bridge *br)
1077 {
1078 int error;
1079
1080 error = ofproto_run1(br->ofproto);
1081 if (error) {
1082 return error;
1083 }
1084
1085 if (br->ml) {
1086 mac_learning_run(br->ml, ofproto_get_revalidate_set(br->ofproto));
1087 }
1088 bond_run(br);
1089 brstp_run(br);
1090
1091 error = ofproto_run2(br->ofproto, br->flush);
1092 br->flush = false;
1093
1094 return error;
1095 }
1096
1097 static const char *
1098 bridge_get_controller(const struct bridge *br)
1099 {
1100 const char *controller;
1101
1102 controller = cfg_get_string(0, "bridge.%s.controller", br->name);
1103 if (!controller) {
1104 controller = cfg_get_string(0, "mgmt.controller");
1105 }
1106 return controller && controller[0] ? controller : NULL;
1107 }
1108
1109 static bool
1110 check_duplicate_ifaces(struct bridge *br, struct iface *iface, void *ifaces_)
1111 {
1112 struct svec *ifaces = ifaces_;
1113 if (!svec_contains(ifaces, iface->name)) {
1114 svec_add(ifaces, iface->name);
1115 svec_sort(ifaces);
1116 return true;
1117 } else {
1118 VLOG_ERR("bridge %s: %s interface is on multiple ports, "
1119 "removing from %s",
1120 br->name, iface->name, iface->port->name);
1121 return false;
1122 }
1123 }
1124
1125 static void
1126 bridge_reconfigure_one(struct bridge *br)
1127 {
1128 struct svec old_ports, new_ports, ifaces;
1129 struct svec listeners, old_listeners;
1130 struct svec snoops, old_snoops;
1131 size_t i;
1132
1133 /* Collect old ports. */
1134 svec_init(&old_ports);
1135 for (i = 0; i < br->n_ports; i++) {
1136 svec_add(&old_ports, br->ports[i]->name);
1137 }
1138 svec_sort(&old_ports);
1139 assert(svec_is_unique(&old_ports));
1140
1141 /* Collect new ports. */
1142 svec_init(&new_ports);
1143 cfg_get_all_keys(&new_ports, "bridge.%s.port", br->name);
1144 svec_sort(&new_ports);
1145 if (bridge_get_controller(br)) {
1146 char local_name[IF_NAMESIZE];
1147 int error;
1148
1149 error = dpif_port_get_name(br->dpif, ODPP_LOCAL,
1150 local_name, sizeof local_name);
1151 if (!error && !svec_contains(&new_ports, local_name)) {
1152 svec_add(&new_ports, local_name);
1153 svec_sort(&new_ports);
1154 }
1155 }
1156 if (!svec_is_unique(&new_ports)) {
1157 VLOG_WARN("bridge %s: %s specified twice as bridge port",
1158 br->name, svec_get_duplicate(&new_ports));
1159 svec_unique(&new_ports);
1160 }
1161
1162 ofproto_set_mgmt_id(br->ofproto, mgmt_id);
1163
1164 /* Get rid of deleted ports and add new ports. */
1165 for (i = 0; i < br->n_ports; ) {
1166 struct port *port = br->ports[i];
1167 if (!svec_contains(&new_ports, port->name)) {
1168 port_destroy(port);
1169 } else {
1170 i++;
1171 }
1172 }
1173 for (i = 0; i < new_ports.n; i++) {
1174 const char *name = new_ports.names[i];
1175 if (!svec_contains(&old_ports, name)) {
1176 port_create(br, name);
1177 }
1178 }
1179 svec_destroy(&old_ports);
1180 svec_destroy(&new_ports);
1181
1182 /* Reconfigure all ports. */
1183 for (i = 0; i < br->n_ports; i++) {
1184 port_reconfigure(br->ports[i]);
1185 }
1186
1187 /* Check and delete duplicate interfaces. */
1188 svec_init(&ifaces);
1189 iterate_and_prune_ifaces(br, check_duplicate_ifaces, &ifaces);
1190 svec_destroy(&ifaces);
1191
1192 /* Delete all flows if we're switching from connected to standalone or vice
1193 * versa. (XXX Should we delete all flows if we are switching from one
1194 * controller to another?) */
1195
1196 /* Configure OpenFlow management listeners. */
1197 svec_init(&listeners);
1198 cfg_get_all_strings(&listeners, "bridge.%s.openflow.listeners", br->name);
1199 if (!listeners.n) {
1200 svec_add_nocopy(&listeners, xasprintf("punix:%s/%s.mgmt",
1201 ovs_rundir, br->name));
1202 } else if (listeners.n == 1 && !strcmp(listeners.names[0], "none")) {
1203 svec_clear(&listeners);
1204 }
1205 svec_sort_unique(&listeners);
1206
1207 svec_init(&old_listeners);
1208 ofproto_get_listeners(br->ofproto, &old_listeners);
1209 svec_sort_unique(&old_listeners);
1210
1211 if (!svec_equal(&listeners, &old_listeners)) {
1212 ofproto_set_listeners(br->ofproto, &listeners);
1213 }
1214 svec_destroy(&listeners);
1215 svec_destroy(&old_listeners);
1216
1217 /* Configure OpenFlow controller connection snooping. */
1218 svec_init(&snoops);
1219 cfg_get_all_strings(&snoops, "bridge.%s.openflow.snoops", br->name);
1220 if (!snoops.n) {
1221 svec_add_nocopy(&snoops, xasprintf("punix:%s/%s.snoop",
1222 ovs_rundir, br->name));
1223 } else if (snoops.n == 1 && !strcmp(snoops.names[0], "none")) {
1224 svec_clear(&snoops);
1225 }
1226 svec_sort_unique(&snoops);
1227
1228 svec_init(&old_snoops);
1229 ofproto_get_snoops(br->ofproto, &old_snoops);
1230 svec_sort_unique(&old_snoops);
1231
1232 if (!svec_equal(&snoops, &old_snoops)) {
1233 ofproto_set_snoops(br->ofproto, &snoops);
1234 }
1235 svec_destroy(&snoops);
1236 svec_destroy(&old_snoops);
1237
1238 mirror_reconfigure(br);
1239 }
1240
1241 static void
1242 bridge_reconfigure_controller(struct bridge *br)
1243 {
1244 char *pfx = xasprintf("bridge.%s.controller", br->name);
1245 const char *controller;
1246
1247 controller = bridge_get_controller(br);
1248 if ((br->controller != NULL) != (controller != NULL)) {
1249 ofproto_flush_flows(br->ofproto);
1250 }
1251 free(br->controller);
1252 br->controller = controller ? xstrdup(controller) : NULL;
1253
1254 if (controller) {
1255 const char *fail_mode;
1256 int max_backoff, probe;
1257 int rate_limit, burst_limit;
1258
1259 if (!strcmp(controller, "discover")) {
1260 bool update_resolv_conf = true;
1261
1262 if (cfg_has("%s.update-resolv.conf", pfx)) {
1263 update_resolv_conf = cfg_get_bool(0, "%s.update-resolv.conf",
1264 pfx);
1265 }
1266 ofproto_set_discovery(br->ofproto, true,
1267 cfg_get_string(0, "%s.accept-regex", pfx),
1268 update_resolv_conf);
1269 } else {
1270 struct iface *local_iface;
1271 bool in_band;
1272
1273 in_band = (!cfg_is_valid(CFG_BOOL | CFG_REQUIRED,
1274 "%s.in-band", pfx)
1275 || cfg_get_bool(0, "%s.in-band", pfx));
1276 ofproto_set_discovery(br->ofproto, false, NULL, NULL);
1277 ofproto_set_in_band(br->ofproto, in_band);
1278
1279 local_iface = bridge_get_local_iface(br);
1280 if (local_iface
1281 && cfg_is_valid(CFG_IP | CFG_REQUIRED, "%s.ip", pfx)) {
1282 struct netdev *netdev = local_iface->netdev;
1283 struct in_addr ip, mask, gateway;
1284 ip.s_addr = cfg_get_ip(0, "%s.ip", pfx);
1285 mask.s_addr = cfg_get_ip(0, "%s.netmask", pfx);
1286 gateway.s_addr = cfg_get_ip(0, "%s.gateway", pfx);
1287
1288 netdev_turn_flags_on(netdev, NETDEV_UP, true);
1289 if (!mask.s_addr) {
1290 mask.s_addr = guess_netmask(ip.s_addr);
1291 }
1292 if (!netdev_set_in4(netdev, ip, mask)) {
1293 VLOG_INFO("bridge %s: configured IP address "IP_FMT", "
1294 "netmask "IP_FMT,
1295 br->name, IP_ARGS(&ip.s_addr),
1296 IP_ARGS(&mask.s_addr));
1297 }
1298
1299 if (gateway.s_addr) {
1300 if (!netdev_add_router(netdev, gateway)) {
1301 VLOG_INFO("bridge %s: configured gateway "IP_FMT,
1302 br->name, IP_ARGS(&gateway.s_addr));
1303 }
1304 }
1305 }
1306 }
1307
1308 fail_mode = cfg_get_string(0, "%s.fail-mode", pfx);
1309 if (!fail_mode) {
1310 fail_mode = cfg_get_string(0, "mgmt.fail-mode");
1311 }
1312 ofproto_set_failure(br->ofproto,
1313 (!fail_mode
1314 || !strcmp(fail_mode, "standalone")
1315 || !strcmp(fail_mode, "open")));
1316
1317 probe = cfg_get_int(0, "%s.inactivity-probe", pfx);
1318 if (probe < 5) {
1319 probe = cfg_get_int(0, "mgmt.inactivity-probe");
1320 if (probe < 5) {
1321 probe = 5;
1322 }
1323 }
1324 ofproto_set_probe_interval(br->ofproto, probe);
1325
1326 max_backoff = cfg_get_int(0, "%s.max-backoff", pfx);
1327 if (!max_backoff) {
1328 max_backoff = cfg_get_int(0, "mgmt.max-backoff");
1329 if (!max_backoff) {
1330 max_backoff = 8;
1331 }
1332 }
1333 ofproto_set_max_backoff(br->ofproto, max_backoff);
1334
1335 rate_limit = cfg_get_int(0, "%s.rate-limit", pfx);
1336 if (!rate_limit) {
1337 rate_limit = cfg_get_int(0, "mgmt.rate-limit");
1338 }
1339 burst_limit = cfg_get_int(0, "%s.burst-limit", pfx);
1340 if (!burst_limit) {
1341 burst_limit = cfg_get_int(0, "mgmt.burst-limit");
1342 }
1343 ofproto_set_rate_limit(br->ofproto, rate_limit, burst_limit);
1344
1345 ofproto_set_stp(br->ofproto, cfg_get_bool(0, "%s.stp", pfx));
1346
1347 if (cfg_has("%s.commands.acl", pfx)) {
1348 struct svec command_acls;
1349 char *command_acl;
1350
1351 svec_init(&command_acls);
1352 cfg_get_all_strings(&command_acls, "%s.commands.acl", pfx);
1353 command_acl = svec_join(&command_acls, ",", "");
1354
1355 ofproto_set_remote_execution(br->ofproto, command_acl,
1356 cfg_get_string(0, "%s.commands.dir",
1357 pfx));
1358
1359 svec_destroy(&command_acls);
1360 free(command_acl);
1361 } else {
1362 ofproto_set_remote_execution(br->ofproto, NULL, NULL);
1363 }
1364 } else {
1365 union ofp_action action;
1366 flow_t flow;
1367
1368 /* Set up a flow that matches every packet and directs them to
1369 * OFPP_NORMAL (which goes to us). */
1370 memset(&action, 0, sizeof action);
1371 action.type = htons(OFPAT_OUTPUT);
1372 action.output.len = htons(sizeof action);
1373 action.output.port = htons(OFPP_NORMAL);
1374 memset(&flow, 0, sizeof flow);
1375 ofproto_add_flow(br->ofproto, &flow, OFPFW_ALL, 0,
1376 &action, 1, 0);
1377
1378 ofproto_set_in_band(br->ofproto, false);
1379 ofproto_set_max_backoff(br->ofproto, 1);
1380 ofproto_set_probe_interval(br->ofproto, 5);
1381 ofproto_set_failure(br->ofproto, false);
1382 ofproto_set_stp(br->ofproto, false);
1383 }
1384 free(pfx);
1385
1386 ofproto_set_controller(br->ofproto, br->controller);
1387 }
1388
1389 static void
1390 bridge_get_all_ifaces(const struct bridge *br, struct svec *ifaces)
1391 {
1392 size_t i, j;
1393
1394 svec_init(ifaces);
1395 for (i = 0; i < br->n_ports; i++) {
1396 struct port *port = br->ports[i];
1397 for (j = 0; j < port->n_ifaces; j++) {
1398 struct iface *iface = port->ifaces[j];
1399 svec_add(ifaces, iface->name);
1400 }
1401 if (port->n_ifaces > 1
1402 && cfg_get_bool(0, "bonding.%s.fake-iface", port->name)) {
1403 svec_add(ifaces, port->name);
1404 }
1405 }
1406 svec_sort_unique(ifaces);
1407 }
1408
1409 /* For robustness, in case the administrator moves around datapath ports behind
1410 * our back, we re-check all the datapath port numbers here.
1411 *
1412 * This function will set the 'dp_ifidx' members of interfaces that have
1413 * disappeared to -1, so only call this function from a context where those
1414 * 'struct iface's will be removed from the bridge. Otherwise, the -1
1415 * 'dp_ifidx'es will cause trouble later when we try to send them to the
1416 * datapath, which doesn't support UINT16_MAX+1 ports. */
1417 static void
1418 bridge_fetch_dp_ifaces(struct bridge *br)
1419 {
1420 struct odp_port *dpif_ports;
1421 size_t n_dpif_ports;
1422 size_t i, j;
1423
1424 /* Reset all interface numbers. */
1425 for (i = 0; i < br->n_ports; i++) {
1426 struct port *port = br->ports[i];
1427 for (j = 0; j < port->n_ifaces; j++) {
1428 struct iface *iface = port->ifaces[j];
1429 iface->dp_ifidx = -1;
1430 }
1431 }
1432 port_array_clear(&br->ifaces);
1433
1434 dpif_port_list(br->dpif, &dpif_ports, &n_dpif_ports);
1435 for (i = 0; i < n_dpif_ports; i++) {
1436 struct odp_port *p = &dpif_ports[i];
1437 struct iface *iface = iface_lookup(br, p->devname);
1438 if (iface) {
1439 if (iface->dp_ifidx >= 0) {
1440 VLOG_WARN("%s reported interface %s twice",
1441 dpif_name(br->dpif), p->devname);
1442 } else if (iface_from_dp_ifidx(br, p->port)) {
1443 VLOG_WARN("%s reported interface %"PRIu16" twice",
1444 dpif_name(br->dpif), p->port);
1445 } else {
1446 port_array_set(&br->ifaces, p->port, iface);
1447 iface->dp_ifidx = p->port;
1448 }
1449 }
1450 }
1451 free(dpif_ports);
1452 }
1453 \f
1454 /* Bridge packet processing functions. */
1455
1456 static int
1457 bond_hash(const uint8_t mac[ETH_ADDR_LEN])
1458 {
1459 return hash_bytes(mac, ETH_ADDR_LEN, 0) & BOND_MASK;
1460 }
1461
1462 static struct bond_entry *
1463 lookup_bond_entry(const struct port *port, const uint8_t mac[ETH_ADDR_LEN])
1464 {
1465 return &port->bond_hash[bond_hash(mac)];
1466 }
1467
1468 static int
1469 bond_choose_iface(const struct port *port)
1470 {
1471 size_t i;
1472 for (i = 0; i < port->n_ifaces; i++) {
1473 if (port->ifaces[i]->enabled) {
1474 return i;
1475 }
1476 }
1477 return -1;
1478 }
1479
1480 static bool
1481 choose_output_iface(const struct port *port, const uint8_t *dl_src,
1482 uint16_t *dp_ifidx, tag_type *tags)
1483 {
1484 struct iface *iface;
1485
1486 assert(port->n_ifaces);
1487 if (port->n_ifaces == 1) {
1488 iface = port->ifaces[0];
1489 } else {
1490 struct bond_entry *e = lookup_bond_entry(port, dl_src);
1491 if (e->iface_idx < 0 || e->iface_idx >= port->n_ifaces
1492 || !port->ifaces[e->iface_idx]->enabled) {
1493 /* XXX select interface properly. The current interface selection
1494 * is only good for testing the rebalancing code. */
1495 e->iface_idx = bond_choose_iface(port);
1496 if (e->iface_idx < 0) {
1497 *tags |= port->no_ifaces_tag;
1498 return false;
1499 }
1500 e->iface_tag = tag_create_random();
1501 ((struct port *) port)->bond_compat_is_stale = true;
1502 }
1503 *tags |= e->iface_tag;
1504 iface = port->ifaces[e->iface_idx];
1505 }
1506 *dp_ifidx = iface->dp_ifidx;
1507 *tags |= iface->tag; /* Currently only used for bonding. */
1508 return true;
1509 }
1510
1511 static void
1512 bond_link_status_update(struct iface *iface, bool carrier)
1513 {
1514 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 20);
1515 struct port *port = iface->port;
1516
1517 if ((carrier == iface->enabled) == (iface->delay_expires == LLONG_MAX)) {
1518 /* Nothing to do. */
1519 return;
1520 }
1521 VLOG_INFO_RL(&rl, "interface %s: carrier %s",
1522 iface->name, carrier ? "detected" : "dropped");
1523 if (carrier == iface->enabled) {
1524 iface->delay_expires = LLONG_MAX;
1525 VLOG_INFO_RL(&rl, "interface %s: will not be %s",
1526 iface->name, carrier ? "disabled" : "enabled");
1527 } else if (carrier && port->updelay && port->active_iface < 0) {
1528 iface->delay_expires = time_msec();
1529 VLOG_INFO_RL(&rl, "interface %s: skipping %d ms updelay since no "
1530 "other interface is up", iface->name, port->updelay);
1531 } else {
1532 int delay = carrier ? port->updelay : port->downdelay;
1533 iface->delay_expires = time_msec() + delay;
1534 if (delay) {
1535 VLOG_INFO_RL(&rl,
1536 "interface %s: will be %s if it stays %s for %d ms",
1537 iface->name,
1538 carrier ? "enabled" : "disabled",
1539 carrier ? "up" : "down",
1540 delay);
1541 }
1542 }
1543 }
1544
1545 static void
1546 bond_choose_active_iface(struct port *port)
1547 {
1548 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 20);
1549
1550 port->active_iface = bond_choose_iface(port);
1551 port->active_iface_tag = tag_create_random();
1552 if (port->active_iface >= 0) {
1553 VLOG_INFO_RL(&rl, "port %s: active interface is now %s",
1554 port->name, port->ifaces[port->active_iface]->name);
1555 } else {
1556 VLOG_WARN_RL(&rl, "port %s: all ports disabled, no active interface",
1557 port->name);
1558 }
1559 }
1560
1561 static void
1562 bond_enable_slave(struct iface *iface, bool enable)
1563 {
1564 struct port *port = iface->port;
1565 struct bridge *br = port->bridge;
1566
1567 iface->delay_expires = LLONG_MAX;
1568 if (enable == iface->enabled) {
1569 return;
1570 }
1571
1572 iface->enabled = enable;
1573 if (!iface->enabled) {
1574 VLOG_WARN("interface %s: disabled", iface->name);
1575 ofproto_revalidate(br->ofproto, iface->tag);
1576 if (iface->port_ifidx == port->active_iface) {
1577 ofproto_revalidate(br->ofproto,
1578 port->active_iface_tag);
1579 bond_choose_active_iface(port);
1580 }
1581 bond_send_learning_packets(port);
1582 } else {
1583 VLOG_WARN("interface %s: enabled", iface->name);
1584 if (port->active_iface < 0) {
1585 ofproto_revalidate(br->ofproto, port->no_ifaces_tag);
1586 bond_choose_active_iface(port);
1587 bond_send_learning_packets(port);
1588 }
1589 iface->tag = tag_create_random();
1590 }
1591 }
1592
1593 static void
1594 bond_run(struct bridge *br)
1595 {
1596 size_t i, j;
1597
1598 for (i = 0; i < br->n_ports; i++) {
1599 struct port *port = br->ports[i];
1600
1601 if (port->bond_compat_is_stale) {
1602 port->bond_compat_is_stale = false;
1603 port_update_bond_compat(port);
1604 }
1605
1606 if (port->n_ifaces < 2) {
1607 continue;
1608 }
1609 for (j = 0; j < port->n_ifaces; j++) {
1610 struct iface *iface = port->ifaces[j];
1611 if (time_msec() >= iface->delay_expires) {
1612 bond_enable_slave(iface, !iface->enabled);
1613 }
1614 }
1615 }
1616 }
1617
1618 static void
1619 bond_wait(struct bridge *br)
1620 {
1621 size_t i, j;
1622
1623 for (i = 0; i < br->n_ports; i++) {
1624 struct port *port = br->ports[i];
1625 if (port->n_ifaces < 2) {
1626 continue;
1627 }
1628 for (j = 0; j < port->n_ifaces; j++) {
1629 struct iface *iface = port->ifaces[j];
1630 if (iface->delay_expires != LLONG_MAX) {
1631 poll_timer_wait(iface->delay_expires - time_msec());
1632 }
1633 }
1634 }
1635 }
1636
1637 static bool
1638 set_dst(struct dst *p, const flow_t *flow,
1639 const struct port *in_port, const struct port *out_port,
1640 tag_type *tags)
1641 {
1642 /* STP handling.
1643 *
1644 * XXX This uses too many tags: any broadcast flow will get one tag per
1645 * destination port, and thus a broadcast on a switch of any size is likely
1646 * to have all tag bits set. We should figure out a way to be smarter.
1647 *
1648 * This is OK when STP is disabled, because stp_state_tag is 0 then. */
1649 *tags |= out_port->stp_state_tag;
1650 if (!(out_port->stp_state & (STP_DISABLED | STP_FORWARDING))) {
1651 return false;
1652 }
1653
1654 p->vlan = (out_port->vlan >= 0 ? OFP_VLAN_NONE
1655 : in_port->vlan >= 0 ? in_port->vlan
1656 : ntohs(flow->dl_vlan));
1657 return choose_output_iface(out_port, flow->dl_src, &p->dp_ifidx, tags);
1658 }
1659
1660 static void
1661 swap_dst(struct dst *p, struct dst *q)
1662 {
1663 struct dst tmp = *p;
1664 *p = *q;
1665 *q = tmp;
1666 }
1667
1668 /* Moves all the dsts with vlan == 'vlan' to the front of the 'n_dsts' in
1669 * 'dsts'. (This may help performance by reducing the number of VLAN changes
1670 * that we push to the datapath. We could in fact fully sort the array by
1671 * vlan, but in most cases there are at most two different vlan tags so that's
1672 * possibly overkill.) */
1673 static void
1674 partition_dsts(struct dst *dsts, size_t n_dsts, int vlan)
1675 {
1676 struct dst *first = dsts;
1677 struct dst *last = dsts + n_dsts;
1678
1679 while (first != last) {
1680 /* Invariants:
1681 * - All dsts < first have vlan == 'vlan'.
1682 * - All dsts >= last have vlan != 'vlan'.
1683 * - first < last. */
1684 while (first->vlan == vlan) {
1685 if (++first == last) {
1686 return;
1687 }
1688 }
1689
1690 /* Same invariants, plus one additional:
1691 * - first->vlan != vlan.
1692 */
1693 while (last[-1].vlan != vlan) {
1694 if (--last == first) {
1695 return;
1696 }
1697 }
1698
1699 /* Same invariants, plus one additional:
1700 * - last[-1].vlan == vlan.*/
1701 swap_dst(first++, --last);
1702 }
1703 }
1704
1705 static int
1706 mirror_mask_ffs(mirror_mask_t mask)
1707 {
1708 BUILD_ASSERT_DECL(sizeof(unsigned int) >= sizeof(mask));
1709 return ffs(mask);
1710 }
1711
1712 static bool
1713 dst_is_duplicate(const struct dst *dsts, size_t n_dsts,
1714 const struct dst *test)
1715 {
1716 size_t i;
1717 for (i = 0; i < n_dsts; i++) {
1718 if (dsts[i].vlan == test->vlan && dsts[i].dp_ifidx == test->dp_ifidx) {
1719 return true;
1720 }
1721 }
1722 return false;
1723 }
1724
1725 static bool
1726 port_trunks_vlan(const struct port *port, uint16_t vlan)
1727 {
1728 return port->vlan < 0 && bitmap_is_set(port->trunks, vlan);
1729 }
1730
1731 static bool
1732 port_includes_vlan(const struct port *port, uint16_t vlan)
1733 {
1734 return vlan == port->vlan || port_trunks_vlan(port, vlan);
1735 }
1736
1737 static size_t
1738 compose_dsts(const struct bridge *br, const flow_t *flow, uint16_t vlan,
1739 const struct port *in_port, const struct port *out_port,
1740 struct dst dsts[], tag_type *tags)
1741 {
1742 mirror_mask_t mirrors = in_port->src_mirrors;
1743 struct dst *dst = dsts;
1744 size_t i;
1745
1746 *tags |= in_port->stp_state_tag;
1747 if (out_port == FLOOD_PORT) {
1748 /* XXX use ODP_FLOOD if no vlans or bonding. */
1749 /* XXX even better, define each VLAN as a datapath port group */
1750 for (i = 0; i < br->n_ports; i++) {
1751 struct port *port = br->ports[i];
1752 if (port != in_port && port_includes_vlan(port, vlan)
1753 && !port->is_mirror_output_port
1754 && set_dst(dst, flow, in_port, port, tags)) {
1755 mirrors |= port->dst_mirrors;
1756 dst++;
1757 }
1758 }
1759 } else if (out_port && set_dst(dst, flow, in_port, out_port, tags)) {
1760 mirrors |= out_port->dst_mirrors;
1761 dst++;
1762 }
1763
1764 while (mirrors) {
1765 struct mirror *m = br->mirrors[mirror_mask_ffs(mirrors) - 1];
1766 if (!m->n_vlans || vlan_is_mirrored(m, vlan)) {
1767 if (m->out_port) {
1768 if (set_dst(dst, flow, in_port, m->out_port, tags)
1769 && !dst_is_duplicate(dsts, dst - dsts, dst)) {
1770 dst++;
1771 }
1772 } else {
1773 for (i = 0; i < br->n_ports; i++) {
1774 struct port *port = br->ports[i];
1775 if (port_includes_vlan(port, m->out_vlan)
1776 && set_dst(dst, flow, in_port, port, tags)
1777 && !dst_is_duplicate(dsts, dst - dsts, dst))
1778 {
1779 if (port->vlan < 0) {
1780 dst->vlan = m->out_vlan;
1781 }
1782 if (dst->dp_ifidx == flow->in_port
1783 && dst->vlan == vlan) {
1784 /* Don't send out input port on same VLAN. */
1785 continue;
1786 }
1787 dst++;
1788 }
1789 }
1790 }
1791 }
1792 mirrors &= mirrors - 1;
1793 }
1794
1795 partition_dsts(dsts, dst - dsts, ntohs(flow->dl_vlan));
1796 return dst - dsts;
1797 }
1798
1799 static void UNUSED
1800 print_dsts(const struct dst *dsts, size_t n)
1801 {
1802 for (; n--; dsts++) {
1803 printf(">p%"PRIu16, dsts->dp_ifidx);
1804 if (dsts->vlan != OFP_VLAN_NONE) {
1805 printf("v%"PRIu16, dsts->vlan);
1806 }
1807 }
1808 }
1809
1810 static void
1811 compose_actions(struct bridge *br, const flow_t *flow, uint16_t vlan,
1812 const struct port *in_port, const struct port *out_port,
1813 tag_type *tags, struct odp_actions *actions)
1814 {
1815 struct dst dsts[DP_MAX_PORTS * (MAX_MIRRORS + 1)];
1816 size_t n_dsts;
1817 const struct dst *p;
1818 uint16_t cur_vlan;
1819
1820 n_dsts = compose_dsts(br, flow, vlan, in_port, out_port, dsts, tags);
1821
1822 cur_vlan = ntohs(flow->dl_vlan);
1823 for (p = dsts; p < &dsts[n_dsts]; p++) {
1824 union odp_action *a;
1825 if (p->vlan != cur_vlan) {
1826 if (p->vlan == OFP_VLAN_NONE) {
1827 odp_actions_add(actions, ODPAT_STRIP_VLAN);
1828 } else {
1829 a = odp_actions_add(actions, ODPAT_SET_VLAN_VID);
1830 a->vlan_vid.vlan_vid = htons(p->vlan);
1831 }
1832 cur_vlan = p->vlan;
1833 }
1834 a = odp_actions_add(actions, ODPAT_OUTPUT);
1835 a->output.port = p->dp_ifidx;
1836 }
1837 }
1838
1839 static bool
1840 is_bcast_arp_reply(const flow_t *flow, const struct ofpbuf *packet)
1841 {
1842 struct arp_eth_header *arp = (struct arp_eth_header *) packet->data;
1843 return (flow->dl_type == htons(ETH_TYPE_ARP)
1844 && eth_addr_is_broadcast(flow->dl_dst)
1845 && packet->size >= sizeof(struct arp_eth_header)
1846 && arp->ar_op == ARP_OP_REQUEST);
1847 }
1848
1849 /* If the composed actions may be applied to any packet in the given 'flow',
1850 * returns true. Otherwise, the actions should only be applied to 'packet', or
1851 * not at all, if 'packet' was NULL. */
1852 static bool
1853 process_flow(struct bridge *br, const flow_t *flow,
1854 const struct ofpbuf *packet, struct odp_actions *actions,
1855 tag_type *tags)
1856 {
1857 struct iface *in_iface;
1858 struct port *in_port;
1859 struct port *out_port = NULL; /* By default, drop the packet/flow. */
1860 int vlan;
1861
1862 /* Find the interface and port structure for the received packet. */
1863 in_iface = iface_from_dp_ifidx(br, flow->in_port);
1864 if (!in_iface) {
1865 /* No interface? Something fishy... */
1866 if (packet != NULL) {
1867 /* Odd. A few possible reasons here:
1868 *
1869 * - We deleted an interface but there are still a few packets
1870 * queued up from it.
1871 *
1872 * - Someone externally added an interface (e.g. with "ovs-dpctl
1873 * add-if") that we don't know about.
1874 *
1875 * - Packet arrived on the local port but the local port is not
1876 * one of our bridge ports.
1877 */
1878 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1879
1880 VLOG_WARN_RL(&rl, "bridge %s: received packet on unknown "
1881 "interface %"PRIu16, br->name, flow->in_port);
1882 }
1883
1884 /* Return without adding any actions, to drop packets on this flow. */
1885 return true;
1886 }
1887 in_port = in_iface->port;
1888
1889 /* Figure out what VLAN this packet belongs to.
1890 *
1891 * Note that dl_vlan of 0 and of OFP_VLAN_NONE both mean that the packet
1892 * belongs to VLAN 0, so we should treat both cases identically. (In the
1893 * former case, the packet has an 802.1Q header that specifies VLAN 0,
1894 * presumably to allow a priority to be specified. In the latter case, the
1895 * packet does not have any 802.1Q header.) */
1896 vlan = ntohs(flow->dl_vlan);
1897 if (vlan == OFP_VLAN_NONE) {
1898 vlan = 0;
1899 }
1900 if (in_port->vlan >= 0) {
1901 if (vlan) {
1902 /* XXX support double tagging? */
1903 if (packet != NULL) {
1904 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1905 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %"PRIu16" tagged "
1906 "packet received on port %s configured with "
1907 "implicit VLAN %"PRIu16,
1908 br->name, ntohs(flow->dl_vlan),
1909 in_port->name, in_port->vlan);
1910 }
1911 goto done;
1912 }
1913 vlan = in_port->vlan;
1914 } else {
1915 if (!port_includes_vlan(in_port, vlan)) {
1916 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1917 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %d tagged "
1918 "packet received on port %s not configured for "
1919 "trunking VLAN %d",
1920 br->name, vlan, in_port->name, vlan);
1921 goto done;
1922 }
1923 }
1924
1925 /* Drop frames for ports that STP wants entirely killed (both for
1926 * forwarding and for learning). Later, after we do learning, we'll drop
1927 * the frames that STP wants to do learning but not forwarding on. */
1928 if (in_port->stp_state & (STP_LISTENING | STP_BLOCKING)) {
1929 goto done;
1930 }
1931
1932 /* Drop frames for reserved multicast addresses. */
1933 if (eth_addr_is_reserved(flow->dl_dst)) {
1934 goto done;
1935 }
1936
1937 /* Drop frames on ports reserved for mirroring. */
1938 if (in_port->is_mirror_output_port) {
1939 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1940 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port %s, "
1941 "which is reserved exclusively for mirroring",
1942 br->name, in_port->name);
1943 goto done;
1944 }
1945
1946 /* Multicast (and broadcast) packets on bonds need special attention, to
1947 * avoid receiving duplicates. */
1948 if (in_port->n_ifaces > 1 && eth_addr_is_multicast(flow->dl_dst)) {
1949 *tags |= in_port->active_iface_tag;
1950 if (in_port->active_iface != in_iface->port_ifidx) {
1951 /* Drop all multicast packets on inactive slaves. */
1952 goto done;
1953 } else {
1954 /* Drop all multicast packets for which we have learned a different
1955 * input port, because we probably sent the packet on one slaves
1956 * and got it back on the active slave. Broadcast ARP replies are
1957 * an exception to this rule: the host has moved to another
1958 * switch. */
1959 int src_idx = mac_learning_lookup(br->ml, flow->dl_src, vlan);
1960 if (src_idx != -1 && src_idx != in_port->port_idx) {
1961 if (packet) {
1962 if (!is_bcast_arp_reply(flow, packet)) {
1963 goto done;
1964 }
1965 } else {
1966 /* No way to know whether it's an ARP reply, because the
1967 * flow entry doesn't include enough information and we
1968 * don't have a packet. Punt. */
1969 return false;
1970 }
1971 }
1972 }
1973 }
1974
1975 /* MAC learning. */
1976 out_port = FLOOD_PORT;
1977 if (br->ml) {
1978 int out_port_idx;
1979
1980 /* Learn source MAC (but don't try to learn from revalidation). */
1981 if (packet) {
1982 tag_type rev_tag = mac_learning_learn(br->ml, flow->dl_src,
1983 vlan, in_port->port_idx);
1984 if (rev_tag) {
1985 /* The log messages here could actually be useful in debugging,
1986 * so keep the rate limit relatively high. */
1987 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30,
1988 300);
1989 VLOG_DBG_RL(&rl, "bridge %s: learned that "ETH_ADDR_FMT" is "
1990 "on port %s in VLAN %d",
1991 br->name, ETH_ADDR_ARGS(flow->dl_src),
1992 in_port->name, vlan);
1993 ofproto_revalidate(br->ofproto, rev_tag);
1994 }
1995 }
1996
1997 /* Determine output port. */
1998 out_port_idx = mac_learning_lookup_tag(br->ml, flow->dl_dst, vlan,
1999 tags);
2000 if (out_port_idx >= 0 && out_port_idx < br->n_ports) {
2001 out_port = br->ports[out_port_idx];
2002 }
2003 }
2004
2005 /* Don't send packets out their input ports. Don't forward frames that STP
2006 * wants us to discard. */
2007 if (in_port == out_port || in_port->stp_state == STP_LEARNING) {
2008 out_port = NULL;
2009 }
2010
2011 done:
2012 compose_actions(br, flow, vlan, in_port, out_port, tags, actions);
2013
2014 /*
2015 * We send out only a single packet, instead of setting up a flow, if the
2016 * packet is an ARP directed to broadcast that arrived on a bonded
2017 * interface. In such a situation ARP requests and replies must be handled
2018 * differently, but OpenFlow unfortunately can't distinguish them.
2019 */
2020 return (in_port->n_ifaces < 2
2021 || flow->dl_type != htons(ETH_TYPE_ARP)
2022 || !eth_addr_is_broadcast(flow->dl_dst));
2023 }
2024
2025 /* Careful: 'opp' is in host byte order and opp->port_no is an OFP port
2026 * number. */
2027 static void
2028 bridge_port_changed_ofhook_cb(enum ofp_port_reason reason,
2029 const struct ofp_phy_port *opp,
2030 void *br_)
2031 {
2032 struct bridge *br = br_;
2033 struct iface *iface;
2034 struct port *port;
2035
2036 iface = iface_from_dp_ifidx(br, ofp_port_to_odp_port(opp->port_no));
2037 if (!iface) {
2038 return;
2039 }
2040 port = iface->port;
2041
2042 if (reason == OFPPR_DELETE) {
2043 VLOG_WARN("bridge %s: interface %s deleted unexpectedly",
2044 br->name, iface->name);
2045 iface_destroy(iface);
2046 if (!port->n_ifaces) {
2047 VLOG_WARN("bridge %s: port %s has no interfaces, dropping",
2048 br->name, port->name);
2049 port_destroy(port);
2050 }
2051
2052 bridge_flush(br);
2053 } else {
2054 if (port->n_ifaces > 1) {
2055 bool up = !(opp->state & OFPPS_LINK_DOWN);
2056 bond_link_status_update(iface, up);
2057 port_update_bond_compat(port);
2058 }
2059 }
2060 }
2061
2062 static bool
2063 bridge_normal_ofhook_cb(const flow_t *flow, const struct ofpbuf *packet,
2064 struct odp_actions *actions, tag_type *tags, void *br_)
2065 {
2066 struct bridge *br = br_;
2067
2068 #if 0
2069 if (flow->dl_type == htons(OFP_DL_TYPE_NOT_ETH_TYPE)
2070 && eth_addr_equals(flow->dl_dst, stp_eth_addr)) {
2071 brstp_receive(br, flow, payload);
2072 return true;
2073 }
2074 #endif
2075
2076 COVERAGE_INC(bridge_process_flow);
2077 return process_flow(br, flow, packet, actions, tags);
2078 }
2079
2080 static void
2081 bridge_account_flow_ofhook_cb(const flow_t *flow,
2082 const union odp_action *actions,
2083 size_t n_actions, unsigned long long int n_bytes,
2084 void *br_)
2085 {
2086 struct bridge *br = br_;
2087 const union odp_action *a;
2088
2089 if (!br->has_bonded_ports) {
2090 return;
2091 }
2092
2093 for (a = actions; a < &actions[n_actions]; a++) {
2094 if (a->type == ODPAT_OUTPUT) {
2095 struct port *port = port_from_dp_ifidx(br, a->output.port);
2096 if (port && port->n_ifaces >= 2) {
2097 struct bond_entry *e = lookup_bond_entry(port, flow->dl_src);
2098 e->tx_bytes += n_bytes;
2099 }
2100 }
2101 }
2102 }
2103
2104 static void
2105 bridge_account_checkpoint_ofhook_cb(void *br_)
2106 {
2107 struct bridge *br = br_;
2108 size_t i;
2109
2110 if (!br->has_bonded_ports) {
2111 return;
2112 }
2113
2114 /* The current ofproto implementation calls this callback at least once a
2115 * second, so this timer implementation is sufficient. */
2116 if (time_msec() < br->bond_next_rebalance) {
2117 return;
2118 }
2119 br->bond_next_rebalance = time_msec() + 10000;
2120
2121 for (i = 0; i < br->n_ports; i++) {
2122 struct port *port = br->ports[i];
2123 if (port->n_ifaces > 1) {
2124 bond_rebalance_port(port);
2125 }
2126 }
2127 }
2128
2129 static struct ofhooks bridge_ofhooks = {
2130 bridge_port_changed_ofhook_cb,
2131 bridge_normal_ofhook_cb,
2132 bridge_account_flow_ofhook_cb,
2133 bridge_account_checkpoint_ofhook_cb,
2134 };
2135 \f
2136 /* Bonding functions. */
2137
2138 /* Statistics for a single interface on a bonded port, used for load-based
2139 * bond rebalancing. */
2140 struct slave_balance {
2141 struct iface *iface; /* The interface. */
2142 uint64_t tx_bytes; /* Sum of hashes[*]->tx_bytes. */
2143
2144 /* All the "bond_entry"s that are assigned to this interface, in order of
2145 * increasing tx_bytes. */
2146 struct bond_entry **hashes;
2147 size_t n_hashes;
2148 };
2149
2150 /* Sorts pointers to pointers to bond_entries in ascending order by the
2151 * interface to which they are assigned, and within a single interface in
2152 * ascending order of bytes transmitted. */
2153 static int
2154 compare_bond_entries(const void *a_, const void *b_)
2155 {
2156 const struct bond_entry *const *ap = a_;
2157 const struct bond_entry *const *bp = b_;
2158 const struct bond_entry *a = *ap;
2159 const struct bond_entry *b = *bp;
2160 if (a->iface_idx != b->iface_idx) {
2161 return a->iface_idx > b->iface_idx ? 1 : -1;
2162 } else if (a->tx_bytes != b->tx_bytes) {
2163 return a->tx_bytes > b->tx_bytes ? 1 : -1;
2164 } else {
2165 return 0;
2166 }
2167 }
2168
2169 /* Sorts slave_balances so that enabled ports come first, and otherwise in
2170 * *descending* order by number of bytes transmitted. */
2171 static int
2172 compare_slave_balance(const void *a_, const void *b_)
2173 {
2174 const struct slave_balance *a = a_;
2175 const struct slave_balance *b = b_;
2176 if (a->iface->enabled != b->iface->enabled) {
2177 return a->iface->enabled ? -1 : 1;
2178 } else if (a->tx_bytes != b->tx_bytes) {
2179 return a->tx_bytes > b->tx_bytes ? -1 : 1;
2180 } else {
2181 return 0;
2182 }
2183 }
2184
2185 static void
2186 swap_bals(struct slave_balance *a, struct slave_balance *b)
2187 {
2188 struct slave_balance tmp = *a;
2189 *a = *b;
2190 *b = tmp;
2191 }
2192
2193 /* Restores the 'n_bals' slave_balance structures in 'bals' to sorted order
2194 * given that 'p' (and only 'p') might be in the wrong location.
2195 *
2196 * This function invalidates 'p', since it might now be in a different memory
2197 * location. */
2198 static void
2199 resort_bals(struct slave_balance *p,
2200 struct slave_balance bals[], size_t n_bals)
2201 {
2202 if (n_bals > 1) {
2203 for (; p > bals && p->tx_bytes > p[-1].tx_bytes; p--) {
2204 swap_bals(p, p - 1);
2205 }
2206 for (; p < &bals[n_bals - 1] && p->tx_bytes < p[1].tx_bytes; p++) {
2207 swap_bals(p, p + 1);
2208 }
2209 }
2210 }
2211
2212 static void
2213 log_bals(const struct slave_balance *bals, size_t n_bals, struct port *port)
2214 {
2215 if (VLOG_IS_DBG_ENABLED()) {
2216 struct ds ds = DS_EMPTY_INITIALIZER;
2217 const struct slave_balance *b;
2218
2219 for (b = bals; b < bals + n_bals; b++) {
2220 size_t i;
2221
2222 if (b > bals) {
2223 ds_put_char(&ds, ',');
2224 }
2225 ds_put_format(&ds, " %s %"PRIu64"kB",
2226 b->iface->name, b->tx_bytes / 1024);
2227
2228 if (!b->iface->enabled) {
2229 ds_put_cstr(&ds, " (disabled)");
2230 }
2231 if (b->n_hashes > 0) {
2232 ds_put_cstr(&ds, " (");
2233 for (i = 0; i < b->n_hashes; i++) {
2234 const struct bond_entry *e = b->hashes[i];
2235 if (i > 0) {
2236 ds_put_cstr(&ds, " + ");
2237 }
2238 ds_put_format(&ds, "h%td: %"PRIu64"kB",
2239 e - port->bond_hash, e->tx_bytes / 1024);
2240 }
2241 ds_put_cstr(&ds, ")");
2242 }
2243 }
2244 VLOG_DBG("bond %s:%s", port->name, ds_cstr(&ds));
2245 ds_destroy(&ds);
2246 }
2247 }
2248
2249 /* Shifts 'hash' from 'from' to 'to' within 'port'. */
2250 static void
2251 bond_shift_load(struct slave_balance *from, struct slave_balance *to,
2252 struct bond_entry *hash)
2253 {
2254 struct port *port = from->iface->port;
2255 uint64_t delta = hash->tx_bytes;
2256
2257 VLOG_INFO("bond %s: shift %"PRIu64"kB of load (with hash %td) "
2258 "from %s to %s (now carrying %"PRIu64"kB and "
2259 "%"PRIu64"kB load, respectively)",
2260 port->name, delta / 1024, hash - port->bond_hash,
2261 from->iface->name, to->iface->name,
2262 (from->tx_bytes - delta) / 1024,
2263 (to->tx_bytes + delta) / 1024);
2264
2265 /* Delete element from from->hashes.
2266 *
2267 * We don't bother to add the element to to->hashes because not only would
2268 * it require more work, the only purpose it would be to allow that hash to
2269 * be migrated to another slave in this rebalancing run, and there is no
2270 * point in doing that. */
2271 if (from->hashes[0] == hash) {
2272 from->hashes++;
2273 } else {
2274 int i = hash - from->hashes[0];
2275 memmove(from->hashes + i, from->hashes + i + 1,
2276 (from->n_hashes - (i + 1)) * sizeof *from->hashes);
2277 }
2278 from->n_hashes--;
2279
2280 /* Shift load away from 'from' to 'to'. */
2281 from->tx_bytes -= delta;
2282 to->tx_bytes += delta;
2283
2284 /* Arrange for flows to be revalidated. */
2285 ofproto_revalidate(port->bridge->ofproto, hash->iface_tag);
2286 hash->iface_idx = to->iface->port_ifidx;
2287 hash->iface_tag = tag_create_random();
2288 }
2289
2290 static void
2291 bond_rebalance_port(struct port *port)
2292 {
2293 struct slave_balance bals[DP_MAX_PORTS];
2294 size_t n_bals;
2295 struct bond_entry *hashes[BOND_MASK + 1];
2296 struct slave_balance *b, *from, *to;
2297 struct bond_entry *e;
2298 size_t i;
2299
2300 /* Sets up 'bals' to describe each of the port's interfaces, sorted in
2301 * descending order of tx_bytes, so that bals[0] represents the most
2302 * heavily loaded slave and bals[n_bals - 1] represents the least heavily
2303 * loaded slave.
2304 *
2305 * The code is a bit tricky: to avoid dynamically allocating a 'hashes'
2306 * array for each slave_balance structure, we sort our local array of
2307 * hashes in order by slave, so that all of the hashes for a given slave
2308 * become contiguous in memory, and then we point each 'hashes' members of
2309 * a slave_balance structure to the start of a contiguous group. */
2310 n_bals = port->n_ifaces;
2311 for (b = bals; b < &bals[n_bals]; b++) {
2312 b->iface = port->ifaces[b - bals];
2313 b->tx_bytes = 0;
2314 b->hashes = NULL;
2315 b->n_hashes = 0;
2316 }
2317 for (i = 0; i <= BOND_MASK; i++) {
2318 hashes[i] = &port->bond_hash[i];
2319 }
2320 qsort(hashes, BOND_MASK + 1, sizeof *hashes, compare_bond_entries);
2321 for (i = 0; i <= BOND_MASK; i++) {
2322 e = hashes[i];
2323 if (e->iface_idx >= 0 && e->iface_idx < port->n_ifaces) {
2324 b = &bals[e->iface_idx];
2325 b->tx_bytes += e->tx_bytes;
2326 if (!b->hashes) {
2327 b->hashes = &hashes[i];
2328 }
2329 b->n_hashes++;
2330 }
2331 }
2332 qsort(bals, n_bals, sizeof *bals, compare_slave_balance);
2333 log_bals(bals, n_bals, port);
2334
2335 /* Discard slaves that aren't enabled (which were sorted to the back of the
2336 * array earlier). */
2337 while (!bals[n_bals - 1].iface->enabled) {
2338 n_bals--;
2339 if (!n_bals) {
2340 return;
2341 }
2342 }
2343
2344 /* Shift load from the most-loaded slaves to the least-loaded slaves. */
2345 to = &bals[n_bals - 1];
2346 for (from = bals; from < to; ) {
2347 uint64_t overload = from->tx_bytes - to->tx_bytes;
2348 if (overload < to->tx_bytes >> 5 || overload < 100000) {
2349 /* The extra load on 'from' (and all less-loaded slaves), compared
2350 * to that of 'to' (the least-loaded slave), is less than ~3%, or
2351 * it is less than ~1Mbps. No point in rebalancing. */
2352 break;
2353 } else if (from->n_hashes == 1) {
2354 /* 'from' only carries a single MAC hash, so we can't shift any
2355 * load away from it, even though we want to. */
2356 from++;
2357 } else {
2358 /* 'from' is carrying significantly more load than 'to', and that
2359 * load is split across at least two different hashes. Pick a hash
2360 * to migrate to 'to' (the least-loaded slave), given that doing so
2361 * must not cause 'to''s load to exceed 'from''s load.
2362 *
2363 * The sort order we use means that we prefer to shift away the
2364 * smallest hashes instead of the biggest ones. There is little
2365 * reason behind this decision; we could use the opposite sort
2366 * order to shift away big hashes ahead of small ones. */
2367 size_t i;
2368
2369 for (i = 0; i < from->n_hashes; i++) {
2370 uint64_t delta = from->hashes[i]->tx_bytes;
2371 if (to->tx_bytes + delta < from->tx_bytes - delta) {
2372 break;
2373 }
2374 }
2375 if (i < from->n_hashes) {
2376 bond_shift_load(from, to, from->hashes[i]);
2377
2378 /* Re-sort 'bals'. Note that this may make 'from' and 'to'
2379 * point to different slave_balance structures. It is only
2380 * valid to do these two operations in a row at all because we
2381 * know that 'from' will not move past 'to' and vice versa. */
2382 resort_bals(from, bals, n_bals);
2383 resort_bals(to, bals, n_bals);
2384 } else {
2385 from++;
2386 }
2387 port->bond_compat_is_stale = true;
2388 }
2389 }
2390
2391 /* Implement exponentially weighted moving average. A weight of 1/2 causes
2392 * historical data to decay to <1% in 7 rebalancing runs. */
2393 for (e = &port->bond_hash[0]; e <= &port->bond_hash[BOND_MASK]; e++) {
2394 e->tx_bytes /= 2;
2395 }
2396 }
2397
2398 static void
2399 bond_send_learning_packets(struct port *port)
2400 {
2401 struct bridge *br = port->bridge;
2402 struct mac_entry *e;
2403 struct ofpbuf packet;
2404 int error, n_packets, n_errors;
2405
2406 if (!port->n_ifaces || port->active_iface < 0 || !br->ml) {
2407 return;
2408 }
2409
2410 ofpbuf_init(&packet, 128);
2411 error = n_packets = n_errors = 0;
2412 LIST_FOR_EACH (e, struct mac_entry, lru_node, &br->ml->lrus) {
2413 static const char s[] = "Open vSwitch Bond Failover";
2414 union ofp_action actions[2], *a;
2415 struct eth_header *eth;
2416 struct llc_snap_header *llc_snap;
2417 uint16_t dp_ifidx;
2418 tag_type tags = 0;
2419 flow_t flow;
2420 int retval;
2421
2422 if (e->port == port->port_idx
2423 || !choose_output_iface(port, e->mac, &dp_ifidx, &tags)) {
2424 continue;
2425 }
2426
2427 /* Compose packet to send. */
2428 ofpbuf_clear(&packet);
2429 eth = ofpbuf_put_zeros(&packet, ETH_HEADER_LEN);
2430 llc_snap = ofpbuf_put_zeros(&packet, LLC_SNAP_HEADER_LEN);
2431 ofpbuf_put(&packet, s, sizeof s); /* Includes null byte. */
2432 ofpbuf_put(&packet, e->mac, ETH_ADDR_LEN);
2433
2434 memcpy(eth->eth_dst, eth_addr_broadcast, ETH_ADDR_LEN);
2435 memcpy(eth->eth_src, e->mac, ETH_ADDR_LEN);
2436 eth->eth_type = htons(packet.size - ETH_HEADER_LEN);
2437
2438 llc_snap->llc.llc_dsap = LLC_DSAP_SNAP;
2439 llc_snap->llc.llc_ssap = LLC_SSAP_SNAP;
2440 llc_snap->llc.llc_cntl = LLC_CNTL_SNAP;
2441 memcpy(llc_snap->snap.snap_org, "\x00\x23\x20", 3);
2442 llc_snap->snap.snap_type = htons(0xf177); /* Random number. */
2443
2444 /* Compose actions. */
2445 memset(actions, 0, sizeof actions);
2446 a = actions;
2447 if (e->vlan) {
2448 a->vlan_vid.type = htons(OFPAT_SET_VLAN_VID);
2449 a->vlan_vid.len = htons(sizeof *a);
2450 a->vlan_vid.vlan_vid = htons(e->vlan);
2451 a++;
2452 }
2453 a->output.type = htons(OFPAT_OUTPUT);
2454 a->output.len = htons(sizeof *a);
2455 a->output.port = htons(odp_port_to_ofp_port(dp_ifidx));
2456 a++;
2457
2458 /* Send packet. */
2459 n_packets++;
2460 flow_extract(&packet, ODPP_NONE, &flow);
2461 retval = ofproto_send_packet(br->ofproto, &flow, actions, a - actions,
2462 &packet);
2463 if (retval) {
2464 error = retval;
2465 n_errors++;
2466 }
2467 }
2468 ofpbuf_uninit(&packet);
2469
2470 if (n_errors) {
2471 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2472 VLOG_WARN_RL(&rl, "bond %s: %d errors sending %d gratuitous learning "
2473 "packets, last error was: %s",
2474 port->name, n_errors, n_packets, strerror(error));
2475 } else {
2476 VLOG_DBG("bond %s: sent %d gratuitous learning packets",
2477 port->name, n_packets);
2478 }
2479 }
2480 \f
2481 /* Bonding unixctl user interface functions. */
2482
2483 static void
2484 bond_unixctl_list(struct unixctl_conn *conn, const char *args UNUSED)
2485 {
2486 struct ds ds = DS_EMPTY_INITIALIZER;
2487 const struct bridge *br;
2488
2489 ds_put_cstr(&ds, "bridge\tbond\tslaves\n");
2490
2491 LIST_FOR_EACH (br, struct bridge, node, &all_bridges) {
2492 size_t i;
2493
2494 for (i = 0; i < br->n_ports; i++) {
2495 const struct port *port = br->ports[i];
2496 if (port->n_ifaces > 1) {
2497 size_t j;
2498
2499 ds_put_format(&ds, "%s\t%s\t", br->name, port->name);
2500 for (j = 0; j < port->n_ifaces; j++) {
2501 const struct iface *iface = port->ifaces[j];
2502 if (j) {
2503 ds_put_cstr(&ds, ", ");
2504 }
2505 ds_put_cstr(&ds, iface->name);
2506 }
2507 ds_put_char(&ds, '\n');
2508 }
2509 }
2510 }
2511 unixctl_command_reply(conn, 200, ds_cstr(&ds));
2512 ds_destroy(&ds);
2513 }
2514
2515 static struct port *
2516 bond_find(const char *name)
2517 {
2518 const struct bridge *br;
2519
2520 LIST_FOR_EACH (br, struct bridge, node, &all_bridges) {
2521 size_t i;
2522
2523 for (i = 0; i < br->n_ports; i++) {
2524 struct port *port = br->ports[i];
2525 if (!strcmp(port->name, name) && port->n_ifaces > 1) {
2526 return port;
2527 }
2528 }
2529 }
2530 return NULL;
2531 }
2532
2533 static void
2534 bond_unixctl_show(struct unixctl_conn *conn, const char *args)
2535 {
2536 struct ds ds = DS_EMPTY_INITIALIZER;
2537 const struct port *port;
2538 size_t j;
2539
2540 port = bond_find(args);
2541 if (!port) {
2542 unixctl_command_reply(conn, 501, "no such bond");
2543 return;
2544 }
2545
2546 ds_put_format(&ds, "updelay: %d ms\n", port->updelay);
2547 ds_put_format(&ds, "downdelay: %d ms\n", port->downdelay);
2548 ds_put_format(&ds, "next rebalance: %lld ms\n",
2549 port->bridge->bond_next_rebalance - time_msec());
2550 for (j = 0; j < port->n_ifaces; j++) {
2551 const struct iface *iface = port->ifaces[j];
2552 struct bond_entry *be;
2553
2554 /* Basic info. */
2555 ds_put_format(&ds, "slave %s: %s\n",
2556 iface->name, iface->enabled ? "enabled" : "disabled");
2557 if (j == port->active_iface) {
2558 ds_put_cstr(&ds, "\tactive slave\n");
2559 }
2560 if (iface->delay_expires != LLONG_MAX) {
2561 ds_put_format(&ds, "\t%s expires in %lld ms\n",
2562 iface->enabled ? "downdelay" : "updelay",
2563 iface->delay_expires - time_msec());
2564 }
2565
2566 /* Hashes. */
2567 for (be = port->bond_hash; be <= &port->bond_hash[BOND_MASK]; be++) {
2568 int hash = be - port->bond_hash;
2569 struct mac_entry *me;
2570
2571 if (be->iface_idx != j) {
2572 continue;
2573 }
2574
2575 ds_put_format(&ds, "\thash %d: %lld kB load\n",
2576 hash, be->tx_bytes / 1024);
2577
2578 /* MACs. */
2579 if (!port->bridge->ml) {
2580 break;
2581 }
2582
2583 LIST_FOR_EACH (me, struct mac_entry, lru_node,
2584 &port->bridge->ml->lrus) {
2585 uint16_t dp_ifidx;
2586 tag_type tags = 0;
2587 if (bond_hash(me->mac) == hash
2588 && me->port != port->port_idx
2589 && choose_output_iface(port, me->mac, &dp_ifidx, &tags)
2590 && dp_ifidx == iface->dp_ifidx)
2591 {
2592 ds_put_format(&ds, "\t\t"ETH_ADDR_FMT"\n",
2593 ETH_ADDR_ARGS(me->mac));
2594 }
2595 }
2596 }
2597 }
2598 unixctl_command_reply(conn, 200, ds_cstr(&ds));
2599 ds_destroy(&ds);
2600 }
2601
2602 static void
2603 bond_unixctl_migrate(struct unixctl_conn *conn, const char *args_)
2604 {
2605 char *args = (char *) args_;
2606 char *save_ptr = NULL;
2607 char *bond_s, *hash_s, *slave_s;
2608 uint8_t mac[ETH_ADDR_LEN];
2609 struct port *port;
2610 struct iface *iface;
2611 struct bond_entry *entry;
2612 int hash;
2613
2614 bond_s = strtok_r(args, " ", &save_ptr);
2615 hash_s = strtok_r(NULL, " ", &save_ptr);
2616 slave_s = strtok_r(NULL, " ", &save_ptr);
2617 if (!slave_s) {
2618 unixctl_command_reply(conn, 501,
2619 "usage: bond/migrate BOND HASH SLAVE");
2620 return;
2621 }
2622
2623 port = bond_find(bond_s);
2624 if (!port) {
2625 unixctl_command_reply(conn, 501, "no such bond");
2626 return;
2627 }
2628
2629 if (sscanf(hash_s, ETH_ADDR_SCAN_FMT, ETH_ADDR_SCAN_ARGS(mac))
2630 == ETH_ADDR_SCAN_COUNT) {
2631 hash = bond_hash(mac);
2632 } else if (strspn(hash_s, "0123456789") == strlen(hash_s)) {
2633 hash = atoi(hash_s) & BOND_MASK;
2634 } else {
2635 unixctl_command_reply(conn, 501, "bad hash");
2636 return;
2637 }
2638
2639 iface = port_lookup_iface(port, slave_s);
2640 if (!iface) {
2641 unixctl_command_reply(conn, 501, "no such slave");
2642 return;
2643 }
2644
2645 if (!iface->enabled) {
2646 unixctl_command_reply(conn, 501, "cannot migrate to disabled slave");
2647 return;
2648 }
2649
2650 entry = &port->bond_hash[hash];
2651 ofproto_revalidate(port->bridge->ofproto, entry->iface_tag);
2652 entry->iface_idx = iface->port_ifidx;
2653 entry->iface_tag = tag_create_random();
2654 port->bond_compat_is_stale = true;
2655 unixctl_command_reply(conn, 200, "migrated");
2656 }
2657
2658 static void
2659 bond_unixctl_set_active_slave(struct unixctl_conn *conn, const char *args_)
2660 {
2661 char *args = (char *) args_;
2662 char *save_ptr = NULL;
2663 char *bond_s, *slave_s;
2664 struct port *port;
2665 struct iface *iface;
2666
2667 bond_s = strtok_r(args, " ", &save_ptr);
2668 slave_s = strtok_r(NULL, " ", &save_ptr);
2669 if (!slave_s) {
2670 unixctl_command_reply(conn, 501,
2671 "usage: bond/set-active-slave BOND SLAVE");
2672 return;
2673 }
2674
2675 port = bond_find(bond_s);
2676 if (!port) {
2677 unixctl_command_reply(conn, 501, "no such bond");
2678 return;
2679 }
2680
2681 iface = port_lookup_iface(port, slave_s);
2682 if (!iface) {
2683 unixctl_command_reply(conn, 501, "no such slave");
2684 return;
2685 }
2686
2687 if (!iface->enabled) {
2688 unixctl_command_reply(conn, 501, "cannot make disabled slave active");
2689 return;
2690 }
2691
2692 if (port->active_iface != iface->port_ifidx) {
2693 ofproto_revalidate(port->bridge->ofproto, port->active_iface_tag);
2694 port->active_iface = iface->port_ifidx;
2695 port->active_iface_tag = tag_create_random();
2696 VLOG_INFO("port %s: active interface is now %s",
2697 port->name, iface->name);
2698 bond_send_learning_packets(port);
2699 unixctl_command_reply(conn, 200, "done");
2700 } else {
2701 unixctl_command_reply(conn, 200, "no change");
2702 }
2703 }
2704
2705 static void
2706 enable_slave(struct unixctl_conn *conn, const char *args_, bool enable)
2707 {
2708 char *args = (char *) args_;
2709 char *save_ptr = NULL;
2710 char *bond_s, *slave_s;
2711 struct port *port;
2712 struct iface *iface;
2713
2714 bond_s = strtok_r(args, " ", &save_ptr);
2715 slave_s = strtok_r(NULL, " ", &save_ptr);
2716 if (!slave_s) {
2717 unixctl_command_reply(conn, 501,
2718 "usage: bond/enable/disable-slave BOND SLAVE");
2719 return;
2720 }
2721
2722 port = bond_find(bond_s);
2723 if (!port) {
2724 unixctl_command_reply(conn, 501, "no such bond");
2725 return;
2726 }
2727
2728 iface = port_lookup_iface(port, slave_s);
2729 if (!iface) {
2730 unixctl_command_reply(conn, 501, "no such slave");
2731 return;
2732 }
2733
2734 bond_enable_slave(iface, enable);
2735 unixctl_command_reply(conn, 501, enable ? "enabled" : "disabled");
2736 }
2737
2738 static void
2739 bond_unixctl_enable_slave(struct unixctl_conn *conn, const char *args)
2740 {
2741 enable_slave(conn, args, true);
2742 }
2743
2744 static void
2745 bond_unixctl_disable_slave(struct unixctl_conn *conn, const char *args)
2746 {
2747 enable_slave(conn, args, false);
2748 }
2749
2750 static void
2751 bond_init(void)
2752 {
2753 unixctl_command_register("bond/list", bond_unixctl_list);
2754 unixctl_command_register("bond/show", bond_unixctl_show);
2755 unixctl_command_register("bond/migrate", bond_unixctl_migrate);
2756 unixctl_command_register("bond/set-active-slave",
2757 bond_unixctl_set_active_slave);
2758 unixctl_command_register("bond/enable-slave", bond_unixctl_enable_slave);
2759 unixctl_command_register("bond/disable-slave", bond_unixctl_disable_slave);
2760 }
2761 \f
2762 /* Port functions. */
2763
2764 static void
2765 port_create(struct bridge *br, const char *name)
2766 {
2767 struct port *port;
2768
2769 port = xcalloc(1, sizeof *port);
2770 port->bridge = br;
2771 port->port_idx = br->n_ports;
2772 port->vlan = -1;
2773 port->trunks = NULL;
2774 port->name = xstrdup(name);
2775 port->active_iface = -1;
2776 port->stp_state = STP_DISABLED;
2777 port->stp_state_tag = 0;
2778
2779 if (br->n_ports >= br->allocated_ports) {
2780 br->ports = x2nrealloc(br->ports, &br->allocated_ports,
2781 sizeof *br->ports);
2782 }
2783 br->ports[br->n_ports++] = port;
2784
2785 VLOG_INFO("created port %s on bridge %s", port->name, br->name);
2786 bridge_flush(br);
2787 }
2788
2789 static void
2790 port_reconfigure(struct port *port)
2791 {
2792 bool bonded = cfg_has_section("bonding.%s", port->name);
2793 struct svec old_ifaces, new_ifaces;
2794 unsigned long *trunks;
2795 int vlan;
2796 size_t i;
2797
2798 /* Collect old and new interfaces. */
2799 svec_init(&old_ifaces);
2800 svec_init(&new_ifaces);
2801 for (i = 0; i < port->n_ifaces; i++) {
2802 svec_add(&old_ifaces, port->ifaces[i]->name);
2803 }
2804 svec_sort(&old_ifaces);
2805 if (bonded) {
2806 cfg_get_all_keys(&new_ifaces, "bonding.%s.slave", port->name);
2807 if (!new_ifaces.n) {
2808 VLOG_ERR("port %s: no interfaces specified for bonded port",
2809 port->name);
2810 } else if (new_ifaces.n == 1) {
2811 VLOG_WARN("port %s: only 1 interface specified for bonded port",
2812 port->name);
2813 }
2814
2815 port->updelay = cfg_get_int(0, "bonding.%s.updelay", port->name);
2816 if (port->updelay < 0) {
2817 port->updelay = 0;
2818 }
2819 port->downdelay = cfg_get_int(0, "bonding.%s.downdelay", port->name);
2820 if (port->downdelay < 0) {
2821 port->downdelay = 0;
2822 }
2823 } else {
2824 svec_init(&new_ifaces);
2825 svec_add(&new_ifaces, port->name);
2826 }
2827
2828 /* Get rid of deleted interfaces and add new interfaces. */
2829 for (i = 0; i < port->n_ifaces; i++) {
2830 struct iface *iface = port->ifaces[i];
2831 if (!svec_contains(&new_ifaces, iface->name)) {
2832 iface_destroy(iface);
2833 } else {
2834 i++;
2835 }
2836 }
2837 for (i = 0; i < new_ifaces.n; i++) {
2838 const char *name = new_ifaces.names[i];
2839 if (!svec_contains(&old_ifaces, name)) {
2840 iface_create(port, name);
2841 }
2842 }
2843
2844 /* Get VLAN tag. */
2845 vlan = -1;
2846 if (cfg_has("vlan.%s.tag", port->name)) {
2847 if (!bonded) {
2848 vlan = cfg_get_vlan(0, "vlan.%s.tag", port->name);
2849 if (vlan >= 0 && vlan <= 4095) {
2850 VLOG_DBG("port %s: assigning VLAN tag %d", port->name, vlan);
2851 }
2852 } else {
2853 /* It's possible that bonded, VLAN-tagged ports make sense. Maybe
2854 * they even work as-is. But they have not been tested. */
2855 VLOG_WARN("port %s: VLAN tags not supported on bonded ports",
2856 port->name);
2857 }
2858 }
2859 if (port->vlan != vlan) {
2860 port->vlan = vlan;
2861 bridge_flush(port->bridge);
2862 }
2863
2864 /* Get trunked VLANs. */
2865 trunks = NULL;
2866 if (vlan < 0) {
2867 size_t n_trunks, n_errors;
2868 size_t i;
2869
2870 trunks = bitmap_allocate(4096);
2871 n_trunks = cfg_count("vlan.%s.trunks", port->name);
2872 n_errors = 0;
2873 for (i = 0; i < n_trunks; i++) {
2874 int trunk = cfg_get_vlan(i, "vlan.%s.trunks", port->name);
2875 if (trunk >= 0) {
2876 bitmap_set1(trunks, trunk);
2877 } else {
2878 n_errors++;
2879 }
2880 }
2881 if (n_errors) {
2882 VLOG_ERR("port %s: invalid values for %zu trunk VLANs",
2883 port->name, n_trunks);
2884 }
2885 if (n_errors == n_trunks) {
2886 if (n_errors) {
2887 VLOG_ERR("port %s: no valid trunks, trunking all VLANs",
2888 port->name);
2889 }
2890 bitmap_set_multiple(trunks, 0, 4096, 1);
2891 }
2892 } else {
2893 if (cfg_has("vlan.%s.trunks", port->name)) {
2894 VLOG_ERR("ignoring vlan.%s.trunks in favor of vlan.%s.vlan",
2895 port->name, port->name);
2896 }
2897 }
2898 if (trunks == NULL
2899 ? port->trunks != NULL
2900 : port->trunks == NULL || !bitmap_equal(trunks, port->trunks, 4096)) {
2901 bridge_flush(port->bridge);
2902 }
2903 bitmap_free(port->trunks);
2904 port->trunks = trunks;
2905
2906 svec_destroy(&old_ifaces);
2907 svec_destroy(&new_ifaces);
2908 }
2909
2910 static void
2911 port_destroy(struct port *port)
2912 {
2913 if (port) {
2914 struct bridge *br = port->bridge;
2915 struct port *del;
2916 size_t i;
2917
2918 proc_net_compat_update_vlan(port->name, NULL, 0);
2919 proc_net_compat_update_bond(port->name, NULL);
2920
2921 for (i = 0; i < MAX_MIRRORS; i++) {
2922 struct mirror *m = br->mirrors[i];
2923 if (m && m->out_port == port) {
2924 mirror_destroy(m);
2925 }
2926 }
2927
2928 while (port->n_ifaces > 0) {
2929 iface_destroy(port->ifaces[port->n_ifaces - 1]);
2930 }
2931
2932 del = br->ports[port->port_idx] = br->ports[--br->n_ports];
2933 del->port_idx = port->port_idx;
2934
2935 free(port->ifaces);
2936 bitmap_free(port->trunks);
2937 free(port->name);
2938 free(port);
2939 bridge_flush(br);
2940 }
2941 }
2942
2943 static struct port *
2944 port_from_dp_ifidx(const struct bridge *br, uint16_t dp_ifidx)
2945 {
2946 struct iface *iface = iface_from_dp_ifidx(br, dp_ifidx);
2947 return iface ? iface->port : NULL;
2948 }
2949
2950 static struct port *
2951 port_lookup(const struct bridge *br, const char *name)
2952 {
2953 size_t i;
2954
2955 for (i = 0; i < br->n_ports; i++) {
2956 struct port *port = br->ports[i];
2957 if (!strcmp(port->name, name)) {
2958 return port;
2959 }
2960 }
2961 return NULL;
2962 }
2963
2964 static struct iface *
2965 port_lookup_iface(const struct port *port, const char *name)
2966 {
2967 size_t j;
2968
2969 for (j = 0; j < port->n_ifaces; j++) {
2970 struct iface *iface = port->ifaces[j];
2971 if (!strcmp(iface->name, name)) {
2972 return iface;
2973 }
2974 }
2975 return NULL;
2976 }
2977
2978 static void
2979 port_update_bonding(struct port *port)
2980 {
2981 if (port->n_ifaces < 2) {
2982 /* Not a bonded port. */
2983 if (port->bond_hash) {
2984 free(port->bond_hash);
2985 port->bond_hash = NULL;
2986 port->bond_compat_is_stale = true;
2987 }
2988 } else {
2989 if (!port->bond_hash) {
2990 size_t i;
2991
2992 port->bond_hash = xcalloc(BOND_MASK + 1, sizeof *port->bond_hash);
2993 for (i = 0; i <= BOND_MASK; i++) {
2994 struct bond_entry *e = &port->bond_hash[i];
2995 e->iface_idx = -1;
2996 e->tx_bytes = 0;
2997 }
2998 port->no_ifaces_tag = tag_create_random();
2999 bond_choose_active_iface(port);
3000 }
3001 port->bond_compat_is_stale = true;
3002 }
3003 }
3004
3005 static void
3006 port_update_bond_compat(struct port *port)
3007 {
3008 struct compat_bond_hash compat_hashes[BOND_MASK + 1];
3009 struct compat_bond bond;
3010 size_t i;
3011
3012 if (port->n_ifaces < 2) {
3013 proc_net_compat_update_bond(port->name, NULL);
3014 return;
3015 }
3016
3017 bond.up = false;
3018 bond.updelay = port->updelay;
3019 bond.downdelay = port->downdelay;
3020
3021 bond.n_hashes = 0;
3022 bond.hashes = compat_hashes;
3023 if (port->bond_hash) {
3024 const struct bond_entry *e;
3025 for (e = port->bond_hash; e <= &port->bond_hash[BOND_MASK]; e++) {
3026 if (e->iface_idx >= 0 && e->iface_idx < port->n_ifaces) {
3027 struct compat_bond_hash *cbh = &bond.hashes[bond.n_hashes++];
3028 cbh->hash = e - port->bond_hash;
3029 cbh->netdev_name = port->ifaces[e->iface_idx]->name;
3030 }
3031 }
3032 }
3033
3034 bond.n_slaves = port->n_ifaces;
3035 bond.slaves = xmalloc(port->n_ifaces * sizeof *bond.slaves);
3036 for (i = 0; i < port->n_ifaces; i++) {
3037 struct iface *iface = port->ifaces[i];
3038 struct compat_bond_slave *slave = &bond.slaves[i];
3039 slave->name = iface->name;
3040 slave->up = ((iface->enabled && iface->delay_expires == LLONG_MAX) ||
3041 (!iface->enabled && iface->delay_expires != LLONG_MAX));
3042 if (slave->up) {
3043 bond.up = true;
3044 }
3045 netdev_get_etheraddr(iface->netdev, slave->mac);
3046 }
3047
3048 proc_net_compat_update_bond(port->name, &bond);
3049 free(bond.slaves);
3050 }
3051
3052 static void
3053 port_update_vlan_compat(struct port *port)
3054 {
3055 struct bridge *br = port->bridge;
3056 char *vlandev_name = NULL;
3057
3058 if (port->vlan > 0) {
3059 /* Figure out the name that the VLAN device should actually have, if it
3060 * existed. This takes some work because the VLAN device would not
3061 * have port->name in its name; rather, it would have the trunk port's
3062 * name, and 'port' would be attached to a bridge that also had the
3063 * VLAN device one of its ports. So we need to find a trunk port that
3064 * includes port->vlan.
3065 *
3066 * There might be more than one candidate. This doesn't happen on
3067 * XenServer, so if it happens we just pick the first choice in
3068 * alphabetical order instead of creating multiple VLAN devices. */
3069 size_t i;
3070 for (i = 0; i < br->n_ports; i++) {
3071 struct port *p = br->ports[i];
3072 if (port_trunks_vlan(p, port->vlan)
3073 && p->n_ifaces
3074 && (!vlandev_name || strcmp(p->name, vlandev_name) <= 0))
3075 {
3076 uint8_t ea[ETH_ADDR_LEN];
3077 netdev_get_etheraddr(p->ifaces[0]->netdev, ea);
3078 if (!eth_addr_is_multicast(ea) &&
3079 !eth_addr_is_reserved(ea) &&
3080 !eth_addr_is_zero(ea)) {
3081 vlandev_name = p->name;
3082 }
3083 }
3084 }
3085 }
3086 proc_net_compat_update_vlan(port->name, vlandev_name, port->vlan);
3087 }
3088 \f
3089 /* Interface functions. */
3090
3091 static void
3092 iface_create(struct port *port, const char *name)
3093 {
3094 struct iface *iface;
3095
3096 iface = xcalloc(1, sizeof *iface);
3097 iface->port = port;
3098 iface->port_ifidx = port->n_ifaces;
3099 iface->name = xstrdup(name);
3100 iface->dp_ifidx = -1;
3101 iface->tag = tag_create_random();
3102 iface->delay_expires = LLONG_MAX;
3103 iface->netdev = NULL;
3104
3105 if (port->n_ifaces >= port->allocated_ifaces) {
3106 port->ifaces = x2nrealloc(port->ifaces, &port->allocated_ifaces,
3107 sizeof *port->ifaces);
3108 }
3109 port->ifaces[port->n_ifaces++] = iface;
3110 if (port->n_ifaces > 1) {
3111 port->bridge->has_bonded_ports = true;
3112 }
3113
3114 VLOG_DBG("attached network device %s to port %s", iface->name, port->name);
3115
3116 bridge_flush(port->bridge);
3117 }
3118
3119 static void
3120 iface_destroy(struct iface *iface)
3121 {
3122 if (iface) {
3123 struct port *port = iface->port;
3124 struct bridge *br = port->bridge;
3125 bool del_active = port->active_iface == iface->port_ifidx;
3126 struct iface *del;
3127
3128 if (iface->dp_ifidx >= 0) {
3129 port_array_set(&br->ifaces, iface->dp_ifidx, NULL);
3130 }
3131
3132 del = port->ifaces[iface->port_ifidx] = port->ifaces[--port->n_ifaces];
3133 del->port_ifidx = iface->port_ifidx;
3134
3135 netdev_close(iface->netdev);
3136 free(iface->name);
3137 free(iface);
3138
3139 if (del_active) {
3140 ofproto_revalidate(port->bridge->ofproto, port->active_iface_tag);
3141 bond_choose_active_iface(port);
3142 bond_send_learning_packets(port);
3143 }
3144
3145 bridge_flush(port->bridge);
3146 }
3147 }
3148
3149 static struct iface *
3150 iface_lookup(const struct bridge *br, const char *name)
3151 {
3152 size_t i, j;
3153
3154 for (i = 0; i < br->n_ports; i++) {
3155 struct port *port = br->ports[i];
3156 for (j = 0; j < port->n_ifaces; j++) {
3157 struct iface *iface = port->ifaces[j];
3158 if (!strcmp(iface->name, name)) {
3159 return iface;
3160 }
3161 }
3162 }
3163 return NULL;
3164 }
3165
3166 static struct iface *
3167 iface_from_dp_ifidx(const struct bridge *br, uint16_t dp_ifidx)
3168 {
3169 return port_array_get(&br->ifaces, dp_ifidx);
3170 }
3171 \f
3172 /* Port mirroring. */
3173
3174 static void
3175 mirror_reconfigure(struct bridge *br)
3176 {
3177 struct svec old_mirrors, new_mirrors;
3178 size_t i;
3179
3180 /* Collect old and new mirrors. */
3181 svec_init(&old_mirrors);
3182 svec_init(&new_mirrors);
3183 cfg_get_subsections(&new_mirrors, "mirror.%s", br->name);
3184 for (i = 0; i < MAX_MIRRORS; i++) {
3185 if (br->mirrors[i]) {
3186 svec_add(&old_mirrors, br->mirrors[i]->name);
3187 }
3188 }
3189
3190 /* Get rid of deleted mirrors and add new mirrors. */
3191 svec_sort(&old_mirrors);
3192 assert(svec_is_unique(&old_mirrors));
3193 svec_sort(&new_mirrors);
3194 assert(svec_is_unique(&new_mirrors));
3195 for (i = 0; i < MAX_MIRRORS; i++) {
3196 struct mirror *m = br->mirrors[i];
3197 if (m && !svec_contains(&new_mirrors, m->name)) {
3198 mirror_destroy(m);
3199 }
3200 }
3201 for (i = 0; i < new_mirrors.n; i++) {
3202 const char *name = new_mirrors.names[i];
3203 if (!svec_contains(&old_mirrors, name)) {
3204 mirror_create(br, name);
3205 }
3206 }
3207 svec_destroy(&old_mirrors);
3208 svec_destroy(&new_mirrors);
3209
3210 /* Reconfigure all mirrors. */
3211 for (i = 0; i < MAX_MIRRORS; i++) {
3212 if (br->mirrors[i]) {
3213 mirror_reconfigure_one(br->mirrors[i]);
3214 }
3215 }
3216
3217 /* Update port reserved status. */
3218 for (i = 0; i < br->n_ports; i++) {
3219 br->ports[i]->is_mirror_output_port = false;
3220 }
3221 for (i = 0; i < MAX_MIRRORS; i++) {
3222 struct mirror *m = br->mirrors[i];
3223 if (m && m->out_port) {
3224 m->out_port->is_mirror_output_port = true;
3225 }
3226 }
3227 }
3228
3229 static void
3230 mirror_create(struct bridge *br, const char *name)
3231 {
3232 struct mirror *m;
3233 size_t i;
3234
3235 for (i = 0; ; i++) {
3236 if (i >= MAX_MIRRORS) {
3237 VLOG_WARN("bridge %s: maximum of %d port mirrors reached, "
3238 "cannot create %s", br->name, MAX_MIRRORS, name);
3239 return;
3240 }
3241 if (!br->mirrors[i]) {
3242 break;
3243 }
3244 }
3245
3246 VLOG_INFO("created port mirror %s on bridge %s", name, br->name);
3247 bridge_flush(br);
3248
3249 br->mirrors[i] = m = xcalloc(1, sizeof *m);
3250 m->bridge = br;
3251 m->idx = i;
3252 m->name = xstrdup(name);
3253 svec_init(&m->src_ports);
3254 svec_init(&m->dst_ports);
3255 m->vlans = NULL;
3256 m->n_vlans = 0;
3257 m->out_vlan = -1;
3258 m->out_port = NULL;
3259 }
3260
3261 static void
3262 mirror_destroy(struct mirror *m)
3263 {
3264 if (m) {
3265 struct bridge *br = m->bridge;
3266 size_t i;
3267
3268 for (i = 0; i < br->n_ports; i++) {
3269 br->ports[i]->src_mirrors &= ~(MIRROR_MASK_C(1) << m->idx);
3270 br->ports[i]->dst_mirrors &= ~(MIRROR_MASK_C(1) << m->idx);
3271 }
3272
3273 svec_destroy(&m->src_ports);
3274 svec_destroy(&m->dst_ports);
3275 free(m->vlans);
3276
3277 m->bridge->mirrors[m->idx] = NULL;
3278 free(m);
3279
3280 bridge_flush(br);
3281 }
3282 }
3283
3284 static void
3285 prune_ports(struct mirror *m, struct svec *ports)
3286 {
3287 struct svec tmp;
3288 size_t i;
3289
3290 svec_sort_unique(ports);
3291
3292 svec_init(&tmp);
3293 for (i = 0; i < ports->n; i++) {
3294 const char *name = ports->names[i];
3295 if (port_lookup(m->bridge, name)) {
3296 svec_add(&tmp, name);
3297 } else {
3298 VLOG_WARN("mirror.%s.%s: cannot match on nonexistent port %s",
3299 m->bridge->name, m->name, name);
3300 }
3301 }
3302 svec_swap(ports, &tmp);
3303 svec_destroy(&tmp);
3304 }
3305
3306 static size_t
3307 prune_vlans(struct mirror *m, struct svec *vlan_strings, int **vlans)
3308 {
3309 size_t n_vlans, i;
3310
3311 /* This isn't perfect: it won't combine "0" and "00", and the textual sort
3312 * order won't give us numeric sort order. But that's good enough for what
3313 * we need right now. */
3314 svec_sort_unique(vlan_strings);
3315
3316 *vlans = xmalloc(sizeof *vlans * vlan_strings->n);
3317 n_vlans = 0;
3318 for (i = 0; i < vlan_strings->n; i++) {
3319 const char *name = vlan_strings->names[i];
3320 int vlan;
3321 if (!str_to_int(name, 10, &vlan) || vlan < 0 || vlan > 4095) {
3322 VLOG_WARN("mirror.%s.%s.select.vlan: ignoring invalid VLAN %s",
3323 m->bridge->name, m->name, name);
3324 } else {
3325 (*vlans)[n_vlans++] = vlan;
3326 }
3327 }
3328 return n_vlans;
3329 }
3330
3331 static bool
3332 vlan_is_mirrored(const struct mirror *m, int vlan)
3333 {
3334 size_t i;
3335
3336 for (i = 0; i < m->n_vlans; i++) {
3337 if (m->vlans[i] == vlan) {
3338 return true;
3339 }
3340 }
3341 return false;
3342 }
3343
3344 static bool
3345 port_trunks_any_mirrored_vlan(const struct mirror *m, const struct port *p)
3346 {
3347 size_t i;
3348
3349 for (i = 0; i < m->n_vlans; i++) {
3350 if (port_trunks_vlan(p, m->vlans[i])) {
3351 return true;
3352 }
3353 }
3354 return false;
3355 }
3356
3357 static void
3358 mirror_reconfigure_one(struct mirror *m)
3359 {
3360 char *pfx = xasprintf("mirror.%s.%s", m->bridge->name, m->name);
3361 struct svec src_ports, dst_ports, ports;
3362 struct svec vlan_strings;
3363 mirror_mask_t mirror_bit;
3364 const char *out_port_name;
3365 struct port *out_port;
3366 int out_vlan;
3367 size_t n_vlans;
3368 int *vlans;
3369 size_t i;
3370 bool mirror_all_ports;
3371
3372 /* Get output port. */
3373 out_port_name = cfg_get_key(0, "mirror.%s.%s.output.port",
3374 m->bridge->name, m->name);
3375 if (out_port_name) {
3376 out_port = port_lookup(m->bridge, out_port_name);
3377 if (!out_port) {
3378 VLOG_ERR("%s.output.port: bridge %s does not have a port "
3379 "named %s", pfx, m->bridge->name, out_port_name);
3380 mirror_destroy(m);
3381 free(pfx);
3382 return;
3383 }
3384 out_vlan = -1;
3385
3386 if (cfg_has("%s.output.vlan", pfx)) {
3387 VLOG_ERR("%s.output.port and %s.output.vlan both specified; "
3388 "ignoring %s.output.vlan", pfx, pfx, pfx);
3389 }
3390 } else if (cfg_has("%s.output.vlan", pfx)) {
3391 out_port = NULL;
3392 out_vlan = cfg_get_vlan(0, "%s.output.vlan", pfx);
3393 } else {
3394 VLOG_ERR("%s: neither %s.output.port nor %s.output.vlan specified, "
3395 "but exactly one is required; disabling port mirror %s",
3396 pfx, pfx, pfx, pfx);
3397 mirror_destroy(m);
3398 free(pfx);
3399 return;
3400 }
3401
3402 /* Get all the ports, and drop duplicates and ports that don't exist. */
3403 svec_init(&src_ports);
3404 svec_init(&dst_ports);
3405 svec_init(&ports);
3406 cfg_get_all_keys(&src_ports, "%s.select.src-port", pfx);
3407 cfg_get_all_keys(&dst_ports, "%s.select.dst-port", pfx);
3408 cfg_get_all_keys(&ports, "%s.select.port", pfx);
3409 svec_append(&src_ports, &ports);
3410 svec_append(&dst_ports, &ports);
3411 svec_destroy(&ports);
3412 prune_ports(m, &src_ports);
3413 prune_ports(m, &dst_ports);
3414
3415 /* Get all the vlans, and drop duplicate and invalid vlans. */
3416 svec_init(&vlan_strings);
3417 cfg_get_all_keys(&vlan_strings, "%s.select.vlan", pfx);
3418 n_vlans = prune_vlans(m, &vlan_strings, &vlans);
3419 svec_destroy(&vlan_strings);
3420
3421 /* Update mirror data. */
3422 if (!svec_equal(&m->src_ports, &src_ports)
3423 || !svec_equal(&m->dst_ports, &dst_ports)
3424 || m->n_vlans != n_vlans
3425 || memcmp(m->vlans, vlans, sizeof *vlans * n_vlans)
3426 || m->out_port != out_port
3427 || m->out_vlan != out_vlan) {
3428 bridge_flush(m->bridge);
3429 }
3430 svec_swap(&m->src_ports, &src_ports);
3431 svec_swap(&m->dst_ports, &dst_ports);
3432 free(m->vlans);
3433 m->vlans = vlans;
3434 m->n_vlans = n_vlans;
3435 m->out_port = out_port;
3436 m->out_vlan = out_vlan;
3437
3438 /* If no selection criteria have been given, mirror for all ports. */
3439 mirror_all_ports = (!m->src_ports.n) && (!m->dst_ports.n) && (!m->n_vlans);
3440
3441 /* Update ports. */
3442 mirror_bit = MIRROR_MASK_C(1) << m->idx;
3443 for (i = 0; i < m->bridge->n_ports; i++) {
3444 struct port *port = m->bridge->ports[i];
3445
3446 if (mirror_all_ports
3447 || svec_contains(&m->src_ports, port->name)
3448 || (m->n_vlans
3449 && (!port->vlan
3450 ? port_trunks_any_mirrored_vlan(m, port)
3451 : vlan_is_mirrored(m, port->vlan)))) {
3452 port->src_mirrors |= mirror_bit;
3453 } else {
3454 port->src_mirrors &= ~mirror_bit;
3455 }
3456
3457 if (mirror_all_ports || svec_contains(&m->dst_ports, port->name)) {
3458 port->dst_mirrors |= mirror_bit;
3459 } else {
3460 port->dst_mirrors &= ~mirror_bit;
3461 }
3462 }
3463
3464 /* Clean up. */
3465 svec_destroy(&src_ports);
3466 svec_destroy(&dst_ports);
3467 free(pfx);
3468 }
3469 \f
3470 /* Spanning tree protocol. */
3471
3472 static void brstp_update_port_state(struct port *);
3473
3474 static void
3475 brstp_send_bpdu(struct ofpbuf *pkt, int port_no, void *br_)
3476 {
3477 struct bridge *br = br_;
3478 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
3479 struct iface *iface = iface_from_dp_ifidx(br, port_no);
3480 if (!iface) {
3481 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on unknown port %d",
3482 br->name, port_no);
3483 } else {
3484 struct eth_header *eth = pkt->l2;
3485
3486 netdev_get_etheraddr(iface->netdev, eth->eth_src);
3487 if (eth_addr_is_zero(eth->eth_src)) {
3488 VLOG_WARN_RL(&rl, "%s: cannot send BPDU on port %d "
3489 "with unknown MAC", br->name, port_no);
3490 } else {
3491 union ofp_action action;
3492 flow_t flow;
3493
3494 memset(&action, 0, sizeof action);
3495 action.type = htons(OFPAT_OUTPUT);
3496 action.output.len = htons(sizeof action);
3497 action.output.port = htons(port_no);
3498
3499 flow_extract(pkt, ODPP_NONE, &flow);
3500 ofproto_send_packet(br->ofproto, &flow, &action, 1, pkt);
3501 }
3502 }
3503 ofpbuf_delete(pkt);
3504 }
3505
3506 static void
3507 brstp_reconfigure(struct bridge *br)
3508 {
3509 size_t i;
3510
3511 if (!cfg_get_bool(0, "stp.%s.enabled", br->name)) {
3512 if (br->stp) {
3513 stp_destroy(br->stp);
3514 br->stp = NULL;
3515
3516 bridge_flush(br);
3517 }
3518 } else {
3519 uint64_t bridge_address, bridge_id;
3520 int bridge_priority;
3521
3522 bridge_address = cfg_get_mac(0, "stp.%s.address", br->name);
3523 if (!bridge_address) {
3524 if (br->stp) {
3525 bridge_address = (stp_get_bridge_id(br->stp)
3526 & ((UINT64_C(1) << 48) - 1));
3527 } else {
3528 uint8_t mac[ETH_ADDR_LEN];
3529 eth_addr_random(mac);
3530 bridge_address = eth_addr_to_uint64(mac);
3531 }
3532 }
3533
3534 if (cfg_is_valid(CFG_INT | CFG_REQUIRED, "stp.%s.priority",
3535 br->name)) {
3536 bridge_priority = cfg_get_int(0, "stp.%s.priority", br->name);
3537 } else {
3538 bridge_priority = STP_DEFAULT_BRIDGE_PRIORITY;
3539 }
3540
3541 bridge_id = bridge_address | ((uint64_t) bridge_priority << 48);
3542 if (!br->stp) {
3543 br->stp = stp_create(br->name, bridge_id, brstp_send_bpdu, br);
3544 br->stp_last_tick = time_msec();
3545 bridge_flush(br);
3546 } else {
3547 if (bridge_id != stp_get_bridge_id(br->stp)) {
3548 stp_set_bridge_id(br->stp, bridge_id);
3549 bridge_flush(br);
3550 }
3551 }
3552
3553 for (i = 0; i < br->n_ports; i++) {
3554 struct port *p = br->ports[i];
3555 int dp_ifidx;
3556 struct stp_port *sp;
3557 int path_cost, priority;
3558 bool enable;
3559
3560 if (!p->n_ifaces) {
3561 continue;
3562 }
3563 dp_ifidx = p->ifaces[0]->dp_ifidx;
3564 if (dp_ifidx < 0 || dp_ifidx >= STP_MAX_PORTS) {
3565 continue;
3566 }
3567
3568 sp = stp_get_port(br->stp, dp_ifidx);
3569 enable = (!cfg_is_valid(CFG_BOOL | CFG_REQUIRED,
3570 "stp.%s.port.%s.enabled",
3571 br->name, p->name)
3572 || cfg_get_bool(0, "stp.%s.port.%s.enabled",
3573 br->name, p->name));
3574 if (p->is_mirror_output_port) {
3575 enable = false;
3576 }
3577 if (enable != (stp_port_get_state(sp) != STP_DISABLED)) {
3578 bridge_flush(br); /* Might not be necessary. */
3579 if (enable) {
3580 stp_port_enable(sp);
3581 } else {
3582 stp_port_disable(sp);
3583 }
3584 }
3585
3586 path_cost = cfg_get_int(0, "stp.%s.port.%s.path-cost",
3587 br->name, p->name);
3588 stp_port_set_path_cost(sp, path_cost ? path_cost : 19 /* XXX */);
3589
3590 priority = (cfg_is_valid(CFG_INT | CFG_REQUIRED,
3591 "stp.%s.port.%s.priority",
3592 br->name, p->name)
3593 ? cfg_get_int(0, "stp.%s.port.%s.priority",
3594 br->name, p->name)
3595 : STP_DEFAULT_PORT_PRIORITY);
3596 stp_port_set_priority(sp, priority);
3597 }
3598
3599 brstp_adjust_timers(br);
3600 }
3601 for (i = 0; i < br->n_ports; i++) {
3602 brstp_update_port_state(br->ports[i]);
3603 }
3604 }
3605
3606 static void
3607 brstp_update_port_state(struct port *p)
3608 {
3609 struct bridge *br = p->bridge;
3610 enum stp_state state;
3611
3612 /* Figure out new state. */
3613 state = STP_DISABLED;
3614 if (br->stp && p->n_ifaces > 0) {
3615 int dp_ifidx = p->ifaces[0]->dp_ifidx;
3616 if (dp_ifidx >= 0 && dp_ifidx < STP_MAX_PORTS) {
3617 state = stp_port_get_state(stp_get_port(br->stp, dp_ifidx));
3618 }
3619 }
3620
3621 /* Update state. */
3622 if (p->stp_state != state) {
3623 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10);
3624 VLOG_INFO_RL(&rl, "port %s: STP state changed from %s to %s",
3625 p->name, stp_state_name(p->stp_state),
3626 stp_state_name(state));
3627 if (p->stp_state == STP_DISABLED) {
3628 bridge_flush(br);
3629 } else {
3630 ofproto_revalidate(p->bridge->ofproto, p->stp_state_tag);
3631 }
3632 p->stp_state = state;
3633 p->stp_state_tag = (p->stp_state == STP_DISABLED ? 0
3634 : tag_create_random());
3635 }
3636 }
3637
3638 static void
3639 brstp_adjust_timers(struct bridge *br)
3640 {
3641 int hello_time = cfg_get_int(0, "stp.%s.hello-time", br->name);
3642 int max_age = cfg_get_int(0, "stp.%s.max-age", br->name);
3643 int forward_delay = cfg_get_int(0, "stp.%s.forward-delay", br->name);
3644
3645 stp_set_hello_time(br->stp, hello_time ? hello_time : 2000);
3646 stp_set_max_age(br->stp, max_age ? max_age : 20000);
3647 stp_set_forward_delay(br->stp, forward_delay ? forward_delay : 15000);
3648 }
3649
3650 static void
3651 brstp_run(struct bridge *br)
3652 {
3653 if (br->stp) {
3654 long long int now = time_msec();
3655 long long int elapsed = now - br->stp_last_tick;
3656 struct stp_port *sp;
3657
3658 if (elapsed > 0) {
3659 stp_tick(br->stp, MIN(INT_MAX, elapsed));
3660 br->stp_last_tick = now;
3661 }
3662 while (stp_get_changed_port(br->stp, &sp)) {
3663 struct port *p = port_from_dp_ifidx(br, stp_port_no(sp));
3664 if (p) {
3665 brstp_update_port_state(p);
3666 }
3667 }
3668 }
3669 }
3670
3671 static void
3672 brstp_wait(struct bridge *br)
3673 {
3674 if (br->stp) {
3675 poll_timer_wait(1000);
3676 }
3677 }