]> git.proxmox.com Git - mirror_ovs.git/blob - vswitchd/vswitch.xml
Eliminate "whitelist" and "blacklist" terms.
[mirror_ovs.git] / vswitchd / vswitch.xml
1 <?xml version="1.0" encoding="utf-8"?>
2 <database name="ovs-vswitchd.conf.db" title="Open vSwitch Configuration Database">
3 <p>
4 A database with this schema holds the configuration for one Open
5 vSwitch daemon. The top-level configuration for the daemon is the
6 <ref table="Open_vSwitch"/> table, which must have exactly one
7 record. Records in other tables are significant only when they
8 can be reached directly or indirectly from the <ref
9 table="Open_vSwitch"/> table. Records that are not reachable from
10 the <ref table="Open_vSwitch"/> table are automatically deleted
11 from the database, except for records in a few distinguished
12 ``root set'' tables.
13 </p>
14
15 <h2>Common Columns</h2>
16
17 <p>
18 Most tables contain two special columns, named <code>other_config</code>
19 and <code>external_ids</code>. These columns have the same form and
20 purpose each place that they appear, so we describe them here to save space
21 later.
22 </p>
23
24 <dl>
25 <dt><code>other_config</code>: map of string-string pairs</dt>
26 <dd>
27 <p>
28 Key-value pairs for configuring rarely used features. Supported keys,
29 along with the forms taken by their values, are documented individually
30 for each table.
31 </p>
32 <p>
33 A few tables do not have <code>other_config</code> columns because no
34 key-value pairs have yet been defined for them.
35 </p>
36 </dd>
37
38 <dt><code>external_ids</code>: map of string-string pairs</dt>
39 <dd>
40 Key-value pairs for use by external frameworks that integrate with Open
41 vSwitch, rather than by Open vSwitch itself. System integrators should
42 either use the Open vSwitch development mailing list to coordinate on
43 common key-value definitions, or choose key names that are likely to be
44 unique. In some cases, where key-value pairs have been defined that are
45 likely to be widely useful, they are documented individually for each
46 table.
47 </dd>
48 </dl>
49
50 <table name="Open_vSwitch" title="Open vSwitch configuration.">
51 Configuration for an Open vSwitch daemon. There must be exactly
52 one record in the <ref table="Open_vSwitch"/> table.
53
54 <group title="Configuration">
55 <column name="datapaths">
56 Map of datapath types to datapaths. The
57 <ref column="datapath_type"/> column of the <ref table="Bridge"/>
58 table is used as a key for this map. The value points to a row in
59 the <ref table="Datapath"/> table.
60 </column>
61
62 <column name="bridges">
63 Set of bridges managed by the daemon.
64 </column>
65
66 <column name="ssl">
67 SSL used globally by the daemon.
68 </column>
69
70 <column name="external_ids" key="system-id">
71 A unique identifier for the Open vSwitch's physical host.
72 The form of the identifier depends on the type of the host.
73 On a Citrix XenServer, this will likely be the same as
74 <ref column="external_ids" key="xs-system-uuid"/>.
75 </column>
76
77 <column name="external_ids" key="xs-system-uuid">
78 The Citrix XenServer universally unique identifier for the physical
79 host as displayed by <code>xe host-list</code>.
80 </column>
81
82 <column name="external_ids" key="hostname">
83 The hostname for the host running Open vSwitch. This is a fully
84 qualified domain name since version 2.6.2.
85 </column>
86
87 <column name="external_ids" key="rundir">
88 In Open vSwitch 2.8 and later, the run directory of the running Open
89 vSwitch daemon. This directory is used for runtime state such as
90 control and management sockets. The value of <ref
91 column="other_config" key="vhost-sock-dir"/> is relative to this
92 directory.
93 </column>
94
95 <column name="other_config" key="stats-update-interval"
96 type='{"type": "integer", "minInteger": 5000}'>
97 <p>
98 Interval for updating statistics to the database, in milliseconds.
99 This option will affect the update of the <code>statistics</code>
100 column in the following tables: <code>Port</code>, <code>Interface
101 </code>, <code>Mirror</code>.
102 </p>
103 <p>
104 Default value is 5000 ms.
105 </p>
106 <p>
107 Getting statistics more frequently can be achieved via OpenFlow.
108 </p>
109 </column>
110
111 <column name="other_config" key="flow-restore-wait"
112 type='{"type": "boolean"}'>
113 <p>
114 When <code>ovs-vswitchd</code> starts up, it has an empty flow table
115 and therefore it handles all arriving packets in its default fashion
116 according to its configuration, by dropping them or sending them to
117 an OpenFlow controller or switching them as a standalone switch.
118 This behavior is ordinarily desirable. However, if
119 <code>ovs-vswitchd</code> is restarting as part of a ``hot-upgrade,''
120 then this leads to a relatively long period during which packets are
121 mishandled.
122 </p>
123 <p>
124 This option allows for improvement. When <code>ovs-vswitchd</code>
125 starts with this value set as <code>true</code>, it will neither
126 flush or expire previously set datapath flows nor will it send and
127 receive any packets to or from the datapath. When this value is
128 later set to <code>false</code>, <code>ovs-vswitchd</code> will
129 start receiving packets from the datapath and re-setup the flows.
130 </p>
131 <p>
132 Additionally, <code>ovs-vswitchd</code> is prevented from connecting
133 to controllers when this value is set to <code>true</code>. This
134 prevents controllers from making changes to the flow table in the
135 middle of flow restoration, which could result in undesirable
136 intermediate states. Once this value has been set to
137 <code>false</code> and the desired flow state has been
138 restored, <code>ovs-vswitchd</code> will be able to reconnect to
139 controllers and process any new flow table modifications.
140 </p>
141 <p>
142 Thus, with this option, the procedure for a hot-upgrade of
143 <code>ovs-vswitchd</code> becomes roughly the following:
144 </p>
145 <ol>
146 <li>
147 Stop <code>ovs-vswitchd</code>.
148 </li>
149 <li>
150 Set <ref column="other_config" key="flow-restore-wait"/>
151 to <code>true</code>.
152 </li>
153 <li>
154 Start <code>ovs-vswitchd</code>.
155 </li>
156 <li>
157 Use <code>ovs-ofctl</code> (or some other program, such as an
158 OpenFlow controller) to restore the OpenFlow flow table
159 to the desired state.
160 </li>
161 <li>
162 Set <ref column="other_config" key="flow-restore-wait"/>
163 to <code>false</code> (or remove it entirely from the database).
164 </li>
165 </ol>
166 <p>
167 The <code>ovs-ctl</code>'s ``restart'' and ``force-reload-kmod''
168 functions use the above config option during hot upgrades.
169 </p>
170 </column>
171
172 <column name="other_config" key="flow-limit"
173 type='{"type": "integer", "minInteger": 0}'>
174 <p>
175 The maximum
176 number of flows allowed in the datapath flow table. Internally OVS
177 will choose a flow limit which will likely be lower than this number,
178 based on real time network conditions. Tweaking this value is
179 discouraged unless you know exactly what you're doing.
180 </p>
181 <p>
182 The default is 200000.
183 </p>
184 </column>
185
186 <column name="other_config" key="max-idle"
187 type='{"type": "integer", "minInteger": 500}'>
188 <p>
189 The maximum time (in ms) that idle flows will remain cached in the
190 datapath. Internally OVS will check the validity and activity for
191 datapath flows regularly and may expire flows quicker than this
192 number, based on real time network conditions. Tweaking this
193 value is discouraged unless you know exactly what you're doing.
194 </p>
195 <p>
196 The default is 10000.
197 </p>
198 </column>
199
200 <column name="other_config" key="max-revalidator"
201 type='{"type": "integer", "minInteger": 100}'>
202 <p>
203 The maximum time (in ms) that revalidator threads will wait before
204 executing flow revalidation. Note that this is maximum allowed value.
205 Actual timeout used by OVS is minimum of max-idle and max-revalidator
206 values. Tweaking this value is discouraged unless you know exactly
207 what you're doing.
208 </p>
209 <p>
210 The default is 500.
211 </p>
212 </column>
213
214 <column name="other_config" key="min-revalidate-pps"
215 type='{"type": "integer", "minInteger": 1}'>
216 <p>
217 Set minimum pps that flow must have in order to be revalidated when
218 revalidation duration exceeds half of max-revalidator config variable.
219 </p>
220 <p>
221 The default is 5.
222 </p>
223 </column>
224
225 <column name="other_config" key="hw-offload"
226 type='{"type": "boolean"}'>
227 <p>
228 Set this value to <code>true</code> to enable netdev flow offload.
229 </p>
230 <p>
231 The default value is <code>false</code>. Changing this value requires
232 restarting the daemon
233 </p>
234 <p>
235 Currently Open vSwitch supports hardware offloading on
236 Linux systems. On other systems, this value is ignored.
237 This functionality is considered 'experimental'. Depending
238 on which OpenFlow matches and actions are configured,
239 which kernel version is used, and what hardware is
240 available, Open vSwitch may not be able to offload
241 functionality to hardware.
242 </p>
243 <p>
244 In order to dump HW offloaded flows use
245 <code>ovs-appctl dpctl/dump-flows</code>, <code>ovs-dpctl</code>
246 doesn't support this functionality. See ovs-vswitchd(8) for details.
247 </p>
248 </column>
249
250 <column name="other_config" key="tc-policy"
251 type='{"type": "string",
252 "enum": ["set", ["none", "skip_sw", "skip_hw"]]}'>
253 <p>
254 Specified the policy used with HW offloading.
255 Options:
256 <dl>
257 <dt><code>none</code></dt>
258 <dd>Add software rule and offload rule to HW.</dd>
259 <dt><code>skip_sw</code></dt>
260 <dd>Offload rule to HW only.</dd>
261 <dt><code>skip_hw</code></dt>
262 <dd>Add software rule without offloading rule to HW.</dd>
263 </dl>
264 </p>
265 <p>
266 This is only relevant if
267 <ref column="other_config" key="hw-offload"/> is enabled.
268 </p>
269 <p>
270 The default value is <code>none</code>.
271 </p>
272 </column>
273
274 <column name="other_config" key="dpdk-init"
275 type='{"type": "string",
276 "enum": ["set", ["false", "true", "try"]]}'>
277 <p>
278 Set this value to <code>true</code> or <code>try</code> to enable
279 runtime support for DPDK ports. The vswitch must have compile-time
280 support for DPDK as well.
281 </p>
282 <p>
283 A value of <code>true</code> will cause the ovs-vswitchd process to
284 abort if DPDK cannot be initialized. A value of <code>try</code>
285 will allow the ovs-vswitchd process to continue running even if DPDK
286 cannot be initialized.
287 </p>
288 <p>
289 The default value is <code>false</code>. Changing this value requires
290 restarting the daemon
291 </p>
292 <p>
293 If this value is <code>false</code> at startup, any dpdk ports which
294 are configured in the bridge will fail due to memory errors.
295 </p>
296 </column>
297
298 <column name="other_config" key="dpdk-lcore-mask"
299 type='{"type": "integer", "minInteger": 1}'>
300 <p>
301 Specifies the CPU cores where dpdk lcore threads should be spawned.
302 The DPDK lcore threads are used for DPDK library tasks, such as
303 library internal message processing, logging, etc. Value should be in
304 the form of a hex string (so '0x123') similar to the 'taskset' mask
305 input.
306 </p>
307 <p>
308 The lowest order bit corresponds to the first CPU core. A set bit
309 means the corresponding core is available and an lcore thread will be
310 created and pinned to it. If the input does not cover all cores,
311 those uncovered cores are considered not set.
312 </p>
313 <p>
314 For performance reasons, it is best to set this to a single core on
315 the system, rather than allow lcore threads to float.
316 </p>
317 <p>
318 If not specified, the value will be determined by choosing the lowest
319 CPU core from initial cpu affinity list. Otherwise, the value will be
320 passed directly to the DPDK library.
321 </p>
322 </column>
323
324 <column name="other_config" key="pmd-cpu-mask">
325 <p>
326 Specifies CPU mask for setting the cpu affinity of PMD (Poll
327 Mode Driver) threads. Value should be in the form of hex string,
328 similar to the dpdk EAL '-c COREMASK' option input or the 'taskset'
329 mask input.
330 </p>
331 <p>
332 The lowest order bit corresponds to the first CPU core. A set bit
333 means the corresponding core is available and a pmd thread will be
334 created and pinned to it. If the input does not cover all cores,
335 those uncovered cores are considered not set.
336 </p>
337 <p>
338 If not specified, one pmd thread will be created for each numa node
339 and pinned to any available core on the numa node by default.
340 </p>
341 </column>
342
343 <column name="other_config" key="dpdk-alloc-mem"
344 type='{"type": "integer", "minInteger": 0}'>
345 <p>
346 Specifies the amount of memory to preallocate from the hugepage pool,
347 regardless of socket. It is recommended that dpdk-socket-mem is used
348 instead.
349 </p>
350 </column>
351
352 <column name="other_config" key="dpdk-socket-mem"
353 type='{"type": "string"}'>
354 <p>
355 Specifies the amount of memory to preallocate from the hugepage pool,
356 on a per-socket basis.
357 </p>
358 <p>
359 The specifier is a comma-separated string, in ascending order of CPU
360 socket. E.g. On a four socket system 1024,0,2048 would set socket 0
361 to preallocate 1024MB, socket 1 to preallocate 0MB, socket 2 to
362 preallocate 2048MB and socket 3 (no value given) to preallocate 0MB.
363 </p>
364 <p>
365 If dpdk-socket-mem and dpdk-alloc-mem are not specified, dpdk-socket-mem
366 will be used and the default value is 1024 for each numa node. If
367 dpdk-socket-mem and dpdk-alloc-mem are specified at same time,
368 dpdk-socket-mem will be used as default. Changing this value
369 requires restarting the daemon.
370 </p>
371 </column>
372
373 <column name="other_config" key="dpdk-socket-limit"
374 type='{"type": "string"}'>
375 <p>
376 Limits the maximum amount of memory that can be used from the
377 hugepage pool, on a per-socket basis.
378 </p>
379 <p>
380 The specifier is a comma-separated list of memory limits per socket.
381 <code>0</code> will disable the limit for a particular socket.
382 </p>
383 <p>
384 If not specified, OVS will configure limits equal to the amount of
385 preallocated memory specified by <ref column="other_config"
386 key="dpdk-socket-mem"/> or <code>--socket-mem</code> in
387 <ref column="other_config" key="dpdk-extra"/>. If none of the above
388 options specified or <code>--legacy-mem</code> provided in
389 <ref column="other_config" key="dpdk-extra"/>, limits will not be
390 applied.
391 Changing this value requires restarting the daemon.
392 </p>
393 </column>
394
395 <column name="other_config" key="dpdk-hugepage-dir"
396 type='{"type": "string"}'>
397 <p>
398 Specifies the path to the hugetlbfs mount point.
399 </p>
400 <p>
401 If not specified, this will be guessed by the DPDK library (default
402 is /dev/hugepages). Changing this value requires restarting the
403 daemon.
404 </p>
405 </column>
406
407 <column name="other_config" key="dpdk-extra"
408 type='{"type": "string"}'>
409 <p>
410 Specifies additional eal command line arguments for DPDK.
411 </p>
412 <p>
413 The default is empty. Changing this value requires restarting the
414 daemon
415 </p>
416 </column>
417
418 <column name="other_config" key="vhost-sock-dir"
419 type='{"type": "string"}'>
420 <p>
421 Specifies a relative path from <ref column="external_ids"
422 key="rundir"/> to the vhost-user unix domain socket files. If this
423 value is unset, the sockets are put directly in <ref
424 column="external_ids" key="rundir"/>.
425 </p>
426 <p>
427 Changing this value requires restarting the daemon.
428 </p>
429 </column>
430
431 <column name="other_config" key="vhost-iommu-support"
432 type='{"type": "boolean"}'>
433 <p>
434 vHost IOMMU is a security feature, which restricts the vhost memory
435 that a virtio device may access. vHost IOMMU support is disabled by
436 default, due to a bug in QEMU implementations of the vhost REPLY_ACK
437 protocol, (on which vHost IOMMU relies) prior to v2.9.1. Setting this
438 value to <code>true</code> enables vHost IOMMU support for vHost User
439 Client ports in OvS-DPDK, starting from DPDK v17.11.
440 </p>
441 <p>
442 Changing this value requires restarting the daemon.
443 </p>
444 </column>
445
446 <column name="other_config" key="vhost-postcopy-support"
447 type='{"type": "boolean"}'>
448 <p>
449 vHost post-copy is a feature which allows switching live migration
450 of VM attached to dpdkvhostuserclient port to post-copy mode if
451 default pre-copy migration can not be converged or takes too long to
452 converge.
453 Setting this value to <code>true</code> enables vHost post-copy
454 support for all dpdkvhostuserclient ports. Available starting from
455 DPDK v18.11 and QEMU 2.12.
456 </p>
457 <p>
458 Changing this value requires restarting the daemon.
459 </p>
460 </column>
461
462 <column name="other_config" key="per-port-memory"
463 type='{"type": "boolean"}'>
464 <p>
465 By default OVS DPDK uses a shared memory model wherein devices
466 that have the same MTU and socket values can share the same
467 mempool. Setting this value to <code>true</code> changes this
468 behaviour. Per port memory allow DPDK devices to use private
469 memory per device. This can provide greater transparency as
470 regards memory usage but potentially at the cost of greater memory
471 requirements.
472 </p>
473 <p>
474 Changing this value requires restarting the daemon if dpdk-init has
475 already been set to true.
476 </p>
477 </column>
478
479 <column name="other_config" key="tx-flush-interval"
480 type='{"type": "integer",
481 "minInteger": 0, "maxInteger": 1000000}'>
482 <p>
483 Specifies the time in microseconds that a packet can wait in output
484 batch for sending i.e. amount of time that packet can spend in an
485 intermediate output queue before sending to netdev.
486 This option can be used to configure balance between throughput
487 and latency. Lower values decreases latency while higher values
488 may be useful to achieve higher performance.
489 </p>
490 <p>
491 Defaults to 0 i.e. instant packet sending (latency optimized).
492 </p>
493 </column>
494
495 <column name="other_config" key="pmd-perf-metrics"
496 type='{"type": "boolean"}'>
497 <p>
498 Enables recording of detailed PMD performance metrics for analysis
499 and trouble-shooting. This can have a performance impact in the
500 order of 1%.
501 </p>
502 <p>
503 Defaults to false but can be changed at any time.
504 </p>
505 </column>
506
507 <column name="other_config" key="smc-enable"
508 type='{"type": "boolean"}'>
509 <p>
510 Signature match cache or SMC is a cache between EMC and megaflow
511 cache. It does not store the full key of the flow, so it is more
512 memory efficient comparing to EMC cache. SMC is especially useful
513 when flow count is larger than EMC capacity.
514 </p>
515 <p>
516 Defaults to false but can be changed at any time.
517 </p>
518 </column>
519
520 <column name="other_config" key="pmd-rxq-assign"
521 type='{"type": "string",
522 "enum": ["set", ["cycles", "roundrobin"]]}'>
523 <p>
524 Specifies how RX queues will be automatically assigned to CPU cores.
525 Options:
526 <dl>
527 <dt><code>cycles</code></dt>
528 <dd>Rxqs will be sorted by order of measured processing cycles
529 before being assigned to CPU cores.</dd>
530 <dt><code>roundrobin</code></dt>
531 <dd>Rxqs will be round-robined across CPU cores.</dd>
532 </dl>
533 </p>
534 <p>
535 The default value is <code>cycles</code>.
536 </p>
537 <p>
538 Changing this value will affect an automatic re-assignment of Rxqs to
539 CPUs. Note: Rxqs mapped to CPU cores with
540 <code>pmd-rxq-affinity</code> are unaffected.
541 </p>
542 </column>
543
544 <column name="other_config" key="n-handler-threads"
545 type='{"type": "integer", "minInteger": 1}'>
546 <p>
547 Specifies the number of threads for software datapaths to use for
548 handling new flows. The default the number of online CPU cores minus
549 the number of revalidators.
550 </p>
551 <p>
552 This configuration is per datapath. If you have more than one
553 software datapath (e.g. some <code>system</code> bridges and some
554 <code>netdev</code> bridges), then the total number of threads is
555 <code>n-handler-threads</code> times the number of software
556 datapaths.
557 </p>
558 </column>
559
560 <column name="other_config" key="n-revalidator-threads"
561 type='{"type": "integer", "minInteger": 1}'>
562 <p>
563 Specifies the number of threads for software datapaths to use for
564 revalidating flows in the datapath. Typically, there is a direct
565 correlation between the number of revalidator threads, and the number
566 of flows allowed in the datapath. The default is the number of cpu
567 cores divided by four plus one. If <code>n-handler-threads</code> is
568 set, the default changes to the number of cpu cores minus the number
569 of handler threads.
570 </p>
571 <p>
572 This configuration is per datapath. If you have more than one
573 software datapath (e.g. some <code>system</code> bridges and some
574 <code>netdev</code> bridges), then the total number of threads is
575 <code>n-handler-threads</code> times the number of software
576 datapaths.
577 </p>
578 </column>
579
580 <column name="other_config" key="emc-insert-inv-prob"
581 type='{"type": "integer", "minInteger": 0, "maxInteger": 4294967295}'>
582 <p>
583 Specifies the inverse probability (1/emc-insert-inv-prob) of a flow
584 being inserted into the Exact Match Cache (EMC). On average one in
585 every <code>emc-insert-inv-prob</code> packets that generate a unique
586 flow will cause an insertion into the EMC.
587
588 A value of 1 will result in an insertion for every flow (1/1 = 100%)
589 whereas a value of zero will result in no insertions and essentially
590 disable the EMC.
591 </p>
592 <p>
593 Defaults to 100 ie. there is (1/100 =) 1% chance of EMC insertion.
594 </p>
595 </column>
596
597 <column name="other_config" key="vlan-limit"
598 type='{"type": "integer", "minInteger": 0}'>
599 <p>
600 Limits the number of VLAN headers that can be matched to the
601 specified number. Further VLAN headers will be treated as payload,
602 e.g. a packet with more 802.1q headers will match Ethernet type
603 0x8100.
604 </p>
605
606 <p>
607 Open vSwitch userspace currently supports at most 2 VLANs, and each
608 datapath has its own limit. If <code>vlan-limit</code> is nonzero,
609 it acts as a further limit.
610 </p>
611
612 <p>
613 If this value is absent, the default is currently 1. This maintains
614 backward compatibility with controllers that were designed for use
615 with Open vSwitch versions earlier than 2.8, which only supported one
616 VLAN.
617 </p>
618 </column>
619 <column name="other_config" key="bundle-idle-timeout"
620 type='{"type": "integer", "minInteger": 1}'>
621 <p>
622 The maximum time (in seconds) that idle bundles will wait
623 to be expired since it was either opened, modified or closed.
624 </p>
625 <p>
626 OpenFlow specification mandates the timeout to be at least one
627 second. The default is 10 seconds.
628 </p>
629 </column>
630
631 <column name="other_config" key="offload-rebalance"
632 type='{"type": "boolean"}'>
633 <p>
634 Configures HW offload rebalancing, that allows to dynamically
635 offload and un-offload flows while an offload-device is out of
636 resources (OOR). This policy allows flows to be selected for
637 offloading based on the packets-per-second (pps) rate of flows.
638 </p>
639 <p>
640 Set this value to <code>true</code> to enable this option.
641 </p>
642 <p>
643 The default value is <code>false</code>. Changing this value requires
644 restarting the daemon.
645 </p>
646 <p>
647 This is only relevant if HW offloading is enabled (hw-offload).
648 When this policy is enabled, it also requires 'tc-policy' to
649 be set to 'skip_sw'.
650 </p>
651 </column>
652 <column name="other_config" key="pmd-auto-lb"
653 type='{"type": "boolean"}'>
654 <p>
655 Configures PMD Auto Load Balancing that allows automatic assignment of
656 RX queues to PMDs if any of PMDs is overloaded (i.e. processing cycles
657 > 95%).
658 </p>
659 <p>
660 It uses current scheme of cycle based assignment of RX queues that
661 are not statically pinned to PMDs.
662 </p>
663 <p>
664 The default value is <code>false</code>.
665 </p>
666 <p>
667 Set this value to <code>true</code> to enable this option. It is
668 currently disabled by default and an experimental feature.
669 </p>
670 <p>
671 This only comes in effect if cycle based assignment is enabled and
672 there are more than one non-isolated PMDs present and at least one of
673 it polls more than one queue.
674 </p>
675 </column>
676 <column name="other_config" key="pmd-auto-lb-rebal-interval"
677 type='{"type": "integer",
678 "minInteger": 0, "maxInteger": 20000}'>
679 <p>
680 The minimum time (in minutes) 2 consecutive PMD Auto Load Balancing
681 iterations.
682 </p>
683 <p>
684 The defaul value is 1 min. If configured to 0 then it would be
685 converted to default value i.e. 1 min
686 </p>
687 <p>
688 This option can be configured to avoid frequent trigger of auto load
689 balancing of PMDs. For e.g. set the value (in min) such that it occurs
690 once in few hours or a day or a week.
691 </p>
692 </column>
693 <column name="other_config" key="userspace-tso-enable"
694 type='{"type": "boolean"}'>
695 <p>
696 Set this value to <code>true</code> to enable userspace support for
697 TCP Segmentation Offloading (TSO). When it is enabled, the interfaces
698 can provide an oversized TCP segment to the datapath and the datapath
699 will offload the TCP segmentation and checksum calculation to the
700 interfaces when necessary.
701 </p>
702 <p>
703 The default value is <code>false</code>. Changing this value requires
704 restarting the daemon.
705 </p>
706 <p>
707 The feature only works if Open vSwitch is built with DPDK support.
708 </p>
709 <p>
710 The feature is considered experimental.
711 </p>
712 </column>
713 </group>
714 <group title="Status">
715 <column name="next_cfg">
716 Sequence number for client to increment. When a client modifies
717 any part of the database configuration and wishes to wait for
718 Open vSwitch to finish applying the changes, it may increment
719 this sequence number.
720 </column>
721
722 <column name="cur_cfg">
723 Sequence number that Open vSwitch sets to the current value of
724 <ref column="next_cfg"/> after it finishes applying a set of
725 configuration changes.
726 </column>
727
728 <column name="dpdk_initialized">
729 True if <ref column="other_config" key="dpdk-init"/> is set to
730 true and the DPDK library is successfully initialized.
731 </column>
732
733 <group title="Statistics">
734 <p>
735 The <code>statistics</code> column contains key-value pairs that
736 report statistics about a system running an Open vSwitch. These are
737 updated periodically (currently, every 5 seconds). Key-value pairs
738 that cannot be determined or that do not apply to a platform are
739 omitted.
740 </p>
741
742 <column name="other_config" key="enable-statistics"
743 type='{"type": "boolean"}'>
744 Statistics are disabled by default to avoid overhead in the common
745 case when statistics gathering is not useful. Set this value to
746 <code>true</code> to enable populating the <ref column="statistics"/>
747 column or to <code>false</code> to explicitly disable it.
748 </column>
749
750 <column name="statistics" key="cpu"
751 type='{"type": "integer", "minInteger": 1}'>
752 <p>
753 Number of CPU processors, threads, or cores currently online and
754 available to the operating system on which Open vSwitch is running,
755 as an integer. This may be less than the number installed, if some
756 are not online or if they are not available to the operating
757 system.
758 </p>
759 <p>
760 Open vSwitch userspace processes are not multithreaded, but the
761 Linux kernel-based datapath is.
762 </p>
763 </column>
764
765 <column name="statistics" key="load_average">
766 A comma-separated list of three floating-point numbers,
767 representing the system load average over the last 1, 5, and 15
768 minutes, respectively.
769 </column>
770
771 <column name="statistics" key="memory">
772 <p>
773 A comma-separated list of integers, each of which represents a
774 quantity of memory in kilobytes that describes the operating
775 system on which Open vSwitch is running. In respective order,
776 these values are:
777 </p>
778
779 <ol>
780 <li>Total amount of RAM allocated to the OS.</li>
781 <li>RAM allocated to the OS that is in use.</li>
782 <li>RAM that can be flushed out to disk or otherwise discarded
783 if that space is needed for another purpose. This number is
784 necessarily less than or equal to the previous value.</li>
785 <li>Total disk space allocated for swap.</li>
786 <li>Swap space currently in use.</li>
787 </ol>
788
789 <p>
790 On Linux, all five values can be determined and are included. On
791 other operating systems, only the first two values can be
792 determined, so the list will only have two values.
793 </p>
794 </column>
795
796 <column name="statistics" key="process_NAME">
797 <p>
798 One such key-value pair, with <code>NAME</code> replaced by
799 a process name, will exist for each running Open vSwitch
800 daemon process, with <var>name</var> replaced by the
801 daemon's name (e.g. <code>process_ovs-vswitchd</code>). The
802 value is a comma-separated list of integers. The integers
803 represent the following, with memory measured in kilobytes
804 and durations in milliseconds:
805 </p>
806
807 <ol>
808 <li>The process's virtual memory size.</li>
809 <li>The process's resident set size.</li>
810 <li>The amount of user and system CPU time consumed by the
811 process.</li>
812 <li>The number of times that the process has crashed and been
813 automatically restarted by the monitor.</li>
814 <li>The duration since the process was started.</li>
815 <li>The duration for which the process has been running.</li>
816 </ol>
817
818 <p>
819 The interpretation of some of these values depends on whether the
820 process was started with the <option>--monitor</option>. If it
821 was not, then the crash count will always be 0 and the two
822 durations will always be the same. If <option>--monitor</option>
823 was given, then the crash count may be positive; if it is, the
824 latter duration is the amount of time since the most recent crash
825 and restart.
826 </p>
827
828 <p>
829 There will be one key-value pair for each file in Open vSwitch's
830 ``run directory'' (usually <code>/var/run/openvswitch</code>)
831 whose name ends in <code>.pid</code>, whose contents are a
832 process ID, and which is locked by a running process. The
833 <var>name</var> is taken from the pidfile's name.
834 </p>
835
836 <p>
837 Currently Open vSwitch is only able to obtain all of the above
838 detail on Linux systems. On other systems, the same key-value
839 pairs will be present but the values will always be the empty
840 string.
841 </p>
842 </column>
843
844 <column name="statistics" key="file_systems">
845 <p>
846 A space-separated list of information on local, writable file
847 systems. Each item in the list describes one file system and
848 consists in turn of a comma-separated list of the following:
849 </p>
850
851 <ol>
852 <li>Mount point, e.g. <code>/</code> or <code>/var/log</code>.
853 Any spaces or commas in the mount point are replaced by
854 underscores.</li>
855 <li>Total size, in kilobytes, as an integer.</li>
856 <li>Amount of storage in use, in kilobytes, as an integer.</li>
857 </ol>
858
859 <p>
860 This key-value pair is omitted if there are no local, writable
861 file systems or if Open vSwitch cannot obtain the needed
862 information.
863 </p>
864 </column>
865 </group>
866 </group>
867
868 <group title="Version Reporting">
869 <p>
870 These columns report the types and versions of the hardware and
871 software running Open vSwitch. We recommend in general that software
872 should test whether specific features are supported instead of relying
873 on version number checks. These values are primarily intended for
874 reporting to human administrators.
875 </p>
876
877 <column name="ovs_version">
878 The Open vSwitch version number, e.g. <code>1.1.0</code>.
879 </column>
880
881 <column name="db_version">
882 <p>
883 The database schema version number, e.g. <code>1.2.3</code>. See
884 ovsdb-tool(1) for an explanation of the numbering scheme.
885 </p>
886
887 <p>
888 The schema version is part of the database schema, so it can also be
889 retrieved by fetching the schema using the Open vSwitch database
890 protocol.
891 </p>
892 </column>
893
894 <column name="system_type">
895 <p>
896 An identifier for the type of system on top of which Open vSwitch
897 runs, e.g. <code>XenServer</code> or <code>KVM</code>.
898 </p>
899 <p>
900 System integrators are responsible for choosing and setting an
901 appropriate value for this column.
902 </p>
903 </column>
904
905 <column name="system_version">
906 <p>
907 The version of the system identified by <ref column="system_type"/>,
908 e.g. <code>5.6.100-39265p</code> on XenServer 5.6.100 build 39265.
909 </p>
910 <p>
911 System integrators are responsible for choosing and setting an
912 appropriate value for this column.
913 </p>
914 </column>
915
916 <column name="dpdk_version">
917 <p>
918 The version of the linked DPDK library.
919 </p>
920 </column>
921
922 </group>
923
924 <group title="Capabilities">
925 <p>
926 These columns report capabilities of the Open vSwitch instance.
927 </p>
928 <column name="datapath_types">
929 <p>
930 This column reports the different dpifs registered with the system.
931 These are the values that this instance supports in the <ref
932 column="datapath_type" table="Bridge"/> column of the <ref
933 table="Bridge"/> table.
934 </p>
935 </column>
936 <column name="iface_types">
937 <p>
938 This column reports the different netdevs registered with the system.
939 These are the values that this instance supports in the <ref
940 column="type" table="Interface"/> column of the <ref
941 table="Interface"/> table.
942 </p>
943 </column>
944 </group>
945
946 <group title="Database Configuration">
947 <p>
948 These columns primarily configure the Open vSwitch database
949 (<code>ovsdb-server</code>), not the Open vSwitch switch
950 (<code>ovs-vswitchd</code>). The OVSDB database also uses the <ref
951 column="ssl"/> settings.
952 </p>
953
954 <p>
955 The Open vSwitch switch does read the database configuration to
956 determine remote IP addresses to which in-band control should apply.
957 </p>
958
959 <column name="manager_options">
960 <p>
961 Database clients to which the Open vSwitch database server should
962 connect or to which it should listen, along with options for how
963 these connections should be configured. See the <ref
964 table="Manager"/> table for more information.
965 </p>
966
967 <p>
968 For this column to serve its purpose, <code>ovsdb-server</code> must
969 be configured to honor it. The easiest way to do this is to invoke
970 <code>ovsdb-server</code> with the option
971 <option>--remote=db:Open_vSwitch,Open_vSwitch,manager_options</option>
972 The startup scripts that accompany Open vSwitch do this by default.
973 </p>
974 </column>
975 </group>
976
977 <group title="IPsec">
978 <p>
979 These settings control the global configuration of IPsec tunnels. The
980 <code>options</code> column of the <code>Interface</code> table
981 configures IPsec for individual tunnels.
982 </p>
983 <p>
984 OVS IPsec supports the following three forms of authentication.
985 Currently, all IPsec tunnels must use the same form:
986 </p>
987 <ol>
988 <li>
989 Pre-shared keys: Omit the global settings. On each tunnel, set <ref
990 column="options" key="psk"/>.
991 </li>
992 <li>
993 Self-signed certificates: Set the <code>private_key</code> and
994 <code>certificate</code> global settings. On each tunnel, set <ref
995 column="options" key="remote_cert"/>. The remote certificate can be
996 self-signed.
997 </li>
998 <li>
999 CA-signed certificates: Set all of the global settings. On each
1000 tunnel, set <ref column="options" key="remote_name"/> to the common
1001 name (CN) of the remote certificate. The remote certificate must be
1002 signed by the CA.
1003 </li>
1004 </ol>
1005 <column name="other_config" key="private_key"
1006 type='{"type": "string"}'>
1007 <p>
1008 Name of a PEM file containing the private key used as the switch's
1009 identity for IPsec tunnels.
1010 </p>
1011 </column>
1012 <column name="other_config" key="certificate"
1013 type='{"type": "string"}'>
1014 <p>
1015 Name of a PEM file containing a certificate that certifies the
1016 switch's private key, and identifies a trustworthy switch for IPsec
1017 tunnels. The certificate must be x.509 version 3 and with the
1018 string in common name (CN) also set in the subject alternative name
1019 (SAN).
1020 </p>
1021 </column>
1022 <column name="other_config" key="ca_cert"
1023 type='{"type": "string"}'>
1024 <p>
1025 Name of a PEM file containing the CA certificate used to verify
1026 that a remote switch of the IPsec tunnel is trustworthy.
1027 </p>
1028 </column>
1029
1030 <group title="Plaintext Tunnel Policy">
1031 <p>
1032 When an IPsec tunnel is configured in this database, multiple
1033 independent components take responsibility for implementing it.
1034 <code>ovs-vswitchd</code> and its datapath handle packet forwarding
1035 to the tunnel and a separate daemon pushes the tunnel's IPsec policy
1036 configuration to the kernel or other entity that implements it.
1037 There is a race: if the former configuration completes before the
1038 latter, then packets sent by the local host over the tunnel can be
1039 transmitted in plaintext. Using this setting, OVS users can avoid
1040 this undesirable situation.
1041 </p>
1042 <column name="other_config" key="ipsec_skb_mark"
1043 type='{"type": "string"}'>
1044 <p>
1045 This setting takes the form
1046 <code><var>value</var>/<var>mask</var></code>. If it is specified,
1047 then the <code>skb_mark</code> field in every outgoing tunneled
1048 packet sent in plaintext is compared against it and, if it matches,
1049 the packet is dropped. This is a global setting that is applied to
1050 every tunneled packet, regardless of whether IPsec encryption is
1051 enabled for the tunnel, the type of tunnel, or whether OVS is
1052 involved.
1053 </p>
1054
1055 <p>
1056 Example policies:
1057 </p>
1058
1059 <dl>
1060 <dt><code>1/1</code></dt>
1061 <dd>
1062 Drop all unencrypted tunneled packets in which the
1063 least-significant bit of <code>skb_mark</code> is 1. This would
1064 be a useful policy given an OpenFlow flow table that sets
1065 <code>skb_mark</code> to 1 for traffic that should be encrypted.
1066 The default <code>skb_mark</code> is 0, so this would not affect
1067 other traffic.
1068 </dd>
1069
1070 <dt><code>0/1</code></dt>
1071 <dd>
1072 Drop all unencrypted tunneled packets in which the
1073 least-significant bit of <code>skb_mark</code> is 0. This would
1074 be a useful policy if no unencrypted tunneled traffic should exit
1075 the system without being specially permitted by setting
1076 <code>skb_mark</code> to 1.
1077 </dd>
1078
1079 <dt>(empty)</dt>
1080 <dd>
1081 If this setting is empty or unset, then all unencrypted tunneled
1082 packets are transmitted in the usual way.
1083 </dd>
1084 </dl>
1085 </column>
1086 </group>
1087 </group>
1088
1089 <group title="Common Columns">
1090 The overall purpose of these columns is described under <code>Common
1091 Columns</code> at the beginning of this document.
1092
1093 <column name="other_config"/>
1094 <column name="external_ids"/>
1095 </group>
1096 </table>
1097
1098 <table name="Bridge">
1099 <p>
1100 Configuration for a bridge within an
1101 <ref table="Open_vSwitch"/>.
1102 </p>
1103 <p>
1104 A <ref table="Bridge"/> record represents an Ethernet switch with one or
1105 more ``ports,'' which are the <ref table="Port"/> records pointed to by
1106 the <ref table="Bridge"/>'s <ref column="ports"/> column.
1107 </p>
1108
1109 <group title="Core Features">
1110 <column name="name">
1111 <p>
1112 Bridge identifier. Must be unique among the names of ports,
1113 interfaces, and bridges on a host.
1114 </p>
1115
1116 <p>
1117 The name must be alphanumeric and must not contain forward or
1118 backward slashes. The name of a bridge is also the name of an <ref
1119 table="Interface"/> (and a <ref table="Port"/>) within the bridge, so
1120 the restrictions on the <ref table="Interface" column="name"/> column
1121 in the <ref table="Interface"/> table, particularly on length, also
1122 apply to bridge names. Refer to the documentation for <ref
1123 table="Interface"/> names for details.
1124 </p>
1125 </column>
1126
1127 <column name="ports">
1128 Ports included in the bridge.
1129 </column>
1130
1131 <column name="mirrors">
1132 Port mirroring configuration.
1133 </column>
1134
1135 <column name="netflow">
1136 NetFlow configuration.
1137 </column>
1138
1139 <column name="sflow">
1140 sFlow(R) configuration.
1141 </column>
1142
1143 <column name="ipfix">
1144 IPFIX configuration.
1145 </column>
1146
1147 <column name="flood_vlans">
1148 <p>
1149 VLAN IDs of VLANs on which MAC address learning should be disabled,
1150 so that packets are flooded instead of being sent to specific ports
1151 that are believed to contain packets' destination MACs. This should
1152 ordinarily be used to disable MAC learning on VLANs used for
1153 mirroring (RSPAN VLANs). It may also be useful for debugging.
1154 </p>
1155 <p>
1156 SLB bonding (see the <ref table="Port" column="bond_mode"/> column in
1157 the <ref table="Port"/> table) is incompatible with
1158 <code>flood_vlans</code>. Consider using another bonding mode or
1159 a different type of mirror instead.
1160 </p>
1161 </column>
1162
1163 <column name="auto_attach">
1164 Auto Attach configuration.
1165 </column>
1166 </group>
1167
1168 <group title="OpenFlow Configuration">
1169 <column name="controller">
1170 <p>
1171 OpenFlow controller set. If unset, then no OpenFlow controllers
1172 will be used.
1173 </p>
1174
1175 <p>
1176 If there are primary controllers, removing all of them clears the
1177 OpenFlow flow tables, group table, and meter table. If there are no
1178 primary controllers, adding one also clears these tables. Other
1179 changes to the set of controllers, such as adding or removing a
1180 service controller, adding another primary controller to supplement
1181 an existing primary controller, or removing only one of two primary
1182 controllers, have no effect on these tables.
1183 </p>
1184 </column>
1185
1186 <column name="flow_tables">
1187 Configuration for OpenFlow tables. Each pair maps from an OpenFlow
1188 table ID to configuration for that table.
1189 </column>
1190
1191 <column name="fail_mode">
1192 <p>When a controller is configured, it is, ordinarily, responsible
1193 for setting up all flows on the switch. Thus, if the connection to
1194 the controller fails, no new network connections can be set up.
1195 If the connection to the controller stays down long enough,
1196 no packets can pass through the switch at all. This setting
1197 determines the switch's response to such a situation. It may be set
1198 to one of the following:
1199 <dl>
1200 <dt><code>standalone</code></dt>
1201 <dd>If no message is received from the controller for three
1202 times the inactivity probe interval
1203 (see <ref column="inactivity_probe"/>), then Open vSwitch
1204 will take over responsibility for setting up flows. In
1205 this mode, Open vSwitch causes the bridge to act like an
1206 ordinary MAC-learning switch. Open vSwitch will continue
1207 to retry connecting to the controller in the background
1208 and, when the connection succeeds, it will discontinue its
1209 standalone behavior.</dd>
1210 <dt><code>secure</code></dt>
1211 <dd>Open vSwitch will not set up flows on its own when the
1212 controller connection fails or when no controllers are
1213 defined. The bridge will continue to retry connecting to
1214 any defined controllers forever.</dd>
1215 </dl>
1216 </p>
1217 <p>
1218 The default is <code>standalone</code> if the value is unset, but
1219 future versions of Open vSwitch may change the default.
1220 </p>
1221 <p>
1222 The <code>standalone</code> mode can create forwarding loops on a
1223 bridge that has more than one uplink port unless STP is enabled. To
1224 avoid loops on such a bridge, configure <code>secure</code> mode or
1225 enable STP (see <ref column="stp_enable"/>).
1226 </p>
1227 <p>
1228 The <ref column="fail_mode"/> setting applies only to primary
1229 controllers. When more than one primary controller is configured,
1230 <ref column="fail_mode"/> is considered only when none of the
1231 configured controllers can be contacted.
1232 </p>
1233 <p>
1234 Changing <ref column="fail_mode"/> when no primary controllers are
1235 configured clears the OpenFlow flow tables, group table, and meter
1236 table.
1237 </p>
1238 </column>
1239
1240 <column name="datapath_id">
1241 Reports the OpenFlow datapath ID in use. Exactly 16 hex digits.
1242 (Setting this column has no useful effect. Set <ref
1243 column="other-config" key="datapath-id"/> instead.)
1244 </column>
1245
1246 <column name="datapath_version">
1247 Reports the datapath version. This column is maintained for
1248 backwards compatibility. The preferred locatation is the
1249 <ref column="datapath_id" table="Datapath"/> column of the
1250 <ref table="Datapath"/> table. The full documentation for this
1251 column is there.
1252 </column>
1253
1254 <column name="other_config" key="datapath-id">
1255 Overrides the default OpenFlow datapath ID, setting it to the specified
1256 value specified in hex. The value must either have a <code>0x</code>
1257 prefix or be exactly 16 hex digits long. May not be all-zero.
1258 </column>
1259
1260 <column name="other_config" key="dp-desc">
1261 Human readable description of datapath. It is a maximum 256
1262 byte-long free-form string to describe the datapath for
1263 debugging purposes, e.g. <code>switch3 in room 3120</code>.
1264 The value is returned by the switch as a part of reply to OFPMP_DESC
1265 request (ofp_desc). The OpenFlow specification (e.g. 1.3.5) describes
1266 the ofp_desc structure to contaion "NULL terminated ASCII strings".
1267 For the compatibility reasons no more than 255 ASCII characters should be used.
1268 </column>
1269
1270 <column name="other_config" key="dp-sn">
1271 Serial number. It is a maximum 32 byte-long free-form string to
1272 provide an additional switch identification. The value is returned
1273 by the switch as a part of reply to OFPMP_DESC request (ofp_desc).
1274 Same as mentioned in the description of <ref column="other-config" key="dp-desc"/>,
1275 the string should be no more than 31 ASCII characters for the compatibility.
1276 </column>
1277
1278 <column name="other_config" key="disable-in-band"
1279 type='{"type": "boolean"}'>
1280 If set to <code>true</code>, disable in-band control on the bridge
1281 regardless of controller and manager settings.
1282 </column>
1283
1284 <column name="other_config" key="in-band-queue"
1285 type='{"type": "integer", "minInteger": 0, "maxInteger": 4294967295}'>
1286 A queue ID as a nonnegative integer. This sets the OpenFlow queue ID
1287 that will be used by flows set up by in-band control on this bridge.
1288 If unset, or if the port used by an in-band control flow does not have
1289 QoS configured, or if the port does not have a queue with the specified
1290 ID, the default queue is used instead.
1291 </column>
1292
1293 <column name="other_config" key="controller-queue-size"
1294 type='{"type": "integer", "minInteger": 1, "maxInteger": 512}'>
1295 This sets the maximum size of the queue of packets that need to be
1296 sent to the OpenFlow management controller. The value must be less
1297 than 512. If not specified the queue size is limited to 100 packets
1298 by default. Note: increasing the queue size might have a negative
1299 impact on latency.
1300 </column>
1301
1302 <column name="protocols">
1303 List of OpenFlow protocols that may be used when negotiating a
1304 connection with a controller. OpenFlow 1.0, 1.1, 1.2, 1.3, 1.4, and
1305 1.5 are enabled by default if this column is empty.
1306 </column>
1307 </group>
1308
1309 <group title="Spanning Tree Configuration">
1310 <p>
1311 The IEEE 802.1D Spanning Tree Protocol (STP) is a network protocol
1312 that ensures loop-free topologies. It allows redundant links to
1313 be included in the network to provide automatic backup paths if
1314 the active links fails.
1315 </p>
1316
1317 <p>
1318 These settings configure the slower-to-converge but still widely
1319 supported version of Spanning Tree Protocol, sometimes known as
1320 802.1D-1998. Open vSwitch also supports the newer Rapid Spanning Tree
1321 Protocol (RSTP), documented later in the section titled <code>Rapid
1322 Spanning Tree Configuration</code>.
1323 </p>
1324
1325 <group title="STP Configuration">
1326 <column name="stp_enable" type='{"type": "boolean"}'>
1327 <p>
1328 Enable spanning tree on the bridge. By default, STP is disabled
1329 on bridges. Bond, internal, and mirror ports are not supported
1330 and will not participate in the spanning tree.
1331 </p>
1332
1333 <p>
1334 STP and RSTP are mutually exclusive. If both are enabled, RSTP
1335 will be used.
1336 </p>
1337 </column>
1338
1339 <column name="other_config" key="stp-system-id">
1340 The bridge's STP identifier (the lower 48 bits of the bridge-id)
1341 in the form
1342 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>.
1343 By default, the identifier is the MAC address of the bridge.
1344 </column>
1345
1346 <column name="other_config" key="stp-priority"
1347 type='{"type": "integer", "minInteger": 0, "maxInteger": 65535}'>
1348 The bridge's relative priority value for determining the root
1349 bridge (the upper 16 bits of the bridge-id). A bridge with the
1350 lowest bridge-id is elected the root. By default, the priority
1351 is 0x8000.
1352 </column>
1353
1354 <column name="other_config" key="stp-hello-time"
1355 type='{"type": "integer", "minInteger": 1, "maxInteger": 10}'>
1356 The interval between transmissions of hello messages by
1357 designated ports, in seconds. By default the hello interval is
1358 2 seconds.
1359 </column>
1360
1361 <column name="other_config" key="stp-max-age"
1362 type='{"type": "integer", "minInteger": 6, "maxInteger": 40}'>
1363 The maximum age of the information transmitted by the bridge
1364 when it is the root bridge, in seconds. By default, the maximum
1365 age is 20 seconds.
1366 </column>
1367
1368 <column name="other_config" key="stp-forward-delay"
1369 type='{"type": "integer", "minInteger": 4, "maxInteger": 30}'>
1370 The delay to wait between transitioning root and designated
1371 ports to <code>forwarding</code>, in seconds. By default, the
1372 forwarding delay is 15 seconds.
1373 </column>
1374
1375 <column name="other_config" key="mcast-snooping-aging-time"
1376 type='{"type": "integer", "minInteger": 1}'>
1377 <p>
1378 The maximum number of seconds to retain a multicast snooping entry for
1379 which no packets have been seen. The default is currently 300
1380 seconds (5 minutes). The value, if specified, is forced into a
1381 reasonable range, currently 15 to 3600 seconds.
1382 </p>
1383 </column>
1384
1385 <column name="other_config" key="mcast-snooping-table-size"
1386 type='{"type": "integer", "minInteger": 1}'>
1387 <p>
1388 The maximum number of multicast snooping addresses to learn. The
1389 default is currently 2048. The value, if specified, is forced into
1390 a reasonable range, currently 10 to 1,000,000.
1391 </p>
1392 </column>
1393 <column name="other_config" key="mcast-snooping-disable-flood-unregistered"
1394 type='{"type": "boolean"}'>
1395 <p>
1396 If set to <code>false</code>, unregistered multicast packets are forwarded
1397 to all ports.
1398 If set to <code>true</code>, unregistered multicast packets are forwarded
1399 to ports connected to multicast routers.
1400 </p>
1401 </column>
1402 </group>
1403
1404 <group title="STP Status">
1405 <p>
1406 These key-value pairs report the status of 802.1D-1998. They are
1407 present only if STP is enabled (via the <ref column="stp_enable"/>
1408 column).
1409 </p>
1410 <column name="status" key="stp_bridge_id">
1411 The bridge ID used in spanning tree advertisements, in the form
1412 <var>xxxx</var>.<var>yyyyyyyyyyyy</var> where the <var>x</var>s are
1413 the STP priority, the <var>y</var>s are the STP system ID, and each
1414 <var>x</var> and <var>y</var> is a hex digit.
1415 </column>
1416 <column name="status" key="stp_designated_root">
1417 The designated root for this spanning tree, in the same form as <ref
1418 column="status" key="stp_bridge_id"/>. If this bridge is the root,
1419 this will have the same value as <ref column="status"
1420 key="stp_bridge_id"/>, otherwise it will differ.
1421 </column>
1422 <column name="status" key="stp_root_path_cost">
1423 The path cost of reaching the designated bridge. A lower number is
1424 better. The value is 0 if this bridge is the root, otherwise it is
1425 higher.
1426 </column>
1427 </group>
1428 </group>
1429
1430 <group title="Rapid Spanning Tree">
1431 <p>
1432 Rapid Spanning Tree Protocol (RSTP), like STP, is a network protocol
1433 that ensures loop-free topologies. RSTP superseded STP with the
1434 publication of 802.1D-2004. Compared to STP, RSTP converges more
1435 quickly and recovers more quickly from failures.
1436 </p>
1437
1438 <group title="RSTP Configuration">
1439 <column name="rstp_enable" type='{"type": "boolean"}'>
1440 <p>
1441 Enable Rapid Spanning Tree on the bridge. By default, RSTP is disabled
1442 on bridges. Bond, internal, and mirror ports are not supported
1443 and will not participate in the spanning tree.
1444 </p>
1445
1446 <p>
1447 STP and RSTP are mutually exclusive. If both are enabled, RSTP
1448 will be used.
1449 </p>
1450 </column>
1451
1452 <column name="other_config" key="rstp-address">
1453 The bridge's RSTP address (the lower 48 bits of the bridge-id)
1454 in the form
1455 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>.
1456 By default, the address is the MAC address of the bridge.
1457 </column>
1458
1459 <column name="other_config" key="rstp-priority"
1460 type='{"type": "integer", "minInteger": 0, "maxInteger": 61440}'>
1461 The bridge's relative priority value for determining the root
1462 bridge (the upper 16 bits of the bridge-id). A bridge with the
1463 lowest bridge-id is elected the root. By default, the priority
1464 is 0x8000 (32768). This value needs to be a multiple of 4096,
1465 otherwise it's rounded to the nearest inferior one.
1466 </column>
1467
1468 <column name="other_config" key="rstp-ageing-time"
1469 type='{"type": "integer", "minInteger": 10, "maxInteger": 1000000}'>
1470 The Ageing Time parameter for the Bridge. The default value
1471 is 300 seconds.
1472 </column>
1473
1474 <column name="other_config" key="rstp-force-protocol-version"
1475 type='{"type": "integer"}'>
1476 The Force Protocol Version parameter for the Bridge. This
1477 can take the value 0 (STP Compatibility mode) or 2
1478 (the default, normal operation).
1479 </column>
1480
1481 <column name="other_config" key="rstp-max-age"
1482 type='{"type": "integer", "minInteger": 6, "maxInteger": 40}'>
1483 The maximum age of the information transmitted by the Bridge
1484 when it is the Root Bridge. The default value is 20.
1485 </column>
1486
1487 <column name="other_config" key="rstp-forward-delay"
1488 type='{"type": "integer", "minInteger": 4, "maxInteger": 30}'>
1489 The delay used by STP Bridges to transition Root and Designated
1490 Ports to Forwarding. The default value is 15.
1491 </column>
1492
1493 <column name="other_config" key="rstp-transmit-hold-count"
1494 type='{"type": "integer", "minInteger": 1, "maxInteger": 10}'>
1495 The Transmit Hold Count used by the Port Transmit state machine
1496 to limit transmission rate. The default value is 6.
1497 </column>
1498 </group>
1499
1500 <group title="RSTP Status">
1501 <p>
1502 These key-value pairs report the status of 802.1D-2004. They are
1503 present only if RSTP is enabled (via the <ref column="rstp_enable"/>
1504 column).
1505 </p>
1506 <column name="rstp_status" key="rstp_bridge_id">
1507 The bridge ID used in rapid spanning tree advertisements, in the form
1508 <var>x</var>.<var>yyy</var>.<var>zzzzzzzzzzzz</var> where
1509 <var>x</var> is the RSTP priority, the <var>y</var>s are a locally
1510 assigned system ID extension, the <var>z</var>s are the STP system
1511 ID, and each <var>x</var>, <var>y</var>, or <var>z</var> is a hex
1512 digit.
1513 </column>
1514 <column name="rstp_status" key="rstp_root_id">
1515 The root of this spanning tree, in the same form as <ref
1516 column="rstp_status" key="rstp_bridge_id"/>. If this bridge is the
1517 root, this will have the same value as <ref column="rstp_status"
1518 key="rstp_bridge_id"/>, otherwise it will differ.
1519 </column>
1520 <column name="rstp_status" key="rstp_root_path_cost"
1521 type='{"type": "integer", "minInteger": 0}'>
1522 The path cost of reaching the root. A lower number is better. The
1523 value is 0 if this bridge is the root, otherwise it is higher.
1524 </column>
1525 <column name="rstp_status" key="rstp_designated_id">
1526 The RSTP designated ID, in the same form as <ref column="rstp_status"
1527 key="rstp_bridge_id"/>.
1528 </column>
1529 <column name="rstp_status" key="rstp_designated_port_id">
1530 The RSTP designated port ID, as a 4-digit hex number.
1531 </column>
1532 <column name="rstp_status" key="rstp_bridge_port_id">
1533 The RSTP bridge port ID, as a 4-digit hex number.
1534 </column>
1535 </group>
1536 </group>
1537
1538 <group title="Multicast Snooping Configuration">
1539 Multicast snooping (RFC 4541) monitors the Internet Group Management
1540 Protocol (IGMP) and Multicast Listener Discovery traffic between hosts
1541 and multicast routers. The switch uses what IGMP and MLD snooping
1542 learns to forward multicast traffic only to interfaces that are connected
1543 to interested receivers. Currently it supports IGMPv1, IGMPv2, IGMPv3,
1544 MLDv1 and MLDv2 protocols.
1545
1546 <column name="mcast_snooping_enable">
1547 Enable multicast snooping on the bridge. For now, the default
1548 is disabled.
1549 </column>
1550 </group>
1551
1552 <group title="Other Features">
1553 <column name="datapath_type">
1554 Name of datapath provider. The kernel datapath has type
1555 <code>system</code>. The userspace datapath has type
1556 <code>netdev</code>. A manager may refer to the <ref
1557 table="Open_vSwitch" column="datapath_types"/> column of the <ref
1558 table="Open_vSwitch"/> table for a list of the types accepted by this
1559 Open vSwitch instance.
1560 </column>
1561
1562 <column name="external_ids" key="bridge-id">
1563 A unique identifier of the bridge. On Citrix XenServer this will
1564 commonly be the same as
1565 <ref column="external_ids" key="xs-network-uuids"/>.
1566 </column>
1567
1568 <column name="external_ids" key="xs-network-uuids">
1569 Semicolon-delimited set of universally unique identifier(s) for the
1570 network with which this bridge is associated on a Citrix XenServer
1571 host. The network identifiers are RFC 4122 UUIDs as displayed by,
1572 e.g., <code>xe network-list</code>.
1573 </column>
1574
1575 <column name="other_config" key="hwaddr">
1576 An Ethernet address in the form
1577 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>
1578 to set the hardware address of the local port and influence the
1579 datapath ID.
1580 </column>
1581
1582 <column name="other_config" key="forward-bpdu"
1583 type='{"type": "boolean"}'>
1584
1585 <p>
1586 Controls forwarding of BPDUs and other network control frames when
1587 NORMAL action is invoked. When this option is <code>false</code> or
1588 unset, frames with reserved Ethernet addresses (see table below) will
1589 not be forwarded. When this option is <code>true</code>, such frames
1590 will not be treated specially.
1591 </p>
1592
1593 <p>
1594 The above general rule has the following exceptions:
1595 </p>
1596
1597 <ul>
1598 <li>
1599 If STP is enabled on the bridge (see the <ref column="stp_enable"
1600 table="Bridge"/> column in the <ref table="Bridge"/> table), the
1601 bridge processes all received STP packets and never passes them to
1602 OpenFlow or forwards them. This is true even if STP is disabled on
1603 an individual port.
1604 </li>
1605
1606 <li>
1607 If LLDP is enabled on an interface (see the <ref column="lldp"
1608 table="Interface"/> column in the <ref table="Interface"/> table),
1609 the interface processes received LLDP packets and never passes them
1610 to OpenFlow or forwards them.
1611 </li>
1612 </ul>
1613
1614 <p>
1615 Set this option to <code>true</code> if the Open vSwitch bridge
1616 connects different Ethernet networks and is not configured to
1617 participate in STP.
1618 </p>
1619
1620 <p>
1621 This option affects packets with the following destination MAC
1622 addresses:
1623 </p>
1624
1625 <dl>
1626 <dt><code>01:80:c2:00:00:00</code></dt>
1627 <dd>IEEE 802.1D Spanning Tree Protocol (STP).</dd>
1628
1629 <dt><code>01:80:c2:00:00:01</code></dt>
1630 <dd>IEEE Pause frame.</dd>
1631
1632 <dt><code>01:80:c2:00:00:0<var>x</var></code></dt>
1633 <dd>Other reserved protocols.</dd>
1634
1635 <dt><code>00:e0:2b:00:00:00</code></dt>
1636 <dd>Extreme Discovery Protocol (EDP).</dd>
1637
1638 <dt>
1639 <code>00:e0:2b:00:00:04</code> and <code>00:e0:2b:00:00:06</code>
1640 </dt>
1641 <dd>Ethernet Automatic Protection Switching (EAPS).</dd>
1642
1643 <dt><code>01:00:0c:cc:cc:cc</code></dt>
1644 <dd>
1645 Cisco Discovery Protocol (CDP), VLAN Trunking Protocol (VTP),
1646 Dynamic Trunking Protocol (DTP), Port Aggregation Protocol (PAgP),
1647 and others.
1648 </dd>
1649
1650 <dt><code>01:00:0c:cc:cc:cd</code></dt>
1651 <dd>Cisco Shared Spanning Tree Protocol PVSTP+.</dd>
1652
1653 <dt><code>01:00:0c:cd:cd:cd</code></dt>
1654 <dd>Cisco STP Uplink Fast.</dd>
1655
1656 <dt><code>01:00:0c:00:00:00</code></dt>
1657 <dd>Cisco Inter Switch Link.</dd>
1658
1659 <dt><code>01:00:0c:cc:cc:c<var>x</var></code></dt>
1660 <dd>Cisco CFM.</dd>
1661 </dl>
1662 </column>
1663
1664 <column name="other_config" key="mac-aging-time"
1665 type='{"type": "integer", "minInteger": 1}'>
1666 <p>
1667 The maximum number of seconds to retain a MAC learning entry for
1668 which no packets have been seen. The default is currently 300
1669 seconds (5 minutes). The value, if specified, is forced into a
1670 reasonable range, currently 15 to 3600 seconds.
1671 </p>
1672
1673 <p>
1674 A short MAC aging time allows a network to more quickly detect that a
1675 host is no longer connected to a switch port. However, it also makes
1676 it more likely that packets will be flooded unnecessarily, when they
1677 are addressed to a connected host that rarely transmits packets. To
1678 reduce the incidence of unnecessary flooding, use a MAC aging time
1679 longer than the maximum interval at which a host will ordinarily
1680 transmit packets.
1681 </p>
1682 </column>
1683
1684 <column name="other_config" key="mac-table-size"
1685 type='{"type": "integer", "minInteger": 1}'>
1686 <p>
1687 The maximum number of MAC addresses to learn. The default is
1688 currently 8192. The value, if specified, is forced into a reasonable
1689 range, currently 10 to 1,000,000.
1690 </p>
1691 </column>
1692 </group>
1693
1694 <group title="Common Columns">
1695 The overall purpose of these columns is described under <code>Common
1696 Columns</code> at the beginning of this document.
1697
1698 <column name="other_config"/>
1699 <column name="external_ids"/>
1700 </group>
1701 </table>
1702
1703 <table name="Port" table="Port or bond configuration.">
1704 <p>A port within a <ref table="Bridge"/>.</p>
1705 <p>Most commonly, a port has exactly one ``interface,'' pointed to by its
1706 <ref column="interfaces"/> column. Such a port logically
1707 corresponds to a port on a physical Ethernet switch. A port
1708 with more than one interface is a ``bonded port'' (see
1709 <ref group="Bonding Configuration"/>).</p>
1710 <p>Some properties that one might think as belonging to a port are actually
1711 part of the port's <ref table="Interface"/> members.</p>
1712
1713 <column name="name">
1714 Port name. For a non-bonded port, this should be the same as its
1715 interface's name. Port names must otherwise be unique among the names of
1716 ports, interfaces, and bridges on a host. Because port and interfaces
1717 names are usually the same, the restrictions on the <ref
1718 table="Interface" column="name"/> column in the <ref table="Interface"/>
1719 table, particularly on length, also apply to port names. Refer to the
1720 documentation for <ref table="Interface"/> names for details.
1721 </column>
1722
1723 <column name="interfaces">
1724 The port's interfaces. If there is more than one, this is a
1725 bonded Port.
1726 </column>
1727
1728 <group title="VLAN Configuration">
1729 <p>
1730 In short, a VLAN (short for ``virtual LAN'') is a way to partition a
1731 single switch into multiple switches. VLANs can be confusing, so for
1732 an introduction, please refer to the question ``What's a VLAN?'' in the
1733 Open vSwitch FAQ.
1734 </p>
1735
1736 <p>
1737 A VLAN is sometimes encoded into a packet using a 802.1Q or 802.1ad
1738 VLAN header, but every packet is part of some VLAN whether or not it is
1739 encoded in the packet. (A packet that appears to have no VLAN is part
1740 of VLAN 0, by default.) As a result, it's useful to think of a VLAN as
1741 a metadata property of a packet, separate from how the VLAN is encoded.
1742 For a given port, this column determines how the encoding of a packet
1743 that ingresses or egresses the port maps to the packet's VLAN. When a
1744 packet enters the switch, its VLAN is determined based on its setting
1745 in this column and its VLAN headers, if any, and then, conceptually,
1746 the VLAN headers are then stripped off. Conversely, when a packet
1747 exits the switch, its VLAN and the settings in this column determine
1748 what VLAN headers, if any, are pushed onto the packet before it
1749 egresses the port.
1750 </p>
1751
1752 <p>
1753 The VLAN configuration in this column affects Open vSwitch only when it
1754 is doing ``normal switching.'' It does not affect flows set up by an
1755 OpenFlow controller, outside of the OpenFlow ``normal action.''
1756 </p>
1757
1758 <p>
1759 Bridge ports support the following types of VLAN configuration:
1760 </p>
1761
1762 <dl>
1763 <dt>trunk</dt>
1764 <dd>
1765 <p>
1766 A trunk port carries packets on one or more specified VLANs
1767 specified in the <ref column="trunks"/> column (often, on every
1768 VLAN). A packet that ingresses on a trunk port is in the VLAN
1769 specified in its 802.1Q header, or VLAN 0 if the packet has no
1770 802.1Q header. A packet that egresses through a trunk port will
1771 have an 802.1Q header if it has a nonzero VLAN ID.
1772 </p>
1773
1774 <p>
1775 Any packet that ingresses on a trunk port tagged with a VLAN that
1776 the port does not trunk is dropped.
1777 </p>
1778 </dd>
1779
1780 <dt>access</dt>
1781 <dd>
1782 <p>
1783 An access port carries packets on exactly one VLAN specified in the
1784 <ref column="tag"/> column. Packets egressing on an access port
1785 have no 802.1Q header.
1786 </p>
1787
1788 <p>
1789 Any packet with an 802.1Q header with a nonzero VLAN ID that
1790 ingresses on an access port is dropped, regardless of whether the
1791 VLAN ID in the header is the access port's VLAN ID.
1792 </p>
1793 </dd>
1794
1795 <dt>native-tagged</dt>
1796 <dd>
1797 A native-tagged port resembles a trunk port, with the exception that
1798 a packet without an 802.1Q header that ingresses on a native-tagged
1799 port is in the ``native VLAN'' (specified in the <ref column="tag"/>
1800 column).
1801 </dd>
1802
1803 <dt>native-untagged</dt>
1804 <dd>
1805 A native-untagged port resembles a native-tagged port, with the
1806 exception that a packet that egresses on a native-untagged port in
1807 the native VLAN will not have an 802.1Q header.
1808 </dd>
1809
1810 <dt>dot1q-tunnel</dt>
1811 <dd>
1812 <p>
1813 A dot1q-tunnel port is somewhat like an access port. Like an
1814 access port, it carries packets on the single VLAN specified in the
1815 <ref column="tag"/> column and this VLAN, called the service VLAN,
1816 does not appear in an 802.1Q header for packets that ingress or
1817 egress on the port. The main difference lies in the behavior when
1818 packets that include a 802.1Q header ingress on the port. Whereas
1819 an access port drops such packets, a dot1q-tunnel port treats these
1820 as double-tagged with the outer service VLAN <ref column="tag"/>
1821 and the inner customer VLAN taken from the 802.1Q header.
1822 Correspondingly, to egress on the port, a packet outer VLAN (or
1823 only VLAN) must be <ref column="tag"/>, which is removed before
1824 egress, which exposes the inner (customer) VLAN if one is present.
1825 </p>
1826
1827 <p>
1828 If <ref column="cvlans"/> is set, only allows packets in the
1829 specified customer VLANs.
1830 </p>
1831 </dd>
1832 </dl>
1833 <p>
1834 A packet will only egress through bridge ports that carry the VLAN of
1835 the packet, as described by the rules above.
1836 </p>
1837
1838 <column name="vlan_mode">
1839 <p>
1840 The VLAN mode of the port, as described above. When this column is
1841 empty, a default mode is selected as follows:
1842 </p>
1843 <ul>
1844 <li>
1845 If <ref column="tag"/> contains a value, the port is an access
1846 port. The <ref column="trunks"/> column should be empty.
1847 </li>
1848 <li>
1849 Otherwise, the port is a trunk port. The <ref column="trunks"/>
1850 column value is honored if it is present.
1851 </li>
1852 </ul>
1853 </column>
1854
1855 <column name="tag">
1856 <p>
1857 For an access port, the port's implicitly tagged VLAN. For a
1858 native-tagged or native-untagged port, the port's native VLAN. Must
1859 be empty if this is a trunk port.
1860 </p>
1861 </column>
1862
1863 <column name="trunks">
1864 <p>
1865 For a trunk, native-tagged, or native-untagged port, the 802.1Q VLAN
1866 or VLANs that this port trunks; if it is empty, then the port trunks
1867 all VLANs. Must be empty if this is an access port.
1868 </p>
1869 <p>
1870 A native-tagged or native-untagged port always trunks its native
1871 VLAN, regardless of whether <ref column="trunks"/> includes that
1872 VLAN.
1873 </p>
1874 </column>
1875
1876 <column name="cvlans">
1877 <p>
1878 For a dot1q-tunnel port, the customer VLANs that this port includes.
1879 If this is empty, the port includes all customer VLANs.
1880 </p>
1881 <p>
1882 For other kinds of ports, this setting is ignored.
1883 </p>
1884 </column>
1885
1886 <column name="other_config" key="qinq-ethtype"
1887 type='{"type": "string", "enum": ["set", ["802.1ad", "802.1q"]]}'>
1888 <p>
1889 For a dot1q-tunnel port, this is the TPID for the service tag, that
1890 is, for the 802.1Q header that contains the service VLAN ID. Because
1891 packets that actually ingress and egress a dot1q-tunnel port do not
1892 include an 802.1Q header for the service VLAN, this does not affect
1893 packets on the dot1q-tunnel port itself. Rather, it determines the
1894 service VLAN for a packet that ingresses on a dot1q-tunnel port and
1895 egresses on a trunk port.
1896 </p>
1897 <p>
1898 The value <code>802.1ad</code> specifies TPID 0x88a8, which is also
1899 the default if the setting is omitted. The value <code>802.1q</code>
1900 specifies TPID 0x8100.
1901 </p>
1902 <p>
1903 For other kinds of ports, this setting is ignored.
1904 </p>
1905 </column>
1906
1907 <column name="other_config" key="priority-tags"
1908 type='{"type": "string",
1909 "enum": ["set", ["never", "if-nonzero", "always"]]}'>
1910 <p>
1911 An 802.1Q header contains two important pieces of information: a VLAN
1912 ID and a priority. A frame with a zero VLAN ID, called a
1913 ``priority-tagged'' frame, is supposed to be treated the same way as
1914 a frame without an 802.1Q header at all (except for the priority).
1915 </p>
1916
1917 <p>
1918 However, some network elements ignore any frame that has 802.1Q
1919 header at all, even when the VLAN ID is zero. Therefore, by default
1920 Open vSwitch does not output priority-tagged frames, instead omitting
1921 the 802.1Q header entirely if the VLAN ID is zero. Set this key to
1922 <code>if-nonzero</code> to enable priority-tagged frames on a port.
1923 </p>
1924
1925 <p>
1926 For <code>if-nonzero</code> Open vSwitch omits the 802.1Q header on
1927 output if both the VLAN ID and priority would be zero. Set to
1928 <code>always</code> to retain the 802.1Q header in such frames as
1929 well.
1930 </p>
1931
1932 <p>
1933 All frames output to native-tagged ports have a nonzero VLAN ID, so
1934 this setting is not meaningful on native-tagged ports.
1935 </p>
1936 </column>
1937 </group>
1938
1939 <group title="Bonding Configuration">
1940 <p>A port that has more than one interface is a ``bonded port.'' Bonding
1941 allows for load balancing and fail-over.</p>
1942
1943 <p>
1944 The following types of bonding will work with any kind of upstream
1945 switch. On the upstream switch, do not configure the interfaces as a
1946 bond:
1947 </p>
1948
1949 <dl>
1950 <dt><code>balance-slb</code></dt>
1951 <dd>
1952 Balances flows among slaves based on source MAC address and output
1953 VLAN, with periodic rebalancing as traffic patterns change.
1954 </dd>
1955
1956 <dt><code>active-backup</code></dt>
1957 <dd>
1958 Assigns all flows to one slave, failing over to a backup slave when
1959 the active slave is disabled. This is the only bonding mode in which
1960 interfaces may be plugged into different upstream switches.
1961 </dd>
1962 </dl>
1963
1964 <p>
1965 The following modes require the upstream switch to support 802.3ad with
1966 successful LACP negotiation. If LACP negotiation fails and
1967 other-config:lacp-fallback-ab is true, then <code>active-backup</code>
1968 mode is used:
1969 </p>
1970
1971 <dl>
1972 <dt><code>balance-tcp</code></dt>
1973 <dd>
1974 Balances flows among slaves based on L3 and L4 protocol information
1975 such as IP addresses and TCP/UDP ports.
1976 </dd>
1977 </dl>
1978
1979 <p>These columns apply only to bonded ports. Their values are
1980 otherwise ignored.</p>
1981
1982 <column name="bond_mode">
1983 <p>The type of bonding used for a bonded port. Defaults to
1984 <code>active-backup</code> if unset.
1985 </p>
1986 </column>
1987
1988 <column name="other_config" key="bond-hash-basis"
1989 type='{"type": "integer"}'>
1990 An integer hashed along with flows when choosing output slaves in load
1991 balanced bonds. When changed, all flows will be assigned different
1992 hash values possibly causing slave selection decisions to change. Does
1993 not affect bonding modes which do not employ load balancing such as
1994 <code>active-backup</code>.
1995 </column>
1996
1997 <column name="other_config" key="lb-output-action"
1998 type='{"type": "boolean"}'>
1999 Enable/disable usage of optimized <code>lb_output</code> action for
2000 balancing flows among output slaves in load balanced bonds in
2001 <code>balance-tcp</code>. When enabled, it uses optimized path for
2002 balance-tcp mode by using rss hash and avoids recirculation.
2003 This knob does not affect other balancing modes.
2004 </column>
2005
2006 <column name="other_config" key="bond-primary"
2007 type='{"type": "string"}'>
2008 If a slave interface with this name exists in the bond and
2009 is up, it will be made active. Relevant only when <ref
2010 column="other_config" key="bond_mode"/> is
2011 <code>active-backup</code>.
2012 </column>
2013
2014 <group title="Link Failure Detection">
2015 <p>
2016 An important part of link bonding is detecting that links are down so
2017 that they may be disabled. These settings determine how Open vSwitch
2018 detects link failure.
2019 </p>
2020
2021 <column name="other_config" key="bond-detect-mode"
2022 type='{"type": "string", "enum": ["set", ["carrier", "miimon"]]}'>
2023 The means used to detect link failures. Defaults to
2024 <code>carrier</code> which uses each interface's carrier to detect
2025 failures. When set to <code>miimon</code>, will check for failures
2026 by polling each interface's MII.
2027 </column>
2028
2029 <column name="other_config" key="bond-miimon-interval"
2030 type='{"type": "integer"}'>
2031 The interval, in milliseconds, between successive attempts to poll
2032 each interface's MII. Relevant only when <ref column="other_config"
2033 key="bond-detect-mode"/> is <code>miimon</code>.
2034 </column>
2035
2036 <column name="bond_updelay">
2037 <p>
2038 The number of milliseconds for which the link must stay up on an
2039 interface before the interface is considered to be up. Specify
2040 <code>0</code> to enable the interface immediately.
2041 </p>
2042
2043 <p>
2044 This setting is honored only when at least one bonded interface is
2045 already enabled. When no interfaces are enabled, then the first
2046 bond interface to come up is enabled immediately.
2047 </p>
2048 </column>
2049
2050 <column name="bond_downdelay">
2051 The number of milliseconds for which the link must stay down on an
2052 interface before the interface is considered to be down. Specify
2053 <code>0</code> to disable the interface immediately.
2054 </column>
2055 </group>
2056
2057 <group title="LACP Configuration">
2058 <p>
2059 LACP, the Link Aggregation Control Protocol, is an IEEE standard that
2060 allows switches to automatically detect that they are connected by
2061 multiple links and aggregate across those links. These settings
2062 control LACP behavior.
2063 </p>
2064
2065 <column name="lacp">
2066 Configures LACP on this port. LACP allows directly connected
2067 switches to negotiate which links may be bonded. LACP may be enabled
2068 on non-bonded ports for the benefit of any switches they may be
2069 connected to. <code>active</code> ports are allowed to initiate LACP
2070 negotiations. <code>passive</code> ports are allowed to participate
2071 in LACP negotiations initiated by a remote switch, but not allowed to
2072 initiate such negotiations themselves. If LACP is enabled on a port
2073 whose partner switch does not support LACP, the bond will be
2074 disabled, unless other-config:lacp-fallback-ab is set to true.
2075 Defaults to <code>off</code> if unset.
2076 </column>
2077
2078 <column name="other_config" key="lacp-system-id">
2079 The LACP system ID of this <ref table="Port"/>. The system ID of a
2080 LACP bond is used to identify itself to its partners. Must be a
2081 nonzero MAC address. Defaults to the bridge Ethernet address if
2082 unset.
2083 </column>
2084
2085 <column name="other_config" key="lacp-system-priority"
2086 type='{"type": "integer", "minInteger": 1, "maxInteger": 65535}'>
2087 The LACP system priority of this <ref table="Port"/>. In LACP
2088 negotiations, link status decisions are made by the system with the
2089 numerically lower priority.
2090 </column>
2091
2092 <column name="other_config" key="lacp-time"
2093 type='{"type": "string", "enum": ["set", ["fast", "slow"]]}'>
2094 <p>
2095 The LACP timing which should be used on this <ref table="Port"/>.
2096 By default <code>slow</code> is used. When configured to be
2097 <code>fast</code> LACP heartbeats are requested at a rate of once
2098 per second causing connectivity problems to be detected more
2099 quickly. In <code>slow</code> mode, heartbeats are requested at a
2100 rate of once every 30 seconds.
2101 </p>
2102 </column>
2103
2104 <column name="other_config" key="lacp-fallback-ab"
2105 type='{"type": "boolean"}'>
2106 <p>
2107 Determines the behavior of openvswitch bond in LACP mode. If
2108 the partner switch does not support LACP, setting this option
2109 to <code>true</code> allows openvswitch to fallback to
2110 active-backup. If the option is set to <code>false</code>, the
2111 bond will be disabled. In both the cases, once the partner switch
2112 is configured to LACP mode, the bond will use LACP.
2113 </p>
2114 </column>
2115 </group>
2116
2117 <group title="Rebalancing Configuration">
2118 <p>
2119 These settings control behavior when a bond is in
2120 <code>balance-slb</code> or <code>balance-tcp</code> mode.
2121 </p>
2122
2123 <column name="other_config" key="bond-rebalance-interval"
2124 type='{"type": "integer",
2125 "minInteger": 0, "maxInteger": 2147483647}'>
2126 For a load balanced bonded port, the number of milliseconds between
2127 successive attempts to rebalance the bond, that is, to move flows
2128 from one interface on the bond to another in an attempt to keep usage
2129 of each interface roughly equal. If zero, load balancing is disabled
2130 on the bond (link failure still cause flows to move). If
2131 less than 1000ms, the rebalance interval will be 1000ms.
2132 </column>
2133 </group>
2134
2135 <column name="bond_fake_iface">
2136 For a bonded port, whether to create a fake internal interface with the
2137 name of the port. Use only for compatibility with legacy software that
2138 requires this.
2139 </column>
2140 </group>
2141
2142 <group title="Spanning Tree Protocol">
2143 <p>
2144 The configuration here is only meaningful, and the status is only
2145 populated, when 802.1D-1998 Spanning Tree Protocol is enabled on the
2146 port's <ref column="Bridge"/> with its <ref column="stp_enable"/>
2147 column.
2148 </p>
2149
2150 <group title="STP Configuration">
2151 <column name="other_config" key="stp-enable"
2152 type='{"type": "boolean"}'>
2153 When STP is enabled on a bridge, it is enabled by default on all of
2154 the bridge's ports except bond, internal, and mirror ports (which do
2155 not work with STP). If this column's value is <code>false</code>,
2156 STP is disabled on the port.
2157 </column>
2158
2159 <column name="other_config" key="stp-port-num"
2160 type='{"type": "integer", "minInteger": 1, "maxInteger": 255}'>
2161 The port number used for the lower 8 bits of the port-id. By
2162 default, the numbers will be assigned automatically. If any
2163 port's number is manually configured on a bridge, then they
2164 must all be.
2165 </column>
2166
2167 <column name="other_config" key="stp-port-priority"
2168 type='{"type": "integer", "minInteger": 0, "maxInteger": 255}'>
2169 The port's relative priority value for determining the root
2170 port (the upper 8 bits of the port-id). A port with a lower
2171 port-id will be chosen as the root port. By default, the
2172 priority is 0x80.
2173 </column>
2174
2175 <column name="other_config" key="stp-path-cost"
2176 type='{"type": "integer", "minInteger": 0, "maxInteger": 65535}'>
2177 Spanning tree path cost for the port. A lower number indicates
2178 a faster link. By default, the cost is based on the maximum
2179 speed of the link.
2180 </column>
2181 </group>
2182
2183 <group title="STP Status">
2184 <column name="status" key="stp_port_id">
2185 The port ID used in spanning tree advertisements for this port, as 4
2186 hex digits. Configuring the port ID is described in the
2187 <code>stp-port-num</code> and <code>stp-port-priority</code> keys of
2188 the <code>other_config</code> section earlier.
2189 </column>
2190 <column name="status" key="stp_state"
2191 type='{"type": "string", "enum": ["set",
2192 ["disabled", "listening", "learning",
2193 "forwarding", "blocking"]]}'>
2194 STP state of the port.
2195 </column>
2196 <column name="status" key="stp_sec_in_state"
2197 type='{"type": "integer", "minInteger": 0}'>
2198 The amount of time this port has been in the current STP state, in
2199 seconds.
2200 </column>
2201 <column name="status" key="stp_role"
2202 type='{"type": "string", "enum": ["set",
2203 ["root", "designated", "alternate"]]}'>
2204 STP role of the port.
2205 </column>
2206 </group>
2207 </group>
2208
2209 <group title="Rapid Spanning Tree Protocol">
2210 <p>
2211 The configuration here is only meaningful, and the status and
2212 statistics are only populated, when 802.1D-1998 Spanning Tree Protocol
2213 is enabled on the port's <ref column="Bridge"/> with its <ref
2214 column="stp_enable"/> column.
2215 </p>
2216
2217 <group title="RSTP Configuration">
2218 <column name="other_config" key="rstp-enable"
2219 type='{"type": "boolean"}'>
2220 When RSTP is enabled on a bridge, it is enabled by default on all of
2221 the bridge's ports except bond, internal, and mirror ports (which do
2222 not work with RSTP). If this column's value is <code>false</code>,
2223 RSTP is disabled on the port.
2224 </column>
2225
2226 <column name="other_config" key="rstp-port-priority"
2227 type='{"type": "integer", "minInteger": 0, "maxInteger": 240}'>
2228 The port's relative priority value for determining the root port, in
2229 multiples of 16. By default, the port priority is 0x80 (128). Any
2230 value in the lower 4 bits is rounded off. The significant upper 4
2231 bits become the upper 4 bits of the port-id. A port with the lowest
2232 port-id is elected as the root.
2233 </column>
2234
2235 <column name="other_config" key="rstp-port-num"
2236 type='{"type": "integer", "minInteger": 1, "maxInteger": 4095}'>
2237 The local RSTP port number, used as the lower 12 bits of the port-id.
2238 By default the port numbers are assigned automatically, and typically
2239 may not correspond to the OpenFlow port numbers. A port with the
2240 lowest port-id is elected as the root.
2241 </column>
2242
2243 <column name="other_config" key="rstp-port-path-cost"
2244 type='{"type": "integer"}'>
2245 The port path cost. The Port's contribution, when it is
2246 the Root Port, to the Root Path Cost for the Bridge. By default the
2247 cost is automatically calculated from the port's speed.
2248 </column>
2249
2250 <column name="other_config" key="rstp-port-admin-edge"
2251 type='{"type": "boolean"}'>
2252 The admin edge port parameter for the Port. Default is
2253 <code>false</code>.
2254 </column>
2255
2256 <column name="other_config" key="rstp-port-auto-edge"
2257 type='{"type": "boolean"}'>
2258 The auto edge port parameter for the Port. Default is
2259 <code>true</code>.
2260 </column>
2261
2262 <column name="other_config" key="rstp-port-mcheck"
2263 type='{"type": "boolean"}'>
2264 <p>
2265 The mcheck port parameter for the Port. Default is
2266 <code>false</code>. May be set to force the Port Protocol
2267 Migration state machine to transmit RST BPDUs for a
2268 MigrateTime period, to test whether all STP Bridges on the
2269 attached LAN have been removed and the Port can continue to
2270 transmit RSTP BPDUs. Setting mcheck has no effect if the
2271 Bridge is operating in STP Compatibility mode.
2272 </p>
2273 <p>
2274 Changing the value from <code>true</code> to
2275 <code>false</code> has no effect, but needs to be done if
2276 this behavior is to be triggered again by subsequently
2277 changing the value from <code>false</code> to
2278 <code>true</code>.
2279 </p>
2280 </column>
2281 </group>
2282
2283 <group title="RSTP Status">
2284 <column name="rstp_status" key="rstp_port_id">
2285 The port ID used in spanning tree advertisements for this port, as 4
2286 hex digits. Configuring the port ID is described in the
2287 <code>rstp-port-num</code> and <code>rstp-port-priority</code> keys
2288 of the <code>other_config</code> section earlier.
2289 </column>
2290 <column name="rstp_status" key="rstp_port_role"
2291 type='{"type": "string", "enum": ["set",
2292 ["Root", "Designated", "Alternate", "Backup", "Disabled"]]}'>
2293 RSTP role of the port.
2294 </column>
2295 <column name="rstp_status" key="rstp_port_state"
2296 type='{"type": "string", "enum": ["set",
2297 ["Disabled", "Learning", "Forwarding", "Discarding"]]}'>
2298 RSTP state of the port.
2299 </column>
2300 <column name="rstp_status" key="rstp_designated_bridge_id">
2301 The port's RSTP designated bridge ID, in the same form as <ref
2302 column="rstp_status" key="rstp_bridge_id"/> in the <ref
2303 table="Bridge"/> table.
2304 </column>
2305 <column name="rstp_status" key="rstp_designated_port_id">
2306 The port's RSTP designated port ID, as 4 hex digits.
2307 </column>
2308 <column name="rstp_status" key="rstp_designated_path_cost"
2309 type='{"type": "integer"}'>
2310 The port's RSTP designated path cost. Lower is better.
2311 </column>
2312 </group>
2313
2314 <group title="RSTP Statistics">
2315 <column name="rstp_statistics" key="rstp_tx_count">
2316 Number of RSTP BPDUs transmitted through this port.
2317 </column>
2318 <column name="rstp_statistics" key="rstp_rx_count">
2319 Number of valid RSTP BPDUs received by this port.
2320 </column>
2321 <column name="rstp_statistics" key="rstp_error_count">
2322 Number of invalid RSTP BPDUs received by this port.
2323 </column>
2324 <column name="rstp_statistics" key="rstp_uptime">
2325 The duration covered by the other RSTP statistics, in seconds.
2326 </column>
2327 </group>
2328 </group>
2329
2330 <group title="Multicast Snooping">
2331 <column name="other_config" key="mcast-snooping-flood"
2332 type='{"type": "boolean"}'>
2333 <p>
2334 If set to <code>true</code>, multicast packets (except Reports) are
2335 unconditionally forwarded to the specific port.
2336 </p>
2337 </column>
2338 <column name="other_config" key="mcast-snooping-flood-reports"
2339 type='{"type": "boolean"}'>
2340 <p>
2341 If set to <code>true</code>, multicast Reports are unconditionally
2342 forwarded to the specific port.
2343 </p>
2344 </column>
2345 </group>
2346
2347 <group title="Other Features">
2348 <column name="qos">
2349 Quality of Service configuration for this port.
2350 </column>
2351
2352 <column name="mac">
2353 The MAC address to use for this port for the purpose of choosing the
2354 bridge's MAC address. This column does not necessarily reflect the
2355 port's actual MAC address, nor will setting it change the port's actual
2356 MAC address.
2357 </column>
2358
2359 <column name="fake_bridge">
2360 Does this port represent a sub-bridge for its tagged VLAN within the
2361 Bridge? See ovs-vsctl(8) for more information.
2362 </column>
2363
2364 <column name="protected" type='{"type": "boolean"}'>
2365 The protected ports feature allows certain ports to be designated as
2366 protected. Traffic between protected ports is blocked. Protected
2367 ports can send traffic to unprotected ports. Unprotected ports can
2368 send traffic to any port.
2369 Default is false.
2370 </column>
2371
2372 <column name="external_ids" key="fake-bridge-id-*">
2373 External IDs for a fake bridge (see the <ref column="fake_bridge"/>
2374 column) are defined by prefixing a <ref table="Bridge"/> <ref
2375 table="Bridge" column="external_ids"/> key with
2376 <code>fake-bridge-</code>,
2377 e.g. <code>fake-bridge-xs-network-uuids</code>.
2378 </column>
2379
2380 <column name="other_config" key="transient"
2381 type='{"type": "boolean"}'>
2382 <p>
2383 If set to <code>true</code>, the port will be removed when
2384 <code>ovs-ctl start --delete-transient-ports</code> is used.
2385 </p>
2386 </column>
2387 </group>
2388
2389 <column name="bond_active_slave">
2390 For a bonded port, record the mac address of the current active slave.
2391 </column>
2392
2393 <group title="Port Statistics">
2394 <p>
2395 Key-value pairs that report port statistics. The update period
2396 is controlled by <ref column="other_config"
2397 key="stats-update-interval"/> in the <code>Open_vSwitch</code> table.
2398 </p>
2399 <group title="Statistics: STP transmit and receive counters">
2400 <column name="statistics" key="stp_tx_count">
2401 Number of STP BPDUs sent on this port by the spanning
2402 tree library.
2403 </column>
2404 <column name="statistics" key="stp_rx_count">
2405 Number of STP BPDUs received on this port and accepted by the
2406 spanning tree library.
2407 </column>
2408 <column name="statistics" key="stp_error_count">
2409 Number of bad STP BPDUs received on this port. Bad BPDUs
2410 include runt packets and those with an unexpected protocol ID.
2411 </column>
2412 </group>
2413 </group>
2414
2415 <group title="Common Columns">
2416 The overall purpose of these columns is described under <code>Common
2417 Columns</code> at the beginning of this document.
2418
2419 <column name="other_config"/>
2420 <column name="external_ids"/>
2421 </group>
2422 </table>
2423
2424 <table name="Interface" title="One physical network device in a Port.">
2425 An interface within a <ref table="Port"/>.
2426
2427 <group title="Core Features">
2428 <column name="name">
2429 <p>
2430 Interface name. Should be alphanumeric. For non-bonded port, this
2431 should be the same as the port name. It must otherwise be unique
2432 among the names of ports, interfaces, and bridges on a host.
2433 </p>
2434
2435 <p>
2436 The maximum length of an interface name depends on the underlying
2437 datapath:
2438 </p>
2439
2440 <ul>
2441 <li>
2442 The names of interfaces implemented as Linux and BSD network
2443 devices, including interfaces with type <code>internal</code>,
2444 <code>tap</code>, or <code>system</code> plus the different types
2445 of tunnel ports, are limited to 15 bytes. Windows limits these
2446 names to 255 bytes.
2447 </li>
2448
2449 <li>
2450 The names of patch ports are not used in the underlying datapath,
2451 so operating system restrictions do not apply. Thus, they may have
2452 arbitrary length.
2453 </li>
2454 </ul>
2455
2456 <p>
2457 Regardless of other restrictions, OpenFlow only supports 15-byte
2458 names, which means that <code>ovs-ofctl</code> and OpenFlow
2459 controllers will show names truncated to 15 bytes.
2460 </p>
2461 </column>
2462
2463 <column name="ifindex">
2464 A positive interface index as defined for SNMP MIB-II in RFCs 1213 and
2465 2863, if the interface has one, otherwise 0. The ifindex is useful for
2466 seamless integration with protocols such as SNMP and sFlow.
2467 </column>
2468
2469 <column name="mac_in_use">
2470 The MAC address in use by this interface.
2471 </column>
2472
2473 <column name="mac">
2474 <p>Ethernet address to set for this interface. If unset then the
2475 default MAC address is used:</p>
2476 <ul>
2477 <li>For the local interface, the default is the lowest-numbered MAC
2478 address among the other bridge ports, either the value of the
2479 <ref table="Port" column="mac"/> in its <ref table="Port"/> record,
2480 if set, or its actual MAC (for bonded ports, the MAC of its slave
2481 whose name is first in alphabetical order). Internal ports and
2482 bridge ports that are used as port mirroring destinations (see the
2483 <ref table="Mirror"/> table) are ignored.</li>
2484 <li>For other internal interfaces, the default MAC is randomly
2485 generated.</li>
2486 <li>External interfaces typically have a MAC address associated with
2487 their hardware.</li>
2488 </ul>
2489 <p>Some interfaces may not have a software-controllable MAC
2490 address. This option only affects internal ports. For other type ports,
2491 you can change the MAC address outside Open vSwitch, using ip command.</p>
2492 </column>
2493
2494 <column name="error">
2495 If the configuration of the port failed, as indicated by -1 in <ref
2496 column="ofport"/>, Open vSwitch sets this column to an error
2497 description in human readable form. Otherwise, Open vSwitch clears
2498 this column.
2499 </column>
2500
2501 <group title="OpenFlow Port Number">
2502 <p>
2503 When a client adds a new interface, Open vSwitch chooses an OpenFlow
2504 port number for the new port. If the client that adds the port fills
2505 in <ref column="ofport_request"/>, then Open vSwitch tries to use its
2506 value as the OpenFlow port number. Otherwise, or if the requested
2507 port number is already in use or cannot be used for another reason,
2508 Open vSwitch automatically assigns a free port number. Regardless of
2509 how the port number was obtained, Open vSwitch then reports in <ref
2510 column="ofport"/> the port number actually assigned.
2511 </p>
2512
2513 <p>
2514 Open vSwitch limits the port numbers that it automatically assigns to
2515 the range 1 through 32,767, inclusive. Controllers therefore have
2516 free use of ports 32,768 and up.
2517 </p>
2518
2519 <column name="ofport">
2520 <p>
2521 OpenFlow port number for this interface. Open vSwitch sets this
2522 column's value, so other clients should treat it as read-only.
2523 </p>
2524 <p>
2525 The OpenFlow ``local'' port (<code>OFPP_LOCAL</code>) is 65,534.
2526 The other valid port numbers are in the range 1 to 65,279,
2527 inclusive. Value -1 indicates an error adding the interface.
2528 </p>
2529 </column>
2530
2531 <column name="ofport_request"
2532 type='{"type": "integer", "minInteger": 1, "maxInteger": 65279}'>
2533 <p>
2534 Requested OpenFlow port number for this interface.
2535 </p>
2536
2537 <p>
2538 A client should ideally set this column's value in the same
2539 database transaction that it uses to create the interface. Open
2540 vSwitch version 2.1 and later will honor a later request for a
2541 specific port number, althuogh it might confuse some controllers:
2542 OpenFlow does not have a way to announce a port number change, so
2543 Open vSwitch represents it over OpenFlow as a port deletion
2544 followed immediately by a port addition.
2545 </p>
2546
2547 <p>
2548 If <ref column="ofport_request"/> is set or changed to some other
2549 port's automatically assigned port number, Open vSwitch chooses a
2550 new port number for the latter port.
2551 </p>
2552 </column>
2553 </group>
2554 </group>
2555
2556 <group title="System-Specific Details">
2557 <column name="type">
2558 <p>
2559 The interface type. The types supported by a particular instance of
2560 Open vSwitch are listed in the <ref table="Open_vSwitch"
2561 column="iface_types"/> column in the <ref table="Open_vSwitch"/>
2562 table. The following types are defined:
2563 </p>
2564
2565 <dl>
2566 <dt><code>system</code></dt>
2567 <dd>An ordinary network device, e.g. <code>eth0</code> on Linux.
2568 Sometimes referred to as ``external interfaces'' since they are
2569 generally connected to hardware external to that on which the Open
2570 vSwitch is running. The empty string is a synonym for
2571 <code>system</code>.</dd>
2572
2573 <dt><code>internal</code></dt>
2574 <dd>A simulated network device that sends and receives traffic. An
2575 internal interface whose <ref column="name"/> is the same as its
2576 bridge's <ref table="Open_vSwitch" column="name"/> is called the
2577 ``local interface.'' It does not make sense to bond an internal
2578 interface, so the terms ``port'' and ``interface'' are often used
2579 imprecisely for internal interfaces.</dd>
2580
2581 <dt><code>tap</code></dt>
2582 <dd>
2583 <p>
2584 A TUN/TAP device managed by Open vSwitch.
2585 </p>
2586 <p>
2587 Open vSwitch checks the interface state before send packets
2588 to the device. When it is <code>down</code>, the packets are
2589 dropped and the tx_dropped statistic is updated accordingly.
2590 Older versions of Open vSwitch did not check the interface state
2591 and then the tx_packets was incremented along with tx_dropped.
2592 </p>
2593 </dd>
2594
2595 <dt><code>geneve</code></dt>
2596 <dd>
2597 An Ethernet over Geneve (<code>http://tools.ietf.org/html/draft-ietf-nvo3-geneve</code>)
2598 IPv4/IPv6 tunnel.
2599
2600 A description of how to match and set Geneve options can be found
2601 in the <code>ovs-ofctl</code> manual page.
2602 </dd>
2603
2604 <dt><code>gre</code></dt>
2605 <dd>
2606 Generic Routing Encapsulation (GRE) over IPv4 tunnel,
2607 configurable to encapsulate layer 2 or layer 3 traffic.
2608 </dd>
2609
2610 <dt><code>ip6gre</code></dt>
2611 <dd>
2612 Generic Routing Encapsulation (GRE) over IPv6 tunnel,
2613 encapsulate layer 2 traffic.
2614 </dd>
2615
2616 <dt><code>vxlan</code></dt>
2617 <dd>
2618 <p>
2619 An Ethernet tunnel over the UDP-based VXLAN protocol described in
2620 RFC 7348.
2621 </p>
2622 <p>
2623 Open vSwitch uses IANA-assigned UDP destination port 4789. The
2624 source port used for VXLAN traffic varies on a per-flow basis
2625 and is in the ephemeral port range.
2626 </p>
2627 </dd>
2628
2629 <dt><code>lisp</code></dt>
2630 <dd>
2631 <p>
2632 A layer 3 tunnel over the experimental, UDP-based Locator/ID
2633 Separation Protocol (RFC 6830).
2634 </p>
2635 <p>
2636 Only IPv4 and IPv6 packets are supported by the protocol, and
2637 they are sent and received without an Ethernet header. Traffic
2638 to/from LISP ports is expected to be configured explicitly, and
2639 the ports are not intended to participate in learning based
2640 switching. As such, they are always excluded from packet
2641 flooding.
2642 </p>
2643 </dd>
2644
2645 <dt><code>stt</code></dt>
2646 <dd>
2647 The Stateless TCP Tunnel (STT) is particularly useful when tunnel
2648 endpoints are in end-systems, as it utilizes the capabilities of
2649 standard network interface cards to improve performance. STT utilizes
2650 a TCP-like header inside the IP header. It is stateless, i.e., there is
2651 no TCP connection state of any kind associated with the tunnel. The
2652 TCP-like header is used to leverage the capabilities of existing
2653 network interface cards, but should not be interpreted as implying
2654 any sort of connection state between endpoints.
2655 Since the STT protocol does not engage in the usual TCP 3-way handshake,
2656 so it will have difficulty traversing stateful firewalls.
2657 The protocol is documented at
2658 https://tools.ietf.org/html/draft-davie-stt
2659
2660 All traffic uses a default destination port of 7471.
2661 </dd>
2662
2663 <dt><code>patch</code></dt>
2664 <dd>
2665 A pair of virtual devices that act as a patch cable.
2666 </dd>
2667
2668 <dt><code>gtpu</code></dt>
2669 <dd>
2670 <p>
2671 GPRS Tunneling Protocol (GTP) is a group of IP-based communications
2672 protocols used to carry general packet radio service (GPRS) within
2673 GSM, UMTS and LTE networks. GTP-U is used for carrying user data
2674 within the GPRS core network and between the radio access network
2675 and the core network. The user data transported can be packets in
2676 any of IPv4, IPv6, or PPP formats.
2677 </p>
2678
2679 <p>
2680 The protocol is documented at
2681 http://www.3gpp.org/DynaReport/29281.htm
2682 </p>
2683
2684 <p>
2685 Open vSwitch uses UDP destination port 2152. The source port used
2686 for GTP traffic varies on a per-flow basis and is in the ephemeral
2687 port range.
2688 </p>
2689 </dd>
2690
2691 </dl>
2692 </column>
2693 </group>
2694
2695 <group title="Tunnel Options">
2696 <p>
2697 These options apply to interfaces with <ref column="type"/> of
2698 <code>geneve</code>, <code>gre</code>, <code>ip6gre</code>,
2699 <code>vxlan</code>, <code>lisp</code> and <code>stt</code>.
2700 </p>
2701
2702 <p>
2703 Each tunnel must be uniquely identified by the combination of <ref
2704 column="type"/>, <ref column="options" key="remote_ip"/>, <ref
2705 column="options" key="local_ip"/>, and <ref column="options"
2706 key="in_key"/>. If two ports are defined that are the same except one
2707 has an optional identifier and the other does not, the more specific
2708 one is matched first. <ref column="options" key="in_key"/> is
2709 considered more specific than <ref column="options" key="local_ip"/> if
2710 a port defines one and another port defines the other.
2711 </p>
2712
2713 <column name="options" key="remote_ip">
2714 <p>Required. The remote tunnel endpoint, one of:</p>
2715
2716 <ul>
2717 <li>
2718 An IPv4 or IPv6 address (not a DNS name), e.g. <code>192.168.0.123</code>.
2719 Only unicast endpoints are supported.
2720 </li>
2721 <li>
2722 The word <code>flow</code>. The tunnel accepts packets from any
2723 remote tunnel endpoint. To process only packets from a specific
2724 remote tunnel endpoint, the flow entries may match on the
2725 <code>tun_src</code> or <code>tun_ipv6_src</code>field. When
2726 sending packets to a <code>remote_ip=flow</code> tunnel, the flow
2727 actions must explicitly set the <code>tun_dst</code> or
2728 <code>tun_ipv6_dst</code> field to the IP address of the desired
2729 remote tunnel endpoint, e.g. with a <code>set_field</code> action.
2730 </li>
2731 </ul>
2732
2733 <p>
2734 The remote tunnel endpoint for any packet received from a tunnel
2735 is available in the <code>tun_src</code> field for matching in the
2736 flow table.
2737 </p>
2738 </column>
2739
2740 <column name="options" key="local_ip">
2741 <p>
2742 Optional. The tunnel destination IP that received packets must match.
2743 Default is to match all addresses. If specified, may be one of:
2744 </p>
2745
2746 <ul>
2747 <li>
2748 An IPv4/IPv6 address (not a DNS name), e.g. <code>192.168.12.3</code>.
2749 </li>
2750 <li>
2751 The word <code>flow</code>. The tunnel accepts packets sent to any
2752 of the local IP addresses of the system running OVS. To process
2753 only packets sent to a specific IP address, the flow entries may
2754 match on the <code>tun_dst</code> or <code>tun_ipv6_dst</code> field.
2755 When sending packets to a <code>local_ip=flow</code> tunnel, the flow
2756 actions may explicitly set the <code>tun_src</code> or <code>tun_ipv6_src</code>
2757 field to the desired IP address, e.g. with a <code>set_field</code> action.
2758 However, while routing the tunneled packet out, the local system may
2759 override the specified address with the local IP address configured for the
2760 outgoing system interface.
2761
2762 <p>
2763 This option is valid only for tunnels also configured with the
2764 <code>remote_ip=flow</code> option.
2765 </p>
2766 </li>
2767 </ul>
2768
2769 <p>
2770 The tunnel destination IP address for any packet received from a
2771 tunnel is available in the <code>tun_dst</code> or <code>tun_ipv6_dst</code>
2772 field for matching in the flow table.
2773 </p>
2774 </column>
2775
2776 <column name="options" key="in_key">
2777 <p>Optional. The key that received packets must contain, one of:</p>
2778
2779 <ul>
2780 <li>
2781 <code>0</code>. The tunnel receives packets with no key or with a
2782 key of 0. This is equivalent to specifying no <ref column="options"
2783 key="in_key"/> at all.
2784 </li>
2785 <li>
2786 A positive 24-bit (for Geneve, VXLAN, and LISP), 32-bit (for GRE)
2787 or 64-bit (for STT) number. The tunnel receives only
2788 packets with the specified key.
2789 </li>
2790 <li>
2791 The word <code>flow</code>. The tunnel accepts packets with any
2792 key. The key will be placed in the <code>tun_id</code> field for
2793 matching in the flow table. The <code>ovs-fields</code>(7) manual
2794 page contains additional information about matching fields in
2795 OpenFlow flows.
2796 </li>
2797 </ul>
2798
2799 <p>
2800 </p>
2801 </column>
2802
2803 <column name="options" key="out_key">
2804 <p>Optional. The key to be set on outgoing packets, one of:</p>
2805
2806 <ul>
2807 <li>
2808 <code>0</code>. Packets sent through the tunnel will have no key.
2809 This is equivalent to specifying no <ref column="options"
2810 key="out_key"/> at all.
2811 </li>
2812 <li>
2813 A positive 24-bit (for Geneve, VXLAN and LISP), 32-bit (for GRE) or
2814 64-bit (for STT) number. Packets sent through the tunnel
2815 will have the specified key.
2816 </li>
2817 <li>
2818 The word <code>flow</code>. Packets sent through the tunnel will
2819 have the key set using the <code>set_tunnel</code> Nicira OpenFlow
2820 vendor extension (0 is used in the absence of an action). The
2821 <code>ovs-fields</code>(7) manual page contains additional
2822 information about the Nicira OpenFlow vendor extensions.
2823 </li>
2824 </ul>
2825 </column>
2826
2827 <column name="options" key="dst_port">
2828 Optional. The tunnel transport layer destination port, for UDP and TCP
2829 based tunnel protocols (Geneve, VXLAN, LISP, and STT).
2830 </column>
2831
2832 <column name="options" key="key">
2833 Optional. Shorthand to set <code>in_key</code> and
2834 <code>out_key</code> at the same time.
2835 </column>
2836
2837 <column name="options" key="tos">
2838 Optional. The value of the ToS bits to be set on the encapsulating
2839 packet. ToS is interpreted as DSCP and ECN bits, ECN part must be
2840 zero. It may also be the word <code>inherit</code>, in which case
2841 the ToS will be copied from the inner packet if it is IPv4 or IPv6
2842 (otherwise it will be 0). The ECN fields are always inherited.
2843 Default is 0.
2844 </column>
2845
2846 <column name="options" key="ttl">
2847 Optional. The TTL to be set on the encapsulating packet. It may also
2848 be the word <code>inherit</code>, in which case the TTL will be copied
2849 from the inner packet if it is IPv4 or IPv6 (otherwise it will be the
2850 system default, typically 64). Default is the system default TTL.
2851 </column>
2852
2853 <column name="options" key="df_default"
2854 type='{"type": "boolean"}'>
2855 Optional. If enabled, the Don't Fragment bit will be set on tunnel
2856 outer headers to allow path MTU discovery. Default is enabled; set
2857 to <code>false</code> to disable.
2858 </column>
2859
2860 <column name="options" key="egress_pkt_mark">
2861 Optional. The pkt_mark to be set on the encapsulating packet. This
2862 option sets packet mark for the tunnel endpoint for all tunnel packets
2863 including tunnel monitoring.
2864 </column>
2865
2866 <group title="Tunnel Options: lisp only">
2867 <column name="options" key="packet_type"
2868 type='{"type": "string", "enum": ["set",
2869 ["legacy_l3", "ptap"]]}'>
2870 <p>
2871 A LISP tunnel sends and receives only IPv4 and IPv6 packets. This
2872 option controls what how the tunnel represents the packets that it
2873 sends and receives:
2874 </p>
2875
2876 <ul>
2877 <li>
2878 By default, or if this option is <code>legacy_l3</code>, the
2879 tunnel represents packets as Ethernet frames for compatibility
2880 with legacy OpenFlow controllers that expect this behavior.
2881 </li>
2882 <li>
2883 If this option is <code>ptap</code>, the tunnel represents
2884 packets using the <code>packet_type</code> mechanism introduced
2885 in OpenFlow 1.5.
2886 </li>
2887 </ul>
2888 </column>
2889 </group>
2890
2891 <group title="Tunnel Options: vxlan only">
2892
2893 <column name="options" key="exts">
2894 <p>Optional. Comma separated list of optional VXLAN extensions to
2895 enable. The following extensions are supported:</p>
2896
2897 <ul>
2898 <li>
2899 <code>gbp</code>: VXLAN-GBP allows to transport the group policy
2900 context of a packet across the VXLAN tunnel to other network
2901 peers. See the description of <code>tun_gbp_id</code> and
2902 <code>tun_gbp_flags</code> in <code>ovs-fields</code>(7) for
2903 additional information.
2904 (<code>https://tools.ietf.org/html/draft-smith-vxlan-group-policy</code>)
2905 </li>
2906 <li>
2907 <code>gpe</code>: Support for Generic Protocol Encapsulation in
2908 accordance with IETF draft
2909 <code>https://tools.ietf.org/html/draft-ietf-nvo3-vxlan-gpe</code>.
2910 Without this option, a VXLAN packet always encapsulates an
2911 Ethernet frame. With this option, an VXLAN packet may also
2912 encapsulate an IPv4, IPv6, NSH, or MPLS packet.
2913 </li>
2914 </ul>
2915 </column>
2916
2917 <column name="options" key="packet_type"
2918 type='{"type": "string", "enum": ["set",
2919 ["legacy_l2", "legacy_l3", "ptap"]]}'>
2920 <p>
2921 This option controls what types of packets the tunnel sends and
2922 receives and how it represents them:
2923 </p>
2924
2925 <ul>
2926 <li>
2927 By default, or if this option is <code>legacy_l2</code>, the
2928 tunnel sends and receives only Ethernet frames.
2929 </li>
2930 <li>
2931 If this option is <code>legacy_l3</code>, the tunnel sends and
2932 receives only non-Ethernet (L3) packet, but the packets are
2933 represented as Ethernet frames for compatibility with legacy
2934 OpenFlow controllers that expect this behavior. This requires
2935 enabling <code>gpe</code> in <ref column="options" key="exts"/>.
2936 </li>
2937 <li>
2938 If this option is <code>ptap</code>, Open vSwitch represents
2939 packets in the tunnel using the <code>packet_type</code>
2940 mechanism introduced in OpenFlow 1.5. This mechanism supports
2941 any kind of packet, but actually sending and receiving
2942 non-Ethernet packets requires additionally enabling
2943 <code>gpe</code> in <ref column="options" key="exts"/>.
2944 </li>
2945 </ul>
2946 </column>
2947 </group>
2948
2949 <group title="Tunnel Options: gre only">
2950 <p>
2951 <code>gre</code> interfaces support these options.
2952 </p>
2953
2954 <column name="options" key="packet_type"
2955 type='{"type": "string", "enum": ["set",
2956 ["legacy_l2", "legacy_l3", "ptap"]]}'>
2957 <p>
2958 This option controls what types of packets the tunnel sends and
2959 receives and how it represents them:
2960 </p>
2961
2962 <ul>
2963 <li>
2964 By default, or if this option is <code>legacy_l2</code>, the
2965 tunnel sends and receives only Ethernet frames.
2966 </li>
2967 <li>
2968 If this option is <code>legacy_l3</code>, the tunnel sends and
2969 receives only non-Ethernet (L3) packet, but the packets are
2970 represented as Ethernet frames for compatibility with legacy
2971 OpenFlow controllers that expect this behavior.
2972 </li>
2973 <li>
2974 The <code>legacy_l3</code> option is only available via the
2975 user space datapath. The OVS kernel datapath does not support
2976 devices of type ARPHRD_IPGRE which is the requirement for
2977 <code>legacy_l3</code> type packets.
2978 </li>
2979 <li>
2980 If this option is <code>ptap</code>, the tunnel sends and
2981 receives any kind of packet. Open vSwitch represents packets in
2982 the tunnel using the <code>packet_type</code> mechanism
2983 introduced in OpenFlow 1.5.
2984 </li>
2985 </ul>
2986 </column>
2987 <column name="options" key="seq" type='{"type": "boolean"}'>
2988 <p>
2989 Optional. A 4-byte sequence number field for GRE tunnel only.
2990 Default is disabled, set to <code>true</code> to enable.
2991 Sequence number is incremented by one on each outgoing packet.
2992 </p>
2993 </column>
2994 </group>
2995
2996 <group title="Tunnel Options: gre, ip6gre, geneve, and vxlan">
2997 <p>
2998 <code>gre</code>, <code>ip6gre</code>, <code>geneve</code>,
2999 and <code>vxlan</code> interfaces support these options.
3000 </p>
3001
3002 <column name="options" key="csum" type='{"type": "boolean"}'>
3003 <p>
3004 Optional. Compute encapsulation header (either GRE or UDP)
3005 checksums on outgoing packets. Default is disabled, set to
3006 <code>true</code> to enable. Checksums present on incoming
3007 packets will be validated regardless of this setting.
3008 </p>
3009
3010 <p>
3011 When using the upstream Linux kernel module, computation of
3012 checksums for <code>geneve</code> and <code>vxlan</code> requires
3013 Linux kernel version 4.0 or higher. <code>gre</code> and
3014 <code>ip6gre</code> support checksums for all versions of
3015 Open vSwitch that support GRE.
3016 The out of tree kernel module distributed as part of OVS
3017 can compute all tunnel checksums on any kernel version that it
3018 is compatible with.
3019 </p>
3020
3021 </column>
3022 </group>
3023
3024 <group title="Tunnel Options: IPsec">
3025 <p>
3026 Setting any of these options enables IPsec support for a given
3027 tunnel. <code>gre</code>, <code>ip6gre</code>,
3028 <code>geneve</code>, <code>vxlan</code> and <code>stt</code>
3029 interfaces support these options. See the <code>IPsec</code>
3030 section in the <ref table="Open_vSwitch"/> table for a description
3031 of each mode.
3032 </p>
3033 <column name="options" key="psk" type='{"type": "string"}'>
3034 <p>
3035 In PSK mode only, the preshared secret to negotiate tunnel. This
3036 value must match on both tunnel ends.
3037 </p>
3038 </column>
3039 <column name="options" key="remote_cert" type='{"type": "string"}'>
3040 <p>
3041 In self-signed certificate mode only, name of a PEM file
3042 containing a certificate of the remote switch. The certificate
3043 must be x.509 version 3 and with the string in common name (CN)
3044 also set in the subject alternative name (SAN).
3045 </p>
3046 </column>
3047 <column name="options" key="remote_name" type='{"type": "string"}'>
3048 <p>
3049 In CA-signed certificate mode only, common name (CN) of the remote
3050 certificate.
3051 </p>
3052 </column>
3053 </group>
3054 </group>
3055 <group title="Tunnel Options: erspan only">
3056 <p>
3057 Only <code>erspan</code> interfaces support these options.
3058 </p>
3059 <column name="options" key="erspan_idx">
3060 <p>
3061 20 bit index/port number associated with the ERSPAN traffic's
3062 source port and direction (ingress/egress). This field is
3063 platform dependent.
3064 </p>
3065 </column>
3066
3067 <column name="options" key="erspan_ver">
3068 <p>
3069 ERSPAN version: 1 for version 1 (type II)
3070 or 2 for version 2 (type III).
3071 </p>
3072 </column>
3073
3074 <column name="options" key="erspan_dir">
3075 <p>
3076 Specifies the ERSPAN v2 mirrored traffic's direction.
3077 1 for egress traffic, and 0 for ingress traffic.
3078 </p>
3079 </column>
3080
3081 <column name="options" key="erspan_hwid">
3082 <p>
3083 ERSPAN hardware ID is a 6-bit unique identifier of an
3084 ERSPAN v2 engine within a system.
3085 </p>
3086 </column>
3087 </group>
3088
3089 <group title="Patch Options">
3090 <p>
3091 These options apply only to <dfn>patch ports</dfn>, that is, interfaces
3092 whose <ref column="type"/> column is <code>patch</code>. Patch ports
3093 are mainly a way to connect otherwise independent bridges to one
3094 another, similar to how one might plug an Ethernet cable (a ``patch
3095 cable'') into two physical switches to connect those switches. The
3096 effect of plugging a patch port into two switches is conceptually
3097 similar to that of plugging the two ends of a Linux <code>veth</code>
3098 device into those switches, but the implementation of patch ports makes
3099 them much more efficient.
3100 </p>
3101
3102 <p>
3103 Patch ports may connect two different bridges (the usual case) or the
3104 same bridge. In the latter case, take special care to avoid loops,
3105 e.g. by programming appropriate flows with OpenFlow. Patch ports do
3106 not work if its ends are attached to bridges on different datapaths,
3107 e.g. to connect bridges in <code>system</code> and <code>netdev</code>
3108 datapaths.
3109 </p>
3110
3111 <p>
3112 The following command creates and connects patch ports <code>p0</code>
3113 and <code>p1</code> and adds them to bridges <code>br0</code> and
3114 <code>br1</code>, respectively:
3115 </p>
3116
3117 <pre>
3118 ovs-vsctl add-port br0 p0 -- set Interface p0 type=patch options:peer=p1 \
3119 -- add-port br1 p1 -- set Interface p1 type=patch options:peer=p0
3120 </pre>
3121
3122 <column name="options" key="peer">
3123 The <ref column="name"/> of the <ref table="Interface"/> for the other
3124 side of the patch. The named <ref table="Interface"/>'s own
3125 <code>peer</code> option must specify this <ref table="Interface"/>'s
3126 name. That is, the two patch interfaces must have reversed <ref
3127 column="name"/> and <code>peer</code> values.
3128 </column>
3129 </group>
3130
3131 <group title="PMD (Poll Mode Driver) Options">
3132 <p>
3133 Only PMD netdevs support these options.
3134 </p>
3135
3136 <column name="options" key="n_rxq"
3137 type='{"type": "integer", "minInteger": 1}'>
3138 <p>
3139 Specifies the maximum number of rx queues to be created for PMD
3140 netdev. If not specified or specified to 0, one rx queue will
3141 be created by default.
3142 Not supported by DPDK vHost interfaces.
3143 </p>
3144 </column>
3145
3146 <column name="options" key="dpdk-devargs"
3147 type='{"type": "string"}'>
3148 <p>
3149 Specifies the PCI address associated with the port for physical
3150 devices, or the virtual driver to be used for the port when a virtual
3151 PMD is intended to be used. For the latter, the argument string
3152 typically takes the form of
3153 <code>eth_<var>driver_name</var><var>x</var></code>, where
3154 <var>driver_name</var> is a valid virtual DPDK PMD driver name and
3155 <var>x</var> is a unique identifier of your choice for the given
3156 port. Only supported by the dpdk port type.
3157 </p>
3158 </column>
3159
3160 <column name="other_config" key="pmd-rxq-affinity">
3161 <p>Specifies mapping of RX queues of this interface to CPU cores.</p>
3162 <p>Value should be set in the following form:</p>
3163 <p>
3164 <code>other_config:pmd-rxq-affinity=&lt;rxq-affinity-list&gt;</code>
3165 </p>
3166 <p>where</p>
3167 <p>
3168 <ul>
3169 <li>
3170 &lt;rxq-affinity-list&gt; ::= NULL | &lt;non-empty-list&gt;
3171 </li>
3172 <li>
3173 &lt;non-empty-list&gt; ::= &lt;affinity-pair&gt; |
3174 &lt;affinity-pair&gt; , &lt;non-empty-list&gt;
3175 </li>
3176 <li>
3177 &lt;affinity-pair&gt; ::= &lt;queue-id&gt; : &lt;core-id&gt;
3178 </li>
3179 </ul>
3180 </p>
3181 </column>
3182
3183 <column name="options" key="xdp-mode"
3184 type='{"type": "string",
3185 "enum": ["set", ["best-effort", "native-with-zerocopy",
3186 "native", "generic"]]}'>
3187 <p>
3188 Specifies the operational mode of the XDP program.
3189 <p>
3190 In <code>native-with-zerocopy</code> mode the XDP program is loaded
3191 into the device driver with zero-copy RX and TX enabled. This mode
3192 requires device driver support and has the best performance because
3193 there should be no copying of packets.
3194 </p>
3195 <p>
3196 <code>native</code> is the same as
3197 <code>native-with-zerocopy</code>, but without zero-copy
3198 capability. This requires at least one copy between kernel and the
3199 userspace. This mode also requires support from device driver.
3200 </p>
3201 <p>
3202 In <code>generic</code> case the XDP program in kernel works after
3203 skb allocation on early stages of packet processing inside the
3204 network stack. This mode doesn't require driver support, but has
3205 much lower performance.
3206 </p>
3207 <p>
3208 <code>best-effort</code> tries to detect and choose the best
3209 (fastest) from the available modes for current interface.
3210 </p>
3211 <p>
3212 Note that this option is specific to netdev-afxdp.
3213 Defaults to <code>best-effort</code> mode.
3214 </p>
3215 </p>
3216 </column>
3217
3218 <column name="options" key="use-need-wakeup"
3219 type='{"type": "boolean"}'>
3220 <p>
3221 Specifies whether to use need_wakeup feature in afxdp netdev.
3222 If enabled, OVS explicitly wakes up the kernel RX, using poll()
3223 syscall and wakes up TX, using sendto() syscall. For physical
3224 devices, this feature improves the performance by avoiding
3225 unnecessary sendto syscalls.
3226 Defaults to true if supported by libbpf.
3227 </p>
3228 </column>
3229
3230 <column name="options" key="vhost-server-path"
3231 type='{"type": "string"}'>
3232 <p>
3233 The value specifies the path to the socket associated with a vHost
3234 User client mode device that has been or will be created by QEMU.
3235 Only supported by dpdkvhostuserclient interfaces.
3236 </p>
3237 </column>
3238
3239 <column name="options" key="tx-retries-max"
3240 type='{"type": "integer", "minInteger": 0, "maxInteger": 32}'>
3241 <p>
3242 The value specifies the maximum amount of vhost tx retries that can
3243 be made while trying to send a batch of packets to an interface.
3244 Only supported by dpdkvhostuserclient interfaces.
3245 </p>
3246 <p>
3247 Default value is 8.
3248 </p>
3249 </column>
3250
3251 <column name="options" key="n_rxq_desc"
3252 type='{"type": "integer", "minInteger": 1, "maxInteger": 4096}'>
3253 <p>
3254 Specifies the rx queue size (number rx descriptors) for dpdk ports.
3255 The value must be a power of 2, less than 4096 and supported
3256 by the hardware of the device being configured.
3257 If not specified or an incorrect value is specified, 2048 rx
3258 descriptors will be used by default.
3259 </p>
3260 </column>
3261
3262 <column name="options" key="n_txq_desc"
3263 type='{"type": "integer", "minInteger": 1, "maxInteger": 4096}'>
3264 <p>
3265 Specifies the tx queue size (number tx descriptors) for dpdk ports.
3266 The value must be a power of 2, less than 4096 and supported
3267 by the hardware of the device being configured.
3268 If not specified or an incorrect value is specified, 2048 tx
3269 descriptors will be used by default.
3270 </p>
3271 </column>
3272 </group>
3273
3274 <group title="EMC (Exact Match Cache) Configuration">
3275 <p>
3276 These settings controls behaviour of EMC lookups/insertions for packets
3277 received from the interface.
3278 </p>
3279
3280 <column name="other_config" key="emc-enable" type='{"type": "boolean"}'>
3281 <p>
3282 Specifies if Exact Match Cache (EMC) should be used while processing
3283 packets received from this interface.
3284 If true, <ref table="Open_vSwitch" column="other_config"
3285 key="emc-insert-inv-prob"/> will have effect on this interface.
3286 </p>
3287 <p>
3288 Defaults to true.
3289 </p>
3290 </column>
3291 </group>
3292
3293 <group title="MTU">
3294 <p>
3295 The MTU (maximum transmission unit) is the largest amount of data
3296 that can fit into a single Ethernet frame. The standard Ethernet
3297 MTU is 1500 bytes. Some physical media and many kinds of virtual
3298 interfaces can be configured with higher MTUs.
3299 </p>
3300
3301 <p>
3302 A client may change an interface MTU by filling in
3303 <ref column="mtu_request"/>. Open vSwitch then reports in
3304 <ref column="mtu"/> the currently configured value.
3305 </p>
3306
3307 <column name="mtu">
3308 <p>
3309 The currently configured MTU for the interface.
3310 </p>
3311
3312 <p>
3313 This column will be empty for an interface that does not
3314 have an MTU as, for example, some kinds of tunnels do not.
3315 </p>
3316
3317 <p>
3318 Open vSwitch sets this column's value, so other clients should treat
3319 it as read-only.
3320 </p>
3321 </column>
3322
3323 <column name="mtu_request"
3324 type='{"type": "integer", "minInteger": 1}'>
3325 <p>
3326 Requested MTU (Maximum Transmission Unit) for the interface. A client
3327 can fill this column to change the MTU of an interface.
3328 </p>
3329
3330 <p>
3331 RFC 791 requires every internet module to be able to forward a
3332 datagram of 68 octets without further fragmentation. The maximum
3333 size of an IP packet is 65535 bytes.
3334 </p>
3335
3336 <p>
3337 If this is not set and if the interface has <code>internal</code>
3338 type, Open vSwitch will change the MTU to match the minimum of the
3339 other interfaces in the bridge.
3340 </p>
3341 </column>
3342
3343 </group>
3344
3345 <group title="Interface Status">
3346 <p>
3347 Status information about interfaces attached to bridges, updated every
3348 5 seconds. Not all interfaces have all of these properties; virtual
3349 interfaces don't have a link speed, for example. Non-applicable
3350 columns will have empty values.
3351 </p>
3352 <column name="admin_state">
3353 <p>
3354 The administrative state of the physical network link.
3355 </p>
3356 </column>
3357
3358 <column name="link_state">
3359 <p>
3360 The observed state of the physical network link. This is ordinarily
3361 the link's carrier status. If the interface's <ref table="Port"/> is
3362 a bond configured for miimon monitoring, it is instead the network
3363 link's miimon status.
3364 </p>
3365 </column>
3366
3367 <column name="link_resets">
3368 <p>
3369 The number of times Open vSwitch has observed the
3370 <ref column="link_state"/> of this <ref table="Interface"/> change.
3371 </p>
3372 </column>
3373
3374 <column name="link_speed">
3375 <p>
3376 The negotiated speed of the physical network link.
3377 Valid values are positive integers greater than 0.
3378 </p>
3379 </column>
3380
3381 <column name="duplex">
3382 <p>
3383 The duplex mode of the physical network link.
3384 </p>
3385 </column>
3386
3387 <column name="lacp_current">
3388 Boolean value indicating LACP status for this interface. If true, this
3389 interface has current LACP information about its LACP partner. This
3390 information may be used to monitor the health of interfaces in a LACP
3391 enabled port. This column will be empty if LACP is not enabled.
3392 </column>
3393
3394 <column name="status">
3395 Key-value pairs that report port status. Supported status values are
3396 <ref column="type"/>-dependent; some interfaces may not have a valid
3397 <ref column="status" key="driver_name"/>, for example.
3398 </column>
3399
3400 <column name="status" key="driver_name">
3401 The name of the device driver controlling the network adapter.
3402 </column>
3403
3404 <column name="status" key="driver_version">
3405 The version string of the device driver controlling the network
3406 adapter.
3407 </column>
3408
3409 <column name="status" key="firmware_version">
3410 The version string of the network adapter's firmware, if available.
3411 </column>
3412
3413 <column name="status" key="source_ip">
3414 The source IP address used for an IPv4/IPv6 tunnel end-point, such as
3415 <code>gre</code>.
3416 </column>
3417
3418 <column name="status" key="tunnel_egress_iface">
3419 Egress interface for tunnels. Currently only relevant for tunnels
3420 on Linux systems, this column will show the name of the interface
3421 which is responsible for routing traffic destined for the configured
3422 <ref column="options" key="remote_ip"/>. This could be an internal
3423 interface such as a bridge port.
3424 </column>
3425
3426 <column name="status" key="tunnel_egress_iface_carrier"
3427 type='{"type": "string", "enum": ["set", ["down", "up"]]}'>
3428 Whether carrier is detected on <ref column="status"
3429 key="tunnel_egress_iface"/>.
3430 </column>
3431
3432 <group title="dpdk">
3433 <p>
3434 DPDK specific interface status options.
3435 </p>
3436
3437 <column name="status" key="port_no">
3438 DPDK port ID.
3439 </column>
3440
3441 <column name="status" key="numa_id">
3442 NUMA socket ID to which an Ethernet device is connected.
3443 </column>
3444
3445 <column name="status" key="min_rx_bufsize">
3446 Minimum size of RX buffer.
3447 </column>
3448
3449 <column name="status" key="max_rx_pktlen">
3450 Maximum configurable length of RX pkt.
3451 </column>
3452
3453 <column name="status" key="max_rx_queues">
3454 Maximum number of RX queues.
3455 </column>
3456
3457 <column name="status" key="max_tx_queues">
3458 Maximum number of TX queues.
3459 </column>
3460
3461 <column name="status" key="max_mac_addrs">
3462 Maximum number of MAC addresses.
3463 </column>
3464
3465 <column name="status" key="max_hash_mac_addrs">
3466 Maximum number of hash MAC addresses for MTA and UTA.
3467 </column>
3468
3469 <column name="status" key="max_vfs">
3470 Maximum number of hash MAC addresses for MTA and UTA.
3471 Maximum number of VFs.
3472 </column>
3473
3474 <column name="status" key="max_vmdq_pools">
3475 Maximum number of VMDq pools.
3476 </column>
3477
3478 <column name="status" key="if_type">
3479 Interface type ID according to IANA ifTYPE MIB definitions.
3480 </column>
3481
3482 <column name="status" key="if_descr">
3483 Interface description string.
3484 </column>
3485
3486 <column name="status" key="pci-vendor_id">
3487 Vendor ID of PCI device.
3488 </column>
3489
3490 <column name="status" key="pci-device_id">
3491 Device ID of PCI device.
3492 </column>
3493
3494 </group>
3495 </group>
3496
3497 <group title="Statistics">
3498 <p>
3499 Key-value pairs that report interface statistics. The current
3500 implementation updates these counters periodically. The update period
3501 is controlled by <ref column="other_config"
3502 key="stats-update-interval"/> in the <code>Open_vSwitch</code> table.
3503 Future implementations may update them when an interface is created,
3504 when they are queried (e.g. using an OVSDB <code>select</code>
3505 operation), and just before an interface is deleted due to virtual
3506 interface hot-unplug or VM shutdown, and perhaps at other times, but
3507 not on any regular periodic basis.
3508 </p>
3509 <p>
3510 These are the same statistics reported by OpenFlow in its <code>struct
3511 ofp_port_stats</code> structure. If an interface does not support a
3512 given statistic, then that pair is omitted.
3513 </p>
3514 <group title="Statistics: Successful transmit and receive counters">
3515 <column name="statistics" key="rx_packets">
3516 Number of received packets.
3517 </column>
3518 <column name="statistics" key="rx_bytes">
3519 Number of received bytes.
3520 </column>
3521 <column name="statistics" key="tx_packets">
3522 Number of transmitted packets.
3523 </column>
3524 <column name="statistics" key="tx_bytes">
3525 Number of transmitted bytes.
3526 </column>
3527 </group>
3528 <group title="Statistics: Receive errors">
3529 <column name="statistics" key="rx_dropped">
3530 Number of packets dropped by RX.
3531 </column>
3532 <column name="statistics" key="rx_frame_err">
3533 Number of frame alignment errors.
3534 </column>
3535 <column name="statistics" key="rx_over_err">
3536 Number of packets with RX overrun.
3537 </column>
3538 <column name="statistics" key="rx_crc_err">
3539 Number of CRC errors.
3540 </column>
3541 <column name="statistics" key="rx_errors">
3542 Total number of receive errors, greater than or equal to the sum of
3543 the above.
3544 </column>
3545 </group>
3546 <group title="Statistics: Transmit errors">
3547 <column name="statistics" key="tx_dropped">
3548 Number of packets dropped by TX.
3549 </column>
3550 <column name="statistics" key="collisions">
3551 Number of collisions.
3552 </column>
3553 <column name="statistics" key="tx_errors">
3554 Total number of transmit errors, greater than or equal to the sum of
3555 the above.
3556 </column>
3557 </group>
3558 </group>
3559
3560 <group title="Ingress Policing">
3561 <p>
3562 These settings control ingress policing for packets received on this
3563 interface. On a physical interface, this limits the rate at which
3564 traffic is allowed into the system from the outside; on a virtual
3565 interface (one connected to a virtual machine), this limits the rate at
3566 which the VM is able to transmit.
3567 </p>
3568 <p>
3569 Policing is a simple form of quality-of-service that simply drops
3570 packets received in excess of the configured rate. Due to its
3571 simplicity, policing is usually less accurate and less effective than
3572 egress QoS (which is configured using the <ref table="QoS"/> and <ref
3573 table="Queue"/> tables).
3574 </p>
3575 <p>
3576 Policing is currently implemented on Linux and OVS with DPDK. Both
3577 implementations use a simple ``token bucket'' approach:
3578 </p>
3579 <ul>
3580 <li>
3581 The size of the bucket corresponds to <ref
3582 column="ingress_policing_burst"/>. Initially the bucket is full.
3583 </li>
3584 <li>
3585 Whenever a packet is received, its size (converted to tokens) is
3586 compared to the number of tokens currently in the bucket. If the
3587 required number of tokens are available, they are removed and the
3588 packet is forwarded. Otherwise, the packet is dropped.
3589 </li>
3590 <li>
3591 Whenever it is not full, the bucket is refilled with tokens at the
3592 rate specified by <ref column="ingress_policing_rate"/>.
3593 </li>
3594 </ul>
3595 <p>
3596 Policing interacts badly with some network protocols, and especially
3597 with fragmented IP packets. Suppose that there is enough network
3598 activity to keep the bucket nearly empty all the time. Then this token
3599 bucket algorithm will forward a single packet every so often, with the
3600 period depending on packet size and on the configured rate. All of the
3601 fragments of an IP packets are normally transmitted back-to-back, as a
3602 group. In such a situation, therefore, only one of these fragments
3603 will be forwarded and the rest will be dropped. IP does not provide
3604 any way for the intended recipient to ask for only the remaining
3605 fragments. In such a case there are two likely possibilities for what
3606 will happen next: either all of the fragments will eventually be
3607 retransmitted (as TCP will do), in which case the same problem will
3608 recur, or the sender will not realize that its packet has been dropped
3609 and data will simply be lost (as some UDP-based protocols will do).
3610 Either way, it is possible that no forward progress will ever occur.
3611 </p>
3612 <column name="ingress_policing_rate">
3613 <p>
3614 Maximum rate for data received on this interface, in kbps. Data
3615 received faster than this rate is dropped. Set to <code>0</code>
3616 (the default) to disable policing.
3617 </p>
3618 </column>
3619
3620 <column name="ingress_policing_burst">
3621 <p>Maximum burst size for data received on this interface, in kb. The
3622 default burst size if set to <code>0</code> is 8000 kbit. This value
3623 has no effect if <ref column="ingress_policing_rate"/>
3624 is <code>0</code>.</p>
3625 <p>
3626 Specifying a larger burst size lets the algorithm be more forgiving,
3627 which is important for protocols like TCP that react severely to
3628 dropped packets. The burst size should be at least the size of the
3629 interface's MTU. Specifying a value that is numerically at least as
3630 large as 80% of <ref column="ingress_policing_rate"/> helps TCP come
3631 closer to achieving the full rate.
3632 </p>
3633 </column>
3634 </group>
3635
3636 <group title="Bidirectional Forwarding Detection (BFD)">
3637 <p>
3638 BFD, defined in RFC 5880 and RFC 5881, allows point-to-point
3639 detection of connectivity failures by occasional transmission of
3640 BFD control messages. Open vSwitch implements BFD to serve
3641 as a more popular and standards compliant alternative to CFM.
3642 </p>
3643
3644 <p>
3645 BFD operates by regularly transmitting BFD control messages at a rate
3646 negotiated independently in each direction. Each endpoint specifies
3647 the rate at which it expects to receive control messages, and the rate
3648 at which it is willing to transmit them. By default, Open vSwitch uses
3649 a detection multiplier of three, meaning that an endpoint signals a
3650 connectivity fault if three consecutive BFD control messages fail to
3651 arrive. In the case of a unidirectional connectivity issue, the system
3652 not receiving BFD control messages signals the problem to its peer in
3653 the messages it transmits.
3654 </p>
3655
3656 <p>
3657 The Open vSwitch implementation of BFD aims to comply faithfully
3658 with RFC 5880 requirements. Open vSwitch does not implement the
3659 optional Authentication or ``Echo Mode'' features.
3660 </p>
3661
3662 <p>
3663 OVS 2.13 and earlier intercepted and processed all BFD packets.
3664 OVS 2.14 and later only intercept and process BFD packets destined
3665 to a configured BFD instance, and other BFD packets are made available
3666 to the OVS flow table for forwarding.
3667 </p>
3668
3669 <group title="BFD Configuration">
3670 <p>
3671 A controller sets up key-value pairs in the <ref column="bfd"/>
3672 column to enable and configure BFD.
3673 </p>
3674
3675 <column name="bfd" key="enable" type='{"type": "boolean"}'>
3676 True to enable BFD on this <ref table="Interface"/>. If not
3677 specified, BFD will not be enabled by default.
3678 </column>
3679
3680 <column name="bfd" key="min_rx"
3681 type='{"type": "integer", "minInteger": 1}'>
3682 The shortest interval, in milliseconds, at which this BFD session
3683 offers to receive BFD control messages. The remote endpoint may
3684 choose to send messages at a slower rate. Defaults to
3685 <code>1000</code>.
3686 </column>
3687
3688 <column name="bfd" key="min_tx"
3689 type='{"type": "integer", "minInteger": 1}'>
3690 The shortest interval, in milliseconds, at which this BFD session is
3691 willing to transmit BFD control messages. Messages will actually be
3692 transmitted at a slower rate if the remote endpoint is not willing to
3693 receive as quickly as specified. Defaults to <code>100</code>.
3694 </column>
3695
3696 <column name="bfd" key="decay_min_rx" type='{"type": "integer"}'>
3697 An alternate receive interval, in milliseconds, that must be greater
3698 than or equal to <ref column="bfd" key="min_rx"/>. The
3699 implementation switches from <ref column="bfd" key="min_rx"/> to <ref
3700 column="bfd" key="decay_min_rx"/> when there is no obvious incoming
3701 data traffic at the interface, to reduce the CPU and bandwidth cost
3702 of monitoring an idle interface. This feature may be disabled by
3703 setting a value of 0. This feature is reset whenever <ref
3704 column="bfd" key="decay_min_rx"/> or <ref column="bfd" key="min_rx"/>
3705 changes.
3706 </column>
3707
3708 <column name="bfd" key="forwarding_if_rx" type='{"type": "boolean"}'>
3709 When <code>true</code>, traffic received on the
3710 <ref table="Interface"/> is used to indicate the capability of packet
3711 I/O. BFD control packets are still transmitted and received. At
3712 least one BFD control packet must be received every 100 * <ref
3713 column="bfd" key="min_rx"/> amount of time. Otherwise, even if
3714 traffic are received, the <ref column="bfd" key="forwarding"/>
3715 will be <code>false</code>.
3716 </column>
3717
3718 <column name="bfd" key="cpath_down" type='{"type": "boolean"}'>
3719 Set to true to notify the remote endpoint that traffic should not be
3720 forwarded to this system for some reason other than a connectivty
3721 failure on the interface being monitored. The typical underlying
3722 reason is ``concatenated path down,'' that is, that connectivity
3723 beyond the local system is down. Defaults to false.
3724 </column>
3725
3726 <column name="bfd" key="check_tnl_key" type='{"type": "boolean"}'>
3727 Set to true to make BFD accept only control messages with a tunnel
3728 key of zero. By default, BFD accepts control messages with any
3729 tunnel key.
3730 </column>
3731
3732 <column name="bfd" key="bfd_local_src_mac">
3733 Set to an Ethernet address in the form
3734 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>
3735 to set the MAC used as source for transmitted BFD packets. The
3736 default is the mac address of the BFD enabled interface.
3737 </column>
3738
3739 <column name="bfd" key="bfd_local_dst_mac">
3740 Set to an Ethernet address in the form
3741 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>
3742 to set the MAC used as destination for transmitted BFD packets. The
3743 default is <code>00:23:20:00:00:01</code>.
3744 </column>
3745
3746 <column name="bfd" key="bfd_remote_dst_mac">
3747 Set to an Ethernet address in the form
3748 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>
3749 to set the MAC used for checking the destination of received BFD packets.
3750 Packets with different destination MAC will not be considered as BFD packets.
3751 If not specified the destination MAC address of received BFD packets
3752 are not checked.
3753 </column>
3754
3755 <column name="bfd" key="bfd_src_ip">
3756 Set to an IPv4 address to set the IP address used as source for
3757 transmitted BFD packets. The default is <code>169.254.1.1</code>.
3758 </column>
3759
3760 <column name="bfd" key="bfd_dst_ip">
3761 Set to an IPv4 address to set the IP address used as destination
3762 for transmitted BFD packets. The default is <code>169.254.1.0</code>.
3763 </column>
3764
3765 <column name="bfd" key="oam">
3766 Some tunnel protocols (such as Geneve) include a bit in the header
3767 to indicate that the encapsulated packet is an OAM frame. By setting
3768 this to true, BFD packets will be marked as OAM if encapsulated in
3769 one of these tunnels.
3770 </column>
3771
3772 <column name="bfd" key="mult"
3773 type='{"type": "integer", "minInteger": 1, "maxInteger": 255}'>
3774 The BFD detection multiplier, which defaults to 3. An endpoint
3775 signals a connectivity fault if the given number of consecutive BFD
3776 control messages fail to arrive.
3777 </column>
3778 </group>
3779
3780 <group title="BFD Status">
3781 <p>
3782 The switch sets key-value pairs in the <ref column="bfd_status"/>
3783 column to report the status of BFD on this interface. When BFD is
3784 not enabled, with <ref column="bfd" key="enable"/>, the switch clears
3785 all key-value pairs from <ref column="bfd_status"/>.
3786 </p>
3787
3788 <column name="bfd_status" key="state"
3789 type='{"type": "string",
3790 "enum": ["set", ["admin_down", "down", "init", "up"]]}'>
3791 Reports the state of the BFD session. The BFD session is fully
3792 healthy and negotiated if <code>UP</code>.
3793 </column>
3794
3795 <column name="bfd_status" key="forwarding" type='{"type": "boolean"}'>
3796 Reports whether the BFD session believes this <ref
3797 table="Interface"/> may be used to forward traffic. Typically this
3798 means the local session is signaling <code>UP</code>, and the remote
3799 system isn't signaling a problem such as concatenated path down.
3800 </column>
3801
3802 <column name="bfd_status" key="diagnostic">
3803 A diagnostic code specifying the local system's reason for the
3804 last change in session state. The error messages are defined in
3805 section 4.1 of [RFC 5880].
3806 </column>
3807
3808 <column name="bfd_status" key="remote_state"
3809 type='{"type": "string",
3810 "enum": ["set", ["admin_down", "down", "init", "up"]]}'>
3811 Reports the state of the remote endpoint's BFD session.
3812 </column>
3813
3814 <column name="bfd_status" key="remote_diagnostic">
3815 A diagnostic code specifying the remote system's reason for the
3816 last change in session state. The error messages are defined in
3817 section 4.1 of [RFC 5880].
3818 </column>
3819
3820 <column name="bfd_status" key="flap_count"
3821 type='{"type": "integer", "minInteger": 0}'>
3822 Counts the number of <ref column="bfd_status" key="forwarding" />
3823 flaps since start. A flap is considered as a change of the
3824 <ref column="bfd_status" key="forwarding" /> value.
3825 </column>
3826 </group>
3827 </group>
3828
3829 <group title="Connectivity Fault Management">
3830 <p>
3831 802.1ag Connectivity Fault Management (CFM) allows a group of
3832 Maintenance Points (MPs) called a Maintenance Association (MA) to
3833 detect connectivity problems with each other. MPs within a MA should
3834 have complete and exclusive interconnectivity. This is verified by
3835 occasionally broadcasting Continuity Check Messages (CCMs) at a
3836 configurable transmission interval.
3837 </p>
3838
3839 <p>
3840 According to the 802.1ag specification, each Maintenance Point should
3841 be configured out-of-band with a list of Remote Maintenance Points it
3842 should have connectivity to. Open vSwitch differs from the
3843 specification in this area. It simply assumes the link is faulted if
3844 no Remote Maintenance Points are reachable, and considers it not
3845 faulted otherwise.
3846 </p>
3847
3848 <p>
3849 When operating over tunnels which have no <code>in_key</code>, or an
3850 <code>in_key</code> of <code>flow</code>. CFM will only accept CCMs
3851 with a tunnel key of zero.
3852 </p>
3853
3854 <column name="cfm_mpid">
3855 <p>
3856 A Maintenance Point ID (MPID) uniquely identifies each endpoint
3857 within a Maintenance Association. The MPID is used to identify this
3858 endpoint to other Maintenance Points in the MA. Each end of a link
3859 being monitored should have a different MPID. Must be configured to
3860 enable CFM on this <ref table="Interface"/>.
3861 </p>
3862 <p>
3863 According to the 802.1ag specification, MPIDs can only range between
3864 [1, 8191]. However, extended mode (see <ref column="other_config"
3865 key="cfm_extended"/>) supports eight byte MPIDs.
3866 </p>
3867 </column>
3868
3869 <column name="cfm_flap_count">
3870 Counts the number of cfm fault flapps since boot. A flap is
3871 considered to be a change of the <ref column="cfm_fault"/> value.
3872 </column>
3873
3874 <column name="cfm_fault">
3875 <p>
3876 Indicates a connectivity fault triggered by an inability to receive
3877 heartbeats from any remote endpoint. When a fault is triggered on
3878 <ref table="Interface"/>s participating in bonds, they will be
3879 disabled.
3880 </p>
3881 <p>
3882 Faults can be triggered for several reasons. Most importantly they
3883 are triggered when no CCMs are received for a period of 3.5 times the
3884 transmission interval. Faults are also triggered when any CCMs
3885 indicate that a Remote Maintenance Point is not receiving CCMs but
3886 able to send them. Finally, a fault is triggered if a CCM is
3887 received which indicates unexpected configuration. Notably, this
3888 case arises when a CCM is received which advertises the local MPID.
3889 </p>
3890 </column>
3891
3892 <column name="cfm_fault_status" key="recv">
3893 Indicates a CFM fault was triggered due to a lack of CCMs received on
3894 the <ref table="Interface"/>.
3895 </column>
3896
3897 <column name="cfm_fault_status" key="rdi">
3898 Indicates a CFM fault was triggered due to the reception of a CCM with
3899 the RDI bit flagged. Endpoints set the RDI bit in their CCMs when they
3900 are not receiving CCMs themselves. This typically indicates a
3901 unidirectional connectivity failure.
3902 </column>
3903
3904 <column name="cfm_fault_status" key="maid">
3905 Indicates a CFM fault was triggered due to the reception of a CCM with
3906 a MAID other than the one Open vSwitch uses. CFM broadcasts are tagged
3907 with an identification number in addition to the MPID called the MAID.
3908 Open vSwitch only supports receiving CCM broadcasts tagged with the
3909 MAID it uses internally.
3910 </column>
3911
3912 <column name="cfm_fault_status" key="loopback">
3913 Indicates a CFM fault was triggered due to the reception of a CCM
3914 advertising the same MPID configured in the <ref column="cfm_mpid"/>
3915 column of this <ref table="Interface"/>. This may indicate a loop in
3916 the network.
3917 </column>
3918
3919 <column name="cfm_fault_status" key="overflow">
3920 Indicates a CFM fault was triggered because the CFM module received
3921 CCMs from more remote endpoints than it can keep track of.
3922 </column>
3923
3924 <column name="cfm_fault_status" key="override">
3925 Indicates a CFM fault was manually triggered by an administrator using
3926 an <code>ovs-appctl</code> command.
3927 </column>
3928
3929 <column name="cfm_fault_status" key="interval">
3930 Indicates a CFM fault was triggered due to the reception of a CCM
3931 frame having an invalid interval.
3932 </column>
3933
3934 <column name="cfm_remote_opstate">
3935 <p>When in extended mode, indicates the operational state of the
3936 remote endpoint as either <code>up</code> or <code>down</code>. See
3937 <ref column="other_config" key="cfm_opstate"/>.
3938 </p>
3939 </column>
3940
3941 <column name="cfm_health">
3942 <p>
3943 Indicates the health of the interface as a percentage of CCM frames
3944 received over 21 <ref column="other_config" key="cfm_interval"/>s.
3945 The health of an interface is undefined if it is communicating with
3946 more than one <ref column="cfm_remote_mpids"/>. It reduces if
3947 healthy heartbeats are not received at the expected rate, and
3948 gradually improves as healthy heartbeats are received at the desired
3949 rate. Every 21 <ref column="other_config" key="cfm_interval"/>s, the
3950 health of the interface is refreshed.
3951 </p>
3952 <p>
3953 As mentioned above, the faults can be triggered for several reasons.
3954 The link health will deteriorate even if heartbeats are received but
3955 they are reported to be unhealthy. An unhealthy heartbeat in this
3956 context is a heartbeat for which either some fault is set or is out
3957 of sequence. The interface health can be 100 only on receiving
3958 healthy heartbeats at the desired rate.
3959 </p>
3960 </column>
3961
3962 <column name="cfm_remote_mpids">
3963 When CFM is properly configured, Open vSwitch will occasionally
3964 receive CCM broadcasts. These broadcasts contain the MPID of the
3965 sending Maintenance Point. The list of MPIDs from which this
3966 <ref table="Interface"/> is receiving broadcasts from is regularly
3967 collected and written to this column.
3968 </column>
3969
3970 <column name="other_config" key="cfm_interval"
3971 type='{"type": "integer"}'>
3972 <p>
3973 The interval, in milliseconds, between transmissions of CFM
3974 heartbeats. Three missed heartbeat receptions indicate a
3975 connectivity fault.
3976 </p>
3977
3978 <p>
3979 In standard operation only intervals of 3, 10, 100, 1,000, 10,000,
3980 60,000, or 600,000 ms are supported. Other values will be rounded
3981 down to the nearest value on the list. Extended mode (see <ref
3982 column="other_config" key="cfm_extended"/>) supports any interval up
3983 to 65,535 ms. In either mode, the default is 1000 ms.
3984 </p>
3985
3986 <p>We do not recommend using intervals less than 100 ms.</p>
3987 </column>
3988
3989 <column name="other_config" key="cfm_extended"
3990 type='{"type": "boolean"}'>
3991 When <code>true</code>, the CFM module operates in extended mode. This
3992 causes it to use a nonstandard destination address to avoid conflicting
3993 with compliant implementations which may be running concurrently on the
3994 network. Furthermore, extended mode increases the accuracy of the
3995 <code>cfm_interval</code> configuration parameter by breaking wire
3996 compatibility with 802.1ag compliant implementations. And extended
3997 mode allows eight byte MPIDs. Defaults to <code>false</code>.
3998 </column>
3999
4000 <column name="other_config" key="cfm_demand" type='{"type": "boolean"}'>
4001 <p>
4002 When <code>true</code>, and
4003 <ref column="other_config" key="cfm_extended"/> is true, the CFM
4004 module operates in demand mode. When in demand mode, traffic
4005 received on the <ref table="Interface"/> is used to indicate
4006 liveness. CCMs are still transmitted and received. At least one
4007 CCM must be received every 100 * <ref column="other_config"
4008 key="cfm_interval"/> amount of time. Otherwise, even if traffic
4009 are received, the CFM module will raise the connectivity fault.
4010 </p>
4011
4012 <p>
4013 Demand mode has a couple of caveats:
4014 <ul>
4015 <li>
4016 To ensure that ovs-vswitchd has enough time to pull statistics
4017 from the datapath, the fault detection interval is set to
4018 3.5 * MAX(<ref column="other_config" key="cfm_interval"/>, 500)
4019 ms.
4020 </li>
4021
4022 <li>
4023 To avoid ambiguity, demand mode disables itself when there are
4024 multiple remote maintenance points.
4025 </li>
4026
4027 <li>
4028 If the <ref table="Interface"/> is heavily congested, CCMs
4029 containing the <ref column="other_config" key="cfm_opstate"/>
4030 status may be dropped causing changes in the operational state to
4031 be delayed. Similarly, if CCMs containing the RDI bit are not
4032 received, unidirectional link failures may not be detected.
4033 </li>
4034 </ul>
4035 </p>
4036 </column>
4037
4038 <column name="other_config" key="cfm_opstate"
4039 type='{"type": "string", "enum": ["set", ["down", "up"]]}'>
4040 When <code>down</code>, the CFM module marks all CCMs it generates as
4041 operationally down without triggering a fault. This allows remote
4042 maintenance points to choose not to forward traffic to the
4043 <ref table="Interface"/> on which this CFM module is running.
4044 Currently, in Open vSwitch, the opdown bit of CCMs affects
4045 <ref table="Interface"/>s participating in bonds, and the bundle
4046 OpenFlow action. This setting is ignored when CFM is not in extended
4047 mode. Defaults to <code>up</code>.
4048 </column>
4049
4050 <column name="other_config" key="cfm_ccm_vlan"
4051 type='{"type": "integer", "minInteger": 1, "maxInteger": 4095}'>
4052 When set, the CFM module will apply a VLAN tag to all CCMs it generates
4053 with the given value. May be the string <code>random</code> in which
4054 case each CCM will be tagged with a different randomly generated VLAN.
4055 </column>
4056
4057 <column name="other_config" key="cfm_ccm_pcp"
4058 type='{"type": "integer", "minInteger": 1, "maxInteger": 7}'>
4059 When set, the CFM module will apply a VLAN tag to all CCMs it generates
4060 with the given PCP value, the VLAN ID of the tag is governed by the
4061 value of <ref column="other_config" key="cfm_ccm_vlan"/>. If
4062 <ref column="other_config" key="cfm_ccm_vlan"/> is unset, a VLAN ID of
4063 zero is used.
4064 </column>
4065
4066 </group>
4067
4068 <group title="Bonding Configuration">
4069 <column name="other_config" key="lacp-port-id"
4070 type='{"type": "integer", "minInteger": 1, "maxInteger": 65535}'>
4071 The LACP port ID of this <ref table="Interface"/>. Port IDs are
4072 used in LACP negotiations to identify individual ports
4073 participating in a bond.
4074 </column>
4075
4076 <column name="other_config" key="lacp-port-priority"
4077 type='{"type": "integer", "minInteger": 1, "maxInteger": 65535}'>
4078 The LACP port priority of this <ref table="Interface"/>. In LACP
4079 negotiations <ref table="Interface"/>s with numerically lower
4080 priorities are preferred for aggregation.
4081 </column>
4082
4083 <column name="other_config" key="lacp-aggregation-key"
4084 type='{"type": "integer", "minInteger": 1, "maxInteger": 65535}'>
4085 The LACP aggregation key of this <ref table="Interface"/>. <ref
4086 table="Interface"/>s with different aggregation keys may not be active
4087 within a given <ref table="Port"/> at the same time.
4088 </column>
4089 </group>
4090
4091 <group title="Virtual Machine Identifiers">
4092 <p>
4093 These key-value pairs specifically apply to an interface that
4094 represents a virtual Ethernet interface connected to a virtual
4095 machine. These key-value pairs should not be present for other types
4096 of interfaces. Keys whose names end in <code>-uuid</code> have
4097 values that uniquely identify the entity in question. For a Citrix
4098 XenServer hypervisor, these values are UUIDs in RFC 4122 format.
4099 Other hypervisors may use other formats.
4100 </p>
4101
4102 <column name="external_ids" key="attached-mac">
4103 The MAC address programmed into the ``virtual hardware'' for this
4104 interface, in the form
4105 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>.
4106 For Citrix XenServer, this is the value of the <code>MAC</code> field
4107 in the VIF record for this interface.
4108 </column>
4109
4110 <column name="external_ids" key="iface-id">
4111 A system-unique identifier for the interface. On XenServer, this will
4112 commonly be the same as <ref column="external_ids" key="xs-vif-uuid"/>.
4113 </column>
4114
4115 <column name="external_ids" key="iface-status"
4116 type='{"type": "string",
4117 "enum": ["set", ["active", "inactive"]]}'>
4118 <p>
4119 Hypervisors may sometimes have more than one interface associated
4120 with a given <ref column="external_ids" key="iface-id"/>, only one of
4121 which is actually in use at a given time. For example, in some
4122 circumstances XenServer has both a ``tap'' and a ``vif'' interface
4123 for a single <ref column="external_ids" key="iface-id"/>, but only
4124 uses one of them at a time. A hypervisor that behaves this way must
4125 mark the currently in use interface <code>active</code> and the
4126 others <code>inactive</code>. A hypervisor that never has more than
4127 one interface for a given <ref column="external_ids" key="iface-id"/>
4128 may mark that interface <code>active</code> or omit <ref
4129 column="external_ids" key="iface-status"/> entirely.
4130 </p>
4131
4132 <p>
4133 During VM migration, a given <ref column="external_ids"
4134 key="iface-id"/> might transiently be marked <code>active</code> on
4135 two different hypervisors. That is, <code>active</code> means that
4136 this <ref column="external_ids" key="iface-id"/> is the active
4137 instance within a single hypervisor, not in a broader scope.
4138 There is one exception: some hypervisors support ``migration'' from a
4139 given hypervisor to itself (most often for test purposes). During
4140 such a ``migration,'' two instances of a single <ref
4141 column="external_ids" key="iface-id"/> might both be briefly marked
4142 <code>active</code> on a single hypervisor.
4143 </p>
4144 </column>
4145
4146 <column name="external_ids" key="xs-vif-uuid">
4147 The virtual interface associated with this interface.
4148 </column>
4149
4150 <column name="external_ids" key="xs-network-uuid">
4151 The virtual network to which this interface is attached.
4152 </column>
4153
4154 <column name="external_ids" key="vm-id">
4155 The VM to which this interface belongs. On XenServer, this will be the
4156 same as <ref column="external_ids" key="xs-vm-uuid"/>.
4157 </column>
4158
4159 <column name="external_ids" key="xs-vm-uuid">
4160 The VM to which this interface belongs.
4161 </column>
4162 </group>
4163
4164 <group title="Auto Attach Configuration">
4165 <p>
4166 Auto Attach configuration for a particular interface.
4167 </p>
4168
4169 <column name="lldp" key="enable" type='{"type": "boolean"}'>
4170 True to enable LLDP on this <ref table="Interface"/>. If not
4171 specified, LLDP will be disabled by default.
4172 </column>
4173 </group>
4174
4175 <group title="Flow control Configuration">
4176 <p>
4177 Ethernet flow control defined in IEEE 802.1Qbb provides link level flow
4178 control using MAC pause frames. Implemented only for interfaces with
4179 type <code>dpdk</code>.
4180 </p>
4181
4182 <column name="options" key="rx-flow-ctrl" type='{"type": "boolean"}'>
4183 Set to <code>true</code> to enable Rx flow control on physical ports.
4184 By default, Rx flow control is disabled.
4185 </column>
4186
4187 <column name="options" key="tx-flow-ctrl" type='{"type": "boolean"}'>
4188 Set to <code>true</code> to enable Tx flow control on physical ports.
4189 By default, Tx flow control is disabled.
4190 </column>
4191
4192 <column name="options" key="flow-ctrl-autoneg"
4193 type='{"type": "boolean"}'>
4194 Set to <code>true</code> to enable flow control auto negotiation on
4195 physical ports. By default, auto-neg is disabled.
4196 </column>
4197 </group>
4198
4199 <group title="Link State Change detection mode">
4200 <column name="options" key="dpdk-lsc-interrupt"
4201 type='{"type": "boolean"}'>
4202 <p>
4203 Set this value to <code>true</code> to configure interrupt mode for
4204 Link State Change (LSC) detection instead of poll mode for the DPDK
4205 interface.
4206 </p>
4207 <p>
4208 If this value is not set, poll mode is configured.
4209 </p>
4210 <p>
4211 This parameter has an effect only on netdev dpdk interfaces.
4212 </p>
4213 </column>
4214 </group>
4215
4216 <group title="Common Columns">
4217 The overall purpose of these columns is described under <code>Common
4218 Columns</code> at the beginning of this document.
4219
4220 <column name="other_config"/>
4221 <column name="external_ids"/>
4222 </group>
4223 </table>
4224
4225 <table name="Flow_Table" title="OpenFlow table configuration">
4226 <p>Configuration for a particular OpenFlow table.</p>
4227
4228 <column name="name">
4229 The table's name. Set this column to change the name that controllers
4230 will receive when they request table statistics, e.g. <code>ovs-ofctl
4231 dump-tables</code>. The name does not affect switch behavior.
4232 </column>
4233
4234 <group title="Eviction Policy">
4235 <p>
4236 Open vSwitch supports limiting the number of flows that may be
4237 installed in a flow table, via the <ref column="flow_limit"/> column.
4238 When adding a flow would exceed this limit, by default Open vSwitch
4239 reports an error, but there are two ways to configure Open vSwitch to
4240 instead delete (``evict'') a flow to make room for the new one:
4241 </p>
4242
4243 <ul>
4244 <li>
4245 Set the <ref column="overflow_policy"/> column to <code>evict</code>.
4246 </li>
4247
4248 <li>
4249 Send an OpenFlow 1.4+ ``table mod request'' to enable eviction for
4250 the flow table (e.g. <code>ovs-ofctl -O OpenFlow14 mod-table br0 0
4251 evict</code> to enable eviction on flow table 0 of bridge
4252 <code>br0</code>).
4253 </li>
4254 </ul>
4255
4256 <p>
4257 When a flow must be evicted due to overflow, the flow to evict is
4258 chosen through an approximation of the following algorithm. This
4259 algorithm is used regardless of how eviction was enabled:
4260 </p>
4261
4262 <ol>
4263 <li>
4264 Divide the flows in the table into groups based on the values of the
4265 fields or subfields specified in the <ref column="groups"/> column,
4266 so that all of the flows in a given group have the same values for
4267 those fields. If a flow does not specify a given field, that field's
4268 value is treated as 0. If <ref column="groups"/> is empty, then all
4269 of the flows in the flow table are treated as a single group.
4270 </li>
4271
4272 <li>
4273 Consider the flows in the largest group, that is, the group that
4274 contains the greatest number of flows. If two or more groups all
4275 have the same largest number of flows, consider the flows in all of
4276 those groups.
4277 </li>
4278
4279 <li>
4280 If the flows under consideration have different importance values,
4281 eliminate from consideration any flows except those with the lowest
4282 importance. (``Importance,'' a 16-bit integer value attached to each
4283 flow, was introduced in OpenFlow 1.4. Flows inserted with older
4284 versions of OpenFlow always have an importance of 0.)
4285 </li>
4286
4287 <li>
4288 Among the flows under consideration, choose the flow that expires
4289 soonest for eviction.
4290 </li>
4291 </ol>
4292
4293 <p>
4294 The eviction process only considers flows that have an idle timeout
4295 or a hard timeout. That is, eviction never deletes permanent flows.
4296 (Permanent flows do count against <ref column="flow_limit"/>.)
4297 </p>
4298
4299 <column name="flow_limit">
4300 If set, limits the number of flows that may be added to the table.
4301 Open vSwitch may limit the number of flows in a table for other
4302 reasons, e.g. due to hardware limitations or for resource availability
4303 or performance reasons.
4304 </column>
4305
4306 <column name="overflow_policy">
4307 <p>
4308 Controls the switch's behavior when an OpenFlow flow table
4309 modification request would add flows in excess of <ref
4310 column="flow_limit"/>. The supported values are:
4311 </p>
4312
4313 <dl>
4314 <dt><code>refuse</code></dt>
4315 <dd>
4316 Refuse to add the flow or flows. This is also the default policy
4317 when <ref column="overflow_policy"/> is unset.
4318 </dd>
4319
4320 <dt><code>evict</code></dt>
4321 <dd>
4322 Delete a flow chosen according to the algorithm described above.
4323 </dd>
4324 </dl>
4325 </column>
4326
4327 <column name="groups">
4328 <p>
4329 When <ref column="overflow_policy"/> is <code>evict</code>, this
4330 controls how flows are chosen for eviction when the flow table would
4331 otherwise exceed <ref column="flow_limit"/> flows. Its value is a
4332 set of NXM fields or sub-fields, each of which takes one of the forms
4333 <code><var>field</var>[]</code> or
4334 <code><var>field</var>[<var>start</var>..<var>end</var>]</code>,
4335 e.g. <code>NXM_OF_IN_PORT[]</code>. Please see
4336 <code>meta-flow.h</code> for a complete list of NXM field names.
4337 </p>
4338
4339 <p>
4340 Open vSwitch ignores any invalid or unknown field specifications.
4341 </p>
4342
4343 <p>
4344 When eviction is not enabled, via <ref column="overflow_policy"/> or
4345 an OpenFlow 1.4+ ``table mod,'' this column has no effect.
4346 </p>
4347 </column>
4348 </group>
4349
4350 <group title="Classifier Optimization">
4351 <column name="prefixes">
4352 <p>
4353 This string set specifies which fields should be used for
4354 address prefix tracking. Prefix tracking allows the
4355 classifier to skip rules with longer than necessary prefixes,
4356 resulting in better wildcarding for datapath flows.
4357 </p>
4358 <p>
4359 Prefix tracking may be beneficial when a flow table contains
4360 matches on IP address fields with different prefix lengths.
4361 For example, when a flow table contains IP address matches on
4362 both full addresses and proper prefixes, the full address
4363 matches will typically cause the datapath flow to un-wildcard
4364 the whole address field (depending on flow entry priorities).
4365 In this case each packet with a different address gets handed
4366 to the userspace for flow processing and generates its own
4367 datapath flow. With prefix tracking enabled for the address
4368 field in question packets with addresses matching shorter
4369 prefixes would generate datapath flows where the irrelevant
4370 address bits are wildcarded, allowing the same datapath flow
4371 to handle all the packets within the prefix in question. In
4372 this case many userspace upcalls can be avoided and the
4373 overall performance can be better.
4374 </p>
4375 <p>
4376 This is a performance optimization only, so packets will
4377 receive the same treatment with or without prefix tracking.
4378 </p>
4379 <p>
4380 The supported fields are: <code>tun_id</code>,
4381 <code>tun_src</code>, <code>tun_dst</code>,
4382 <code>tun_ipv6_src</code>, <code>tun_ipv6_dst</code>,
4383 <code>nw_src</code>, <code>nw_dst</code> (or aliases
4384 <code>ip_src</code> and <code>ip_dst</code>),
4385 <code>ipv6_src</code>, and <code>ipv6_dst</code>. (Using this
4386 feature for <code>tun_id</code> would only make sense if the
4387 tunnel IDs have prefix structure similar to IP addresses.)
4388 </p>
4389
4390 <p>
4391 By default, the <code>prefixes=ip_dst,ip_src</code> are used
4392 on each flow table. This instructs the flow classifier to
4393 track the IP destination and source addresses used by the
4394 rules in this specific flow table.
4395 </p>
4396
4397 <p>
4398 The keyword <code>none</code> is recognized as an explicit
4399 override of the default values, causing no prefix fields to be
4400 tracked.
4401 </p>
4402
4403 <p>
4404 To set the prefix fields, the flow table record needs to
4405 exist:
4406 </p>
4407
4408 <dl>
4409 <dt><code>ovs-vsctl set Bridge br0 flow_tables:0=@N1 -- --id=@N1 create Flow_Table name=table0</code></dt>
4410 <dd>
4411 Creates a flow table record for the OpenFlow table number 0.
4412 </dd>
4413
4414 <dt><code>ovs-vsctl set Flow_Table table0 prefixes=ip_dst,ip_src</code></dt>
4415 <dd>
4416 Enables prefix tracking for IP source and destination
4417 address fields.
4418 </dd>
4419 </dl>
4420
4421 <p>
4422 There is a maximum number of fields that can be enabled for any
4423 one flow table. Currently this limit is 3.
4424 </p>
4425 </column>
4426 </group>
4427
4428 <group title="Common Columns">
4429 The overall purpose of these columns is described under <code>Common
4430 Columns</code> at the beginning of this document.
4431
4432 <column name="external_ids"/>
4433 </group>
4434 </table>
4435
4436 <table name="QoS" title="Quality of Service configuration">
4437 <p>Quality of Service (QoS) configuration for each Port that
4438 references it.</p>
4439
4440 <column name="type">
4441 <p>The type of QoS to implement. The currently defined types are
4442 listed below:</p>
4443 <dl>
4444 <dt><code>linux-htb</code></dt>
4445 <dd>
4446 Linux ``hierarchy token bucket'' classifier. See tc-htb(8) (also at
4447 <code>http://linux.die.net/man/8/tc-htb</code>) and the HTB manual
4448 (<code>http://luxik.cdi.cz/~devik/qos/htb/manual/userg.htm</code>)
4449 for information on how this classifier works and how to configure it.
4450 </dd>
4451
4452 <dt><code>linux-hfsc</code></dt>
4453 <dd>
4454 Linux "Hierarchical Fair Service Curve" classifier.
4455 See <code>http://linux-ip.net/articles/hfsc.en/</code> for
4456 information on how this classifier works.
4457 </dd>
4458
4459 <dt><code>linux-sfq</code></dt>
4460 <dd>
4461 Linux ``Stochastic Fairness Queueing'' classifier. See
4462 <code>tc-sfq</code>(8) (also at
4463 <code>http://linux.die.net/man/8/tc-sfq</code>) for information on
4464 how this classifier works.
4465 </dd>
4466
4467 <dt><code>linux-codel</code></dt>
4468 <dd>
4469 Linux ``Controlled Delay'' classifier. See <code>tc-codel</code>(8)
4470 (also at
4471 <code>http://man7.org/linux/man-pages/man8/tc-codel.8.html</code>)
4472 for information on how this classifier works.
4473 </dd>
4474
4475 <dt><code>linux-fq_codel</code></dt>
4476 <dd>
4477 Linux ``Fair Queuing with Controlled Delay'' classifier. See
4478 <code>tc-fq_codel</code>(8) (also at
4479 <code>http://man7.org/linux/man-pages/man8/tc-fq_codel.8.html</code>)
4480 for information on how this classifier works.
4481 </dd>
4482
4483 <dt><code>linux-netem</code></dt>
4484 <dd>
4485 Linux ``Network Emulator'' classifier. See
4486 <code>tc-netem</code>(8) (also at
4487 <code>http://man7.org/linux/man-pages/man8/tc-netem.8.html</code>)
4488 for information on how this classifier works.
4489 </dd>
4490
4491 <dt><code>linux-noop</code></dt>
4492 <dd>
4493 Linux ``No operation.'' By default, Open vSwitch manages quality of
4494 service on all of its configured ports. This can be helpful, but
4495 sometimes administrators prefer to use other software to manage QoS.
4496 This <ref column="type"/> prevents Open vSwitch from changing the QoS
4497 configuration for a port.
4498 </dd>
4499
4500 <dt><code>egress-policer</code></dt>
4501 <dd>
4502 A DPDK egress policer algorithm using the DPDK
4503 rte_meter library. The rte_meter library provides an implementation
4504 which allows the metering and policing of traffic. The implementation
4505 in OVS essentially creates a single token bucket used to police
4506 traffic. It should be noted that when the rte_meter is configured as
4507 part of QoS there will be a performance overhead as the rte_meter
4508 itself will consume CPU cycles in order to police traffic. These CPU
4509 cycles ordinarily are used for packet proccessing. As such the drop
4510 in performance will be noticed in terms of overall aggregate traffic
4511 throughput.
4512 </dd>
4513 <dt><code>trtcm-policer</code></dt>
4514 <dd>
4515 A DPDK egress policer algorithm using RFC 4115's Two-Rate,
4516 Three-Color marker. It's a two-level hierarchical policer
4517 which first does a color-blind marking of the traffic at the queue
4518 level, followed by a color-aware marking at the port level. At the
4519 end traffic marked as Green or Yellow is forwarded, Red is dropped.
4520 For details on how traffic is marked, see RFC 4115.
4521
4522 If the ``default queue'', 0, is not configured it's automatically
4523 created with the same <code>other_config</code> values as the
4524 physical port.
4525 </dd>
4526 </dl>
4527 </column>
4528
4529 <column name="queues">
4530 <p>A map from queue numbers to <ref table="Queue"/> records. The
4531 supported range of queue numbers depend on <ref column="type"/>. The
4532 queue numbers are the same as the <code>queue_id</code> used in
4533 OpenFlow in <code>struct ofp_action_enqueue</code> and other
4534 structures.</p>
4535
4536 <p>
4537 Queue 0 is the ``default queue.'' It is used by OpenFlow output
4538 actions when no specific queue has been set. When no configuration for
4539 queue 0 is present, it is automatically configured as if a <ref
4540 table="Queue"/> record with empty <ref table="Queue" column="dscp"/>
4541 and <ref table="Queue" column="other_config"/> columns had been
4542 specified.
4543 (Before version 1.6, Open vSwitch would leave queue 0 unconfigured in
4544 this case. With some queuing disciplines, this dropped all packets
4545 destined for the default queue.)
4546 </p>
4547 </column>
4548
4549 <group title="Configuration for linux-htb and linux-hfsc">
4550 <p>
4551 The <code>linux-htb</code> and <code>linux-hfsc</code> classes support
4552 the following key-value pair:
4553 </p>
4554
4555 <column name="other_config" key="max-rate" type='{"type": "integer"}'>
4556 Maximum rate shared by all queued traffic, in bit/s. Optional. If not
4557 specified, for physical interfaces, the default is the link rate. For
4558 other interfaces or if the link rate cannot be determined, the default
4559 is currently 100 Mbps.
4560 </column>
4561 </group>
4562
4563 <group title="Configuration for egress-policer QoS">
4564 <p>
4565 <ref table="QoS"/> <ref table="QoS" column="type"/>
4566 <code>egress-policer</code> provides egress policing for userspace
4567 port types with DPDK.
4568
4569 It has the following key-value pairs defined.
4570 </p>
4571
4572 <column name="other_config" key="cir" type='{"type": "integer"}'>
4573 The Committed Information Rate (CIR) is measured in bytes of IP
4574 packets per second, i.e. it includes the IP header, but not link
4575 specific (e.g. Ethernet) headers. This represents the bytes per second
4576 rate at which the token bucket will be updated. The cir value is
4577 calculated by (pps x packet data size). For example assuming a user
4578 wishes to limit a stream consisting of 64 byte packets to 1 million
4579 packets per second the CIR would be set to to to 46000000. This value
4580 can be broken into '1,000,000 x 46'. Where 1,000,000 is the policing
4581 rate for the number of packets per second and 46 represents the size
4582 of the packet data for a 64 byte ip packet.
4583 </column>
4584 <column name="other_config" key="cbs" type='{"type": "integer"}'>
4585 The Committed Burst Size (CBS) is measured in bytes and represents a
4586 token bucket. At a minimum this value should be be set to the expected
4587 largest size packet in the traffic stream. In practice larger values
4588 may be used to increase the size of the token bucket. If a packet can
4589 be transmitted then the cbs will be decremented by the number of
4590 bytes/tokens of the packet. If there are not enough tokens in the cbs
4591 bucket the packet will be dropped.
4592 </column>
4593 <column name="other_config" key="eir" type='{"type": "integer"}'>
4594 The Excess Information Rate (EIR) is measured in bytes of IP
4595 packets per second, i.e. it includes the IP header, but not link
4596 specific (e.g. Ethernet) headers. This represents the bytes per second
4597 rate at which the token bucket will be updated. The eir value is
4598 calculated by (pps x packet data size). For example assuming a user
4599 wishes to limit a stream consisting of 64 byte packets to 1 million
4600 packets per second the EIR would be set to to to 46000000. This value
4601 can be broken into '1,000,000 x 46'. Where 1,000,000 is the policing
4602 rate for the number of packets per second and 46 represents the size
4603 of the packet data for a 64 byte ip packet.
4604 </column>
4605 <column name="other_config" key="ebs" type='{"type": "integer"}'>
4606 The Excess Burst Size (EBS) is measured in bytes and represents a
4607 token bucket. At a minimum this value should be be set to the expected
4608 largest size packet in the traffic stream. In practice larger values
4609 may be used to increase the size of the token bucket. If a packet can
4610 be transmitted then the ebs will be decremented by the number of
4611 bytes/tokens of the packet. If there are not enough tokens in the cbs
4612 bucket the packet might be dropped.
4613 </column>
4614 </group>
4615
4616 <group title="Configuration for linux-sfq">
4617 <p>
4618 The <code>linux-sfq</code> QoS supports the following key-value pairs:
4619 </p>
4620
4621 <column name="other_config" key="perturb" type='{"type": "integer"}'>
4622 Number of seconds between consecutive perturbations in hashing algorithm.
4623 Different flows can end up in the same hash bucket causing unfairness.
4624 Perturbation's goal is to remove possible unfairness.
4625 The default and recommended value is 10. Too low a value is discouraged
4626 because each perturbation can cause packet reordering.
4627 </column>
4628 <column name="other_config" key="quantum" type='{"type": "integer"}'>
4629 Number of bytes <code>linux-sfq</code> QoS can dequeue in one turn in
4630 round-robin from one flow. The default and recommended value is equal
4631 to interface's MTU.
4632 </column>
4633 </group>
4634
4635 <group title="Configuration for linux-netem">
4636 <p>
4637 The <code>linux-netem</code> QoS supports the following key-value
4638 pairs:
4639 </p>
4640
4641 <column name="other_config" key="latency" type='{"type": "integer"}'>
4642 Adds the chosen delay to the packets outgoing to chosen network
4643 interface. The latency value expressed in us.
4644 </column>
4645 <column name="other_config" key="limit" type='{"type": "integer"}'>
4646 Maximum number of packets the qdisc may hold queued at a time.
4647 The default value is 1000.
4648 </column>
4649 <column name="other_config" key="loss" type='{"type": "integer"}'>
4650 Adds an independent loss probability to the packets outgoing from the
4651 chosen network interface.
4652 </column>
4653 </group>
4654
4655 <group title="Common Columns">
4656 The overall purpose of these columns is described under <code>Common
4657 Columns</code> at the beginning of this document.
4658
4659 <column name="other_config"/>
4660 <column name="external_ids"/>
4661 </group>
4662 </table>
4663
4664 <table name="Queue" title="QoS output queue.">
4665 <p>A configuration for a port output queue, used in configuring Quality of
4666 Service (QoS) features. May be referenced by <ref column="queues"
4667 table="QoS"/> column in <ref table="QoS"/> table.</p>
4668
4669 <column name="dscp">
4670 If set, Open vSwitch will mark all traffic egressing this
4671 <ref table="Queue"/> with the given DSCP bits. Traffic egressing the
4672 default <ref table="Queue"/> is only marked if it was explicitly selected
4673 as the <ref table="Queue"/> at the time the packet was output. If unset,
4674 the DSCP bits of traffic egressing this <ref table="Queue"/> will remain
4675 unchanged.
4676 </column>
4677
4678 <group title="Configuration for linux-htb QoS">
4679 <p>
4680 <ref table="QoS"/> <ref table="QoS" column="type"/>
4681 <code>linux-htb</code> may use <code>queue_id</code>s less than 61440.
4682 It has the following key-value pairs defined.
4683 </p>
4684
4685 <column name="other_config" key="min-rate"
4686 type='{"type": "integer", "minInteger": 1}'>
4687 Minimum guaranteed bandwidth, in bit/s.
4688 </column>
4689
4690 <column name="other_config" key="max-rate"
4691 type='{"type": "integer", "minInteger": 1}'>
4692 Maximum allowed bandwidth, in bit/s. Optional. If specified, the
4693 queue's rate will not be allowed to exceed the specified value, even
4694 if excess bandwidth is available. If unspecified, defaults to no
4695 limit.
4696 </column>
4697
4698 <column name="other_config" key="burst"
4699 type='{"type": "integer", "minInteger": 1}'>
4700 Burst size, in bits. This is the maximum amount of ``credits'' that a
4701 queue can accumulate while it is idle. Optional. Details of the
4702 <code>linux-htb</code> implementation require a minimum burst size, so
4703 a too-small <code>burst</code> will be silently ignored.
4704 </column>
4705
4706 <column name="other_config" key="priority"
4707 type='{"type": "integer", "minInteger": 0, "maxInteger": 4294967295}'>
4708 A queue with a smaller <code>priority</code> will receive all the
4709 excess bandwidth that it can use before a queue with a larger value
4710 receives any. Specific priority values are unimportant; only relative
4711 ordering matters. Defaults to 0 if unspecified.
4712 </column>
4713 </group>
4714
4715 <group title="Configuration for linux-hfsc QoS">
4716 <p>
4717 <ref table="QoS"/> <ref table="QoS" column="type"/>
4718 <code>linux-hfsc</code> may use <code>queue_id</code>s less than 61440.
4719 It has the following key-value pairs defined.
4720 </p>
4721
4722 <column name="other_config" key="min-rate"
4723 type='{"type": "integer", "minInteger": 1}'>
4724 Minimum guaranteed bandwidth, in bit/s.
4725 </column>
4726
4727 <column name="other_config" key="max-rate"
4728 type='{"type": "integer", "minInteger": 1}'>
4729 Maximum allowed bandwidth, in bit/s. Optional. If specified, the
4730 queue's rate will not be allowed to exceed the specified value, even if
4731 excess bandwidth is available. If unspecified, defaults to no
4732 limit.
4733 </column>
4734 </group>
4735
4736 <group title="Common Columns">
4737 The overall purpose of these columns is described under <code>Common
4738 Columns</code> at the beginning of this document.
4739
4740 <column name="other_config"/>
4741 <column name="external_ids"/>
4742 </group>
4743 </table>
4744
4745 <table name="Mirror" title="Port mirroring.">
4746 <p>A port mirror within a <ref table="Bridge"/>.</p>
4747 <p>A port mirror configures a bridge to send selected frames to special
4748 ``mirrored'' ports, in addition to their normal destinations. Mirroring
4749 traffic may also be referred to as SPAN or RSPAN, depending on how
4750 the mirrored traffic is sent.</p>
4751
4752 <p>
4753 When a packet enters an Open vSwitch bridge, it becomes eligible for
4754 mirroring based on its ingress port and VLAN. As the packet travels
4755 through the flow tables, each time it is output to a port, it becomes
4756 eligible for mirroring based on the egress port and VLAN. In Open
4757 vSwitch 2.5 and later, mirroring occurs just after a packet first becomes
4758 eligible, using the packet as it exists at that point; in Open vSwitch
4759 2.4 and earlier, mirroring occurs only after a packet has traversed all
4760 the flow tables, using the original packet as it entered the bridge.
4761 This makes a difference only when the flow table modifies the packet: in
4762 Open vSwitch 2.4, the modifications are never visible to mirrors, whereas
4763 in Open vSwitch 2.5 and later modifications made before the first output
4764 that makes it eligible for mirroring to a particular destination are
4765 visible.
4766 </p>
4767
4768 <p>
4769 A packet that enters an Open vSwitch bridge is mirrored to a particular
4770 destination only once, even if it is eligible for multiple reasons. For
4771 example, a packet would be mirrored to a particular <ref
4772 column="output_port"/> only once, even if it is selected for mirroring to
4773 that port by <ref column="select_dst_port"/> and <ref
4774 column="select_src_port"/> in the same or different <ref table="Mirror"/>
4775 records.
4776 </p>
4777
4778 <column name="name">
4779 Arbitrary identifier for the <ref table="Mirror"/>.
4780 </column>
4781
4782 <group title="Selecting Packets for Mirroring">
4783 <p>
4784 To be selected for mirroring, a given packet must enter or leave the
4785 bridge through a selected port and it must also be in one of the
4786 selected VLANs.
4787 </p>
4788
4789 <column name="select_all">
4790 If true, every packet arriving or departing on any port is
4791 selected for mirroring.
4792 </column>
4793
4794 <column name="select_dst_port">
4795 Ports on which departing packets are selected for mirroring.
4796 </column>
4797
4798 <column name="select_src_port">
4799 Ports on which arriving packets are selected for mirroring.
4800 </column>
4801
4802 <column name="select_vlan">
4803 VLANs on which packets are selected for mirroring. An empty set
4804 selects packets on all VLANs.
4805 </column>
4806 </group>
4807
4808 <group title="Mirroring Destination Configuration">
4809 <p>
4810 These columns are mutually exclusive. Exactly one of them must be
4811 nonempty.
4812 </p>
4813
4814 <column name="output_port">
4815 <p>Output port for selected packets, if nonempty.</p>
4816 <p>Specifying a port for mirror output reserves that port exclusively
4817 for mirroring. No frames other than those selected for mirroring
4818 via this column
4819 will be forwarded to the port, and any frames received on the port
4820 will be discarded.</p>
4821 <p>
4822 The output port may be any kind of port supported by Open vSwitch.
4823 It may be, for example, a physical port (sometimes called SPAN) or a
4824 GRE tunnel.
4825 </p>
4826 </column>
4827
4828 <column name="output_vlan">
4829 <p>Output VLAN for selected packets, if nonempty.</p>
4830 <p>The frames will be sent out all ports that trunk
4831 <ref column="output_vlan"/>, as well as any ports with implicit VLAN
4832 <ref column="output_vlan"/>. When a mirrored frame is sent out a
4833 trunk port, the frame's VLAN tag will be set to
4834 <ref column="output_vlan"/>, replacing any existing tag; when it is
4835 sent out an implicit VLAN port, the frame will not be tagged. This
4836 type of mirroring is sometimes called RSPAN.</p>
4837 <p>
4838 See the documentation for
4839 <ref column="other_config" key="forward-bpdu"/> in the
4840 <ref table="Interface"/> table for a list of destination MAC
4841 addresses which will not be mirrored to a VLAN to avoid confusing
4842 switches that interpret the protocols that they represent.
4843 </p>
4844 <p><em>Please note:</em> Mirroring to a VLAN can disrupt a network that
4845 contains unmanaged switches. Consider an unmanaged physical switch
4846 with two ports: port 1, connected to an end host, and port 2,
4847 connected to an Open vSwitch configured to mirror received packets
4848 into VLAN 123 on port 2. Suppose that the end host sends a packet on
4849 port 1 that the physical switch forwards to port 2. The Open vSwitch
4850 forwards this packet to its destination and then reflects it back on
4851 port 2 in VLAN 123. This reflected packet causes the unmanaged
4852 physical switch to replace the MAC learning table entry, which
4853 correctly pointed to port 1, with one that incorrectly points to port
4854 2. Afterward, the physical switch will direct packets destined for
4855 the end host to the Open vSwitch on port 2, instead of to the end
4856 host on port 1, disrupting connectivity. If mirroring to a VLAN is
4857 desired in this scenario, then the physical switch must be replaced
4858 by one that learns Ethernet addresses on a per-VLAN basis. In
4859 addition, learning should be disabled on the VLAN containing mirrored
4860 traffic. If this is not done then intermediate switches will learn
4861 the MAC address of each end host from the mirrored traffic. If
4862 packets being sent to that end host are also mirrored, then they will
4863 be dropped since the switch will attempt to send them out the input
4864 port. Disabling learning for the VLAN will cause the switch to
4865 correctly send the packet out all ports configured for that VLAN. If
4866 Open vSwitch is being used as an intermediate switch, learning can be
4867 disabled by adding the mirrored VLAN to <ref column="flood_vlans"/>
4868 in the appropriate <ref table="Bridge"/> table or tables.</p>
4869 <p>
4870 Mirroring to a GRE tunnel has fewer caveats than mirroring to a
4871 VLAN and should generally be preferred.
4872 </p>
4873 </column>
4874
4875 <column name="snaplen">
4876 <p>Maximum per-packet number of bytes to mirror.</p>
4877 <p>A mirrored packet with size larger than <ref column="snaplen"/>
4878 will be truncated in datapath to <ref column="snaplen"/> bytes
4879 before sending to the mirror output port. If omitted, packets
4880 are not truncated.
4881 </p>
4882 </column>
4883 </group>
4884
4885 <group title="Statistics: Mirror counters">
4886 <p>
4887 Key-value pairs that report mirror statistics. The update period
4888 is controlled by <ref column="other_config"
4889 key="stats-update-interval"/> in the <code>Open_vSwitch</code> table.
4890 </p>
4891 <column name="statistics" key="tx_packets">
4892 Number of packets transmitted through this mirror.
4893 </column>
4894 <column name="statistics" key="tx_bytes">
4895 Number of bytes transmitted through this mirror.
4896 </column>
4897 </group>
4898
4899 <group title="Common Columns">
4900 The overall purpose of these columns is described under <code>Common
4901 Columns</code> at the beginning of this document.
4902
4903 <column name="external_ids"/>
4904 </group>
4905 </table>
4906
4907 <table name="Controller" title="OpenFlow controller configuration.">
4908 <p>An OpenFlow controller.</p>
4909
4910 <group title="Core Features">
4911 <column name="type">
4912 <p>
4913 Open vSwitch supports two kinds of OpenFlow controllers. A bridge
4914 may have any number of each kind:
4915 </p>
4916
4917 <dl>
4918 <dt>Primary controllers</dt>
4919 <dd>
4920 <p>
4921 This is the kind of controller envisioned by the OpenFlow
4922 specifications. Usually, a primary controller implements a
4923 network policy by taking charge of the switch's flow table.
4924 </p>
4925
4926 <p>
4927 The <ref table="Bridge" column="fail_mode"/> column in the <ref
4928 table="Bridge"/> table applies to primary controllers.
4929 </p>
4930
4931 <p>
4932 When multiple primary controllers are configured, Open vSwitch
4933 connects to all of them simultaneously. OpenFlow provides few
4934 facilities to allow multiple controllers to coordinate in
4935 interacting with a single switch, so more than one primary
4936 controller should be specified only if the controllers are
4937 themselves designed to coordinate with each other.
4938 </p>
4939 </dd>
4940 <dt>Service controllers</dt>
4941 <dd>
4942 <p>
4943 These kinds of OpenFlow controller connections are intended for
4944 occasional support and maintenance use, e.g. with
4945 <code>ovs-ofctl</code>. Usually a service controller connects
4946 only briefly to inspect or modify some of a switch's state.
4947 </p>
4948
4949 <p>
4950 The <ref table="Bridge" column="fail_mode"/> column in the <ref
4951 table="Bridge"/> table does not apply to service controllers.
4952 </p>
4953 </dd>
4954 </dl>
4955
4956 <p>
4957 By default, Open vSwitch treats controllers with active connection
4958 methods as primary controllers and those with passive connection
4959 methods as service controllers. Set this column to the desired type
4960 to override this default.
4961 </p>
4962 </column>
4963
4964 <column name="target">
4965 <p>Connection method for controller.</p>
4966 <p>
4967 The following active connection methods are currently supported:
4968 </p>
4969 <dl>
4970 <dt><code>ssl:<var>host</var></code>[<code>:<var>port</var></code>]</dt>
4971 <dd>
4972 <p>The specified SSL <var>port</var> on the host at the
4973 given <var>host</var>, which can either be a DNS name (if built
4974 with unbound library) or an IP address. The <ref table="Open_vSwitch"
4975 column="ssl"/> column in the <ref table="Open_vSwitch"/> table must
4976 point to a valid SSL configuration when this form is used.</p>
4977 <p>If <var>port</var> is not specified, it defaults to 6653.</p>
4978 <p>SSL support is an optional feature that is not always built as
4979 part of Open vSwitch.</p>
4980 </dd>
4981 <dt><code>tcp:<var>host</var></code>[<code>:<var>port</var></code>]</dt>
4982 <dd>
4983 <p>
4984 The specified TCP <var>port</var> on the host at the given
4985 <var>host</var>, which can either be a DNS name (if built with
4986 unbound library) or an IP address (IPv4 or IPv6). If <var>host</var>
4987 is an IPv6 address, wrap it in square brackets, e.g.
4988 <code>tcp:[::1]:6653</code>.
4989 </p>
4990 <p>
4991 If <var>port</var> is not specified, it defaults to 6653.
4992 </p>
4993 </dd>
4994 </dl>
4995 <p>
4996 The following passive connection methods are currently supported:
4997 </p>
4998 <dl>
4999 <dt><code>pssl:</code>[<var>port</var>][<code>:<var>host</var></code>]</dt>
5000 <dd>
5001 <p>
5002 Listens for SSL connections on the specified TCP <var>port</var>.
5003 If <var>host</var>, which can either be a DNS name (if built with
5004 unbound library) or an IP address, is specified, then connections
5005 are restricted to the resolved or specified local IP address
5006 (either IPv4 or IPv6). If <var>host</var> is an IPv6 address,
5007 wrap it in square brackets, e.g. <code>pssl:6653:[::1]</code>.
5008 </p>
5009 <p>
5010 If <var>port</var> is not specified, it defaults to
5011 6653. If <var>host</var> is not specified then it listens only on
5012 IPv4 (but not IPv6) addresses. The
5013 <ref table="Open_vSwitch" column="ssl"/>
5014 column in the <ref table="Open_vSwitch"/> table must point to a
5015 valid SSL configuration when this form is used.
5016 </p>
5017 <p>
5018 If <var>port</var> is not specified, it currently to 6653.
5019 </p>
5020 <p>
5021 SSL support is an optional feature that is not always built as
5022 part of Open vSwitch.
5023 </p>
5024 </dd>
5025 <dt><code>ptcp:</code>[<var>port</var>][<code>:<var>host</var></code>]</dt>
5026 <dd>
5027 <p>
5028 Listens for connections on the specified TCP <var>port</var>. If
5029 <var>host</var>, which can either be a DNS name (if built with
5030 unbound library) or an IP address, is specified, then connections
5031 are restricted to the resolved or specified local IP address
5032 (either IPv4 or IPv6). If <var>host</var> is an IPv6 address, wrap
5033 it in square brackets, e.g. <code>ptcp:6653:[::1]</code>. If
5034 <var>host</var> is not specified then it listens only on IPv4
5035 addresses.
5036 </p>
5037 <p>
5038 If <var>port</var> is not specified, it defaults to 6653.
5039 </p>
5040 </dd>
5041 </dl>
5042 <p>When multiple controllers are configured for a single bridge, the
5043 <ref column="target"/> values must be unique. Duplicate
5044 <ref column="target"/> values yield unspecified results.</p>
5045 </column>
5046
5047 <column name="connection_mode">
5048 <p>If it is specified, this setting must be one of the following
5049 strings that describes how Open vSwitch contacts this OpenFlow
5050 controller over the network:</p>
5051
5052 <dl>
5053 <dt><code>in-band</code></dt>
5054 <dd>In this mode, this controller's OpenFlow traffic travels over the
5055 bridge associated with the controller. With this setting, Open
5056 vSwitch allows traffic to and from the controller regardless of the
5057 contents of the OpenFlow flow table. (Otherwise, Open vSwitch
5058 would never be able to connect to the controller, because it did
5059 not have a flow to enable it.) This is the most common connection
5060 mode because it is not necessary to maintain two independent
5061 networks.</dd>
5062 <dt><code>out-of-band</code></dt>
5063 <dd>In this mode, OpenFlow traffic uses a control network separate
5064 from the bridge associated with this controller, that is, the
5065 bridge does not use any of its own network devices to communicate
5066 with the controller. The control network must be configured
5067 separately, before or after <code>ovs-vswitchd</code> is started.
5068 </dd>
5069 </dl>
5070
5071 <p>If not specified, the default is implementation-specific.</p>
5072 </column>
5073 </group>
5074
5075 <group title="Controller Failure Detection and Handling">
5076 <column name="max_backoff">
5077 Maximum number of milliseconds to wait between connection attempts.
5078 Default is implementation-specific.
5079 </column>
5080
5081 <column name="inactivity_probe">
5082 Maximum number of milliseconds of idle time on connection to
5083 controller before sending an inactivity probe message. If Open
5084 vSwitch does not communicate with the controller for the specified
5085 number of seconds, it will send a probe. If a response is not
5086 received for the same additional amount of time, Open vSwitch
5087 assumes the connection has been broken and attempts to reconnect.
5088 Default is implementation-specific. A value of 0 disables
5089 inactivity probes.
5090 </column>
5091 </group>
5092
5093 <group title="Asynchronous Messages">
5094 <p>
5095 OpenFlow switches send certain messages to controllers spontanenously,
5096 that is, not in response to any request from the controller. These
5097 messages are called ``asynchronous messages.'' These columns allow
5098 asynchronous messages to be limited or disabled to ensure the best use
5099 of network resources.
5100 </p>
5101
5102 <column name="enable_async_messages">
5103 The OpenFlow protocol enables asynchronous messages at time of
5104 connection establishment, which means that a controller can receive
5105 asynchronous messages, potentially many of them, even if it turns them
5106 off immediately after connecting. Set this column to
5107 <code>false</code> to change Open vSwitch behavior to disable, by
5108 default, all asynchronous messages. The controller can use the
5109 <code>NXT_SET_ASYNC_CONFIG</code> Nicira extension to OpenFlow to turn
5110 on any messages that it does want to receive, if any.
5111 </column>
5112
5113 <group title="Controller Rate Limiting">
5114 <p>
5115 A switch can forward packets to a controller over the OpenFlow
5116 protocol. Forwarding packets this way at too high a rate can
5117 overwhelm a controller, frustrate use of the OpenFlow connection for
5118 other purposes, increase the latency of flow setup, and use an
5119 unreasonable amount of bandwidth. Therefore, Open vSwitch supports
5120 limiting the rate of packet forwarding to a controller.
5121 </p>
5122
5123 <p>
5124 There are two main reasons in OpenFlow for a packet to be sent to a
5125 controller: either the packet ``misses'' in the flow table, that is,
5126 there is no matching flow, or a flow table action says to send the
5127 packet to the controller. Open vSwitch limits the rate of each kind
5128 of packet separately at the configured rate. Therefore, the actual
5129 rate that packets are sent to the controller can be up to twice the
5130 configured rate, when packets are sent for both reasons.
5131 </p>
5132
5133 <p>
5134 This feature is specific to forwarding packets over an OpenFlow
5135 connection. It is not general-purpose QoS. See the <ref
5136 table="QoS"/> table for quality of service configuration, and <ref
5137 column="ingress_policing_rate" table="Interface"/> in the <ref
5138 table="Interface"/> table for ingress policing configuration.
5139 </p>
5140
5141 <column name="controller_queue_size">
5142 <p>
5143 This sets the maximum size of the queue of packets that need to be
5144 sent to this OpenFlow controller. The value must be less than 512.
5145 If not specified the queue size is limited to the value set for
5146 the management controller in <ref table="Bridge"
5147 column="other_config" key="controller-queue-size"/> if present or
5148 100 packets by default. Note: increasing the queue size might
5149 have a negative impact on latency.
5150 </p>
5151 </column>
5152
5153 <column name="controller_rate_limit">
5154 <p>
5155 The maximum rate at which the switch will forward packets to the
5156 OpenFlow controller, in packets per second. If no value is
5157 specified, rate limiting is disabled.
5158 </p>
5159 </column>
5160
5161 <column name="controller_burst_limit">
5162 <p>
5163 When a high rate triggers rate-limiting, Open vSwitch queues
5164 packets to the controller for each port and transmits them to the
5165 controller at the configured rate. This value limits the number of
5166 queued packets. Ports on a bridge share the packet queue fairly.
5167 </p>
5168
5169 <p>
5170 This value has no effect unless <ref
5171 column="controller_rate_limit"/> is configured. The current
5172 default when this value is not specified is one-quarter of <ref
5173 column="controller_rate_limit"/>, meaning that queuing can delay
5174 forwarding a packet to the controller by up to 250 ms.
5175 </p>
5176 </column>
5177
5178 <group title="Controller Rate Limiting Statistics">
5179 <p>
5180 These values report the effects of rate limiting. Their values are
5181 relative to establishment of the most recent OpenFlow connection,
5182 or since rate limiting was enabled, whichever happened more
5183 recently. Each consists of two values, one with <code>TYPE</code>
5184 replaced by <code>miss</code> for rate limiting flow table misses,
5185 and the other with <code>TYPE</code> replaced by
5186 <code>action</code> for rate limiting packets sent by OpenFlow
5187 actions.
5188 </p>
5189
5190 <p>
5191 These statistics are reported only when controller rate limiting is
5192 enabled.
5193 </p>
5194
5195 <column name="status" key="packet-in-TYPE-bypassed"
5196 type='{"type": "integer", "minInteger": 0}'>
5197 Number of packets sent directly to the controller, without queuing,
5198 because the rate did not exceed the configured maximum.
5199 </column>
5200
5201 <column name="status" key="packet-in-TYPE-queued"
5202 type='{"type": "integer", "minInteger": 0}'>
5203 Number of packets added to the queue to send later.
5204 </column>
5205
5206 <column name="status" key="packet-in-TYPE-dropped"
5207 type='{"type": "integer", "minInteger": 0}'>
5208 Number of packets added to the queue that were later dropped due to
5209 overflow. This value is less than or equal to <ref column="status"
5210 key="packet-in-TYPE-queued"/>.
5211 </column>
5212
5213 <column name="status" key="packet-in-TYPE-backlog"
5214 type='{"type": "integer", "minInteger": 0}'>
5215 Number of packets currently queued. The other statistics increase
5216 monotonically, but this one fluctuates between 0 and the <ref
5217 column="controller_burst_limit"/> as conditions change.
5218 </column>
5219 </group>
5220 </group>
5221 </group>
5222
5223 <group title="Additional In-Band Configuration">
5224 <p>These values are considered only in in-band control mode (see
5225 <ref column="connection_mode"/>).</p>
5226
5227 <p>When multiple controllers are configured on a single bridge, there
5228 should be only one set of unique values in these columns. If different
5229 values are set for these columns in different controllers, the effect
5230 is unspecified.</p>
5231
5232 <column name="local_ip">
5233 The IP address to configure on the local port,
5234 e.g. <code>192.168.0.123</code>. If this value is unset, then
5235 <ref column="local_netmask"/> and <ref column="local_gateway"/> are
5236 ignored.
5237 </column>
5238
5239 <column name="local_netmask">
5240 The IP netmask to configure on the local port,
5241 e.g. <code>255.255.255.0</code>. If <ref column="local_ip"/> is set
5242 but this value is unset, then the default is chosen based on whether
5243 the IP address is class A, B, or C.
5244 </column>
5245
5246 <column name="local_gateway">
5247 The IP address of the gateway to configure on the local port, as a
5248 string, e.g. <code>192.168.0.1</code>. Leave this column unset if
5249 this network has no gateway.
5250 </column>
5251 </group>
5252
5253 <group title="Controller Status">
5254 <column name="is_connected">
5255 <code>true</code> if currently connected to this controller,
5256 <code>false</code> otherwise.
5257 </column>
5258
5259 <column name="role"
5260 type='{"type": "string", "enum": ["set", ["other", "master", "slave"]]}'>
5261 <p>The level of authority this controller has on the associated
5262 bridge. Possible values are:</p>
5263 <dl>
5264 <dt><code>other</code></dt>
5265 <dd>Allows the controller access to all OpenFlow features.</dd>
5266 <dt><code>master</code></dt>
5267 <dd>
5268 Equivalent to <code>other</code>, except that there may be at
5269 most one such controller at a time. If a given controller
5270 promotes itself to this role, <code>ovs-vswitchd</code>
5271 demotes any existing controller with the role to <code>slave</code>.
5272 </dd>
5273
5274 <dt><code>slave</code></dt>
5275 <dd>
5276 Allows the controller read-only access to OpenFlow features.
5277 Attempts to modify the flow table will be rejected with an
5278 error. Such controllers do not receive OFPT_PACKET_IN or
5279 OFPT_FLOW_REMOVED messages, but they do receive OFPT_PORT_STATUS
5280 messages.
5281 </dd>
5282 </dl>
5283 </column>
5284
5285 <column name="status" key="last_error">
5286 A human-readable description of the last error on the connection
5287 to the controller; i.e. <code>strerror(errno)</code>. This key
5288 will exist only if an error has occurred.
5289 </column>
5290
5291 <column name="status" key="state"
5292 type='{"type": "string", "enum": ["set", ["VOID", "BACKOFF", "CONNECTING", "ACTIVE", "IDLE"]]}'>
5293 <p>
5294 The state of the connection to the controller:
5295 </p>
5296 <dl>
5297 <dt><code>VOID</code></dt>
5298 <dd>Connection is disabled.</dd>
5299
5300 <dt><code>BACKOFF</code></dt>
5301 <dd>Attempting to reconnect at an increasing period.</dd>
5302
5303 <dt><code>CONNECTING</code></dt>
5304 <dd>Attempting to connect.</dd>
5305
5306 <dt><code>ACTIVE</code></dt>
5307 <dd>Connected, remote host responsive.</dd>
5308
5309 <dt><code>IDLE</code></dt>
5310 <dd>Connection is idle. Waiting for response to keep-alive.</dd>
5311 </dl>
5312 <p>
5313 These values may change in the future. They are provided only for
5314 human consumption.
5315 </p>
5316 </column>
5317
5318 <column name="status" key="sec_since_connect"
5319 type='{"type": "integer", "minInteger": 0}'>
5320 The amount of time since this controller last successfully connected to
5321 the switch (in seconds). Value is empty if controller has never
5322 successfully connected.
5323 </column>
5324
5325 <column name="status" key="sec_since_disconnect"
5326 type='{"type": "integer", "minInteger": 1}'>
5327 The amount of time since this controller last disconnected from
5328 the switch (in seconds). Value is empty if controller has never
5329 disconnected.
5330 </column>
5331 </group>
5332
5333 <group title="Connection Parameters">
5334 <p>
5335 Additional configuration for a connection between the controller
5336 and the Open vSwitch.
5337 </p>
5338
5339 <column name="other_config" key="dscp"
5340 type='{"type": "integer"}'>
5341 The Differentiated Service Code Point (DSCP) is specified using 6 bits
5342 in the Type of Service (TOS) field in the IP header. DSCP provides a
5343 mechanism to classify the network traffic and provide Quality of
5344 Service (QoS) on IP networks.
5345
5346 The DSCP value specified here is used when establishing the connection
5347 between the controller and the Open vSwitch. If no value is specified,
5348 a default value of 48 is chosen. Valid DSCP values must be in the
5349 range 0 to 63.
5350 </column>
5351 </group>
5352
5353
5354 <group title="Common Columns">
5355 The overall purpose of these columns is described under <code>Common
5356 Columns</code> at the beginning of this document.
5357
5358 <column name="external_ids"/>
5359 <column name="other_config"/>
5360 </group>
5361 </table>
5362
5363 <table name="Manager" title="OVSDB management connection.">
5364 <p>
5365 Configuration for a database connection to an Open vSwitch database
5366 (OVSDB) client.
5367 </p>
5368
5369 <p>
5370 This table primarily configures the Open vSwitch database
5371 (<code>ovsdb-server</code>), not the Open vSwitch switch
5372 (<code>ovs-vswitchd</code>). The switch does read the table to determine
5373 what connections should be treated as in-band.
5374 </p>
5375
5376 <p>
5377 The Open vSwitch database server can initiate and maintain active
5378 connections to remote clients. It can also listen for database
5379 connections.
5380 </p>
5381
5382 <group title="Core Features">
5383 <column name="target">
5384 <p>Connection method for managers.</p>
5385 <p>
5386 The following connection methods are currently supported:
5387 </p>
5388 <dl>
5389 <dt><code>ssl:<var>host</var></code>[<code>:<var>port</var></code>]</dt>
5390 <dd>
5391 <p>
5392 The specified SSL <var>port</var> on the host at the given
5393 <var>host</var>, which can either be a DNS name (if built with
5394 unbound library) or an IP address. The <ref table="Open_vSwitch"
5395 column="ssl"/> column in the <ref table="Open_vSwitch"/>
5396 table must point to a valid SSL configuration when this
5397 form is used.
5398 </p>
5399 <p>
5400 If <var>port</var> is not specified, it defaults to 6640.
5401 </p>
5402 <p>
5403 SSL support is an optional feature that is not always
5404 built as part of Open vSwitch.
5405 </p>
5406 </dd>
5407
5408 <dt><code>tcp:<var>host</var></code>[<code>:<var>port</var></code>]</dt>
5409 <dd>
5410 <p>
5411 The specified TCP <var>port</var> on the host at the given
5412 <var>host</var>, which can either be a DNS name (if built with
5413 unbound library) or an IP address (IPv4 or IPv6). If <var>host</var>
5414 is an IPv6 address, wrap it in square brackets, e.g.
5415 <code>tcp:[::1]:6640</code>.
5416 </p>
5417 <p>
5418 If <var>port</var> is not specified, it defaults to 6640.
5419 </p>
5420 </dd>
5421 <dt><code>pssl:</code>[<var>port</var>][<code>:<var>host</var></code>]</dt>
5422 <dd>
5423 <p>
5424 Listens for SSL connections on the specified TCP <var>port</var>.
5425 Specify 0 for <var>port</var> to have the kernel automatically
5426 choose an available port. If <var>host</var>, which can either
5427 be a DNS name (if built with unbound library) or an IP address,
5428 is specified, then connections are restricted to the resolved or
5429 specified local IP address (either IPv4 or IPv6 address). If
5430 <var>host</var> is an IPv6 address, wrap in square brackets,
5431 e.g. <code>pssl:6640:[::1]</code>. If <var>host</var> is not
5432 specified then it listens only on IPv4 (but not IPv6) addresses.
5433 The <ref table="Open_vSwitch" column="ssl"/> column in the <ref
5434 table="Open_vSwitch"/> table must point to a valid SSL
5435 configuration when this form is used.
5436 </p>
5437 <p>
5438 If <var>port</var> is not specified, it defaults to 6640.
5439 </p>
5440 <p>
5441 SSL support is an optional feature that is not always built as
5442 part of Open vSwitch.
5443 </p>
5444 </dd>
5445 <dt><code>ptcp:</code>[<var>port</var>][<code>:<var>host</var></code>]</dt>
5446 <dd>
5447 <p>
5448 Listens for connections on the specified TCP <var>port</var>.
5449 Specify 0 for <var>port</var> to have the kernel automatically
5450 choose an available port. If <var>host</var>, which can either
5451 be a DNS name (if built with unbound library) or an IP address,
5452 is specified, then connections are restricted to the resolved or
5453 specified local IP address (either IPv4 or IPv6 address). If
5454 <var>host</var> is an IPv6 address, wrap it in square brackets,
5455 e.g. <code>ptcp:6640:[::1]</code>. If <var>host</var> is not
5456 specified then it listens only on IPv4 addresses.
5457 </p>
5458 <p>
5459 If <var>port</var> is not specified, it defaults to 6640.
5460 </p>
5461 </dd>
5462 </dl>
5463 <p>When multiple managers are configured, the <ref column="target"/>
5464 values must be unique. Duplicate <ref column="target"/> values yield
5465 unspecified results.</p>
5466 </column>
5467
5468 <column name="connection_mode">
5469 <p>
5470 If it is specified, this setting must be one of the following strings
5471 that describes how Open vSwitch contacts this OVSDB client over the
5472 network:
5473 </p>
5474
5475 <dl>
5476 <dt><code>in-band</code></dt>
5477 <dd>
5478 In this mode, this connection's traffic travels over a bridge
5479 managed by Open vSwitch. With this setting, Open vSwitch allows
5480 traffic to and from the client regardless of the contents of the
5481 OpenFlow flow table. (Otherwise, Open vSwitch would never be able
5482 to connect to the client, because it did not have a flow to enable
5483 it.) This is the most common connection mode because it is not
5484 necessary to maintain two independent networks.
5485 </dd>
5486 <dt><code>out-of-band</code></dt>
5487 <dd>
5488 In this mode, the client's traffic uses a control network separate
5489 from that managed by Open vSwitch, that is, Open vSwitch does not
5490 use any of its own network devices to communicate with the client.
5491 The control network must be configured separately, before or after
5492 <code>ovs-vswitchd</code> is started.
5493 </dd>
5494 </dl>
5495
5496 <p>
5497 If not specified, the default is implementation-specific.
5498 </p>
5499 </column>
5500 </group>
5501
5502 <group title="Client Failure Detection and Handling">
5503 <column name="max_backoff">
5504 Maximum number of milliseconds to wait between connection attempts.
5505 Default is implementation-specific.
5506 </column>
5507
5508 <column name="inactivity_probe">
5509 Maximum number of milliseconds of idle time on connection to the client
5510 before sending an inactivity probe message. If Open vSwitch does not
5511 communicate with the client for the specified number of seconds, it
5512 will send a probe. If a response is not received for the same
5513 additional amount of time, Open vSwitch assumes the connection has been
5514 broken and attempts to reconnect. Default is implementation-specific.
5515 A value of 0 disables inactivity probes.
5516 </column>
5517 </group>
5518
5519 <group title="Status">
5520 <p>
5521 Key-value pair of <ref column="is_connected"/> is always updated.
5522 Other key-value pairs in the status columns may be updated depends
5523 on the <ref column="target"/> type.
5524 </p>
5525
5526 <p>
5527 When <ref column="target"/> specifies a connection method that
5528 listens for inbound connections (e.g. <code>ptcp:</code> or
5529 <code>punix:</code>), both <ref column="n_connections"/> and
5530 <ref column="is_connected"/> may also be updated while the
5531 remaining key-value pairs are omitted.
5532 </p>
5533
5534 <p>
5535 On the other hand, when <ref column="target"/> specifies an
5536 outbound connection, all key-value pairs may be updated, except
5537 the above-mentioned two key-value pairs associated with inbound
5538 connection targets. They are omitted.
5539 </p>
5540
5541 <column name="is_connected">
5542 <code>true</code> if currently connected to this manager,
5543 <code>false</code> otherwise.
5544 </column>
5545
5546 <column name="status" key="last_error">
5547 A human-readable description of the last error on the connection
5548 to the manager; i.e. <code>strerror(errno)</code>. This key
5549 will exist only if an error has occurred.
5550 </column>
5551
5552 <column name="status" key="state"
5553 type='{"type": "string", "enum": ["set", ["VOID", "BACKOFF", "CONNECTING", "ACTIVE", "IDLE"]]}'>
5554 <p>
5555 The state of the connection to the manager:
5556 </p>
5557 <dl>
5558 <dt><code>VOID</code></dt>
5559 <dd>Connection is disabled.</dd>
5560
5561 <dt><code>BACKOFF</code></dt>
5562 <dd>Attempting to reconnect at an increasing period.</dd>
5563
5564 <dt><code>CONNECTING</code></dt>
5565 <dd>Attempting to connect.</dd>
5566
5567 <dt><code>ACTIVE</code></dt>
5568 <dd>Connected, remote host responsive.</dd>
5569
5570 <dt><code>IDLE</code></dt>
5571 <dd>Connection is idle. Waiting for response to keep-alive.</dd>
5572 </dl>
5573 <p>
5574 These values may change in the future. They are provided only for
5575 human consumption.
5576 </p>
5577 </column>
5578
5579 <column name="status" key="sec_since_connect"
5580 type='{"type": "integer", "minInteger": 0}'>
5581 The amount of time since this manager last successfully connected
5582 to the database (in seconds). Value is empty if manager has never
5583 successfully connected.
5584 </column>
5585
5586 <column name="status" key="sec_since_disconnect"
5587 type='{"type": "integer", "minInteger": 0}'>
5588 The amount of time since this manager last disconnected from the
5589 database (in seconds). Value is empty if manager has never
5590 disconnected.
5591 </column>
5592
5593 <column name="status" key="locks_held">
5594 Space-separated list of the names of OVSDB locks that the connection
5595 holds. Omitted if the connection does not hold any locks.
5596 </column>
5597
5598 <column name="status" key="locks_waiting">
5599 Space-separated list of the names of OVSDB locks that the connection is
5600 currently waiting to acquire. Omitted if the connection is not waiting
5601 for any locks.
5602 </column>
5603
5604 <column name="status" key="locks_lost">
5605 Space-separated list of the names of OVSDB locks that the connection
5606 has had stolen by another OVSDB client. Omitted if no locks have been
5607 stolen from this connection.
5608 </column>
5609
5610 <column name="status" key="n_connections"
5611 type='{"type": "integer", "minInteger": 2}'>
5612 When <ref column="target"/> specifies a connection method that
5613 listens for inbound connections (e.g. <code>ptcp:</code> or
5614 <code>pssl:</code>) and more than one connection is actually active,
5615 the value is the number of active connections. Otherwise, this
5616 key-value pair is omitted.
5617 </column>
5618
5619 <column name="status" key="bound_port" type='{"type": "integer"}'>
5620 When <ref column="target"/> is <code>ptcp:</code> or
5621 <code>pssl:</code>, this is the TCP port on which the OVSDB server is
5622 listening. (This is particularly useful when <ref
5623 column="target"/> specifies a port of 0, allowing the kernel to
5624 choose any available port.)
5625 </column>
5626 </group>
5627
5628 <group title="Connection Parameters">
5629 <p>
5630 Additional configuration for a connection between the manager
5631 and the Open vSwitch Database.
5632 </p>
5633
5634 <column name="other_config" key="dscp"
5635 type='{"type": "integer"}'>
5636 The Differentiated Service Code Point (DSCP) is specified using 6 bits
5637 in the Type of Service (TOS) field in the IP header. DSCP provides a
5638 mechanism to classify the network traffic and provide Quality of
5639 Service (QoS) on IP networks.
5640
5641 The DSCP value specified here is used when establishing the connection
5642 between the manager and the Open vSwitch. If no value is specified, a
5643 default value of 48 is chosen. Valid DSCP values must be in the range
5644 0 to 63.
5645 </column>
5646 </group>
5647
5648 <group title="Common Columns">
5649 The overall purpose of these columns is described under <code>Common
5650 Columns</code> at the beginning of this document.
5651
5652 <column name="external_ids"/>
5653 <column name="other_config"/>
5654 </group>
5655 </table>
5656
5657 <table name="NetFlow">
5658 A NetFlow target. NetFlow is a protocol that exports a number of
5659 details about terminating IP flows, such as the principals involved
5660 and duration.
5661
5662 <column name="targets">
5663 NetFlow targets in the form
5664 <code><var>ip</var>:<var>port</var></code>. The <var>ip</var>
5665 must be specified numerically, not as a DNS name.
5666 </column>
5667
5668 <column name="engine_id">
5669 Engine ID to use in NetFlow messages. Defaults to datapath index
5670 if not specified.
5671 </column>
5672
5673 <column name="engine_type">
5674 Engine type to use in NetFlow messages. Defaults to datapath
5675 index if not specified.
5676 </column>
5677
5678 <column name="active_timeout">
5679 <p>
5680 The interval at which NetFlow records are sent for flows that
5681 are still active, in seconds. A value of <code>0</code>
5682 requests the default timeout (currently 600 seconds); a value
5683 of <code>-1</code> disables active timeouts.
5684 </p>
5685
5686 <p>
5687 The NetFlow passive timeout, for flows that become inactive,
5688 is not configurable. It will vary depending on the Open
5689 vSwitch version, the forms and contents of the OpenFlow flow
5690 tables, CPU and memory usage, and network activity. A typical
5691 passive timeout is about a second.
5692 </p>
5693 </column>
5694
5695 <column name="add_id_to_interface">
5696 <p>If this column's value is <code>false</code>, the ingress and egress
5697 interface fields of NetFlow flow records are derived from OpenFlow port
5698 numbers. When it is <code>true</code>, the 7 most significant bits of
5699 these fields will be replaced by the least significant 7 bits of the
5700 engine id. This is useful because many NetFlow collectors do not
5701 expect multiple switches to be sending messages from the same host, so
5702 they do not store the engine information which could be used to
5703 disambiguate the traffic.</p>
5704 <p>When this option is enabled, a maximum of 508 ports are supported.</p>
5705 </column>
5706
5707 <group title="Common Columns">
5708 The overall purpose of these columns is described under <code>Common
5709 Columns</code> at the beginning of this document.
5710
5711 <column name="external_ids"/>
5712 </group>
5713 </table>
5714
5715 <table name="Datapath">
5716 <p>
5717 Configuration for a datapath within <ref table="Open_vSwitch"/>.
5718 </p>
5719 <p>
5720 A datapath is responsible for providing the packet handling in Open
5721 vSwitch. There are two primary datapath implementations used by
5722 Open vSwitch: kernel and userspace. Kernel datapath
5723 implementations are available for Linux and Hyper-V, and selected
5724 as <code>system</code> in the <ref column="datapath_type"/> column
5725 of the <ref table="Bridge"/> table. The userspace datapath is used
5726 by DPDK and AF-XDP, and is selected as <code>netdev</code> in the
5727 <ref column="datapath_type"/> column of the <ref table="Bridge"/>
5728 table.
5729 </p>
5730 <p>
5731 A datapath of a particular type is shared by all the bridges that use
5732 that datapath. Thus, configurations applied to this table affect
5733 all bridges that use this datapath.
5734 </p>
5735
5736 <column name="datapath_version">
5737 <p>
5738 Reports the version number of the Open vSwitch datapath in use.
5739 This allows management software to detect and report discrepancies
5740 between Open vSwitch userspace and datapath versions. (The <ref
5741 column="ovs_version" table="Open_vSwitch"/> column in the <ref
5742 table="Open_vSwitch"/> reports the Open vSwitch userspace version.)
5743 The version reported depends on the datapath in use:
5744 </p>
5745
5746 <ul>
5747 <li>
5748 When the kernel module included in the Open vSwitch source tree is
5749 used, this column reports the Open vSwitch version from which the
5750 module was taken.
5751 </li>
5752
5753 <li>
5754 When the kernel module that is part of the upstream Linux kernel is
5755 used, this column reports <code>&lt;unknown&gt;</code>.
5756 </li>
5757
5758 <li>
5759 When the datapath is built into the <code>ovs-vswitchd</code>
5760 binary, this column reports <code>&lt;built-in&gt;</code>. A
5761 built-in datapath is by definition the same version as the rest of
5762 the Open vSwitch userspace.
5763 </li>
5764
5765 <li>
5766 Other datapaths (such as the Hyper-V kernel datapath) currently
5767 report <code>&lt;unknown&gt;</code>.
5768 </li>
5769 </ul>
5770
5771 <p>
5772 A version discrepancy between <code>ovs-vswitchd</code> and the
5773 datapath in use is not normally cause for alarm. The Open vSwitch
5774 kernel datapaths for Linux and Hyper-V, in particular, are designed
5775 for maximum inter-version compatibility: any userspace version works
5776 with with any kernel version. Some reasons do exist to insist on
5777 particular user/kernel pairings. First, newer kernel versions add
5778 new features, that can only be used by new-enough userspace, e.g.
5779 VXLAN tunneling requires certain minimal userspace and kernel
5780 versions. Second, as an extension to the first reason, some newer
5781 kernel versions add new features for enhancing performance that only
5782 new-enough userspace versions can take advantage of.
5783 </p>
5784 </column>
5785
5786 <column name="ct_zones">
5787 Configuration for connection tracking zones. Each pair maps from a
5788 zone id to a configuration for that zone. Zone <code>0</code> applies
5789 to the default zone (ie, the one used if a zone is not specified in
5790 connection tracking-related OpenFlow matches and actions).
5791 </column>
5792
5793 <group title="Capabilities">
5794 <p>
5795 The <ref column="capabilities"/> column reports a datapath's
5796 features. For the <code>netdev</code> datapath, the
5797 capabilities are fixed for a given version of Open vSwitch
5798 because this datapath is built into the
5799 <code>ovs-vswitchd</code> binary. The Linux kernel and
5800 Windows and other datapaths, which are external to OVS
5801 userspace, can vary in version and capabilities independently
5802 from <code>ovs-vswitchd</code>.
5803 </p>
5804
5805 <p>
5806 Some of these features indicate whether higher-level Open vSwitch
5807 features are available. For example, OpenFlow features for
5808 connection-tracking are available only when <ref column="capabilities"
5809 key="ct_state"/> is <code>true</code>. A controller that wishes to
5810 determine whether a feature is supported could, therefore, consult the
5811 relevant capabilities in this table. However, as a general rule, it is
5812 better for a controller to try to use the higher-level feature and use
5813 the result as an indication of support, since the low-level
5814 capabilities are more likely to shift over time than the high-level
5815 features that rely on them.
5816 </p>
5817
5818 <column name="capabilities" key="max_vlan_headers"
5819 type='{"type": "integer", "minInteger": 0}'>
5820 Number of 802.1q VLAN headers supported by the datapath, as probed by
5821 the <code>ovs-vswitchd</code> slow path. If the datapath supports more
5822 VLAN headers than the slow path, this reports the slow path's limit.
5823 The value of <ref column="other-config" key="vlan-limit"/> in the <ref
5824 table="Open_vSwitch"/> table does not influence the number reported
5825 here.
5826 </column>
5827 <column name="capabilities" key="recirc" type='{"type": "boolean"}'>
5828 If this is true, then the datapath supports recirculation,
5829 specifically OVS_KEY_ATTR_RECIRC_ID. Recirculation enables
5830 higher performance for MPLS and active-active load balancing
5831 bonding modes.
5832 </column>
5833 <column name="capabilities" key="lb_output_action"
5834 type='{"type": "boolean"}'>
5835 If this is true, then the datapath supports optimized balance-tcp
5836 bond mode. This capability replaces existing <code>hash</code> and
5837 <code>recirc</code> actions with new action <code>lb_output</code>
5838 and avoids recirculation of packet in datapath. It is supported
5839 only for balance-tcp bond mode in netdev datapath. The new action
5840 gives higer performance by using bond buckets instead of post
5841 recirculation flows for selection of slave port from bond. By default
5842 this new action is disabled, however it can be enabled by setting
5843 <ref column="other-config" key="lb-output-action"/> in
5844 <ref table="Port"/> table.
5845 </column>
5846 <group title="Connection-Tracking Capabilities">
5847 <p>
5848 These capabilities are granular because Open vSwitch and its
5849 datapaths added support for connection tracking over several
5850 releases, with features added individually over that time.
5851 </p>
5852
5853 <column name="capabilities" key="ct_state" type='{"type": "boolean"}'>
5854 <p>
5855 If true, datapath supports OVS_KEY_ATTR_CT_STATE, which indicates
5856 support for the bits in the OpenFlow <code>ct_state</code> field
5857 (see <code>ovs-fields</code>(7)) other than <code>snat</code> and
5858 <code>dnat</code>, which have a separate capability.
5859 </p>
5860
5861 <p>
5862 If this is false, the datapath does not support connection-tracking
5863 at all and the remaining connection-tracking capabilities should
5864 all be false. In this case, Open vSwitch will reject flows that
5865 match on the <code>ct_state</code> field or use the <code>ct</code>
5866 action.
5867 </p>
5868 </column>
5869 <column name="capabilities" key="ct_state_nat"
5870 type='{"type": "boolean"}'>
5871 <p>
5872 If true, it means that the datapath supports the <code>snat</code>
5873 and <code>dnat</code> flags in the OpenFlow <code>ct_state</code>
5874 field. The <code>ct_state</code> capability must be true for this
5875 to make sense.
5876 </p>
5877
5878 <p>
5879 If false, Open vSwitch will reject flows that match on the
5880 <code>snat</code> or <code>dnat</code> bits in
5881 <code>ct_state</code> or use <code>nat</code> in the
5882 <code>ct</code> action.
5883 </p>
5884 </column>
5885 <column name="capabilities" key="ct_zone" type='{"type": "boolean"}'>
5886 If true, datapath supports OVS_KEY_ATTR_CT_ZONE. If false, Open
5887 vSwitch rejects flows that match on the <code>ct_zone</code> field or
5888 that specify a nonzero zone or a zone field on the <code>ct</code>
5889 action.
5890 </column>
5891 <column name="capabilities" key="ct_mark" type='{"type": "boolean"}'>
5892 If true, datapath supports OVS_KEY_ATTR_CT_MARK. If false, Open
5893 vSwitch rejects flows that match on the <code>ct_mark</code> field or
5894 that set <code>ct_mark</code> in the <code>ct</code> action.
5895 </column>
5896 <column name="capabilities" key="ct_label" type='{"type": "boolean"}'>
5897 If true, datapath supports OVS_KEY_ATTR_CT_LABEL. If false, Open
5898 vSwitch rejects flows that match on the <code>ct_label</code> field
5899 or that set <code>ct_label</code> in the <code>ct</code> action.
5900 </column>
5901 <column name="capabilities" key="ct_orig_tuple"
5902 type='{"type": "boolean"}'>
5903 <p>
5904 If true, the datapath supports matching the 5-tuple from the
5905 connection's original direction for IPv4 traffic. If false, Open
5906 vSwitch rejects flows that match on <code>ct_nw_src</code> or
5907 <code>ct_nw_dst</code>, that use the <code>ct</code> feature of the
5908 <code>resubmit</code> action, or the <code>force</code> keyword in
5909 the <code>ct</code> action. (The latter isn't tied to connection
5910 tracking support of original tuples in any technical way. They are
5911 conflated because all current datapaths implemented the two
5912 features at the same time.)
5913 </p>
5914
5915 <p>
5916 If this and <ref column="capabilities" key="ct_orig_tuple6"/> are
5917 both false, Open vSwitch rejects flows that match on
5918 <code>ct_nw_proto</code>, <code>ct_tp_src</code>, or
5919 <code>ct_tp_dst</code>.
5920 </p>
5921 </column>
5922 <column name="capabilities" key="ct_orig_tuple6"
5923 type='{"type": "boolean"}'>
5924 If true, the datapath supports matching the 5-tuple from the
5925 connection's original direction for IPv6 traffic. If false, Open
5926 vSwitch rejects flows that match on <code>ct_ipv6_src</code> or
5927 <code>ct_ipv6_dst</code>.
5928 </column>
5929 </group>
5930 <column name="capabilities" key="masked_set_action"
5931 type='{"type": "boolean"}'>
5932 True if the datapath supports masked data in OVS_ACTION_ATTR_SET
5933 actions. Masked data can improve performance by allowing megaflows to
5934 match on fewer fields.
5935 </column>
5936 <column name="capabilities" key="tnl_push_pop"
5937 type='{"type": "boolean"}'>
5938 True if the datapath supports tnl_push and pop actions. This is a
5939 prerequisite for a datapath to support native tunneling.
5940 </column>
5941 <column name="capabilities" key="ufid" type='{"type": "boolean"}'>
5942 True if the datapath supports OVS_FLOW_ATTR_UFID. UFID support
5943 improves revalidation performance by transferring less data between
5944 the slow path and the datapath.
5945 </column>
5946 <column name="capabilities" key="trunc" type='{"type": "boolean"}'>
5947 True if the datapath supports OVS_ACTION_ATTR_TRUNC action. If false,
5948 the <code>output</code> action with packet truncation requires every
5949 packet to be sent to the Open vSwitch slow path, which is likely to
5950 make it too slow for mirroring traffic in bulk.
5951 </column>
5952 <column name="capabilities" key="nd_ext" type='{"type": "boolean"}'>
5953 True if the datapath supports OVS_KEY_ATTR_ND_EXTENSIONS to match on
5954 ICMPv6 "ND reserved" and "ND option type" header fields. If false,
5955 the datapath reports error if the feature is used.
5956 </column>
5957 <group title="Clone Actions">
5958 <p>
5959 When Open vSwitch translates actions from OpenFlow into the datapath
5960 representation, some of the datapath actions may modify the packet or
5961 have other side effects that later datapath actions can't undo. The
5962 OpenFlow <code>ct</code>, <code>meter</code>, <code>output</code>
5963 with truncation, <code>encap</code>, <code>decap</code>, and
5964 <code>dec_nsh_ttl</code> actions fall into this category. Often,
5965 this is not a problem because nothing later on needs the original
5966 packet.
5967 </p>
5968
5969 <p>
5970 Such actions can, however, occur in circumstances where the
5971 translation does require the original packet. For example, an
5972 OpenFlow <code>output</code> action might direct a packet to a patch
5973 port, which might in turn lead to a <code>ct</code> action that NATs
5974 the packet (which cannot be undone), and then afterward when control
5975 flow pops back across the patch port some other action might need to
5976 act on the original packet.
5977 </p>
5978
5979 <p>
5980 Open vSwitch has two different ways to implement this ``save and
5981 restore'' via datapath actions. These capabilities indicate which
5982 one Open vSwitch will choose. When neither is available, Open
5983 vSwitch simply fails in situations that require this feature.
5984 </p>
5985
5986 <column name="capabilities" key="clone" type='{"type": "boolean"}'>
5987 <p>
5988 True if the datapath supports OVS_ACTION_ATTR_CLONE action. This
5989 is the preferred option for saving and restoring packets, since it
5990 is intended for the purpose, but old datapaths do not support it.
5991 Open vSwitch will use it whenever it is available.
5992 </p>
5993
5994 <p>
5995 (The OpenFlow <code>clone</code> action does not always yield a
5996 OVS_ACTION_ATTR_CLONE action. It only does so when the datapath
5997 supports it and the <code>clone</code> brackets actions that
5998 otherwise cannot be undone.)
5999 </p>
6000 </column>
6001 <column name="capabilities" key="sample_nesting"
6002 type='{"type": "integer", "minInteger": 0}'>
6003 Maximum level of nesting allowed by OVS_ACTION_ATTR_SAMPLE action.
6004 Open vSwitch misuses this action for saving and restoring packets
6005 when the datapath supports more than 3 levels of nesting and
6006 OVS_ACTION_ATTR_CLONE is not available.
6007 </column>
6008 </group>
6009 <column name="capabilities" key="ct_eventmask"
6010 type='{"type": "boolean"}'>
6011 True if the datapath's OVS_ACTION_ATTR_CT action implements the
6012 OVS_CT_ATTR_EVENTMASK attribute. When this is true, Open vSwitch uses
6013 the event mask feature to limit the kinds of events reported to
6014 conntrack update listeners. When Open vSwitch doesn't limit the event
6015 mask, listeners receive reports of numerous usually unimportant events,
6016 such as TCP state machine changes, which can waste CPU time.
6017 </column>
6018 <column name="capabilities" key="ct_clear" type='{"type": "boolean"}'>
6019 True if the datapath supports OVS_ACTION_ATTR_CT_CLEAR action.
6020 If false, the OpenFlow <code>ct_clear</code> action has no effect
6021 on the datapath.
6022 </column>
6023 <column name="capabilities" key="max_hash_alg"
6024 type='{"type": "integer", "minInteger": 0}'>
6025 Highest supported dp_hash algorithm. This allows Open vSwitch to avoid
6026 requesting a packet hash that the datapath does not support.
6027 </column>
6028 <column name="capabilities" key="check_pkt_len"
6029 type='{"type": "boolean"}'>
6030 True if the datapath supports OVS_ACTION_ATTR_CHECK_PKT_LEN. If false,
6031 Open vSwitch implements the <code>check_pkt_larger</code> action by
6032 sending every packet through the Open vSwitch slow path, which is
6033 likely to make it too slow for handling traffic in bulk.
6034 </column>
6035 <column name="capabilities" key="ct_timeout" type='{"type": "boolean"}'>
6036 True if the datapath supports OVS_CT_ATTR_TIMEOUT in the
6037 OVS_ACTION_ATTR_CT action. If false, Open vswitch cannot implement
6038 timeout policies based on connection tracking zones, as configured
6039 through the <code>CT_Timeout_Policy</code> table.
6040 </column>
6041 <column name="capabilities" key="explicit_drop_action"
6042 type='{"type": "boolean"}'>
6043 True if the datapath supports OVS_ACTION_ATTR_DROP. If false,
6044 explicit drop action will not be sent to the datapath.
6045 </column>
6046 </group>
6047
6048 <group title="Common Columns">
6049 The overall purpose of these columns is described under <code>Common
6050 Columns</code> at the beginning of this document.
6051
6052 <column name="external_ids"/>
6053 </group>
6054 </table>
6055
6056 <table name="CT_Zone">
6057 Connection tracking zone configuration
6058
6059 <column name="timeout_policy">
6060 Connection tracking timeout policy for this zone. If a timeout policy
6061 is not specified, it defaults to the timeout policy in the system.
6062 </column>
6063
6064 <group title="Common Columns">
6065 The overall purpose of these columns is described under <code>Common
6066 Columns</code> at the beginning of this document.
6067
6068 <column name="external_ids"/>
6069 </group>
6070 </table>
6071
6072 <table name="CT_Timeout_Policy">
6073 Connection tracking timeout policy configuration
6074
6075 <group title="Timeouts">
6076 <column name="timeouts">
6077 The <code>timeouts</code> column contains key-value pairs used
6078 to configure connection tracking timeouts in a datapath.
6079 Key-value pairs that are not supported by a datapath are
6080 ignored. The timeout value is in seconds.
6081 </column>
6082
6083 <group title="TCP Timeouts">
6084 <column name="timeouts" key="tcp_syn_sent">
6085 The timeout for the connection after the first TCP SYN packet has
6086 been seen by conntrack.
6087 </column>
6088
6089 <column name="timeouts" key="tcp_syn_recv">
6090 The timeout of the connection after the first TCP SYN-ACK packet
6091 has been seen by conntrack.
6092 </column>
6093
6094 <column name="timeouts" key="tcp_established">
6095 The timeout of the connection after the connection has been fully
6096 established.
6097 </column>
6098
6099 <column name="timeouts" key="tcp_fin_wait">
6100 The timeout of the connection after the first TCP FIN packet
6101 has been seen by conntrack.
6102 </column>
6103
6104 <column name="timeouts" key="tcp_close_wait">
6105 The timeout of the connection after the first TCP ACK packet
6106 has been seen after it receives TCP FIN packet. This timeout
6107 is only supported by the Linux kernel datapath.
6108 </column>
6109
6110 <column name="timeouts" key="tcp_last_ack">
6111 The timeout of the connection after TCP FIN packets have been
6112 seen by conntrack from both directions. This timeout is only
6113 supported by the Linux kernel datapath.
6114 </column>
6115
6116 <column name="timeouts" key="tcp_time_wait">
6117 The timeout of the connection after conntrack has seen the
6118 TCP ACK packet for the second TCP FIN packet.
6119 </column>
6120
6121 <column name="timeouts" key="tcp_close">
6122 The timeout of the connection after the first TCP RST packet
6123 has been seen by conntrack.
6124 </column>
6125
6126 <column name="timeouts" key="tcp_syn_sent2">
6127 The timeout of the connection when only a TCP SYN packet has been
6128 seen by conntrack from both directions (simultaneous open).
6129 This timeout is only supported by the Linux kernel datapath.
6130 </column>
6131
6132 <column name="timeouts" key="tcp_retransmit">
6133 The timeout of the connection when it exceeds the maximum
6134 number of retransmissions. This timeout is only supported by
6135 the Linux kernel datapath.
6136 </column>
6137
6138 <column name="timeouts" key="tcp_unack">
6139 The timeout of the connection when non-SYN packets create an
6140 established connection in TCP loose tracking mode. This timeout
6141 is only supported by the Linux kernel datapath.
6142 </column>
6143 </group>
6144
6145 <group title="UDP Timeouts">
6146 <column name="timeouts" key="udp_first">
6147 The timeout of the connection after the first UDP packet has
6148 been seen by conntrack. This timeout is only supported by the
6149 userspace datapath.
6150 </column>
6151
6152 <column name="timeouts" key="udp_single">
6153 The timeout of the connection when conntrack only seen UDP
6154 packet from the source host, but the destination host has never
6155 sent one back.
6156 </column>
6157
6158 <column name="timeouts" key="udp_multiple">
6159 The timeout of the connection when UDP packets have been seen in
6160 both directions.
6161 </column>
6162 </group>
6163
6164 <group title="ICMP Timeouts">
6165 <column name="timeouts" key="icmp_first">
6166 The timeout of the connection after the first ICMP packet has
6167 been seen by conntrack.
6168 </column>
6169
6170 <column name="timeouts" key="icmp_reply">
6171 The timeout of the connection when ICMP packets have been seen in
6172 both direction. This timeout is only supported by the userspace
6173 datapath.
6174 </column>
6175 </group>
6176 </group>
6177
6178 <group title="Common Columns">
6179 The overall purpose of these columns is described under <code>Common
6180 Columns</code> at the beginning of this document.
6181
6182 <column name="external_ids"/>
6183 </group>
6184 </table>
6185
6186 <table name="SSL">
6187 SSL configuration for an Open_vSwitch.
6188
6189 <column name="private_key">
6190 Name of a PEM file containing the private key used as the switch's
6191 identity for SSL connections to the controller.
6192 </column>
6193
6194 <column name="certificate">
6195 Name of a PEM file containing a certificate, signed by the
6196 certificate authority (CA) used by the controller and manager,
6197 that certifies the switch's private key, identifying a trustworthy
6198 switch.
6199 </column>
6200
6201 <column name="ca_cert">
6202 Name of a PEM file containing the CA certificate used to verify
6203 that the switch is connected to a trustworthy controller.
6204 </column>
6205
6206 <column name="bootstrap_ca_cert">
6207 If set to <code>true</code>, then Open vSwitch will attempt to
6208 obtain the CA certificate from the controller on its first SSL
6209 connection and save it to the named PEM file. If it is successful,
6210 it will immediately drop the connection and reconnect, and from then
6211 on all SSL connections must be authenticated by a certificate signed
6212 by the CA certificate thus obtained. <em>This option exposes the
6213 SSL connection to a man-in-the-middle attack obtaining the initial
6214 CA certificate.</em> It may still be useful for bootstrapping.
6215 </column>
6216
6217 <group title="Common Columns">
6218 The overall purpose of these columns is described under <code>Common
6219 Columns</code> at the beginning of this document.
6220
6221 <column name="external_ids"/>
6222 </group>
6223 </table>
6224
6225 <table name="sFlow">
6226 <p>A set of sFlow(R) targets. sFlow is a protocol for remote
6227 monitoring of switches.</p>
6228
6229 <column name="agent">
6230 <p>
6231 Determines the agent address, that is, the IP address reported to
6232 collectors as the source of the sFlow data. It may be an IP address or
6233 the name of a network device. In the latter case, the network device's
6234 IP address is used,
6235 </p>
6236
6237 <p>
6238 If not specified, the agent device is figured from the first target
6239 address and the routing table. If the routing table does not contain a
6240 route to the target, the IP address defaults to the <ref
6241 table="Controller" column="local_ip"/> in the collector's <ref
6242 table="Controller"/>.
6243 </p>
6244
6245 <p>
6246 If an agent IP address cannot be determined, sFlow is disabled.
6247 </p>
6248 </column>
6249
6250 <column name="header">
6251 Number of bytes of a sampled packet to send to the collector.
6252 If not specified, the default is 128 bytes.
6253 </column>
6254
6255 <column name="polling">
6256 Polling rate in seconds to send port statistics to the collector.
6257 If not specified, defaults to 30 seconds.
6258 </column>
6259
6260 <column name="sampling">
6261 Rate at which packets should be sampled and sent to the collector.
6262 If not specified, defaults to 400, which means one out of 400
6263 packets, on average, will be sent to the collector.
6264 </column>
6265
6266 <column name="targets">
6267 sFlow targets in the form
6268 <code><var>ip</var>:<var>port</var></code>.
6269 </column>
6270
6271 <group title="Common Columns">
6272 The overall purpose of these columns is described under <code>Common
6273 Columns</code> at the beginning of this document.
6274
6275 <column name="external_ids"/>
6276 </group>
6277 </table>
6278
6279 <table name="IPFIX">
6280 <p>Configuration for sending packets to IPFIX collectors.</p>
6281
6282 <p>
6283 IPFIX is a protocol that exports a number of details about flows. The
6284 IPFIX implementation in Open vSwitch samples packets at a configurable
6285 rate, extracts flow information from those packets, optionally caches and
6286 aggregates the flow information, and sends the result to one or more
6287 collectors.
6288 </p>
6289
6290 <p>
6291 IPFIX in Open vSwitch can be configured two different ways:
6292 </p>
6293
6294 <ul>
6295 <li>
6296 With <em>per-bridge sampling</em>, Open vSwitch performs IPFIX sampling
6297 automatically on all packets that pass through a bridge. To configure
6298 per-bridge sampling, create an <ref table="IPFIX"/> record and point a
6299 <ref table="Bridge"/> table's <ref table="Bridge" column="ipfix"/>
6300 column to it. The <ref table="Flow_Sample_Collector_Set"/> table is
6301 not used for per-bridge sampling.
6302 </li>
6303
6304 <li>
6305 <p>
6306 With <em>flow-based sampling</em>, <code>sample</code> actions in the
6307 OpenFlow flow table drive IPFIX sampling. See
6308 <code>ovs-actions</code>(7) for a description of the
6309 <code>sample</code> action.
6310 </p>
6311
6312 <p>
6313 Flow-based sampling also requires database configuration: create a
6314 <ref table="IPFIX"/> record that describes the IPFIX configuration
6315 and a <ref table="Flow_Sample_Collector_Set"/> record that points to
6316 the <ref table="Bridge"/> whose flow table holds the
6317 <code>sample</code> actions and to <ref table="IPFIX"/> record. The
6318 <ref table="Bridge" column="ipfix"/> in the <ref table="Bridge"/>
6319 table is not used for flow-based sampling.
6320 </p>
6321 </li>
6322 </ul>
6323
6324 <column name="targets">
6325 IPFIX target collectors in the form
6326 <code><var>ip</var>:<var>port</var></code>.
6327 </column>
6328
6329 <column name="cache_active_timeout">
6330 The maximum period in seconds for which an IPFIX flow record is
6331 cached and aggregated before being sent. If not specified,
6332 defaults to 0. If 0, caching is disabled.
6333 </column>
6334
6335 <column name="cache_max_flows">
6336 The maximum number of IPFIX flow records that can be cached at a
6337 time. If not specified, defaults to 0. If 0, caching is
6338 disabled.
6339 </column>
6340
6341 <column name="other_config" key="enable-tunnel-sampling"
6342 type='{"type": "boolean"}'>
6343 <p>
6344 Set to <code>true</code> to enable sampling and reporting tunnel
6345 header 7-tuples in IPFIX flow records. Tunnel sampling is enabled
6346 by default.
6347 </p>
6348
6349 <p>
6350 The following enterprise entities report the sampled tunnel info:
6351 </p>
6352
6353 <dl>
6354 <dt>tunnelType:</dt>
6355 <dd>
6356 <p>ID: 891, and enterprise ID 6876 (VMware).</p>
6357 <p>type: unsigned 8-bit integer.</p>
6358 <p>data type semantics: identifier.</p>
6359 <p>description: Identifier of the layer 2 network overlay network
6360 encapsulation type: 0x01 VxLAN, 0x02 GRE, 0x03 LISP, 0x07 GENEVE.</p>
6361 </dd>
6362 <dt>tunnelKey:</dt>
6363 <dd>
6364 <p>ID: 892, and enterprise ID 6876 (VMware).</p>
6365 <p>type: variable-length octetarray.</p>
6366 <p>data type semantics: identifier.</p>
6367 <p>description: Key which is used for identifying an individual
6368 traffic flow within a VxLAN (24-bit VNI), GENEVE (24-bit VNI),
6369 GRE (32-bit key), or LISP (24-bit instance ID) tunnel. The
6370 key is encoded in this octetarray as a 3-, 4-, or 8-byte integer
6371 ID in network byte order.</p>
6372 </dd>
6373 <dt>tunnelSourceIPv4Address:</dt>
6374 <dd>
6375 <p>ID: 893, and enterprise ID 6876 (VMware).</p>
6376 <p>type: unsigned 32-bit integer.</p>
6377 <p>data type semantics: identifier.</p>
6378 <p>description: The IPv4 source address in the tunnel IP packet
6379 header.</p>
6380 </dd>
6381 <dt>tunnelDestinationIPv4Address:</dt>
6382 <dd>
6383 <p>ID: 894, and enterprise ID 6876 (VMware).</p>
6384 <p>type: unsigned 32-bit integer.</p>
6385 <p>data type semantics: identifier.</p>
6386 <p>description: The IPv4 destination address in the tunnel IP
6387 packet header.</p>
6388 </dd>
6389 <dt>tunnelProtocolIdentifier:</dt>
6390 <dd>
6391 <p>ID: 895, and enterprise ID 6876 (VMware).</p>
6392 <p>type: unsigned 8-bit integer.</p>
6393 <p>data type semantics: identifier.</p>
6394 <p>description: The value of the protocol number in the tunnel
6395 IP packet header. The protocol number identifies the tunnel IP
6396 packet payload type.</p>
6397 </dd>
6398 <dt>tunnelSourceTransportPort:</dt>
6399 <dd>
6400 <p>ID: 896, and enterprise ID 6876 (VMware).</p>
6401 <p>type: unsigned 16-bit integer.</p>
6402 <p>data type semantics: identifier.</p>
6403 <p>description: The source port identifier in the tunnel transport
6404 header. For the transport protocols UDP, TCP, and SCTP, this is
6405 the source port number given in the respective header.</p>
6406 </dd>
6407 <dt>tunnelDestinationTransportPort:</dt>
6408 <dd>
6409 <p>ID: 897, and enterprise ID 6876 (VMware).</p>
6410 <p>type: unsigned 16-bit integer.</p>
6411 <p>data type semantics: identifier.</p>
6412 <p>description: The destination port identifier in the tunnel
6413 transport header. For the transport protocols UDP, TCP, and SCTP,
6414 this is the destination port number given in the respective header.
6415 </p>
6416 </dd>
6417 </dl>
6418
6419 <p>
6420 Before Open vSwitch 2.5.90, <ref column="other_config"
6421 key="enable-tunnel-sampling"/> was only supported with per-bridge
6422 sampling, and ignored otherwise. Open vSwitch 2.5.90 and later support
6423 <ref column="other_config" key="enable-tunnel-sampling"/> for
6424 per-bridge and per-flow sampling.
6425 </p>
6426 </column>
6427
6428 <column name="other_config" key="virtual_obs_id"
6429 type='{"type": "string"}'>
6430 <p>
6431 A string that accompanies each IPFIX flow record. Its intended use is
6432 for the ``virtual observation ID,'' an identifier of a virtual
6433 observation point that is locally unique in a virtual network. It
6434 describes a location in the virtual network where IP packets can be
6435 observed. The maximum length is 254 bytes. If not specified, the
6436 field is omitted from the IPFIX flow record.
6437 </p>
6438
6439 <p>
6440 The following enterprise entity reports the specified virtual
6441 observation ID:
6442 </p>
6443
6444 <dl>
6445 <dt>virtualObsID:</dt>
6446 <dd>
6447 <p>ID: 898, and enterprise ID 6876 (VMware).</p>
6448 <p>type: variable-length string.</p>
6449 <p>data type semantics: identifier.</p>
6450 <p>description: A virtual observation domain ID that is locally
6451 unique in a virtual network.
6452 </p>
6453 </dd>
6454 </dl>
6455
6456 <p>
6457 This feature was introduced in Open vSwitch 2.5.90.
6458 </p>
6459 </column>
6460
6461 <group title="Per-Bridge Sampling">
6462 <p>
6463 These values affect only per-bridge sampling. See above for a
6464 description of the differences between per-bridge and flow-based
6465 sampling.
6466 </p>
6467
6468 <column name="sampling">
6469 The rate at which packets should be sampled and sent to each target
6470 collector. If not specified, defaults to 400, which means one out of
6471 400 packets, on average, will be sent to each target collector.
6472 </column>
6473
6474 <column name="obs_domain_id">
6475 The IPFIX Observation Domain ID sent in each IPFIX packet. If not
6476 specified, defaults to 0.
6477 </column>
6478
6479 <column name="obs_point_id">
6480 The IPFIX Observation Point ID sent in each IPFIX flow record. If not
6481 specified, defaults to 0.
6482 </column>
6483
6484 <column name="other_config" key="enable-input-sampling"
6485 type='{"type": "boolean"}'>
6486 By default, Open vSwitch samples and reports flows at bridge port input
6487 in IPFIX flow records. Set this column to <code>false</code> to
6488 disable input sampling.
6489 </column>
6490
6491 <column name="other_config" key="enable-output-sampling"
6492 type='{"type": "boolean"}'>
6493 By default, Open vSwitch samples and reports flows at bridge port
6494 output in IPFIX flow records. Set this column to <code>false</code> to
6495 disable output sampling.
6496 </column>
6497 </group>
6498
6499 <group title="Common Columns">
6500 The overall purpose of these columns is described under <code>Common
6501 Columns</code> at the beginning of this document.
6502
6503 <column name="external_ids"/>
6504 </group>
6505 </table>
6506
6507 <table name="Flow_Sample_Collector_Set">
6508 <p>
6509 A set of IPFIX collectors of packet samples generated by OpenFlow
6510 <code>sample</code> actions. This table is used only for IPFIX
6511 flow-based sampling, not for per-bridge sampling (see the <ref
6512 table="IPFIX"/> table for a description of the two forms).
6513 </p>
6514
6515 <column name="id">
6516 The ID of this collector set, unique among the bridge's
6517 collector sets, to be used as the <code>collector_set_id</code>
6518 in OpenFlow <code>sample</code> actions.
6519 </column>
6520
6521 <column name="bridge">
6522 The bridge into which OpenFlow <code>sample</code> actions can
6523 be added to send packet samples to this set of IPFIX collectors.
6524 </column>
6525
6526 <column name="ipfix">
6527 Configuration of the set of IPFIX collectors to send one flow
6528 record per sampled packet to.
6529 </column>
6530
6531 <group title="Common Columns">
6532 The overall purpose of these columns is described under <code>Common
6533 Columns</code> at the beginning of this document.
6534
6535 <column name="external_ids"/>
6536 </group>
6537 </table>
6538
6539 <table name="AutoAttach">
6540 <p>
6541 Auto Attach configuration within a bridge. The IETF Auto-Attach SPBM
6542 draft standard describes a compact method of using IEEE 802.1AB Link
6543 Layer Discovery Protocol (LLDP) together with a IEEE 802.1aq Shortest
6544 Path Bridging (SPB) network to automatically attach network devices
6545 to individual services in a SPB network. The intent here is to allow
6546 network applications and devices using OVS to be able to easily take
6547 advantage of features offered by industry standard SPB networks.
6548 </p>
6549
6550 <p>
6551 Auto Attach (AA) uses LLDP to communicate between a directly connected
6552 Auto Attach Client (AAC) and Auto Attach Server (AAS). The LLDP protocol
6553 is extended to add two new Type-Length-Value tuples (TLVs). The first
6554 new TLV supports the ongoing discovery of directly connected AA
6555 correspondents. Auto Attach operates by regularly transmitting AA
6556 discovery TLVs between the AA client and AA server. By exchanging these
6557 discovery messages, both the AAC and AAS learn the system name and
6558 system description of their peer. In the OVS context, OVS operates as
6559 the AA client and the AA server resides on a switch at the edge of the
6560 SPB network.
6561 </p>
6562
6563 <p>
6564 Once AA discovery has been completed the AAC then uses the second new TLV
6565 to deliver identifier mappings from the AAC to the AAS. A primary feature
6566 of Auto Attach is to facilitate the mapping of VLANs defined outside the
6567 SPB network onto service ids (ISIDs) defined within the SPM network. By
6568 doing so individual external VLANs can be mapped onto specific SPB
6569 network services. These VLAN id to ISID mappings can be configured and
6570 managed locally using new options added to the ovs-vsctl command.
6571 </p>
6572
6573 <p>
6574 The Auto Attach OVS feature does not provide a full implementation of
6575 the LLDP protocol. Support for the mandatory TLVs as defined by the LLDP
6576 standard and support for the AA TLV extensions is provided. LLDP
6577 protocol support in OVS can be enabled or disabled on a port by port
6578 basis. LLDP support is disabled by default.
6579 </p>
6580
6581 <column name="system_name">
6582 The system_name string is exported in LLDP messages. It should uniquely
6583 identify the bridge in the network.
6584 </column>
6585
6586 <column name="system_description">
6587 The system_description string is exported in LLDP messages. It should
6588 describe the type of software and hardware.
6589 </column>
6590
6591 <column name="mappings">
6592 A mapping from SPB network Individual Service Identifier (ISID) to VLAN
6593 id.
6594 </column>
6595 </table>
6596 </database>