]> git.proxmox.com Git - ovs.git/blob - vswitchd/vswitch.xml
ovs-actions: New document describing OVS actions in detail.
[ovs.git] / vswitchd / vswitch.xml
1 <?xml version="1.0" encoding="utf-8"?>
2 <database name="ovs-vswitchd.conf.db" title="Open vSwitch Configuration Database">
3 <p>
4 A database with this schema holds the configuration for one Open
5 vSwitch daemon. The top-level configuration for the daemon is the
6 <ref table="Open_vSwitch"/> table, which must have exactly one
7 record. Records in other tables are significant only when they
8 can be reached directly or indirectly from the <ref
9 table="Open_vSwitch"/> table. Records that are not reachable from
10 the <ref table="Open_vSwitch"/> table are automatically deleted
11 from the database, except for records in a few distinguished
12 ``root set'' tables.
13 </p>
14
15 <h2>Common Columns</h2>
16
17 <p>
18 Most tables contain two special columns, named <code>other_config</code>
19 and <code>external_ids</code>. These columns have the same form and
20 purpose each place that they appear, so we describe them here to save space
21 later.
22 </p>
23
24 <dl>
25 <dt><code>other_config</code>: map of string-string pairs</dt>
26 <dd>
27 <p>
28 Key-value pairs for configuring rarely used features. Supported keys,
29 along with the forms taken by their values, are documented individually
30 for each table.
31 </p>
32 <p>
33 A few tables do not have <code>other_config</code> columns because no
34 key-value pairs have yet been defined for them.
35 </p>
36 </dd>
37
38 <dt><code>external_ids</code>: map of string-string pairs</dt>
39 <dd>
40 Key-value pairs for use by external frameworks that integrate with Open
41 vSwitch, rather than by Open vSwitch itself. System integrators should
42 either use the Open vSwitch development mailing list to coordinate on
43 common key-value definitions, or choose key names that are likely to be
44 unique. In some cases, where key-value pairs have been defined that are
45 likely to be widely useful, they are documented individually for each
46 table.
47 </dd>
48 </dl>
49
50 <table name="Open_vSwitch" title="Open vSwitch configuration.">
51 Configuration for an Open vSwitch daemon. There must be exactly
52 one record in the <ref table="Open_vSwitch"/> table.
53
54 <group title="Configuration">
55 <column name="bridges">
56 Set of bridges managed by the daemon.
57 </column>
58
59 <column name="ssl">
60 SSL used globally by the daemon.
61 </column>
62
63 <column name="external_ids" key="system-id">
64 A unique identifier for the Open vSwitch's physical host.
65 The form of the identifier depends on the type of the host.
66 On a Citrix XenServer, this will likely be the same as
67 <ref column="external_ids" key="xs-system-uuid"/>.
68 </column>
69
70 <column name="external_ids" key="xs-system-uuid">
71 The Citrix XenServer universally unique identifier for the physical
72 host as displayed by <code>xe host-list</code>.
73 </column>
74
75 <column name="external_ids" key="hostname">
76 The hostname for the host running Open vSwitch. This is a fully
77 qualified domain name since version 2.6.2.
78 </column>
79
80 <column name="external_ids" key="rundir">
81 In Open vSwitch 2.8 and later, the run directory of the running Open
82 vSwitch daemon. This directory is used for runtime state such as
83 control and management sockets. The value of <ref
84 column="other_config" key="vhost-sock-dir"/> is relative to this
85 directory.
86 </column>
87
88 <column name="other_config" key="stats-update-interval"
89 type='{"type": "integer", "minInteger": 5000}'>
90 <p>
91 Interval for updating statistics to the database, in milliseconds.
92 This option will affect the update of the <code>statistics</code>
93 column in the following tables: <code>Port</code>, <code>Interface
94 </code>, <code>Mirror</code>.
95 </p>
96 <p>
97 Default value is 5000 ms.
98 </p>
99 <p>
100 Getting statistics more frequently can be achieved via OpenFlow.
101 </p>
102 </column>
103
104 <column name="other_config" key="flow-restore-wait"
105 type='{"type": "boolean"}'>
106 <p>
107 When <code>ovs-vswitchd</code> starts up, it has an empty flow table
108 and therefore it handles all arriving packets in its default fashion
109 according to its configuration, by dropping them or sending them to
110 an OpenFlow controller or switching them as a standalone switch.
111 This behavior is ordinarily desirable. However, if
112 <code>ovs-vswitchd</code> is restarting as part of a ``hot-upgrade,''
113 then this leads to a relatively long period during which packets are
114 mishandled.
115 </p>
116 <p>
117 This option allows for improvement. When <code>ovs-vswitchd</code>
118 starts with this value set as <code>true</code>, it will neither
119 flush or expire previously set datapath flows nor will it send and
120 receive any packets to or from the datapath. When this value is
121 later set to <code>false</code>, <code>ovs-vswitchd</code> will
122 start receiving packets from the datapath and re-setup the flows.
123 </p>
124 <p>
125 Additionally, <code>ovs-vswitchd</code> is prevented from connecting
126 to controllers when this value is set to <code>true</code>. This
127 prevents controllers from making changes to the flow table in the
128 middle of flow restoration, which could result in undesirable
129 intermediate states. Once this value has been set to
130 <code>false</code> and the desired flow state has been
131 restored, <code>ovs-vswitchd</code> will be able to reconnect to
132 controllers and process any new flow table modifications.
133 </p>
134 <p>
135 Thus, with this option, the procedure for a hot-upgrade of
136 <code>ovs-vswitchd</code> becomes roughly the following:
137 </p>
138 <ol>
139 <li>
140 Stop <code>ovs-vswitchd</code>.
141 </li>
142 <li>
143 Set <ref column="other_config" key="flow-restore-wait"/>
144 to <code>true</code>.
145 </li>
146 <li>
147 Start <code>ovs-vswitchd</code>.
148 </li>
149 <li>
150 Use <code>ovs-ofctl</code> (or some other program, such as an
151 OpenFlow controller) to restore the OpenFlow flow table
152 to the desired state.
153 </li>
154 <li>
155 Set <ref column="other_config" key="flow-restore-wait"/>
156 to <code>false</code> (or remove it entirely from the database).
157 </li>
158 </ol>
159 <p>
160 The <code>ovs-ctl</code>'s ``restart'' and ``force-reload-kmod''
161 functions use the above config option during hot upgrades.
162 </p>
163 </column>
164
165 <column name="other_config" key="flow-limit"
166 type='{"type": "integer", "minInteger": 0}'>
167 <p>
168 The maximum
169 number of flows allowed in the datapath flow table. Internally OVS
170 will choose a flow limit which will likely be lower than this number,
171 based on real time network conditions. Tweaking this value is
172 discouraged unless you know exactly what you're doing.
173 </p>
174 <p>
175 The default is 200000.
176 </p>
177 </column>
178
179 <column name="other_config" key="max-idle"
180 type='{"type": "integer", "minInteger": 500}'>
181 <p>
182 The maximum time (in ms) that idle flows will remain cached in the
183 datapath. Internally OVS will check the validity and activity for
184 datapath flows regularly and may expire flows quicker than this
185 number, based on real time network conditions. Tweaking this
186 value is discouraged unless you know exactly what you're doing.
187 </p>
188 <p>
189 The default is 10000.
190 </p>
191 </column>
192
193 <column name="other_config" key="hw-offload"
194 type='{"type": "boolean"}'>
195 <p>
196 Set this value to <code>true</code> to enable netdev flow offload.
197 </p>
198 <p>
199 The default value is <code>false</code>. Changing this value requires
200 restarting the daemon
201 </p>
202 <p>
203 Currently Open vSwitch supports hardware offloading on
204 Linux systems. On other systems, this value is ignored.
205 This functionality is considered 'experimental'. Depending
206 on which OpenFlow matches and actions are configured,
207 which kernel version is used, and what hardware is
208 available, Open vSwitch may not be able to offload
209 functionality to hardware.
210 </p>
211 </column>
212
213 <column name="other_config" key="tc-policy"
214 type='{"type": "string",
215 "enum": ["set", ["none", "skip_sw", "skip_hw"]]}'>
216 <p>
217 Specified the policy used with HW offloading.
218 Options:
219 <dl>
220 <dt><code>none</code></dt>
221 <dd>Add software rule and offload rule to HW.</dd>
222 <dt><code>skip_sw</code></dt>
223 <dd>Offload rule to HW only.</dd>
224 <dt><code>skip_hw</code></dt>
225 <dd>Add software rule without offloading rule to HW.</dd>
226 </dl>
227 </p>
228 <p>
229 This is only relevant if
230 <ref column="other_config" key="hw-offload"/> is enabled.
231 </p>
232 <p>
233 The default value is <code>none</code>.
234 </p>
235 </column>
236
237 <column name="other_config" key="dpdk-init"
238 type='{"type": "string",
239 "enum": ["set", ["false", "true", "try"]]}'>
240 <p>
241 Set this value to <code>true</code> or <code>try</code> to enable
242 runtime support for DPDK ports. The vswitch must have compile-time
243 support for DPDK as well.
244 </p>
245 <p>
246 A value of <code>true</code> will cause the ovs-vswitchd process to
247 abort if DPDK cannot be initialized. A value of <code>try</code>
248 will allow the ovs-vswitchd process to continue running even if DPDK
249 cannot be initialized.
250 </p>
251 <p>
252 The default value is <code>false</code>. Changing this value requires
253 restarting the daemon
254 </p>
255 <p>
256 If this value is <code>false</code> at startup, any dpdk ports which
257 are configured in the bridge will fail due to memory errors.
258 </p>
259 </column>
260
261 <column name="other_config" key="dpdk-lcore-mask"
262 type='{"type": "integer", "minInteger": 1}'>
263 <p>
264 Specifies the CPU cores where dpdk lcore threads should be spawned.
265 The DPDK lcore threads are used for DPDK library tasks, such as
266 library internal message processing, logging, etc. Value should be in
267 the form of a hex string (so '0x123') similar to the 'taskset' mask
268 input.
269 </p>
270 <p>
271 The lowest order bit corresponds to the first CPU core. A set bit
272 means the corresponding core is available and an lcore thread will be
273 created and pinned to it. If the input does not cover all cores,
274 those uncovered cores are considered not set.
275 </p>
276 <p>
277 For performance reasons, it is best to set this to a single core on
278 the system, rather than allow lcore threads to float.
279 </p>
280 <p>
281 If not specified, the value will be determined by choosing the lowest
282 CPU core from initial cpu affinity list. Otherwise, the value will be
283 passed directly to the DPDK library.
284 </p>
285 </column>
286
287 <column name="other_config" key="pmd-cpu-mask">
288 <p>
289 Specifies CPU mask for setting the cpu affinity of PMD (Poll
290 Mode Driver) threads. Value should be in the form of hex string,
291 similar to the dpdk EAL '-c COREMASK' option input or the 'taskset'
292 mask input.
293 </p>
294 <p>
295 The lowest order bit corresponds to the first CPU core. A set bit
296 means the corresponding core is available and a pmd thread will be
297 created and pinned to it. If the input does not cover all cores,
298 those uncovered cores are considered not set.
299 </p>
300 <p>
301 If not specified, one pmd thread will be created for each numa node
302 and pinned to any available core on the numa node by default.
303 </p>
304 </column>
305
306 <column name="other_config" key="dpdk-alloc-mem"
307 type='{"type": "integer", "minInteger": 0}'>
308 <p>
309 Specifies the amount of memory to preallocate from the hugepage pool,
310 regardless of socket. It is recommended that dpdk-socket-mem is used
311 instead.
312 </p>
313 </column>
314
315 <column name="other_config" key="dpdk-socket-mem"
316 type='{"type": "string"}'>
317 <p>
318 Specifies the amount of memory to preallocate from the hugepage pool,
319 on a per-socket basis.
320 </p>
321 <p>
322 The specifier is a comma-separated string, in ascending order of CPU
323 socket. E.g. On a four socket system 1024,0,2048 would set socket 0
324 to preallocate 1024MB, socket 1 to preallocate 0MB, socket 2 to
325 preallocate 2048MB and socket 3 (no value given) to preallocate 0MB.
326 </p>
327 <p>
328 If dpdk-socket-mem and dpdk-alloc-mem are not specified, dpdk-socket-mem
329 will be used and the default value is 1024 for each numa node. If
330 dpdk-socket-mem and dpdk-alloc-mem are specified at same time,
331 dpdk-socket-mem will be used as default. Changing this value
332 requires restarting the daemon.
333 </p>
334 </column>
335
336 <column name="other_config" key="dpdk-hugepage-dir"
337 type='{"type": "string"}'>
338 <p>
339 Specifies the path to the hugetlbfs mount point.
340 </p>
341 <p>
342 If not specified, this will be guessed by the DPDK library (default
343 is /dev/hugepages). Changing this value requires restarting the
344 daemon.
345 </p>
346 </column>
347
348 <column name="other_config" key="dpdk-extra"
349 type='{"type": "string"}'>
350 <p>
351 Specifies additional eal command line arguments for DPDK.
352 </p>
353 <p>
354 The default is empty. Changing this value requires restarting the
355 daemon
356 </p>
357 </column>
358
359 <column name="other_config" key="vhost-sock-dir"
360 type='{"type": "string"}'>
361 <p>
362 Specifies a relative path from <ref column="external_ids"
363 key="rundir"/> to the vhost-user unix domain socket files. If this
364 value is unset, the sockets are put directly in <ref
365 column="external_ids" key="rundir"/>.
366 </p>
367 <p>
368 Changing this value requires restarting the daemon.
369 </p>
370 </column>
371
372 <column name="other_config" key="vhost-iommu-support"
373 type='{"type": "boolean"}'>
374 <p>
375 vHost IOMMU is a security feature, which restricts the vhost memory
376 that a virtio device may access. vHost IOMMU support is disabled by
377 default, due to a bug in QEMU implementations of the vhost REPLY_ACK
378 protocol, (on which vHost IOMMU relies) prior to v2.9.1. Setting this
379 value to <code>true</code> enables vHost IOMMU support for vHost User
380 Client ports in OvS-DPDK, starting from DPDK v17.11.
381 </p>
382 <p>
383 Changing this value requires restarting the daemon.
384 </p>
385 </column>
386
387 <column name="other_config" key="per-port-memory"
388 type='{"type": "boolean"}'>
389 <p>
390 By default OVS DPDK uses a shared memory model wherein devices
391 that have the same MTU and socket values can share the same
392 mempool. Setting this value to <code>true</code> changes this
393 behaviour. Per port memory allow DPDK devices to use private
394 memory per device. This can provide greater transparency as
395 regards memory usage but potentially at the cost of greater memory
396 requirements.
397 </p>
398 <p>
399 Changing this value requires restarting the daemon if dpdk-init has
400 already been set to true.
401 </p>
402 </column>
403
404 <column name="other_config" key="tx-flush-interval"
405 type='{"type": "integer",
406 "minInteger": 0, "maxInteger": 1000000}'>
407 <p>
408 Specifies the time in microseconds that a packet can wait in output
409 batch for sending i.e. amount of time that packet can spend in an
410 intermediate output queue before sending to netdev.
411 This option can be used to configure balance between throughput
412 and latency. Lower values decreases latency while higher values
413 may be useful to achieve higher performance.
414 </p>
415 <p>
416 Defaults to 0 i.e. instant packet sending (latency optimized).
417 </p>
418 </column>
419
420 <column name="other_config" key="pmd-perf-metrics"
421 type='{"type": "boolean"}'>
422 <p>
423 Enables recording of detailed PMD performance metrics for analysis
424 and trouble-shooting. This can have a performance impact in the
425 order of 1%.
426 </p>
427 <p>
428 Defaults to false but can be changed at any time.
429 </p>
430 </column>
431
432 <column name="other_config" key="smc-enable"
433 type='{"type": "boolean"}'>
434 <p>
435 Signature match cache or SMC is a cache between EMC and megaflow
436 cache. It does not store the full key of the flow, so it is more
437 memory efficient comparing to EMC cache. SMC is especially useful
438 when flow count is larger than EMC capacity.
439 </p>
440 <p>
441 Defaults to false but can be changed at any time.
442 </p>
443 </column>
444
445 <column name="other_config" key="pmd-rxq-assign"
446 type='{"type": "string",
447 "enum": ["set", ["cycles", "roundrobin"]]}'>
448 <p>
449 Specifies how RX queues will be automatically assigned to CPU cores.
450 Options:
451 <dl>
452 <dt><code>cycles</code></dt>
453 <dd>Rxqs will be sorted by order of measured processing cycles
454 before being assigned to CPU cores.</dd>
455 <dt><code>roundrobin</code></dt>
456 <dd>Rxqs will be round-robined across CPU cores.</dd>
457 </dl>
458 </p>
459 <p>
460 The default value is <code>cycles</code>.
461 </p>
462 <p>
463 Changing this value will affect an automatic re-assignment of Rxqs to
464 CPUs. Note: Rxqs mapped to CPU cores with
465 <code>pmd-rxq-affinity</code> are unaffected.
466 </p>
467 </column>
468
469 <column name="other_config" key="n-handler-threads"
470 type='{"type": "integer", "minInteger": 1}'>
471 <p>
472 Specifies the number of threads for software datapaths to use for
473 handling new flows. The default the number of online CPU cores minus
474 the number of revalidators.
475 </p>
476 <p>
477 This configuration is per datapath. If you have more than one
478 software datapath (e.g. some <code>system</code> bridges and some
479 <code>netdev</code> bridges), then the total number of threads is
480 <code>n-handler-threads</code> times the number of software
481 datapaths.
482 </p>
483 </column>
484
485 <column name="other_config" key="n-revalidator-threads"
486 type='{"type": "integer", "minInteger": 1}'>
487 <p>
488 Specifies the number of threads for software datapaths to use for
489 revalidating flows in the datapath. Typically, there is a direct
490 correlation between the number of revalidator threads, and the number
491 of flows allowed in the datapath. The default is the number of cpu
492 cores divided by four plus one. If <code>n-handler-threads</code> is
493 set, the default changes to the number of cpu cores minus the number
494 of handler threads.
495 </p>
496 <p>
497 This configuration is per datapath. If you have more than one
498 software datapath (e.g. some <code>system</code> bridges and some
499 <code>netdev</code> bridges), then the total number of threads is
500 <code>n-handler-threads</code> times the number of software
501 datapaths.
502 </p>
503 </column>
504
505 <column name="other_config" key="emc-insert-inv-prob"
506 type='{"type": "integer", "minInteger": 0, "maxInteger": 4294967295}'>
507 <p>
508 Specifies the inverse probability (1/emc-insert-inv-prob) of a flow
509 being inserted into the Exact Match Cache (EMC). On average one in
510 every <code>emc-insert-inv-prob</code> packets that generate a unique
511 flow will cause an insertion into the EMC.
512
513 A value of 1 will result in an insertion for every flow (1/1 = 100%)
514 whereas a value of zero will result in no insertions and essentially
515 disable the EMC.
516 </p>
517 <p>
518 Defaults to 100 ie. there is (1/100 =) 1% chance of EMC insertion.
519 </p>
520 </column>
521
522 <column name="other_config" key="vlan-limit"
523 type='{"type": "integer", "minInteger": 0}'>
524 <p>
525 Limits the number of VLAN headers that can be matched to the
526 specified number. Further VLAN headers will be treated as payload,
527 e.g. a packet with more 802.1q headers will match Ethernet type
528 0x8100.
529 </p>
530
531 <p>
532 Open vSwitch userspace currently supports at most 2 VLANs, and each
533 datapath has its own limit. If <code>vlan-limit</code> is nonzero,
534 it acts as a further limit.
535 </p>
536
537 <p>
538 If this value is absent, the default is currently 1. This maintains
539 backward compatibility with controllers that were designed for use
540 with Open vSwitch versions earlier than 2.8, which only supported one
541 VLAN.
542 </p>
543 </column>
544 <column name="other_config" key="bundle-idle-timeout"
545 type='{"type": "integer", "minInteger": 1}'>
546 <p>
547 The maximum time (in seconds) that idle bundles will wait
548 to be expired since it was either opened, modified or closed.
549 </p>
550 <p>
551 OpenFlow specification mandates the timeout to be at least one
552 second. The default is 10 seconds.
553 </p>
554 </column>
555
556 <column name="other_config" key="offload-rebalance"
557 type='{"type": "boolean"}'>
558 <p>
559 Configures HW offload rebalancing, that allows to dynamically
560 offload and un-offload flows while an offload-device is out of
561 resources (OOR). This policy allows flows to be selected for
562 offloading based on the packets-per-second (pps) rate of flows.
563 </p>
564 <p>
565 Set this value to <code>true</code> to enable this option.
566 </p>
567 <p>
568 The default value is <code>false</code>. Changing this value requires
569 restarting the daemon.
570 </p>
571 <p>
572 This is only relevant if HW offloading is enabled (hw-offload).
573 When this policy is enabled, it also requires 'tc-policy' to
574 be set to 'skip_sw'.
575 </p>
576 </column>
577 </group>
578 <group title="Status">
579 <column name="next_cfg">
580 Sequence number for client to increment. When a client modifies
581 any part of the database configuration and wishes to wait for
582 Open vSwitch to finish applying the changes, it may increment
583 this sequence number.
584 </column>
585
586 <column name="cur_cfg">
587 Sequence number that Open vSwitch sets to the current value of
588 <ref column="next_cfg"/> after it finishes applying a set of
589 configuration changes.
590 </column>
591
592 <column name="dpdk_initialized">
593 True if <ref column="other_config" key="dpdk-init"/> is set to
594 true and the DPDK library is successfully initialized.
595 </column>
596
597 <group title="Statistics">
598 <p>
599 The <code>statistics</code> column contains key-value pairs that
600 report statistics about a system running an Open vSwitch. These are
601 updated periodically (currently, every 5 seconds). Key-value pairs
602 that cannot be determined or that do not apply to a platform are
603 omitted.
604 </p>
605
606 <column name="other_config" key="enable-statistics"
607 type='{"type": "boolean"}'>
608 Statistics are disabled by default to avoid overhead in the common
609 case when statistics gathering is not useful. Set this value to
610 <code>true</code> to enable populating the <ref column="statistics"/>
611 column or to <code>false</code> to explicitly disable it.
612 </column>
613
614 <column name="statistics" key="cpu"
615 type='{"type": "integer", "minInteger": 1}'>
616 <p>
617 Number of CPU processors, threads, or cores currently online and
618 available to the operating system on which Open vSwitch is running,
619 as an integer. This may be less than the number installed, if some
620 are not online or if they are not available to the operating
621 system.
622 </p>
623 <p>
624 Open vSwitch userspace processes are not multithreaded, but the
625 Linux kernel-based datapath is.
626 </p>
627 </column>
628
629 <column name="statistics" key="load_average">
630 A comma-separated list of three floating-point numbers,
631 representing the system load average over the last 1, 5, and 15
632 minutes, respectively.
633 </column>
634
635 <column name="statistics" key="memory">
636 <p>
637 A comma-separated list of integers, each of which represents a
638 quantity of memory in kilobytes that describes the operating
639 system on which Open vSwitch is running. In respective order,
640 these values are:
641 </p>
642
643 <ol>
644 <li>Total amount of RAM allocated to the OS.</li>
645 <li>RAM allocated to the OS that is in use.</li>
646 <li>RAM that can be flushed out to disk or otherwise discarded
647 if that space is needed for another purpose. This number is
648 necessarily less than or equal to the previous value.</li>
649 <li>Total disk space allocated for swap.</li>
650 <li>Swap space currently in use.</li>
651 </ol>
652
653 <p>
654 On Linux, all five values can be determined and are included. On
655 other operating systems, only the first two values can be
656 determined, so the list will only have two values.
657 </p>
658 </column>
659
660 <column name="statistics" key="process_NAME">
661 <p>
662 One such key-value pair, with <code>NAME</code> replaced by
663 a process name, will exist for each running Open vSwitch
664 daemon process, with <var>name</var> replaced by the
665 daemon's name (e.g. <code>process_ovs-vswitchd</code>). The
666 value is a comma-separated list of integers. The integers
667 represent the following, with memory measured in kilobytes
668 and durations in milliseconds:
669 </p>
670
671 <ol>
672 <li>The process's virtual memory size.</li>
673 <li>The process's resident set size.</li>
674 <li>The amount of user and system CPU time consumed by the
675 process.</li>
676 <li>The number of times that the process has crashed and been
677 automatically restarted by the monitor.</li>
678 <li>The duration since the process was started.</li>
679 <li>The duration for which the process has been running.</li>
680 </ol>
681
682 <p>
683 The interpretation of some of these values depends on whether the
684 process was started with the <option>--monitor</option>. If it
685 was not, then the crash count will always be 0 and the two
686 durations will always be the same. If <option>--monitor</option>
687 was given, then the crash count may be positive; if it is, the
688 latter duration is the amount of time since the most recent crash
689 and restart.
690 </p>
691
692 <p>
693 There will be one key-value pair for each file in Open vSwitch's
694 ``run directory'' (usually <code>/var/run/openvswitch</code>)
695 whose name ends in <code>.pid</code>, whose contents are a
696 process ID, and which is locked by a running process. The
697 <var>name</var> is taken from the pidfile's name.
698 </p>
699
700 <p>
701 Currently Open vSwitch is only able to obtain all of the above
702 detail on Linux systems. On other systems, the same key-value
703 pairs will be present but the values will always be the empty
704 string.
705 </p>
706 </column>
707
708 <column name="statistics" key="file_systems">
709 <p>
710 A space-separated list of information on local, writable file
711 systems. Each item in the list describes one file system and
712 consists in turn of a comma-separated list of the following:
713 </p>
714
715 <ol>
716 <li>Mount point, e.g. <code>/</code> or <code>/var/log</code>.
717 Any spaces or commas in the mount point are replaced by
718 underscores.</li>
719 <li>Total size, in kilobytes, as an integer.</li>
720 <li>Amount of storage in use, in kilobytes, as an integer.</li>
721 </ol>
722
723 <p>
724 This key-value pair is omitted if there are no local, writable
725 file systems or if Open vSwitch cannot obtain the needed
726 information.
727 </p>
728 </column>
729 </group>
730 </group>
731
732 <group title="Version Reporting">
733 <p>
734 These columns report the types and versions of the hardware and
735 software running Open vSwitch. We recommend in general that software
736 should test whether specific features are supported instead of relying
737 on version number checks. These values are primarily intended for
738 reporting to human administrators.
739 </p>
740
741 <column name="ovs_version">
742 The Open vSwitch version number, e.g. <code>1.1.0</code>.
743 </column>
744
745 <column name="db_version">
746 <p>
747 The database schema version number, e.g. <code>1.2.3</code>. See
748 ovsdb-tool(1) for an explanation of the numbering scheme.
749 </p>
750
751 <p>
752 The schema version is part of the database schema, so it can also be
753 retrieved by fetching the schema using the Open vSwitch database
754 protocol.
755 </p>
756 </column>
757
758 <column name="system_type">
759 <p>
760 An identifier for the type of system on top of which Open vSwitch
761 runs, e.g. <code>XenServer</code> or <code>KVM</code>.
762 </p>
763 <p>
764 System integrators are responsible for choosing and setting an
765 appropriate value for this column.
766 </p>
767 </column>
768
769 <column name="system_version">
770 <p>
771 The version of the system identified by <ref column="system_type"/>,
772 e.g. <code>5.6.100-39265p</code> on XenServer 5.6.100 build 39265.
773 </p>
774 <p>
775 System integrators are responsible for choosing and setting an
776 appropriate value for this column.
777 </p>
778 </column>
779
780 <column name="dpdk_version">
781 <p>
782 The version of the linked DPDK library.
783 </p>
784 </column>
785
786 </group>
787
788 <group title="Capabilities">
789 <p>
790 These columns report capabilities of the Open vSwitch instance.
791 </p>
792 <column name="datapath_types">
793 <p>
794 This column reports the different dpifs registered with the system.
795 These are the values that this instance supports in the <ref
796 column="datapath_type" table="Bridge"/> column of the <ref
797 table="Bridge"/> table.
798 </p>
799 </column>
800 <column name="iface_types">
801 <p>
802 This column reports the different netdevs registered with the system.
803 These are the values that this instance supports in the <ref
804 column="type" table="Interface"/> column of the <ref
805 table="Interface"/> table.
806 </p>
807 </column>
808 </group>
809
810 <group title="Database Configuration">
811 <p>
812 These columns primarily configure the Open vSwitch database
813 (<code>ovsdb-server</code>), not the Open vSwitch switch
814 (<code>ovs-vswitchd</code>). The OVSDB database also uses the <ref
815 column="ssl"/> settings.
816 </p>
817
818 <p>
819 The Open vSwitch switch does read the database configuration to
820 determine remote IP addresses to which in-band control should apply.
821 </p>
822
823 <column name="manager_options">
824 <p>
825 Database clients to which the Open vSwitch database server should
826 connect or to which it should listen, along with options for how
827 these connections should be configured. See the <ref
828 table="Manager"/> table for more information.
829 </p>
830
831 <p>
832 For this column to serve its purpose, <code>ovsdb-server</code> must
833 be configured to honor it. The easiest way to do this is to invoke
834 <code>ovsdb-server</code> with the option
835 <option>--remote=db:Open_vSwitch,Open_vSwitch,manager_options</option>
836 The startup scripts that accompany Open vSwitch do this by default.
837 </p>
838 </column>
839 </group>
840
841 <group title="IPsec">
842 <p>
843 These settings control the global configuration of IPsec tunnels. The
844 <code>options</code> column of the <code>Interface</code> table
845 configures IPsec for individual tunnels.
846 </p>
847 <p>
848 OVS IPsec supports the following three forms of authentication.
849 Currently, all IPsec tunnels must use the same form:
850 </p>
851 <ol>
852 <li>
853 Pre-shared keys: Omit the global settings. On each tunnel, set <ref
854 column="options" key="psk"/>.
855 </li>
856 <li>
857 Self-signed certificates: Set the <code>private_key</code> and
858 <code>certificate</code> global settings. On each tunnel, set <ref
859 column="options" key="remote_cert"/>. The remote certificate can be
860 self-signed.
861 </li>
862 <li>
863 CA-signed certificates: Set all of the global settings. On each
864 tunnel, set <ref column="options" key="remote_name"/> to the common
865 name (CN) of the remote certificate. The remote certificate must be
866 signed by the CA.
867 </li>
868 </ol>
869 <column name="other_config" key="private_key"
870 type='{"type": "string"}'>
871 <p>
872 Name of a PEM file containing the private key used as the switch's
873 identity for IPsec tunnels.
874 </p>
875 </column>
876 <column name="other_config" key="certificate"
877 type='{"type": "string"}'>
878 <p>
879 Name of a PEM file containing a certificate that certifies the
880 switch's private key, and identifies a trustworthy switch for IPsec
881 tunnels. The certificate must be x.509 version 3 and with the
882 string in common name (CN) also set in the subject alternative name
883 (SAN).
884 </p>
885 </column>
886 <column name="other_config" key="ca_cert"
887 type='{"type": "string"}'>
888 <p>
889 Name of a PEM file containing the CA certificate used to verify
890 that a remote switch of the IPsec tunnel is trustworthy.
891 </p>
892 </column>
893
894 <group title="Plaintext Tunnel Policy">
895 <p>
896 When an IPsec tunnel is configured in this database, multiple
897 independent components take responsibility for implementing it.
898 <code>ovs-vswitchd</code> and its datapath handle packet forwarding
899 to the tunnel and a separate daemon pushes the tunnel's IPsec policy
900 configuration to the kernel or other entity that implements it.
901 There is a race: if the former configuration completes before the
902 latter, then packets sent by the local host over the tunnel can be
903 transmitted in plaintext. Using this setting, OVS users can avoid
904 this undesirable situation.
905 </p>
906 <column name="other_config" key="ipsec_skb_mark"
907 type='{"type": "string"}'>
908 <p>
909 This setting takes the form
910 <code><var>value</var>/<var>mask</var></code>. If it is specified,
911 then the <code>skb_mark</code> field in every outgoing tunneled
912 packet sent in plaintext is compared against it and, if it matches,
913 the packet is dropped. This is a global setting that is applied to
914 every tunneled packet, regardless of whether IPsec encryption is
915 enabled for the tunnel, the type of tunnel, or whether OVS is
916 involved.
917 </p>
918
919 <p>
920 Example policies:
921 </p>
922
923 <dl>
924 <dt><code>1/1</code></dt>
925 <dd>
926 Drop all unencrypted tunneled packets in which the
927 least-significant bit of <code>skb_mark</code> is 1. This would
928 be a useful policy given an OpenFlow flow table that sets
929 <code>skb_mark</code> to 1 for traffic that should be encrypted.
930 The default <code>skb_mark</code> is 0, so this would not affect
931 other traffic.
932 </dd>
933
934 <dt><code>0/1</code></dt>
935 <dd>
936 Drop all unencrypted tunneled packets in which the
937 least-significant bit of <code>skb_mark</code> is 0. This would
938 be a useful policy if no unencrypted tunneled traffic should exit
939 the system without being specially whitelisted by setting
940 <code>skb_mark</code> to 1.
941 </dd>
942
943 <dt>(empty)</dt>
944 <dd>
945 If this setting is empty or unset, then all unencrypted tunneled
946 packets are transmitted in the usual way.
947 </dd>
948 </dl>
949 </column>
950 </group>
951 </group>
952
953 <group title="Common Columns">
954 The overall purpose of these columns is described under <code>Common
955 Columns</code> at the beginning of this document.
956
957 <column name="other_config"/>
958 <column name="external_ids"/>
959 </group>
960 </table>
961
962 <table name="Bridge">
963 <p>
964 Configuration for a bridge within an
965 <ref table="Open_vSwitch"/>.
966 </p>
967 <p>
968 A <ref table="Bridge"/> record represents an Ethernet switch with one or
969 more ``ports,'' which are the <ref table="Port"/> records pointed to by
970 the <ref table="Bridge"/>'s <ref column="ports"/> column.
971 </p>
972
973 <group title="Core Features">
974 <column name="name">
975 <p>
976 Bridge identifier. Must be unique among the names of ports,
977 interfaces, and bridges on a host.
978 </p>
979
980 <p>
981 The name must be alphanumeric and must not contain forward or
982 backward slashes. The name of a bridge is also the name of an <ref
983 table="Interface"/> (and a <ref table="Port"/>) within the bridge, so
984 the restrictions on the <ref table="Interface" column="name"/> column
985 in the <ref table="Interface"/> table, particularly on length, also
986 apply to bridge names. Refer to the documentation for <ref
987 table="Interface"/> names for details.
988 </p>
989 </column>
990
991 <column name="ports">
992 Ports included in the bridge.
993 </column>
994
995 <column name="mirrors">
996 Port mirroring configuration.
997 </column>
998
999 <column name="netflow">
1000 NetFlow configuration.
1001 </column>
1002
1003 <column name="sflow">
1004 sFlow(R) configuration.
1005 </column>
1006
1007 <column name="ipfix">
1008 IPFIX configuration.
1009 </column>
1010
1011 <column name="flood_vlans">
1012 <p>
1013 VLAN IDs of VLANs on which MAC address learning should be disabled,
1014 so that packets are flooded instead of being sent to specific ports
1015 that are believed to contain packets' destination MACs. This should
1016 ordinarily be used to disable MAC learning on VLANs used for
1017 mirroring (RSPAN VLANs). It may also be useful for debugging.
1018 </p>
1019 <p>
1020 SLB bonding (see the <ref table="Port" column="bond_mode"/> column in
1021 the <ref table="Port"/> table) is incompatible with
1022 <code>flood_vlans</code>. Consider using another bonding mode or
1023 a different type of mirror instead.
1024 </p>
1025 </column>
1026
1027 <column name="auto_attach">
1028 Auto Attach configuration.
1029 </column>
1030 </group>
1031
1032 <group title="OpenFlow Configuration">
1033 <column name="controller">
1034 <p>
1035 OpenFlow controller set. If unset, then no OpenFlow controllers
1036 will be used.
1037 </p>
1038
1039 <p>
1040 If there are primary controllers, removing all of them clears the
1041 OpenFlow flow tables, group table, and meter table. If there are no
1042 primary controllers, adding one also clears these tables. Other
1043 changes to the set of controllers, such as adding or removing a
1044 service controller, adding another primary controller to supplement
1045 an existing primary controller, or removing only one of two primary
1046 controllers, have no effect on these tables.
1047 </p>
1048 </column>
1049
1050 <column name="flow_tables">
1051 Configuration for OpenFlow tables. Each pair maps from an OpenFlow
1052 table ID to configuration for that table.
1053 </column>
1054
1055 <column name="fail_mode">
1056 <p>When a controller is configured, it is, ordinarily, responsible
1057 for setting up all flows on the switch. Thus, if the connection to
1058 the controller fails, no new network connections can be set up.
1059 If the connection to the controller stays down long enough,
1060 no packets can pass through the switch at all. This setting
1061 determines the switch's response to such a situation. It may be set
1062 to one of the following:
1063 <dl>
1064 <dt><code>standalone</code></dt>
1065 <dd>If no message is received from the controller for three
1066 times the inactivity probe interval
1067 (see <ref column="inactivity_probe"/>), then Open vSwitch
1068 will take over responsibility for setting up flows. In
1069 this mode, Open vSwitch causes the bridge to act like an
1070 ordinary MAC-learning switch. Open vSwitch will continue
1071 to retry connecting to the controller in the background
1072 and, when the connection succeeds, it will discontinue its
1073 standalone behavior.</dd>
1074 <dt><code>secure</code></dt>
1075 <dd>Open vSwitch will not set up flows on its own when the
1076 controller connection fails or when no controllers are
1077 defined. The bridge will continue to retry connecting to
1078 any defined controllers forever.</dd>
1079 </dl>
1080 </p>
1081 <p>
1082 The default is <code>standalone</code> if the value is unset, but
1083 future versions of Open vSwitch may change the default.
1084 </p>
1085 <p>
1086 The <code>standalone</code> mode can create forwarding loops on a
1087 bridge that has more than one uplink port unless STP is enabled. To
1088 avoid loops on such a bridge, configure <code>secure</code> mode or
1089 enable STP (see <ref column="stp_enable"/>).
1090 </p>
1091 <p>When more than one controller is configured,
1092 <ref column="fail_mode"/> is considered only when none of the
1093 configured controllers can be contacted.</p>
1094 <p>
1095 Changing <ref column="fail_mode"/> when no primary controllers are
1096 configured clears the OpenFlow flow tables, group table, and meter
1097 table.
1098 </p>
1099 </column>
1100
1101 <column name="datapath_id">
1102 Reports the OpenFlow datapath ID in use. Exactly 16 hex digits.
1103 (Setting this column has no useful effect. Set <ref
1104 column="other-config" key="datapath-id"/> instead.)
1105 </column>
1106
1107 <column name="datapath_version">
1108 <p>
1109 Reports the version number of the Open vSwitch datapath in use.
1110 This allows management software to detect and report discrepancies
1111 between Open vSwitch userspace and datapath versions. (The <ref
1112 column="ovs_version" table="Open_vSwitch"/> column in the <ref
1113 table="Open_vSwitch"/> reports the Open vSwitch userspace version.)
1114 The version reported depends on the datapath in use:
1115 </p>
1116
1117 <ul>
1118 <li>
1119 When the kernel module included in the Open vSwitch source tree is
1120 used, this column reports the Open vSwitch version from which the
1121 module was taken.
1122 </li>
1123
1124 <li>
1125 When the kernel module that is part of the upstream Linux kernel is
1126 used, this column reports <code>&lt;unknown&gt;</code>.
1127 </li>
1128
1129 <li>
1130 When the datapath is built into the <code>ovs-vswitchd</code>
1131 binary, this column reports <code>&lt;built-in&gt;</code>. A
1132 built-in datapath is by definition the same version as the rest of
1133 the Open VSwitch userspace.
1134 </li>
1135
1136 <li>
1137 Other datapaths (such as the Hyper-V kernel datapath) currently
1138 report <code>&lt;unknown&gt;</code>.
1139 </li>
1140 </ul>
1141
1142 <p>
1143 A version discrepancy between <code>ovs-vswitchd</code> and the
1144 datapath in use is not normally cause for alarm. The Open vSwitch
1145 kernel datapaths for Linux and Hyper-V, in particular, are designed
1146 for maximum inter-version compatibility: any userspace version works
1147 with with any kernel version. Some reasons do exist to insist on
1148 particular user/kernel pairings. First, newer kernel versions add
1149 new features, that can only be used by new-enough userspace, e.g.
1150 VXLAN tunneling requires certain minimal userspace and kernel
1151 versions. Second, as an extension to the first reason, some newer
1152 kernel versions add new features for enhancing performance that only
1153 new-enough userspace versions can take advantage of.
1154 </p>
1155 </column>
1156
1157 <column name="other_config" key="datapath-id">
1158 Overrides the default OpenFlow datapath ID, setting it to the specified
1159 value specified in hex. The value must either have a <code>0x</code>
1160 prefix or be exactly 16 hex digits long. May not be all-zero.
1161 </column>
1162
1163 <column name="other_config" key="dp-desc">
1164 Human readable description of datapath. It is a maximum 256
1165 byte-long free-form string to describe the datapath for
1166 debugging purposes, e.g. <code>switch3 in room 3120</code>.
1167 </column>
1168
1169 <column name="other_config" key="disable-in-band"
1170 type='{"type": "boolean"}'>
1171 If set to <code>true</code>, disable in-band control on the bridge
1172 regardless of controller and manager settings.
1173 </column>
1174
1175 <column name="other_config" key="in-band-queue"
1176 type='{"type": "integer", "minInteger": 0, "maxInteger": 4294967295}'>
1177 A queue ID as a nonnegative integer. This sets the OpenFlow queue ID
1178 that will be used by flows set up by in-band control on this bridge.
1179 If unset, or if the port used by an in-band control flow does not have
1180 QoS configured, or if the port does not have a queue with the specified
1181 ID, the default queue is used instead.
1182 </column>
1183
1184 <column name="protocols">
1185 <p>
1186 List of OpenFlow protocols that may be used when negotiating
1187 a connection with a controller. OpenFlow 1.0, 1.1, 1.2, 1.3, and
1188 1.4 are enabled by default if this column is empty.
1189 </p>
1190
1191 <p>
1192 OpenFlow 1.5 and 1.6 are not enabled by default because their
1193 implementations are missing features. In addition, the OpenFlow 1.6
1194 specification is still under development and thus subject to change.
1195 </p>
1196 </column>
1197 </group>
1198
1199 <group title="Spanning Tree Configuration">
1200 <p>
1201 The IEEE 802.1D Spanning Tree Protocol (STP) is a network protocol
1202 that ensures loop-free topologies. It allows redundant links to
1203 be included in the network to provide automatic backup paths if
1204 the active links fails.
1205 </p>
1206
1207 <p>
1208 These settings configure the slower-to-converge but still widely
1209 supported version of Spanning Tree Protocol, sometimes known as
1210 802.1D-1998. Open vSwitch also supports the newer Rapid Spanning Tree
1211 Protocol (RSTP), documented later in the section titled <code>Rapid
1212 Spanning Tree Configuration</code>.
1213 </p>
1214
1215 <group title="STP Configuration">
1216 <column name="stp_enable" type='{"type": "boolean"}'>
1217 <p>
1218 Enable spanning tree on the bridge. By default, STP is disabled
1219 on bridges. Bond, internal, and mirror ports are not supported
1220 and will not participate in the spanning tree.
1221 </p>
1222
1223 <p>
1224 STP and RSTP are mutually exclusive. If both are enabled, RSTP
1225 will be used.
1226 </p>
1227 </column>
1228
1229 <column name="other_config" key="stp-system-id">
1230 The bridge's STP identifier (the lower 48 bits of the bridge-id)
1231 in the form
1232 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>.
1233 By default, the identifier is the MAC address of the bridge.
1234 </column>
1235
1236 <column name="other_config" key="stp-priority"
1237 type='{"type": "integer", "minInteger": 0, "maxInteger": 65535}'>
1238 The bridge's relative priority value for determining the root
1239 bridge (the upper 16 bits of the bridge-id). A bridge with the
1240 lowest bridge-id is elected the root. By default, the priority
1241 is 0x8000.
1242 </column>
1243
1244 <column name="other_config" key="stp-hello-time"
1245 type='{"type": "integer", "minInteger": 1, "maxInteger": 10}'>
1246 The interval between transmissions of hello messages by
1247 designated ports, in seconds. By default the hello interval is
1248 2 seconds.
1249 </column>
1250
1251 <column name="other_config" key="stp-max-age"
1252 type='{"type": "integer", "minInteger": 6, "maxInteger": 40}'>
1253 The maximum age of the information transmitted by the bridge
1254 when it is the root bridge, in seconds. By default, the maximum
1255 age is 20 seconds.
1256 </column>
1257
1258 <column name="other_config" key="stp-forward-delay"
1259 type='{"type": "integer", "minInteger": 4, "maxInteger": 30}'>
1260 The delay to wait between transitioning root and designated
1261 ports to <code>forwarding</code>, in seconds. By default, the
1262 forwarding delay is 15 seconds.
1263 </column>
1264
1265 <column name="other_config" key="mcast-snooping-aging-time"
1266 type='{"type": "integer", "minInteger": 1}'>
1267 <p>
1268 The maximum number of seconds to retain a multicast snooping entry for
1269 which no packets have been seen. The default is currently 300
1270 seconds (5 minutes). The value, if specified, is forced into a
1271 reasonable range, currently 15 to 3600 seconds.
1272 </p>
1273 </column>
1274
1275 <column name="other_config" key="mcast-snooping-table-size"
1276 type='{"type": "integer", "minInteger": 1}'>
1277 <p>
1278 The maximum number of multicast snooping addresses to learn. The
1279 default is currently 2048. The value, if specified, is forced into
1280 a reasonable range, currently 10 to 1,000,000.
1281 </p>
1282 </column>
1283 <column name="other_config" key="mcast-snooping-disable-flood-unregistered"
1284 type='{"type": "boolean"}'>
1285 <p>
1286 If set to <code>false</code>, unregistered multicast packets are forwarded
1287 to all ports.
1288 If set to <code>true</code>, unregistered multicast packets are forwarded
1289 to ports connected to multicast routers.
1290 </p>
1291 </column>
1292 </group>
1293
1294 <group title="STP Status">
1295 <p>
1296 These key-value pairs report the status of 802.1D-1998. They are
1297 present only if STP is enabled (via the <ref column="stp_enable"/>
1298 column).
1299 </p>
1300 <column name="status" key="stp_bridge_id">
1301 The bridge ID used in spanning tree advertisements, in the form
1302 <var>xxxx</var>.<var>yyyyyyyyyyyy</var> where the <var>x</var>s are
1303 the STP priority, the <var>y</var>s are the STP system ID, and each
1304 <var>x</var> and <var>y</var> is a hex digit.
1305 </column>
1306 <column name="status" key="stp_designated_root">
1307 The designated root for this spanning tree, in the same form as <ref
1308 column="status" key="stp_bridge_id"/>. If this bridge is the root,
1309 this will have the same value as <ref column="status"
1310 key="stp_bridge_id"/>, otherwise it will differ.
1311 </column>
1312 <column name="status" key="stp_root_path_cost">
1313 The path cost of reaching the designated bridge. A lower number is
1314 better. The value is 0 if this bridge is the root, otherwise it is
1315 higher.
1316 </column>
1317 </group>
1318 </group>
1319
1320 <group title="Rapid Spanning Tree">
1321 <p>
1322 Rapid Spanning Tree Protocol (RSTP), like STP, is a network protocol
1323 that ensures loop-free topologies. RSTP superseded STP with the
1324 publication of 802.1D-2004. Compared to STP, RSTP converges more
1325 quickly and recovers more quickly from failures.
1326 </p>
1327
1328 <group title="RSTP Configuration">
1329 <column name="rstp_enable" type='{"type": "boolean"}'>
1330 <p>
1331 Enable Rapid Spanning Tree on the bridge. By default, RSTP is disabled
1332 on bridges. Bond, internal, and mirror ports are not supported
1333 and will not participate in the spanning tree.
1334 </p>
1335
1336 <p>
1337 STP and RSTP are mutually exclusive. If both are enabled, RSTP
1338 will be used.
1339 </p>
1340 </column>
1341
1342 <column name="other_config" key="rstp-address">
1343 The bridge's RSTP address (the lower 48 bits of the bridge-id)
1344 in the form
1345 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>.
1346 By default, the address is the MAC address of the bridge.
1347 </column>
1348
1349 <column name="other_config" key="rstp-priority"
1350 type='{"type": "integer", "minInteger": 0, "maxInteger": 61440}'>
1351 The bridge's relative priority value for determining the root
1352 bridge (the upper 16 bits of the bridge-id). A bridge with the
1353 lowest bridge-id is elected the root. By default, the priority
1354 is 0x8000 (32768). This value needs to be a multiple of 4096,
1355 otherwise it's rounded to the nearest inferior one.
1356 </column>
1357
1358 <column name="other_config" key="rstp-ageing-time"
1359 type='{"type": "integer", "minInteger": 10, "maxInteger": 1000000}'>
1360 The Ageing Time parameter for the Bridge. The default value
1361 is 300 seconds.
1362 </column>
1363
1364 <column name="other_config" key="rstp-force-protocol-version"
1365 type='{"type": "integer"}'>
1366 The Force Protocol Version parameter for the Bridge. This
1367 can take the value 0 (STP Compatibility mode) or 2
1368 (the default, normal operation).
1369 </column>
1370
1371 <column name="other_config" key="rstp-max-age"
1372 type='{"type": "integer", "minInteger": 6, "maxInteger": 40}'>
1373 The maximum age of the information transmitted by the Bridge
1374 when it is the Root Bridge. The default value is 20.
1375 </column>
1376
1377 <column name="other_config" key="rstp-forward-delay"
1378 type='{"type": "integer", "minInteger": 4, "maxInteger": 30}'>
1379 The delay used by STP Bridges to transition Root and Designated
1380 Ports to Forwarding. The default value is 15.
1381 </column>
1382
1383 <column name="other_config" key="rstp-transmit-hold-count"
1384 type='{"type": "integer", "minInteger": 1, "maxInteger": 10}'>
1385 The Transmit Hold Count used by the Port Transmit state machine
1386 to limit transmission rate. The default value is 6.
1387 </column>
1388 </group>
1389
1390 <group title="RSTP Status">
1391 <p>
1392 These key-value pairs report the status of 802.1D-2004. They are
1393 present only if RSTP is enabled (via the <ref column="rstp_enable"/>
1394 column).
1395 </p>
1396 <column name="rstp_status" key="rstp_bridge_id">
1397 The bridge ID used in rapid spanning tree advertisements, in the form
1398 <var>x</var>.<var>yyy</var>.<var>zzzzzzzzzzzz</var> where
1399 <var>x</var> is the RSTP priority, the <var>y</var>s are a locally
1400 assigned system ID extension, the <var>z</var>s are the STP system
1401 ID, and each <var>x</var>, <var>y</var>, or <var>z</var> is a hex
1402 digit.
1403 </column>
1404 <column name="rstp_status" key="rstp_root_id">
1405 The root of this spanning tree, in the same form as <ref
1406 column="rstp_status" key="rstp_bridge_id"/>. If this bridge is the
1407 root, this will have the same value as <ref column="rstp_status"
1408 key="rstp_bridge_id"/>, otherwise it will differ.
1409 </column>
1410 <column name="rstp_status" key="rstp_root_path_cost"
1411 type='{"type": "integer", "minInteger": 0}'>
1412 The path cost of reaching the root. A lower number is better. The
1413 value is 0 if this bridge is the root, otherwise it is higher.
1414 </column>
1415 <column name="rstp_status" key="rstp_designated_id">
1416 The RSTP designated ID, in the same form as <ref column="rstp_status"
1417 key="rstp_bridge_id"/>.
1418 </column>
1419 <column name="rstp_status" key="rstp_designated_port_id">
1420 The RSTP designated port ID, as a 4-digit hex number.
1421 </column>
1422 <column name="rstp_status" key="rstp_bridge_port_id">
1423 The RSTP bridge port ID, as a 4-digit hex number.
1424 </column>
1425 </group>
1426 </group>
1427
1428 <group title="Multicast Snooping Configuration">
1429 Multicast snooping (RFC 4541) monitors the Internet Group Management
1430 Protocol (IGMP) and Multicast Listener Discovery traffic between hosts
1431 and multicast routers. The switch uses what IGMP and MLD snooping
1432 learns to forward multicast traffic only to interfaces that are connected
1433 to interested receivers. Currently it supports IGMPv1, IGMPv2, IGMPv3,
1434 MLDv1 and MLDv2 protocols.
1435
1436 <column name="mcast_snooping_enable">
1437 Enable multicast snooping on the bridge. For now, the default
1438 is disabled.
1439 </column>
1440 </group>
1441
1442 <group title="Other Features">
1443 <column name="datapath_type">
1444 Name of datapath provider. The kernel datapath has type
1445 <code>system</code>. The userspace datapath has type
1446 <code>netdev</code>. A manager may refer to the <ref
1447 table="Open_vSwitch" column="datapath_types"/> column of the <ref
1448 table="Open_vSwitch"/> table for a list of the types accepted by this
1449 Open vSwitch instance.
1450 </column>
1451
1452 <column name="external_ids" key="bridge-id">
1453 A unique identifier of the bridge. On Citrix XenServer this will
1454 commonly be the same as
1455 <ref column="external_ids" key="xs-network-uuids"/>.
1456 </column>
1457
1458 <column name="external_ids" key="xs-network-uuids">
1459 Semicolon-delimited set of universally unique identifier(s) for the
1460 network with which this bridge is associated on a Citrix XenServer
1461 host. The network identifiers are RFC 4122 UUIDs as displayed by,
1462 e.g., <code>xe network-list</code>.
1463 </column>
1464
1465 <column name="other_config" key="hwaddr">
1466 An Ethernet address in the form
1467 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>
1468 to set the hardware address of the local port and influence the
1469 datapath ID.
1470 </column>
1471
1472 <column name="other_config" key="forward-bpdu"
1473 type='{"type": "boolean"}'>
1474
1475 <p>
1476 Controls forwarding of BPDUs and other network control frames when
1477 NORMAL action is invoked. When this option is <code>false</code> or
1478 unset, frames with reserved Ethernet addresses (see table below) will
1479 not be forwarded. When this option is <code>true</code>, such frames
1480 will not be treated specially.
1481 </p>
1482
1483 <p>
1484 The above general rule has the following exceptions:
1485 </p>
1486
1487 <ul>
1488 <li>
1489 If STP is enabled on the bridge (see the <ref column="stp_enable"
1490 table="Bridge"/> column in the <ref table="Bridge"/> table), the
1491 bridge processes all received STP packets and never passes them to
1492 OpenFlow or forwards them. This is true even if STP is disabled on
1493 an individual port.
1494 </li>
1495
1496 <li>
1497 If LLDP is enabled on an interface (see the <ref column="lldp"
1498 table="Interface"/> column in the <ref table="Interface"/> table),
1499 the interface processes received LLDP packets and never passes them
1500 to OpenFlow or forwards them.
1501 </li>
1502 </ul>
1503
1504 <p>
1505 Set this option to <code>true</code> if the Open vSwitch bridge
1506 connects different Ethernet networks and is not configured to
1507 participate in STP.
1508 </p>
1509
1510 <p>
1511 This option affects packets with the following destination MAC
1512 addresses:
1513 </p>
1514
1515 <dl>
1516 <dt><code>01:80:c2:00:00:00</code></dt>
1517 <dd>IEEE 802.1D Spanning Tree Protocol (STP).</dd>
1518
1519 <dt><code>01:80:c2:00:00:01</code></dt>
1520 <dd>IEEE Pause frame.</dd>
1521
1522 <dt><code>01:80:c2:00:00:0<var>x</var></code></dt>
1523 <dd>Other reserved protocols.</dd>
1524
1525 <dt><code>00:e0:2b:00:00:00</code></dt>
1526 <dd>Extreme Discovery Protocol (EDP).</dd>
1527
1528 <dt>
1529 <code>00:e0:2b:00:00:04</code> and <code>00:e0:2b:00:00:06</code>
1530 </dt>
1531 <dd>Ethernet Automatic Protection Switching (EAPS).</dd>
1532
1533 <dt><code>01:00:0c:cc:cc:cc</code></dt>
1534 <dd>
1535 Cisco Discovery Protocol (CDP), VLAN Trunking Protocol (VTP),
1536 Dynamic Trunking Protocol (DTP), Port Aggregation Protocol (PAgP),
1537 and others.
1538 </dd>
1539
1540 <dt><code>01:00:0c:cc:cc:cd</code></dt>
1541 <dd>Cisco Shared Spanning Tree Protocol PVSTP+.</dd>
1542
1543 <dt><code>01:00:0c:cd:cd:cd</code></dt>
1544 <dd>Cisco STP Uplink Fast.</dd>
1545
1546 <dt><code>01:00:0c:00:00:00</code></dt>
1547 <dd>Cisco Inter Switch Link.</dd>
1548
1549 <dt><code>01:00:0c:cc:cc:c<var>x</var></code></dt>
1550 <dd>Cisco CFM.</dd>
1551 </dl>
1552 </column>
1553
1554 <column name="other_config" key="mac-aging-time"
1555 type='{"type": "integer", "minInteger": 1}'>
1556 <p>
1557 The maximum number of seconds to retain a MAC learning entry for
1558 which no packets have been seen. The default is currently 300
1559 seconds (5 minutes). The value, if specified, is forced into a
1560 reasonable range, currently 15 to 3600 seconds.
1561 </p>
1562
1563 <p>
1564 A short MAC aging time allows a network to more quickly detect that a
1565 host is no longer connected to a switch port. However, it also makes
1566 it more likely that packets will be flooded unnecessarily, when they
1567 are addressed to a connected host that rarely transmits packets. To
1568 reduce the incidence of unnecessary flooding, use a MAC aging time
1569 longer than the maximum interval at which a host will ordinarily
1570 transmit packets.
1571 </p>
1572 </column>
1573
1574 <column name="other_config" key="mac-table-size"
1575 type='{"type": "integer", "minInteger": 1}'>
1576 <p>
1577 The maximum number of MAC addresses to learn. The default is
1578 currently 8192. The value, if specified, is forced into a reasonable
1579 range, currently 10 to 1,000,000.
1580 </p>
1581 </column>
1582 </group>
1583
1584 <group title="Common Columns">
1585 The overall purpose of these columns is described under <code>Common
1586 Columns</code> at the beginning of this document.
1587
1588 <column name="other_config"/>
1589 <column name="external_ids"/>
1590 </group>
1591 </table>
1592
1593 <table name="Port" table="Port or bond configuration.">
1594 <p>A port within a <ref table="Bridge"/>.</p>
1595 <p>Most commonly, a port has exactly one ``interface,'' pointed to by its
1596 <ref column="interfaces"/> column. Such a port logically
1597 corresponds to a port on a physical Ethernet switch. A port
1598 with more than one interface is a ``bonded port'' (see
1599 <ref group="Bonding Configuration"/>).</p>
1600 <p>Some properties that one might think as belonging to a port are actually
1601 part of the port's <ref table="Interface"/> members.</p>
1602
1603 <column name="name">
1604 Port name. For a non-bonded port, this should be the same as its
1605 interface's name. Port names must otherwise be unique among the names of
1606 ports, interfaces, and bridges on a host. Because port and interfaces
1607 names are usually the same, the restrictions on the <ref
1608 table="Interface" column="name"/> column in the <ref table="Interface"/>
1609 table, particularly on length, also apply to port names. Refer to the
1610 documentation for <ref table="Interface"/> names for details.
1611 </column>
1612
1613 <column name="interfaces">
1614 The port's interfaces. If there is more than one, this is a
1615 bonded Port.
1616 </column>
1617
1618 <group title="VLAN Configuration">
1619 <p>
1620 In short, a VLAN (short for ``virtual LAN'') is a way to partition a
1621 single switch into multiple switches. VLANs can be confusing, so for
1622 an introduction, please refer to the question ``What's a VLAN?'' in the
1623 Open vSwitch FAQ.
1624 </p>
1625
1626 <p>
1627 A VLAN is sometimes encoded into a packet using a 802.1Q or 802.1ad
1628 VLAN header, but every packet is part of some VLAN whether or not it is
1629 encoded in the packet. (A packet that appears to have no VLAN is part
1630 of VLAN 0, by default.) As a result, it's useful to think of a VLAN as
1631 a metadata property of a packet, separate from how the VLAN is encoded.
1632 For a given port, this column determines how the encoding of a packet
1633 that ingresses or egresses the port maps to the packet's VLAN. When a
1634 packet enters the switch, its VLAN is determined based on its setting
1635 in this column and its VLAN headers, if any, and then, conceptually,
1636 the VLAN headers are then stripped off. Conversely, when a packet
1637 exits the switch, its VLAN and the settings in this column determine
1638 what VLAN headers, if any, are pushed onto the packet before it
1639 egresses the port.
1640 </p>
1641
1642 <p>
1643 The VLAN configuration in this column affects Open vSwitch only when it
1644 is doing ``normal switching.'' It does not affect flows set up by an
1645 OpenFlow controller, outside of the OpenFlow ``normal action.''
1646 </p>
1647
1648 <p>
1649 Bridge ports support the following types of VLAN configuration:
1650 </p>
1651
1652 <dl>
1653 <dt>trunk</dt>
1654 <dd>
1655 <p>
1656 A trunk port carries packets on one or more specified VLANs
1657 specified in the <ref column="trunks"/> column (often, on every
1658 VLAN). A packet that ingresses on a trunk port is in the VLAN
1659 specified in its 802.1Q header, or VLAN 0 if the packet has no
1660 802.1Q header. A packet that egresses through a trunk port will
1661 have an 802.1Q header if it has a nonzero VLAN ID.
1662 </p>
1663
1664 <p>
1665 Any packet that ingresses on a trunk port tagged with a VLAN that
1666 the port does not trunk is dropped.
1667 </p>
1668 </dd>
1669
1670 <dt>access</dt>
1671 <dd>
1672 <p>
1673 An access port carries packets on exactly one VLAN specified in the
1674 <ref column="tag"/> column. Packets egressing on an access port
1675 have no 802.1Q header.
1676 </p>
1677
1678 <p>
1679 Any packet with an 802.1Q header with a nonzero VLAN ID that
1680 ingresses on an access port is dropped, regardless of whether the
1681 VLAN ID in the header is the access port's VLAN ID.
1682 </p>
1683 </dd>
1684
1685 <dt>native-tagged</dt>
1686 <dd>
1687 A native-tagged port resembles a trunk port, with the exception that
1688 a packet without an 802.1Q header that ingresses on a native-tagged
1689 port is in the ``native VLAN'' (specified in the <ref column="tag"/>
1690 column).
1691 </dd>
1692
1693 <dt>native-untagged</dt>
1694 <dd>
1695 A native-untagged port resembles a native-tagged port, with the
1696 exception that a packet that egresses on a native-untagged port in
1697 the native VLAN will not have an 802.1Q header.
1698 </dd>
1699
1700 <dt>dot1q-tunnel</dt>
1701 <dd>
1702 <p>
1703 A dot1q-tunnel port is somewhat like an access port. Like an
1704 access port, it carries packets on the single VLAN specified in the
1705 <ref column="tag"/> column and this VLAN, called the service VLAN,
1706 does not appear in an 802.1Q header for packets that ingress or
1707 egress on the port. The main difference lies in the behavior when
1708 packets that include a 802.1Q header ingress on the port. Whereas
1709 an access port drops such packets, a dot1q-tunnel port treats these
1710 as double-tagged with the outer service VLAN <ref column="tag"/>
1711 and the inner customer VLAN taken from the 802.1Q header.
1712 Correspondingly, to egress on the port, a packet outer VLAN (or
1713 only VLAN) must be <ref column="tag"/>, which is removed before
1714 egress, which exposes the inner (customer) VLAN if one is present.
1715 </p>
1716
1717 <p>
1718 If <ref column="cvlans"/> is set, only allows packets in the
1719 specified customer VLANs.
1720 </p>
1721 </dd>
1722 </dl>
1723 <p>
1724 A packet will only egress through bridge ports that carry the VLAN of
1725 the packet, as described by the rules above.
1726 </p>
1727
1728 <column name="vlan_mode">
1729 <p>
1730 The VLAN mode of the port, as described above. When this column is
1731 empty, a default mode is selected as follows:
1732 </p>
1733 <ul>
1734 <li>
1735 If <ref column="tag"/> contains a value, the port is an access
1736 port. The <ref column="trunks"/> column should be empty.
1737 </li>
1738 <li>
1739 Otherwise, the port is a trunk port. The <ref column="trunks"/>
1740 column value is honored if it is present.
1741 </li>
1742 </ul>
1743 </column>
1744
1745 <column name="tag">
1746 <p>
1747 For an access port, the port's implicitly tagged VLAN. For a
1748 native-tagged or native-untagged port, the port's native VLAN. Must
1749 be empty if this is a trunk port.
1750 </p>
1751 </column>
1752
1753 <column name="trunks">
1754 <p>
1755 For a trunk, native-tagged, or native-untagged port, the 802.1Q VLAN
1756 or VLANs that this port trunks; if it is empty, then the port trunks
1757 all VLANs. Must be empty if this is an access port.
1758 </p>
1759 <p>
1760 A native-tagged or native-untagged port always trunks its native
1761 VLAN, regardless of whether <ref column="trunks"/> includes that
1762 VLAN.
1763 </p>
1764 </column>
1765
1766 <column name="cvlans">
1767 <p>
1768 For a dot1q-tunnel port, the customer VLANs that this port includes.
1769 If this is empty, the port includes all customer VLANs.
1770 </p>
1771 <p>
1772 For other kinds of ports, this setting is ignored.
1773 </p>
1774 </column>
1775
1776 <column name="other_config" key="qinq-ethtype"
1777 type='{"type": "string", "enum": ["set", ["802.1ad", "802.1q"]]}'>
1778 <p>
1779 For a dot1q-tunnel port, this is the TPID for the service tag, that
1780 is, for the 802.1Q header that contains the service VLAN ID. Because
1781 packets that actually ingress and egress a dot1q-tunnel port do not
1782 include an 802.1Q header for the service VLAN, this does not affect
1783 packets on the dot1q-tunnel port itself. Rather, it determines the
1784 service VLAN for a packet that ingresses on a dot1q-tunnel port and
1785 egresses on a trunk port.
1786 </p>
1787 <p>
1788 The value <code>802.1ad</code> specifies TPID 0x88a8, which is also
1789 the default if the setting is omitted. The value <code>802.1q</code>
1790 specifies TPID 0x8100.
1791 </p>
1792 <p>
1793 For other kinds of ports, this setting is ignored.
1794 </p>
1795 </column>
1796
1797 <column name="other_config" key="priority-tags"
1798 type='{"type": "boolean"}'>
1799 <p>
1800 An 802.1Q header contains two important pieces of information: a VLAN
1801 ID and a priority. A frame with a zero VLAN ID, called a
1802 ``priority-tagged'' frame, is supposed to be treated the same way as
1803 a frame without an 802.1Q header at all (except for the priority).
1804 </p>
1805
1806 <p>
1807 However, some network elements ignore any frame that has 802.1Q
1808 header at all, even when the VLAN ID is zero. Therefore, by default
1809 Open vSwitch does not output priority-tagged frames, instead omitting
1810 the 802.1Q header entirely if the VLAN ID is zero. Set this key to
1811 <code>true</code> to enable priority-tagged frames on a port.
1812 </p>
1813
1814 <p>
1815 Regardless of this setting, Open vSwitch omits the 802.1Q header on
1816 output if both the VLAN ID and priority would be zero.
1817 </p>
1818
1819 <p>
1820 All frames output to native-tagged ports have a nonzero VLAN ID, so
1821 this setting is not meaningful on native-tagged ports.
1822 </p>
1823 </column>
1824 </group>
1825
1826 <group title="Bonding Configuration">
1827 <p>A port that has more than one interface is a ``bonded port.'' Bonding
1828 allows for load balancing and fail-over.</p>
1829
1830 <p>
1831 The following types of bonding will work with any kind of upstream
1832 switch. On the upstream switch, do not configure the interfaces as a
1833 bond:
1834 </p>
1835
1836 <dl>
1837 <dt><code>balance-slb</code></dt>
1838 <dd>
1839 Balances flows among slaves based on source MAC address and output
1840 VLAN, with periodic rebalancing as traffic patterns change.
1841 </dd>
1842
1843 <dt><code>active-backup</code></dt>
1844 <dd>
1845 Assigns all flows to one slave, failing over to a backup slave when
1846 the active slave is disabled. This is the only bonding mode in which
1847 interfaces may be plugged into different upstream switches.
1848 </dd>
1849 </dl>
1850
1851 <p>
1852 The following modes require the upstream switch to support 802.3ad with
1853 successful LACP negotiation. If LACP negotiation fails and
1854 other-config:lacp-fallback-ab is true, then <code>active-backup</code>
1855 mode is used:
1856 </p>
1857
1858 <dl>
1859 <dt><code>balance-tcp</code></dt>
1860 <dd>
1861 Balances flows among slaves based on L3 and L4 protocol information
1862 such as IP addresses and TCP/UDP ports.
1863 </dd>
1864 </dl>
1865
1866 <p>These columns apply only to bonded ports. Their values are
1867 otherwise ignored.</p>
1868
1869 <column name="bond_mode">
1870 <p>The type of bonding used for a bonded port. Defaults to
1871 <code>active-backup</code> if unset.
1872 </p>
1873 </column>
1874
1875 <column name="other_config" key="bond-hash-basis"
1876 type='{"type": "integer"}'>
1877 An integer hashed along with flows when choosing output slaves in load
1878 balanced bonds. When changed, all flows will be assigned different
1879 hash values possibly causing slave selection decisions to change. Does
1880 not affect bonding modes which do not employ load balancing such as
1881 <code>active-backup</code>.
1882 </column>
1883
1884 <group title="Link Failure Detection">
1885 <p>
1886 An important part of link bonding is detecting that links are down so
1887 that they may be disabled. These settings determine how Open vSwitch
1888 detects link failure.
1889 </p>
1890
1891 <column name="other_config" key="bond-detect-mode"
1892 type='{"type": "string", "enum": ["set", ["carrier", "miimon"]]}'>
1893 The means used to detect link failures. Defaults to
1894 <code>carrier</code> which uses each interface's carrier to detect
1895 failures. When set to <code>miimon</code>, will check for failures
1896 by polling each interface's MII.
1897 </column>
1898
1899 <column name="other_config" key="bond-miimon-interval"
1900 type='{"type": "integer"}'>
1901 The interval, in milliseconds, between successive attempts to poll
1902 each interface's MII. Relevant only when <ref column="other_config"
1903 key="bond-detect-mode"/> is <code>miimon</code>.
1904 </column>
1905
1906 <column name="bond_updelay">
1907 <p>
1908 The number of milliseconds for which the link must stay up on an
1909 interface before the interface is considered to be up. Specify
1910 <code>0</code> to enable the interface immediately.
1911 </p>
1912
1913 <p>
1914 This setting is honored only when at least one bonded interface is
1915 already enabled. When no interfaces are enabled, then the first
1916 bond interface to come up is enabled immediately.
1917 </p>
1918 </column>
1919
1920 <column name="bond_downdelay">
1921 The number of milliseconds for which the link must stay down on an
1922 interface before the interface is considered to be down. Specify
1923 <code>0</code> to disable the interface immediately.
1924 </column>
1925 </group>
1926
1927 <group title="LACP Configuration">
1928 <p>
1929 LACP, the Link Aggregation Control Protocol, is an IEEE standard that
1930 allows switches to automatically detect that they are connected by
1931 multiple links and aggregate across those links. These settings
1932 control LACP behavior.
1933 </p>
1934
1935 <column name="lacp">
1936 Configures LACP on this port. LACP allows directly connected
1937 switches to negotiate which links may be bonded. LACP may be enabled
1938 on non-bonded ports for the benefit of any switches they may be
1939 connected to. <code>active</code> ports are allowed to initiate LACP
1940 negotiations. <code>passive</code> ports are allowed to participate
1941 in LACP negotiations initiated by a remote switch, but not allowed to
1942 initiate such negotiations themselves. If LACP is enabled on a port
1943 whose partner switch does not support LACP, the bond will be
1944 disabled, unless other-config:lacp-fallback-ab is set to true.
1945 Defaults to <code>off</code> if unset.
1946 </column>
1947
1948 <column name="other_config" key="lacp-system-id">
1949 The LACP system ID of this <ref table="Port"/>. The system ID of a
1950 LACP bond is used to identify itself to its partners. Must be a
1951 nonzero MAC address. Defaults to the bridge Ethernet address if
1952 unset.
1953 </column>
1954
1955 <column name="other_config" key="lacp-system-priority"
1956 type='{"type": "integer", "minInteger": 1, "maxInteger": 65535}'>
1957 The LACP system priority of this <ref table="Port"/>. In LACP
1958 negotiations, link status decisions are made by the system with the
1959 numerically lower priority.
1960 </column>
1961
1962 <column name="other_config" key="lacp-time"
1963 type='{"type": "string", "enum": ["set", ["fast", "slow"]]}'>
1964 <p>
1965 The LACP timing which should be used on this <ref table="Port"/>.
1966 By default <code>slow</code> is used. When configured to be
1967 <code>fast</code> LACP heartbeats are requested at a rate of once
1968 per second causing connectivity problems to be detected more
1969 quickly. In <code>slow</code> mode, heartbeats are requested at a
1970 rate of once every 30 seconds.
1971 </p>
1972 </column>
1973
1974 <column name="other_config" key="lacp-fallback-ab"
1975 type='{"type": "boolean"}'>
1976 <p>
1977 Determines the behavior of openvswitch bond in LACP mode. If
1978 the partner switch does not support LACP, setting this option
1979 to <code>true</code> allows openvswitch to fallback to
1980 active-backup. If the option is set to <code>false</code>, the
1981 bond will be disabled. In both the cases, once the partner switch
1982 is configured to LACP mode, the bond will use LACP.
1983 </p>
1984 </column>
1985 </group>
1986
1987 <group title="Rebalancing Configuration">
1988 <p>
1989 These settings control behavior when a bond is in
1990 <code>balance-slb</code> or <code>balance-tcp</code> mode.
1991 </p>
1992
1993 <column name="other_config" key="bond-rebalance-interval"
1994 type='{"type": "integer", "minInteger": 0, "maxInteger": 10000}'>
1995 For a load balanced bonded port, the number of milliseconds between
1996 successive attempts to rebalance the bond, that is, to move flows
1997 from one interface on the bond to another in an attempt to keep usage
1998 of each interface roughly equal. If zero, load balancing is disabled
1999 on the bond (link failure still cause flows to move). If
2000 less than 1000ms, the rebalance interval will be 1000ms.
2001 </column>
2002 </group>
2003
2004 <column name="bond_fake_iface">
2005 For a bonded port, whether to create a fake internal interface with the
2006 name of the port. Use only for compatibility with legacy software that
2007 requires this.
2008 </column>
2009 </group>
2010
2011 <group title="Spanning Tree Protocol">
2012 <p>
2013 The configuration here is only meaningful, and the status is only
2014 populated, when 802.1D-1998 Spanning Tree Protocol is enabled on the
2015 port's <ref column="Bridge"/> with its <ref column="stp_enable"/>
2016 column.
2017 </p>
2018
2019 <group title="STP Configuration">
2020 <column name="other_config" key="stp-enable"
2021 type='{"type": "boolean"}'>
2022 When STP is enabled on a bridge, it is enabled by default on all of
2023 the bridge's ports except bond, internal, and mirror ports (which do
2024 not work with STP). If this column's value is <code>false</code>,
2025 STP is disabled on the port.
2026 </column>
2027
2028 <column name="other_config" key="stp-port-num"
2029 type='{"type": "integer", "minInteger": 1, "maxInteger": 255}'>
2030 The port number used for the lower 8 bits of the port-id. By
2031 default, the numbers will be assigned automatically. If any
2032 port's number is manually configured on a bridge, then they
2033 must all be.
2034 </column>
2035
2036 <column name="other_config" key="stp-port-priority"
2037 type='{"type": "integer", "minInteger": 0, "maxInteger": 255}'>
2038 The port's relative priority value for determining the root
2039 port (the upper 8 bits of the port-id). A port with a lower
2040 port-id will be chosen as the root port. By default, the
2041 priority is 0x80.
2042 </column>
2043
2044 <column name="other_config" key="stp-path-cost"
2045 type='{"type": "integer", "minInteger": 0, "maxInteger": 65535}'>
2046 Spanning tree path cost for the port. A lower number indicates
2047 a faster link. By default, the cost is based on the maximum
2048 speed of the link.
2049 </column>
2050 </group>
2051
2052 <group title="STP Status">
2053 <column name="status" key="stp_port_id">
2054 The port ID used in spanning tree advertisements for this port, as 4
2055 hex digits. Configuring the port ID is described in the
2056 <code>stp-port-num</code> and <code>stp-port-priority</code> keys of
2057 the <code>other_config</code> section earlier.
2058 </column>
2059 <column name="status" key="stp_state"
2060 type='{"type": "string", "enum": ["set",
2061 ["disabled", "listening", "learning",
2062 "forwarding", "blocking"]]}'>
2063 STP state of the port.
2064 </column>
2065 <column name="status" key="stp_sec_in_state"
2066 type='{"type": "integer", "minInteger": 0}'>
2067 The amount of time this port has been in the current STP state, in
2068 seconds.
2069 </column>
2070 <column name="status" key="stp_role"
2071 type='{"type": "string", "enum": ["set",
2072 ["root", "designated", "alternate"]]}'>
2073 STP role of the port.
2074 </column>
2075 </group>
2076 </group>
2077
2078 <group title="Rapid Spanning Tree Protocol">
2079 <p>
2080 The configuration here is only meaningful, and the status and
2081 statistics are only populated, when 802.1D-1998 Spanning Tree Protocol
2082 is enabled on the port's <ref column="Bridge"/> with its <ref
2083 column="stp_enable"/> column.
2084 </p>
2085
2086 <group title="RSTP Configuration">
2087 <column name="other_config" key="rstp-enable"
2088 type='{"type": "boolean"}'>
2089 When RSTP is enabled on a bridge, it is enabled by default on all of
2090 the bridge's ports except bond, internal, and mirror ports (which do
2091 not work with RSTP). If this column's value is <code>false</code>,
2092 RSTP is disabled on the port.
2093 </column>
2094
2095 <column name="other_config" key="rstp-port-priority"
2096 type='{"type": "integer", "minInteger": 0, "maxInteger": 240}'>
2097 The port's relative priority value for determining the root port, in
2098 multiples of 16. By default, the port priority is 0x80 (128). Any
2099 value in the lower 4 bits is rounded off. The significant upper 4
2100 bits become the upper 4 bits of the port-id. A port with the lowest
2101 port-id is elected as the root.
2102 </column>
2103
2104 <column name="other_config" key="rstp-port-num"
2105 type='{"type": "integer", "minInteger": 1, "maxInteger": 4095}'>
2106 The local RSTP port number, used as the lower 12 bits of the port-id.
2107 By default the port numbers are assigned automatically, and typically
2108 may not correspond to the OpenFlow port numbers. A port with the
2109 lowest port-id is elected as the root.
2110 </column>
2111
2112 <column name="other_config" key="rstp-port-path-cost"
2113 type='{"type": "integer"}'>
2114 The port path cost. The Port's contribution, when it is
2115 the Root Port, to the Root Path Cost for the Bridge. By default the
2116 cost is automatically calculated from the port's speed.
2117 </column>
2118
2119 <column name="other_config" key="rstp-port-admin-edge"
2120 type='{"type": "boolean"}'>
2121 The admin edge port parameter for the Port. Default is
2122 <code>false</code>.
2123 </column>
2124
2125 <column name="other_config" key="rstp-port-auto-edge"
2126 type='{"type": "boolean"}'>
2127 The auto edge port parameter for the Port. Default is
2128 <code>true</code>.
2129 </column>
2130
2131 <column name="other_config" key="rstp-port-mcheck"
2132 type='{"type": "boolean"}'>
2133 <p>
2134 The mcheck port parameter for the Port. Default is
2135 <code>false</code>. May be set to force the Port Protocol
2136 Migration state machine to transmit RST BPDUs for a
2137 MigrateTime period, to test whether all STP Bridges on the
2138 attached LAN have been removed and the Port can continue to
2139 transmit RSTP BPDUs. Setting mcheck has no effect if the
2140 Bridge is operating in STP Compatibility mode.
2141 </p>
2142 <p>
2143 Changing the value from <code>true</code> to
2144 <code>false</code> has no effect, but needs to be done if
2145 this behavior is to be triggered again by subsequently
2146 changing the value from <code>false</code> to
2147 <code>true</code>.
2148 </p>
2149 </column>
2150 </group>
2151
2152 <group title="RSTP Status">
2153 <column name="rstp_status" key="rstp_port_id">
2154 The port ID used in spanning tree advertisements for this port, as 4
2155 hex digits. Configuring the port ID is described in the
2156 <code>rstp-port-num</code> and <code>rstp-port-priority</code> keys
2157 of the <code>other_config</code> section earlier.
2158 </column>
2159 <column name="rstp_status" key="rstp_port_role"
2160 type='{"type": "string", "enum": ["set",
2161 ["Root", "Designated", "Alternate", "Backup", "Disabled"]]}'>
2162 RSTP role of the port.
2163 </column>
2164 <column name="rstp_status" key="rstp_port_state"
2165 type='{"type": "string", "enum": ["set",
2166 ["Disabled", "Learning", "Forwarding", "Discarding"]]}'>
2167 RSTP state of the port.
2168 </column>
2169 <column name="rstp_status" key="rstp_designated_bridge_id">
2170 The port's RSTP designated bridge ID, in the same form as <ref
2171 column="rstp_status" key="rstp_bridge_id"/> in the <ref
2172 table="Bridge"/> table.
2173 </column>
2174 <column name="rstp_status" key="rstp_designated_port_id">
2175 The port's RSTP designated port ID, as 4 hex digits.
2176 </column>
2177 <column name="rstp_status" key="rstp_designated_path_cost"
2178 type='{"type": "integer"}'>
2179 The port's RSTP designated path cost. Lower is better.
2180 </column>
2181 </group>
2182
2183 <group title="RSTP Statistics">
2184 <column name="rstp_statistics" key="rstp_tx_count">
2185 Number of RSTP BPDUs transmitted through this port.
2186 </column>
2187 <column name="rstp_statistics" key="rstp_rx_count">
2188 Number of valid RSTP BPDUs received by this port.
2189 </column>
2190 <column name="rstp_statistics" key="rstp_error_count">
2191 Number of invalid RSTP BPDUs received by this port.
2192 </column>
2193 <column name="rstp_statistics" key="rstp_uptime">
2194 The duration covered by the other RSTP statistics, in seconds.
2195 </column>
2196 </group>
2197 </group>
2198
2199 <group title="Multicast Snooping">
2200 <column name="other_config" key="mcast-snooping-flood"
2201 type='{"type": "boolean"}'>
2202 <p>
2203 If set to <code>true</code>, multicast packets (except Reports) are
2204 unconditionally forwarded to the specific port.
2205 </p>
2206 </column>
2207 <column name="other_config" key="mcast-snooping-flood-reports"
2208 type='{"type": "boolean"}'>
2209 <p>
2210 If set to <code>true</code>, multicast Reports are unconditionally
2211 forwarded to the specific port.
2212 </p>
2213 </column>
2214 </group>
2215
2216 <group title="Other Features">
2217 <column name="qos">
2218 Quality of Service configuration for this port.
2219 </column>
2220
2221 <column name="mac">
2222 The MAC address to use for this port for the purpose of choosing the
2223 bridge's MAC address. This column does not necessarily reflect the
2224 port's actual MAC address, nor will setting it change the port's actual
2225 MAC address.
2226 </column>
2227
2228 <column name="fake_bridge">
2229 Does this port represent a sub-bridge for its tagged VLAN within the
2230 Bridge? See ovs-vsctl(8) for more information.
2231 </column>
2232
2233 <column name="protected" type='{"type": "boolean"}'>
2234 The protected ports feature allows certain ports to be designated as
2235 protected. Traffic between protected ports is blocked. Protected
2236 ports can send traffic to unprotected ports. Unprotected ports can
2237 send traffic to any port.
2238 Default is false.
2239 </column>
2240
2241 <column name="external_ids" key="fake-bridge-id-*">
2242 External IDs for a fake bridge (see the <ref column="fake_bridge"/>
2243 column) are defined by prefixing a <ref table="Bridge"/> <ref
2244 table="Bridge" column="external_ids"/> key with
2245 <code>fake-bridge-</code>,
2246 e.g. <code>fake-bridge-xs-network-uuids</code>.
2247 </column>
2248
2249 <column name="other_config" key="transient"
2250 type='{"type": "boolean"}'>
2251 <p>
2252 If set to <code>true</code>, the port will be removed when
2253 <code>ovs-ctl start --delete-transient-ports</code> is used.
2254 </p>
2255 </column>
2256 </group>
2257
2258 <column name="bond_active_slave">
2259 For a bonded port, record the mac address of the current active slave.
2260 </column>
2261
2262 <group title="Port Statistics">
2263 <p>
2264 Key-value pairs that report port statistics. The update period
2265 is controlled by <ref column="other_config"
2266 key="stats-update-interval"/> in the <code>Open_vSwitch</code> table.
2267 </p>
2268 <group title="Statistics: STP transmit and receive counters">
2269 <column name="statistics" key="stp_tx_count">
2270 Number of STP BPDUs sent on this port by the spanning
2271 tree library.
2272 </column>
2273 <column name="statistics" key="stp_rx_count">
2274 Number of STP BPDUs received on this port and accepted by the
2275 spanning tree library.
2276 </column>
2277 <column name="statistics" key="stp_error_count">
2278 Number of bad STP BPDUs received on this port. Bad BPDUs
2279 include runt packets and those with an unexpected protocol ID.
2280 </column>
2281 </group>
2282 </group>
2283
2284 <group title="Common Columns">
2285 The overall purpose of these columns is described under <code>Common
2286 Columns</code> at the beginning of this document.
2287
2288 <column name="other_config"/>
2289 <column name="external_ids"/>
2290 </group>
2291 </table>
2292
2293 <table name="Interface" title="One physical network device in a Port.">
2294 An interface within a <ref table="Port"/>.
2295
2296 <group title="Core Features">
2297 <column name="name">
2298 <p>
2299 Interface name. Should be alphanumeric. For non-bonded port, this
2300 should be the same as the port name. It must otherwise be unique
2301 among the names of ports, interfaces, and bridges on a host.
2302 </p>
2303
2304 <p>
2305 The maximum length of an interface name depends on the underlying
2306 datapath:
2307 </p>
2308
2309 <ul>
2310 <li>
2311 The names of interfaces implemented as Linux and BSD network
2312 devices, including interfaces with type <code>internal</code>,
2313 <code>tap</code>, or <code>system</code> plus the different types
2314 of tunnel ports, are limited to 15 bytes. Windows limits these
2315 names to 255 bytes.
2316 </li>
2317
2318 <li>
2319 The names of patch ports are not used in the underlying datapath,
2320 so operating system restrictions do not apply. Thus, they may have
2321 arbitrary length.
2322 </li>
2323 </ul>
2324
2325 <p>
2326 Regardless of other restrictions, OpenFlow only supports 15-byte
2327 names, which means that <code>ovs-ofctl</code> and OpenFlow
2328 controllers will show names truncated to 15 bytes.
2329 </p>
2330 </column>
2331
2332 <column name="ifindex">
2333 A positive interface index as defined for SNMP MIB-II in RFCs 1213 and
2334 2863, if the interface has one, otherwise 0. The ifindex is useful for
2335 seamless integration with protocols such as SNMP and sFlow.
2336 </column>
2337
2338 <column name="mac_in_use">
2339 The MAC address in use by this interface.
2340 </column>
2341
2342 <column name="mac">
2343 <p>Ethernet address to set for this interface. If unset then the
2344 default MAC address is used:</p>
2345 <ul>
2346 <li>For the local interface, the default is the lowest-numbered MAC
2347 address among the other bridge ports, either the value of the
2348 <ref table="Port" column="mac"/> in its <ref table="Port"/> record,
2349 if set, or its actual MAC (for bonded ports, the MAC of its slave
2350 whose name is first in alphabetical order). Internal ports and
2351 bridge ports that are used as port mirroring destinations (see the
2352 <ref table="Mirror"/> table) are ignored.</li>
2353 <li>For other internal interfaces, the default MAC is randomly
2354 generated.</li>
2355 <li>External interfaces typically have a MAC address associated with
2356 their hardware.</li>
2357 </ul>
2358 <p>Some interfaces may not have a software-controllable MAC
2359 address. This option only affects internal ports. For other type ports,
2360 you can change the MAC address outside Open vSwitch, using ip command.</p>
2361 </column>
2362
2363 <column name="error">
2364 If the configuration of the port failed, as indicated by -1 in <ref
2365 column="ofport"/>, Open vSwitch sets this column to an error
2366 description in human readable form. Otherwise, Open vSwitch clears
2367 this column.
2368 </column>
2369
2370 <group title="OpenFlow Port Number">
2371 <p>
2372 When a client adds a new interface, Open vSwitch chooses an OpenFlow
2373 port number for the new port. If the client that adds the port fills
2374 in <ref column="ofport_request"/>, then Open vSwitch tries to use its
2375 value as the OpenFlow port number. Otherwise, or if the requested
2376 port number is already in use or cannot be used for another reason,
2377 Open vSwitch automatically assigns a free port number. Regardless of
2378 how the port number was obtained, Open vSwitch then reports in <ref
2379 column="ofport"/> the port number actually assigned.
2380 </p>
2381
2382 <p>
2383 Open vSwitch limits the port numbers that it automatically assigns to
2384 the range 1 through 32,767, inclusive. Controllers therefore have
2385 free use of ports 32,768 and up.
2386 </p>
2387
2388 <column name="ofport">
2389 <p>
2390 OpenFlow port number for this interface. Open vSwitch sets this
2391 column's value, so other clients should treat it as read-only.
2392 </p>
2393 <p>
2394 The OpenFlow ``local'' port (<code>OFPP_LOCAL</code>) is 65,534.
2395 The other valid port numbers are in the range 1 to 65,279,
2396 inclusive. Value -1 indicates an error adding the interface.
2397 </p>
2398 </column>
2399
2400 <column name="ofport_request"
2401 type='{"type": "integer", "minInteger": 1, "maxInteger": 65279}'>
2402 <p>
2403 Requested OpenFlow port number for this interface.
2404 </p>
2405
2406 <p>
2407 A client should ideally set this column's value in the same
2408 database transaction that it uses to create the interface. Open
2409 vSwitch version 2.1 and later will honor a later request for a
2410 specific port number, althuogh it might confuse some controllers:
2411 OpenFlow does not have a way to announce a port number change, so
2412 Open vSwitch represents it over OpenFlow as a port deletion
2413 followed immediately by a port addition.
2414 </p>
2415
2416 <p>
2417 If <ref column="ofport_request"/> is set or changed to some other
2418 port's automatically assigned port number, Open vSwitch chooses a
2419 new port number for the latter port.
2420 </p>
2421 </column>
2422 </group>
2423 </group>
2424
2425 <group title="System-Specific Details">
2426 <column name="type">
2427 <p>
2428 The interface type. The types supported by a particular instance of
2429 Open vSwitch are listed in the <ref table="Open_vSwitch"
2430 column="iface_types"/> column in the <ref table="Open_vSwitch"/>
2431 table. The following types are defined:
2432 </p>
2433
2434 <dl>
2435 <dt><code>system</code></dt>
2436 <dd>An ordinary network device, e.g. <code>eth0</code> on Linux.
2437 Sometimes referred to as ``external interfaces'' since they are
2438 generally connected to hardware external to that on which the Open
2439 vSwitch is running. The empty string is a synonym for
2440 <code>system</code>.</dd>
2441
2442 <dt><code>internal</code></dt>
2443 <dd>A simulated network device that sends and receives traffic. An
2444 internal interface whose <ref column="name"/> is the same as its
2445 bridge's <ref table="Open_vSwitch" column="name"/> is called the
2446 ``local interface.'' It does not make sense to bond an internal
2447 interface, so the terms ``port'' and ``interface'' are often used
2448 imprecisely for internal interfaces.</dd>
2449
2450 <dt><code>tap</code></dt>
2451 <dd>
2452 <p>
2453 A TUN/TAP device managed by Open vSwitch.
2454 </p>
2455 <p>
2456 Open vSwitch checks the interface state before send packets
2457 to the device. When it is <code>down</code>, the packets are
2458 dropped and the tx_dropped statistic is updated accordingly.
2459 Older versions of Open vSwitch did not check the interface state
2460 and then the tx_packets was incremented along with tx_dropped.
2461 </p>
2462 </dd>
2463
2464 <dt><code>geneve</code></dt>
2465 <dd>
2466 An Ethernet over Geneve (<code>http://tools.ietf.org/html/draft-ietf-nvo3-geneve</code>)
2467 IPv4/IPv6 tunnel.
2468
2469 A description of how to match and set Geneve options can be found
2470 in the <code>ovs-ofctl</code> manual page.
2471 </dd>
2472
2473 <dt><code>gre</code></dt>
2474 <dd>
2475 Generic Routing Encapsulation (GRE) over IPv4/IPv6 tunnel,
2476 configurable to encapsulate layer 2 or layer 3 traffic.
2477 </dd>
2478
2479 <dt><code>vxlan</code></dt>
2480 <dd>
2481 <p>
2482 An Ethernet tunnel over the UDP-based VXLAN protocol described in
2483 RFC 7348.
2484 </p>
2485 <p>
2486 Open vSwitch uses IANA-assigned UDP destination port 4789. The
2487 source port used for VXLAN traffic varies on a per-flow basis
2488 and is in the ephemeral port range.
2489 </p>
2490 </dd>
2491
2492 <dt><code>lisp</code></dt>
2493 <dd>
2494 <p>
2495 A layer 3 tunnel over the experimental, UDP-based Locator/ID
2496 Separation Protocol (RFC 6830).
2497 </p>
2498 <p>
2499 Only IPv4 and IPv6 packets are supported by the protocol, and
2500 they are sent and received without an Ethernet header. Traffic
2501 to/from LISP ports is expected to be configured explicitly, and
2502 the ports are not intended to participate in learning based
2503 switching. As such, they are always excluded from packet
2504 flooding.
2505 </p>
2506 </dd>
2507
2508 <dt><code>stt</code></dt>
2509 <dd>
2510 The Stateless TCP Tunnel (STT) is particularly useful when tunnel
2511 endpoints are in end-systems, as it utilizes the capabilities of
2512 standard network interface cards to improve performance. STT utilizes
2513 a TCP-like header inside the IP header. It is stateless, i.e., there is
2514 no TCP connection state of any kind associated with the tunnel. The
2515 TCP-like header is used to leverage the capabilities of existing
2516 network interface cards, but should not be interpreted as implying
2517 any sort of connection state between endpoints.
2518 Since the STT protocol does not engage in the usual TCP 3-way handshake,
2519 so it will have difficulty traversing stateful firewalls.
2520 The protocol is documented at
2521 https://tools.ietf.org/html/draft-davie-stt
2522
2523 All traffic uses a default destination port of 7471.
2524 </dd>
2525
2526 <dt><code>patch</code></dt>
2527 <dd>
2528 A pair of virtual devices that act as a patch cable.
2529 </dd>
2530 </dl>
2531 </column>
2532 </group>
2533
2534 <group title="Tunnel Options">
2535 <p>
2536 These options apply to interfaces with <ref column="type"/> of
2537 <code>geneve</code>, <code>gre</code>, <code>vxlan</code>,
2538 <code>lisp</code> and <code>stt</code>.
2539 </p>
2540
2541 <p>
2542 Each tunnel must be uniquely identified by the combination of <ref
2543 column="type"/>, <ref column="options" key="remote_ip"/>, <ref
2544 column="options" key="local_ip"/>, and <ref column="options"
2545 key="in_key"/>. If two ports are defined that are the same except one
2546 has an optional identifier and the other does not, the more specific
2547 one is matched first. <ref column="options" key="in_key"/> is
2548 considered more specific than <ref column="options" key="local_ip"/> if
2549 a port defines one and another port defines the other.
2550 </p>
2551
2552 <column name="options" key="remote_ip">
2553 <p>Required. The remote tunnel endpoint, one of:</p>
2554
2555 <ul>
2556 <li>
2557 An IPv4 or IPv6 address (not a DNS name), e.g. <code>192.168.0.123</code>.
2558 Only unicast endpoints are supported.
2559 </li>
2560 <li>
2561 The word <code>flow</code>. The tunnel accepts packets from any
2562 remote tunnel endpoint. To process only packets from a specific
2563 remote tunnel endpoint, the flow entries may match on the
2564 <code>tun_src</code> or <code>tun_ipv6_src</code>field. When
2565 sending packets to a <code>remote_ip=flow</code> tunnel, the flow
2566 actions must explicitly set the <code>tun_dst</code> or
2567 <code>tun_ipv6_dst</code> field to the IP address of the desired
2568 remote tunnel endpoint, e.g. with a <code>set_field</code> action.
2569 </li>
2570 </ul>
2571
2572 <p>
2573 The remote tunnel endpoint for any packet received from a tunnel
2574 is available in the <code>tun_src</code> field for matching in the
2575 flow table.
2576 </p>
2577 </column>
2578
2579 <column name="options" key="local_ip">
2580 <p>
2581 Optional. The tunnel destination IP that received packets must match.
2582 Default is to match all addresses. If specified, may be one of:
2583 </p>
2584
2585 <ul>
2586 <li>
2587 An IPv4/IPv6 address (not a DNS name), e.g. <code>192.168.12.3</code>.
2588 </li>
2589 <li>
2590 The word <code>flow</code>. The tunnel accepts packets sent to any
2591 of the local IP addresses of the system running OVS. To process
2592 only packets sent to a specific IP address, the flow entries may
2593 match on the <code>tun_dst</code> or <code>tun_ipv6_dst</code> field.
2594 When sending packets to a <code>local_ip=flow</code> tunnel, the flow
2595 actions may explicitly set the <code>tun_src</code> or <code>tun_ipv6_src</code>
2596 field to the desired IP address, e.g. with a <code>set_field</code> action.
2597 However, while routing the tunneled packet out, the local system may
2598 override the specified address with the local IP address configured for the
2599 outgoing system interface.
2600
2601 <p>
2602 This option is valid only for tunnels also configured with the
2603 <code>remote_ip=flow</code> option.
2604 </p>
2605 </li>
2606 </ul>
2607
2608 <p>
2609 The tunnel destination IP address for any packet received from a
2610 tunnel is available in the <code>tun_dst</code> or <code>tun_ipv6_dst</code>
2611 field for matching in the flow table.
2612 </p>
2613 </column>
2614
2615 <column name="options" key="in_key">
2616 <p>Optional. The key that received packets must contain, one of:</p>
2617
2618 <ul>
2619 <li>
2620 <code>0</code>. The tunnel receives packets with no key or with a
2621 key of 0. This is equivalent to specifying no <ref column="options"
2622 key="in_key"/> at all.
2623 </li>
2624 <li>
2625 A positive 24-bit (for Geneve, VXLAN, and LISP), 32-bit (for GRE)
2626 or 64-bit (for STT) number. The tunnel receives only
2627 packets with the specified key.
2628 </li>
2629 <li>
2630 The word <code>flow</code>. The tunnel accepts packets with any
2631 key. The key will be placed in the <code>tun_id</code> field for
2632 matching in the flow table. The <code>ovs-fields</code>(7) manual
2633 page contains additional information about matching fields in
2634 OpenFlow flows.
2635 </li>
2636 </ul>
2637
2638 <p>
2639 </p>
2640 </column>
2641
2642 <column name="options" key="out_key">
2643 <p>Optional. The key to be set on outgoing packets, one of:</p>
2644
2645 <ul>
2646 <li>
2647 <code>0</code>. Packets sent through the tunnel will have no key.
2648 This is equivalent to specifying no <ref column="options"
2649 key="out_key"/> at all.
2650 </li>
2651 <li>
2652 A positive 24-bit (for Geneve, VXLAN and LISP), 32-bit (for GRE) or
2653 64-bit (for STT) number. Packets sent through the tunnel
2654 will have the specified key.
2655 </li>
2656 <li>
2657 The word <code>flow</code>. Packets sent through the tunnel will
2658 have the key set using the <code>set_tunnel</code> Nicira OpenFlow
2659 vendor extension (0 is used in the absence of an action). The
2660 <code>ovs-fields</code>(7) manual page contains additional
2661 information about the Nicira OpenFlow vendor extensions.
2662 </li>
2663 </ul>
2664 </column>
2665
2666 <column name="options" key="dst_port">
2667 Optional. The tunnel transport layer destination port, for UDP and TCP
2668 based tunnel protocols (Geneve, VXLAN, LISP, and STT).
2669 </column>
2670
2671 <column name="options" key="key">
2672 Optional. Shorthand to set <code>in_key</code> and
2673 <code>out_key</code> at the same time.
2674 </column>
2675
2676 <column name="options" key="tos">
2677 Optional. The value of the ToS bits to be set on the encapsulating
2678 packet. ToS is interpreted as DSCP and ECN bits, ECN part must be
2679 zero. It may also be the word <code>inherit</code>, in which case
2680 the ToS will be copied from the inner packet if it is IPv4 or IPv6
2681 (otherwise it will be 0). The ECN fields are always inherited.
2682 Default is 0.
2683 </column>
2684
2685 <column name="options" key="ttl">
2686 Optional. The TTL to be set on the encapsulating packet. It may also
2687 be the word <code>inherit</code>, in which case the TTL will be copied
2688 from the inner packet if it is IPv4 or IPv6 (otherwise it will be the
2689 system default, typically 64). Default is the system default TTL.
2690 </column>
2691
2692 <column name="options" key="df_default"
2693 type='{"type": "boolean"}'>
2694 Optional. If enabled, the Don't Fragment bit will be set on tunnel
2695 outer headers to allow path MTU discovery. Default is enabled; set
2696 to <code>false</code> to disable.
2697 </column>
2698
2699 <column name="options" key="egress_pkt_mark">
2700 Optional. The pkt_mark to be set on the encapsulating packet. This
2701 option sets packet mark for the tunnel endpoint for all tunnel packets
2702 including tunnel monitoring.
2703 </column>
2704
2705 <group title="Tunnel Options: lisp only">
2706 <column name="options" key="packet_type"
2707 type='{"type": "string", "enum": ["set",
2708 ["legacy_l3", "ptap"]]}'>
2709 <p>
2710 A LISP tunnel sends and receives only IPv4 and IPv6 packets. This
2711 option controls what how the tunnel represents the packets that it
2712 sends and receives:
2713 </p>
2714
2715 <ul>
2716 <li>
2717 By default, or if this option is <code>legacy_l3</code>, the
2718 tunnel represents packets as Ethernet frames for compatibility
2719 with legacy OpenFlow controllers that expect this behavior.
2720 </li>
2721 <li>
2722 If this option is <code>ptap</code>, the tunnel represents
2723 packets using the <code>packet_type</code> mechanism introduced
2724 in OpenFlow 1.5.
2725 </li>
2726 </ul>
2727 </column>
2728 </group>
2729
2730 <group title="Tunnel Options: vxlan only">
2731
2732 <column name="options" key="exts">
2733 <p>Optional. Comma separated list of optional VXLAN extensions to
2734 enable. The following extensions are supported:</p>
2735
2736 <ul>
2737 <li>
2738 <code>gbp</code>: VXLAN-GBP allows to transport the group policy
2739 context of a packet across the VXLAN tunnel to other network
2740 peers. See the description of <code>tun_gbp_id</code> and
2741 <code>tun_gbp_flags</code> in <code>ovs-fields</code>(7) for
2742 additional information.
2743 (<code>https://tools.ietf.org/html/draft-smith-vxlan-group-policy</code>)
2744 </li>
2745 <li>
2746 <code>gpe</code>: Support for Generic Protocol Encapsulation in
2747 accordance with IETF draft
2748 <code>https://tools.ietf.org/html/draft-ietf-nvo3-vxlan-gpe</code>.
2749 Without this option, a VXLAN packet always encapsulates an
2750 Ethernet frame. With this option, an VXLAN packet may also
2751 encapsulate an IPv4, IPv6, NSH, or MPLS packet.
2752 </li>
2753 </ul>
2754 </column>
2755
2756 <column name="options" key="packet_type"
2757 type='{"type": "string", "enum": ["set",
2758 ["legacy_l2", "legacy_l3", "ptap"]]}'>
2759 <p>
2760 This option controls what types of packets the tunnel sends and
2761 receives and how it represents them:
2762 </p>
2763
2764 <ul>
2765 <li>
2766 By default, or if this option is <code>legacy_l2</code>, the
2767 tunnel sends and receives only Ethernet frames.
2768 </li>
2769 <li>
2770 If this option is <code>legacy_l3</code>, the tunnel sends and
2771 receives only non-Ethernet (L3) packet, but the packets are
2772 represented as Ethernet frames for compatibility with legacy
2773 OpenFlow controllers that expect this behavior. This requires
2774 enabling <code>gpe</code> in <ref column="options" key="exts"/>.
2775 </li>
2776 <li>
2777 If this option is <code>ptap</code>, Open vSwitch represents
2778 packets in the tunnel using the <code>packet_type</code>
2779 mechanism introduced in OpenFlow 1.5. This mechanism supports
2780 any kind of packet, but actually sending and receiving
2781 non-Ethernet packets requires additionally enabling
2782 <code>gpe</code> in <ref column="options" key="exts"/>.
2783 </li>
2784 </ul>
2785 </column>
2786 </group>
2787
2788 <group title="Tunnel Options: gre only">
2789 <p>
2790 <code>gre</code> interfaces support these options.
2791 </p>
2792
2793 <column name="options" key="packet_type"
2794 type='{"type": "string", "enum": ["set",
2795 ["legacy_l2", "legacy_l3", "ptap"]]}'>
2796 <p>
2797 This option controls what types of packets the tunnel sends and
2798 receives and how it represents them:
2799 </p>
2800
2801 <ul>
2802 <li>
2803 By default, or if this option is <code>legacy_l2</code>, the
2804 tunnel sends and receives only Ethernet frames.
2805 </li>
2806 <li>
2807 If this option is <code>legacy_l3</code>, the tunnel sends and
2808 receives only non-Ethernet (L3) packet, but the packets are
2809 represented as Ethernet frames for compatibility with legacy
2810 OpenFlow controllers that expect this behavior.
2811 </li>
2812 <li>
2813 The <code>legacy_l3</code> option is only available via the
2814 user space datapath. The OVS kernel datapath does not support
2815 devices of type ARPHRD_IPGRE which is the requirement for
2816 <code>legacy_l3</code> type packets.
2817 </li>
2818 <li>
2819 If this option is <code>ptap</code>, the tunnel sends and
2820 receives any kind of packet. Open vSwitch represents packets in
2821 the tunnel using the <code>packet_type</code> mechanism
2822 introduced in OpenFlow 1.5.
2823 </li>
2824 </ul>
2825 </column>
2826 <column name="options" key="seq" type='{"type": "boolean"}'>
2827 <p>
2828 Optional. A 4-byte sequence number field for GRE tunnel only.
2829 Default is disabled, set to <code>true</code> to enable.
2830 Sequence number is incremented by one on each outgoing packet.
2831 </p>
2832 </column>
2833 </group>
2834
2835 <group title="Tunnel Options: gre, geneve, and vxlan">
2836 <p>
2837 <code>gre</code>, <code>geneve</code>, and
2838 <code>vxlan</code> interfaces support these options.
2839 </p>
2840
2841 <column name="options" key="csum" type='{"type": "boolean"}'>
2842 <p>
2843 Optional. Compute encapsulation header (either GRE or UDP)
2844 checksums on outgoing packets. Default is disabled, set to
2845 <code>true</code> to enable. Checksums present on incoming
2846 packets will be validated regardless of this setting.
2847 </p>
2848
2849 <p>
2850 When using the upstream Linux kernel module, computation of
2851 checksums for <code>geneve</code> and <code>vxlan</code> requires
2852 Linux kernel version 4.0 or higher. <code>gre</code> supports
2853 checksums for all versions of Open vSwitch that support GRE.
2854 The out of tree kernel module distributed as part of OVS
2855 can compute all tunnel checksums on any kernel version that it
2856 is compatible with.
2857 </p>
2858
2859 </column>
2860 </group>
2861
2862 <group title="Tunnel Options: IPsec">
2863 <p>
2864 Setting any of these options enables IPsec support for a given
2865 tunnel. <code>gre</code>, <code>geneve</code>, <code>vxlan</code>,
2866 and <code>stt</code> interfaces support these options. See the
2867 <code>IPsec</code> section in the <ref table="Open_vSwitch"/> table
2868 for a description of each mode.
2869 </p>
2870 <column name="options" key="psk" type='{"type": "string"}'>
2871 <p>
2872 In PSK mode only, the preshared secret to negotiate tunnel. This
2873 value must match on both tunnel ends.
2874 </p>
2875 </column>
2876 <column name="options" key="remote_cert" type='{"type": "string"}'>
2877 <p>
2878 In self-signed certificate mode only, name of a PEM file
2879 containing a certificate of the remote switch. The certificate
2880 must be x.509 version 3 and with the string in common name (CN)
2881 also set in the subject alternative name (SAN).
2882 </p>
2883 </column>
2884 <column name="options" key="remote_name" type='{"type": "string"}'>
2885 <p>
2886 In CA-signed certificate mode only, common name (CN) of the remote
2887 certificate.
2888 </p>
2889 </column>
2890 </group>
2891 </group>
2892 <group title="Tunnel Options: erspan only">
2893 <p>
2894 Only <code>erspan</code> interfaces support these options.
2895 </p>
2896 <column name="options" key="erspan_idx">
2897 <p>
2898 20 bit index/port number associated with the ERSPAN traffic's
2899 source port and direction (ingress/egress). This field is
2900 platform dependent.
2901 </p>
2902 </column>
2903
2904 <column name="options" key="erspan_ver">
2905 <p>
2906 ERSPAN version: 1 for version 1 (type II)
2907 or 2 for version 2 (type III).
2908 </p>
2909 </column>
2910
2911 <column name="options" key="erspan_dir">
2912 <p>
2913 Specifies the ERSPAN v2 mirrored traffic's direction.
2914 1 for egress traffic, and 0 for ingress traffic.
2915 </p>
2916 </column>
2917
2918 <column name="options" key="erspan_hwid">
2919 <p>
2920 ERSPAN hardware ID is a 6-bit unique identifier of an
2921 ERSPAN v2 engine within a system.
2922 </p>
2923 </column>
2924 </group>
2925
2926 <group title="Patch Options">
2927 <p>
2928 These options apply only to <dfn>patch ports</dfn>, that is, interfaces
2929 whose <ref column="type"/> column is <code>patch</code>. Patch ports
2930 are mainly a way to connect otherwise independent bridges to one
2931 another, similar to how one might plug an Ethernet cable (a ``patch
2932 cable'') into two physical switches to connect those switches. The
2933 effect of plugging a patch port into two switches is conceptually
2934 similar to that of plugging the two ends of a Linux <code>veth</code>
2935 device into those switches, but the implementation of patch ports makes
2936 them much more efficient.
2937 </p>
2938
2939 <p>
2940 Patch ports may connect two different bridges (the usual case) or the
2941 same bridge. In the latter case, take special care to avoid loops,
2942 e.g. by programming appropriate flows with OpenFlow. Patch ports do
2943 not work if its ends are attached to bridges on different datapaths,
2944 e.g. to connect bridges in <code>system</code> and <code>netdev</code>
2945 datapaths.
2946 </p>
2947
2948 <p>
2949 The following command creates and connects patch ports <code>p0</code>
2950 and <code>p1</code> and adds them to bridges <code>br0</code> and
2951 <code>br1</code>, respectively:
2952 </p>
2953
2954 <pre>
2955 ovs-vsctl add-port br0 p0 -- set Interface p0 type=patch options:peer=p1 \
2956 -- add-port br1 p1 -- set Interface p1 type=patch options:peer=p0
2957 </pre>
2958
2959 <column name="options" key="peer">
2960 The <ref column="name"/> of the <ref table="Interface"/> for the other
2961 side of the patch. The named <ref table="Interface"/>'s own
2962 <code>peer</code> option must specify this <ref table="Interface"/>'s
2963 name. That is, the two patch interfaces must have reversed <ref
2964 column="name"/> and <code>peer</code> values.
2965 </column>
2966 </group>
2967
2968 <group title="PMD (Poll Mode Driver) Options">
2969 <p>
2970 Only PMD netdevs support these options.
2971 </p>
2972
2973 <column name="options" key="n_rxq"
2974 type='{"type": "integer", "minInteger": 1}'>
2975 <p>
2976 Specifies the maximum number of rx queues to be created for PMD
2977 netdev. If not specified or specified to 0, one rx queue will
2978 be created by default.
2979 Not supported by DPDK vHost interfaces.
2980 </p>
2981 </column>
2982
2983 <column name="options" key="dpdk-devargs"
2984 type='{"type": "string"}'>
2985 <p>
2986 Specifies the PCI address associated with the port for physical
2987 devices, or the virtual driver to be used for the port when a virtual
2988 PMD is intended to be used. For the latter, the argument string
2989 typically takes the form of
2990 <code>eth_<var>driver_name</var><var>x</var></code>, where
2991 <var>driver_name</var> is a valid virtual DPDK PMD driver name and
2992 <var>x</var> is a unique identifier of your choice for the given
2993 port. Only supported by the dpdk port type.
2994 </p>
2995 </column>
2996
2997 <column name="other_config" key="pmd-rxq-affinity">
2998 <p>Specifies mapping of RX queues of this interface to CPU cores.</p>
2999 <p>Value should be set in the following form:</p>
3000 <p>
3001 <code>other_config:pmd-rxq-affinity=&lt;rxq-affinity-list&gt;</code>
3002 </p>
3003 <p>where</p>
3004 <p>
3005 <ul>
3006 <li>
3007 &lt;rxq-affinity-list&gt; ::= NULL | &lt;non-empty-list&gt;
3008 </li>
3009 <li>
3010 &lt;non-empty-list&gt; ::= &lt;affinity-pair&gt; |
3011 &lt;affinity-pair&gt; , &lt;non-empty-list&gt;
3012 </li>
3013 <li>
3014 &lt;affinity-pair&gt; ::= &lt;queue-id&gt; : &lt;core-id&gt;
3015 </li>
3016 </ul>
3017 </p>
3018 </column>
3019
3020 <column name="options" key="vhost-server-path"
3021 type='{"type": "string"}'>
3022 <p>
3023 The value specifies the path to the socket associated with a vHost
3024 User client mode device that has been or will be created by QEMU.
3025 Only supported by dpdkvhostuserclient interfaces.
3026 </p>
3027 </column>
3028
3029 <column name="options" key="dq-zero-copy"
3030 type='{"type": "boolean"}'>
3031 <p>
3032 The value specifies whether or not to enable dequeue zero copy on
3033 the given interface.
3034 Must be set before vhost-server-path is specified.
3035 Only supported by dpdkvhostuserclient interfaces.
3036 The feature is considered experimental.
3037 </p>
3038 </column>
3039
3040 <column name="options" key="n_rxq_desc"
3041 type='{"type": "integer", "minInteger": 1, "maxInteger": 4096}'>
3042 <p>
3043 Specifies the rx queue size (number rx descriptors) for dpdk ports.
3044 The value must be a power of 2, less than 4096 and supported
3045 by the hardware of the device being configured.
3046 If not specified or an incorrect value is specified, 2048 rx
3047 descriptors will be used by default.
3048 </p>
3049 </column>
3050
3051 <column name="options" key="n_txq_desc"
3052 type='{"type": "integer", "minInteger": 1, "maxInteger": 4096}'>
3053 <p>
3054 Specifies the tx queue size (number tx descriptors) for dpdk ports.
3055 The value must be a power of 2, less than 4096 and supported
3056 by the hardware of the device being configured.
3057 If not specified or an incorrect value is specified, 2048 tx
3058 descriptors will be used by default.
3059 </p>
3060 </column>
3061 </group>
3062
3063 <group title="MTU">
3064 <p>
3065 The MTU (maximum transmission unit) is the largest amount of data
3066 that can fit into a single Ethernet frame. The standard Ethernet
3067 MTU is 1500 bytes. Some physical media and many kinds of virtual
3068 interfaces can be configured with higher MTUs.
3069 </p>
3070
3071 <p>
3072 A client may change an interface MTU by filling in
3073 <ref column="mtu_request"/>. Open vSwitch then reports in
3074 <ref column="mtu"/> the currently configured value.
3075 </p>
3076
3077 <column name="mtu">
3078 <p>
3079 The currently configured MTU for the interface.
3080 </p>
3081
3082 <p>
3083 This column will be empty for an interface that does not
3084 have an MTU as, for example, some kinds of tunnels do not.
3085 </p>
3086
3087 <p>
3088 Open vSwitch sets this column's value, so other clients should treat
3089 it as read-only.
3090 </p>
3091 </column>
3092
3093 <column name="mtu_request"
3094 type='{"type": "integer", "minInteger": 1}'>
3095 <p>
3096 Requested MTU (Maximum Transmission Unit) for the interface. A client
3097 can fill this column to change the MTU of an interface.
3098 </p>
3099
3100 <p>
3101 RFC 791 requires every internet module to be able to forward a
3102 datagram of 68 octets without further fragmentation. The maximum
3103 size of an IP packet is 65535 bytes.
3104 </p>
3105
3106 <p>
3107 If this is not set and if the interface has <code>internal</code>
3108 type, Open vSwitch will change the MTU to match the minimum of the
3109 other interfaces in the bridge.
3110 </p>
3111 </column>
3112
3113 </group>
3114
3115 <group title="Interface Status">
3116 <p>
3117 Status information about interfaces attached to bridges, updated every
3118 5 seconds. Not all interfaces have all of these properties; virtual
3119 interfaces don't have a link speed, for example. Non-applicable
3120 columns will have empty values.
3121 </p>
3122 <column name="admin_state">
3123 <p>
3124 The administrative state of the physical network link.
3125 </p>
3126 </column>
3127
3128 <column name="link_state">
3129 <p>
3130 The observed state of the physical network link. This is ordinarily
3131 the link's carrier status. If the interface's <ref table="Port"/> is
3132 a bond configured for miimon monitoring, it is instead the network
3133 link's miimon status.
3134 </p>
3135 </column>
3136
3137 <column name="link_resets">
3138 <p>
3139 The number of times Open vSwitch has observed the
3140 <ref column="link_state"/> of this <ref table="Interface"/> change.
3141 </p>
3142 </column>
3143
3144 <column name="link_speed">
3145 <p>
3146 The negotiated speed of the physical network link.
3147 Valid values are positive integers greater than 0.
3148 </p>
3149 </column>
3150
3151 <column name="duplex">
3152 <p>
3153 The duplex mode of the physical network link.
3154 </p>
3155 </column>
3156
3157 <column name="lacp_current">
3158 Boolean value indicating LACP status for this interface. If true, this
3159 interface has current LACP information about its LACP partner. This
3160 information may be used to monitor the health of interfaces in a LACP
3161 enabled port. This column will be empty if LACP is not enabled.
3162 </column>
3163
3164 <column name="status">
3165 Key-value pairs that report port status. Supported status values are
3166 <ref column="type"/>-dependent; some interfaces may not have a valid
3167 <ref column="status" key="driver_name"/>, for example.
3168 </column>
3169
3170 <column name="status" key="driver_name">
3171 The name of the device driver controlling the network adapter.
3172 </column>
3173
3174 <column name="status" key="driver_version">
3175 The version string of the device driver controlling the network
3176 adapter.
3177 </column>
3178
3179 <column name="status" key="firmware_version">
3180 The version string of the network adapter's firmware, if available.
3181 </column>
3182
3183 <column name="status" key="source_ip">
3184 The source IP address used for an IPv4/IPv6 tunnel end-point, such as
3185 <code>gre</code>.
3186 </column>
3187
3188 <column name="status" key="tunnel_egress_iface">
3189 Egress interface for tunnels. Currently only relevant for tunnels
3190 on Linux systems, this column will show the name of the interface
3191 which is responsible for routing traffic destined for the configured
3192 <ref column="options" key="remote_ip"/>. This could be an internal
3193 interface such as a bridge port.
3194 </column>
3195
3196 <column name="status" key="tunnel_egress_iface_carrier"
3197 type='{"type": "string", "enum": ["set", ["down", "up"]]}'>
3198 Whether carrier is detected on <ref column="status"
3199 key="tunnel_egress_iface"/>.
3200 </column>
3201
3202 <group title="dpdk">
3203 <p>
3204 DPDK specific interface status options.
3205 </p>
3206
3207 <column name="status" key="port_no">
3208 DPDK port ID.
3209 </column>
3210
3211 <column name="status" key="numa_id">
3212 NUMA socket ID to which an Ethernet device is connected.
3213 </column>
3214
3215 <column name="status" key="min_rx_bufsize">
3216 Minimum size of RX buffer.
3217 </column>
3218
3219 <column name="status" key="max_rx_pktlen">
3220 Maximum configurable length of RX pkt.
3221 </column>
3222
3223 <column name="status" key="max_rx_queues">
3224 Maximum number of RX queues.
3225 </column>
3226
3227 <column name="status" key="max_tx_queues">
3228 Maximum number of TX queues.
3229 </column>
3230
3231 <column name="status" key="max_mac_addrs">
3232 Maximum number of MAC addresses.
3233 </column>
3234
3235 <column name="status" key="max_hash_mac_addrs">
3236 Maximum number of hash MAC addresses for MTA and UTA.
3237 </column>
3238
3239 <column name="status" key="max_vfs">
3240 Maximum number of hash MAC addresses for MTA and UTA.
3241 Maximum number of VFs.
3242 </column>
3243
3244 <column name="status" key="max_vmdq_pools">
3245 Maximum number of VMDq pools.
3246 </column>
3247
3248 <column name="status" key="if_type">
3249 Interface type ID according to IANA ifTYPE MIB definitions.
3250 </column>
3251
3252 <column name="status" key="if_descr">
3253 Interface description string.
3254 </column>
3255
3256 <column name="status" key="pci-vendor_id">
3257 Vendor ID of PCI device.
3258 </column>
3259
3260 <column name="status" key="pci-device_id">
3261 Device ID of PCI device.
3262 </column>
3263
3264 </group>
3265 </group>
3266
3267 <group title="Statistics">
3268 <p>
3269 Key-value pairs that report interface statistics. The current
3270 implementation updates these counters periodically. The update period
3271 is controlled by <ref column="other_config"
3272 key="stats-update-interval"/> in the <code>Open_vSwitch</code> table.
3273 Future implementations may update them when an interface is created,
3274 when they are queried (e.g. using an OVSDB <code>select</code>
3275 operation), and just before an interface is deleted due to virtual
3276 interface hot-unplug or VM shutdown, and perhaps at other times, but
3277 not on any regular periodic basis.
3278 </p>
3279 <p>
3280 These are the same statistics reported by OpenFlow in its <code>struct
3281 ofp_port_stats</code> structure. If an interface does not support a
3282 given statistic, then that pair is omitted.
3283 </p>
3284 <group title="Statistics: Successful transmit and receive counters">
3285 <column name="statistics" key="rx_packets">
3286 Number of received packets.
3287 </column>
3288 <column name="statistics" key="rx_bytes">
3289 Number of received bytes.
3290 </column>
3291 <column name="statistics" key="tx_packets">
3292 Number of transmitted packets.
3293 </column>
3294 <column name="statistics" key="tx_bytes">
3295 Number of transmitted bytes.
3296 </column>
3297 </group>
3298 <group title="Statistics: Receive errors">
3299 <column name="statistics" key="rx_dropped">
3300 Number of packets dropped by RX.
3301 </column>
3302 <column name="statistics" key="rx_frame_err">
3303 Number of frame alignment errors.
3304 </column>
3305 <column name="statistics" key="rx_over_err">
3306 Number of packets with RX overrun.
3307 </column>
3308 <column name="statistics" key="rx_crc_err">
3309 Number of CRC errors.
3310 </column>
3311 <column name="statistics" key="rx_errors">
3312 Total number of receive errors, greater than or equal to the sum of
3313 the above.
3314 </column>
3315 </group>
3316 <group title="Statistics: Transmit errors">
3317 <column name="statistics" key="tx_dropped">
3318 Number of packets dropped by TX.
3319 </column>
3320 <column name="statistics" key="collisions">
3321 Number of collisions.
3322 </column>
3323 <column name="statistics" key="tx_errors">
3324 Total number of transmit errors, greater than or equal to the sum of
3325 the above.
3326 </column>
3327 </group>
3328 </group>
3329
3330 <group title="Ingress Policing">
3331 <p>
3332 These settings control ingress policing for packets received on this
3333 interface. On a physical interface, this limits the rate at which
3334 traffic is allowed into the system from the outside; on a virtual
3335 interface (one connected to a virtual machine), this limits the rate at
3336 which the VM is able to transmit.
3337 </p>
3338 <p>
3339 Policing is a simple form of quality-of-service that simply drops
3340 packets received in excess of the configured rate. Due to its
3341 simplicity, policing is usually less accurate and less effective than
3342 egress QoS (which is configured using the <ref table="QoS"/> and <ref
3343 table="Queue"/> tables).
3344 </p>
3345 <p>
3346 Policing is currently implemented on Linux and OVS with DPDK. Both
3347 implementations use a simple ``token bucket'' approach:
3348 </p>
3349 <ul>
3350 <li>
3351 The size of the bucket corresponds to <ref
3352 column="ingress_policing_burst"/>. Initially the bucket is full.
3353 </li>
3354 <li>
3355 Whenever a packet is received, its size (converted to tokens) is
3356 compared to the number of tokens currently in the bucket. If the
3357 required number of tokens are available, they are removed and the
3358 packet is forwarded. Otherwise, the packet is dropped.
3359 </li>
3360 <li>
3361 Whenever it is not full, the bucket is refilled with tokens at the
3362 rate specified by <ref column="ingress_policing_rate"/>.
3363 </li>
3364 </ul>
3365 <p>
3366 Policing interacts badly with some network protocols, and especially
3367 with fragmented IP packets. Suppose that there is enough network
3368 activity to keep the bucket nearly empty all the time. Then this token
3369 bucket algorithm will forward a single packet every so often, with the
3370 period depending on packet size and on the configured rate. All of the
3371 fragments of an IP packets are normally transmitted back-to-back, as a
3372 group. In such a situation, therefore, only one of these fragments
3373 will be forwarded and the rest will be dropped. IP does not provide
3374 any way for the intended recipient to ask for only the remaining
3375 fragments. In such a case there are two likely possibilities for what
3376 will happen next: either all of the fragments will eventually be
3377 retransmitted (as TCP will do), in which case the same problem will
3378 recur, or the sender will not realize that its packet has been dropped
3379 and data will simply be lost (as some UDP-based protocols will do).
3380 Either way, it is possible that no forward progress will ever occur.
3381 </p>
3382 <column name="ingress_policing_rate">
3383 <p>
3384 Maximum rate for data received on this interface, in kbps. Data
3385 received faster than this rate is dropped. Set to <code>0</code>
3386 (the default) to disable policing.
3387 </p>
3388 </column>
3389
3390 <column name="ingress_policing_burst">
3391 <p>Maximum burst size for data received on this interface, in kb. The
3392 default burst size if set to <code>0</code> is 8000 kbit. This value
3393 has no effect if <ref column="ingress_policing_rate"/>
3394 is <code>0</code>.</p>
3395 <p>
3396 Specifying a larger burst size lets the algorithm be more forgiving,
3397 which is important for protocols like TCP that react severely to
3398 dropped packets. The burst size should be at least the size of the
3399 interface's MTU. Specifying a value that is numerically at least as
3400 large as 80% of <ref column="ingress_policing_rate"/> helps TCP come
3401 closer to achieving the full rate.
3402 </p>
3403 </column>
3404 </group>
3405
3406 <group title="Bidirectional Forwarding Detection (BFD)">
3407 <p>
3408 BFD, defined in RFC 5880 and RFC 5881, allows point-to-point
3409 detection of connectivity failures by occasional transmission of
3410 BFD control messages. Open vSwitch implements BFD to serve
3411 as a more popular and standards compliant alternative to CFM.
3412 </p>
3413
3414 <p>
3415 BFD operates by regularly transmitting BFD control messages at a rate
3416 negotiated independently in each direction. Each endpoint specifies
3417 the rate at which it expects to receive control messages, and the rate
3418 at which it is willing to transmit them. By default, Open vSwitch uses
3419 a detection multiplier of three, meaning that an endpoint signals a
3420 connectivity fault if three consecutive BFD control messages fail to
3421 arrive. In the case of a unidirectional connectivity issue, the system
3422 not receiving BFD control messages signals the problem to its peer in
3423 the messages it transmits.
3424 </p>
3425
3426 <p>
3427 The Open vSwitch implementation of BFD aims to comply faithfully
3428 with RFC 5880 requirements. Open vSwitch does not implement the
3429 optional Authentication or ``Echo Mode'' features.
3430 </p>
3431
3432 <group title="BFD Configuration">
3433 <p>
3434 A controller sets up key-value pairs in the <ref column="bfd"/>
3435 column to enable and configure BFD.
3436 </p>
3437
3438 <column name="bfd" key="enable" type='{"type": "boolean"}'>
3439 True to enable BFD on this <ref table="Interface"/>. If not
3440 specified, BFD will not be enabled by default.
3441 </column>
3442
3443 <column name="bfd" key="min_rx"
3444 type='{"type": "integer", "minInteger": 1}'>
3445 The shortest interval, in milliseconds, at which this BFD session
3446 offers to receive BFD control messages. The remote endpoint may
3447 choose to send messages at a slower rate. Defaults to
3448 <code>1000</code>.
3449 </column>
3450
3451 <column name="bfd" key="min_tx"
3452 type='{"type": "integer", "minInteger": 1}'>
3453 The shortest interval, in milliseconds, at which this BFD session is
3454 willing to transmit BFD control messages. Messages will actually be
3455 transmitted at a slower rate if the remote endpoint is not willing to
3456 receive as quickly as specified. Defaults to <code>100</code>.
3457 </column>
3458
3459 <column name="bfd" key="decay_min_rx" type='{"type": "integer"}'>
3460 An alternate receive interval, in milliseconds, that must be greater
3461 than or equal to <ref column="bfd" key="min_rx"/>. The
3462 implementation switches from <ref column="bfd" key="min_rx"/> to <ref
3463 column="bfd" key="decay_min_rx"/> when there is no obvious incoming
3464 data traffic at the interface, to reduce the CPU and bandwidth cost
3465 of monitoring an idle interface. This feature may be disabled by
3466 setting a value of 0. This feature is reset whenever <ref
3467 column="bfd" key="decay_min_rx"/> or <ref column="bfd" key="min_rx"/>
3468 changes.
3469 </column>
3470
3471 <column name="bfd" key="forwarding_if_rx" type='{"type": "boolean"}'>
3472 When <code>true</code>, traffic received on the
3473 <ref table="Interface"/> is used to indicate the capability of packet
3474 I/O. BFD control packets are still transmitted and received. At
3475 least one BFD control packet must be received every 100 * <ref
3476 column="bfd" key="min_rx"/> amount of time. Otherwise, even if
3477 traffic are received, the <ref column="bfd" key="forwarding"/>
3478 will be <code>false</code>.
3479 </column>
3480
3481 <column name="bfd" key="cpath_down" type='{"type": "boolean"}'>
3482 Set to true to notify the remote endpoint that traffic should not be
3483 forwarded to this system for some reason other than a connectivty
3484 failure on the interface being monitored. The typical underlying
3485 reason is ``concatenated path down,'' that is, that connectivity
3486 beyond the local system is down. Defaults to false.
3487 </column>
3488
3489 <column name="bfd" key="check_tnl_key" type='{"type": "boolean"}'>
3490 Set to true to make BFD accept only control messages with a tunnel
3491 key of zero. By default, BFD accepts control messages with any
3492 tunnel key.
3493 </column>
3494
3495 <column name="bfd" key="bfd_local_src_mac">
3496 Set to an Ethernet address in the form
3497 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>
3498 to set the MAC used as source for transmitted BFD packets. The
3499 default is the mac address of the BFD enabled interface.
3500 </column>
3501
3502 <column name="bfd" key="bfd_local_dst_mac">
3503 Set to an Ethernet address in the form
3504 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>
3505 to set the MAC used as destination for transmitted BFD packets. The
3506 default is <code>00:23:20:00:00:01</code>.
3507 </column>
3508
3509 <column name="bfd" key="bfd_remote_dst_mac">
3510 Set to an Ethernet address in the form
3511 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>
3512 to set the MAC used for checking the destination of received BFD packets.
3513 Packets with different destination MAC will not be considered as BFD packets.
3514 If not specified the destination MAC address of received BFD packets
3515 are not checked.
3516 </column>
3517
3518 <column name="bfd" key="bfd_src_ip">
3519 Set to an IPv4 address to set the IP address used as source for
3520 transmitted BFD packets. The default is <code>169.254.1.1</code>.
3521 </column>
3522
3523 <column name="bfd" key="bfd_dst_ip">
3524 Set to an IPv4 address to set the IP address used as destination
3525 for transmitted BFD packets. The default is <code>169.254.1.0</code>.
3526 </column>
3527
3528 <column name="bfd" key="oam">
3529 Some tunnel protocols (such as Geneve) include a bit in the header
3530 to indicate that the encapsulated packet is an OAM frame. By setting
3531 this to true, BFD packets will be marked as OAM if encapsulated in
3532 one of these tunnels.
3533 </column>
3534
3535 <column name="bfd" key="mult"
3536 type='{"type": "integer", "minInteger": 1, "maxInteger": 255}'>
3537 The BFD detection multiplier, which defaults to 3. An endpoint
3538 signals a connectivity fault if the given number of consecutive BFD
3539 control messages fail to arrive.
3540 </column>
3541 </group>
3542
3543 <group title="BFD Status">
3544 <p>
3545 The switch sets key-value pairs in the <ref column="bfd_status"/>
3546 column to report the status of BFD on this interface. When BFD is
3547 not enabled, with <ref column="bfd" key="enable"/>, the switch clears
3548 all key-value pairs from <ref column="bfd_status"/>.
3549 </p>
3550
3551 <column name="bfd_status" key="state"
3552 type='{"type": "string",
3553 "enum": ["set", ["admin_down", "down", "init", "up"]]}'>
3554 Reports the state of the BFD session. The BFD session is fully
3555 healthy and negotiated if <code>UP</code>.
3556 </column>
3557
3558 <column name="bfd_status" key="forwarding" type='{"type": "boolean"}'>
3559 Reports whether the BFD session believes this <ref
3560 table="Interface"/> may be used to forward traffic. Typically this
3561 means the local session is signaling <code>UP</code>, and the remote
3562 system isn't signaling a problem such as concatenated path down.
3563 </column>
3564
3565 <column name="bfd_status" key="diagnostic">
3566 A diagnostic code specifying the local system's reason for the
3567 last change in session state. The error messages are defined in
3568 section 4.1 of [RFC 5880].
3569 </column>
3570
3571 <column name="bfd_status" key="remote_state"
3572 type='{"type": "string",
3573 "enum": ["set", ["admin_down", "down", "init", "up"]]}'>
3574 Reports the state of the remote endpoint's BFD session.
3575 </column>
3576
3577 <column name="bfd_status" key="remote_diagnostic">
3578 A diagnostic code specifying the remote system's reason for the
3579 last change in session state. The error messages are defined in
3580 section 4.1 of [RFC 5880].
3581 </column>
3582
3583 <column name="bfd_status" key="flap_count"
3584 type='{"type": "integer", "minInteger": 0}'>
3585 Counts the number of <ref column="bfd_status" key="forwarding" />
3586 flaps since start. A flap is considered as a change of the
3587 <ref column="bfd_status" key="forwarding" /> value.
3588 </column>
3589 </group>
3590 </group>
3591
3592 <group title="Connectivity Fault Management">
3593 <p>
3594 802.1ag Connectivity Fault Management (CFM) allows a group of
3595 Maintenance Points (MPs) called a Maintenance Association (MA) to
3596 detect connectivity problems with each other. MPs within a MA should
3597 have complete and exclusive interconnectivity. This is verified by
3598 occasionally broadcasting Continuity Check Messages (CCMs) at a
3599 configurable transmission interval.
3600 </p>
3601
3602 <p>
3603 According to the 802.1ag specification, each Maintenance Point should
3604 be configured out-of-band with a list of Remote Maintenance Points it
3605 should have connectivity to. Open vSwitch differs from the
3606 specification in this area. It simply assumes the link is faulted if
3607 no Remote Maintenance Points are reachable, and considers it not
3608 faulted otherwise.
3609 </p>
3610
3611 <p>
3612 When operating over tunnels which have no <code>in_key</code>, or an
3613 <code>in_key</code> of <code>flow</code>. CFM will only accept CCMs
3614 with a tunnel key of zero.
3615 </p>
3616
3617 <column name="cfm_mpid">
3618 <p>
3619 A Maintenance Point ID (MPID) uniquely identifies each endpoint
3620 within a Maintenance Association. The MPID is used to identify this
3621 endpoint to other Maintenance Points in the MA. Each end of a link
3622 being monitored should have a different MPID. Must be configured to
3623 enable CFM on this <ref table="Interface"/>.
3624 </p>
3625 <p>
3626 According to the 802.1ag specification, MPIDs can only range between
3627 [1, 8191]. However, extended mode (see <ref column="other_config"
3628 key="cfm_extended"/>) supports eight byte MPIDs.
3629 </p>
3630 </column>
3631
3632 <column name="cfm_flap_count">
3633 Counts the number of cfm fault flapps since boot. A flap is
3634 considered to be a change of the <ref column="cfm_fault"/> value.
3635 </column>
3636
3637 <column name="cfm_fault">
3638 <p>
3639 Indicates a connectivity fault triggered by an inability to receive
3640 heartbeats from any remote endpoint. When a fault is triggered on
3641 <ref table="Interface"/>s participating in bonds, they will be
3642 disabled.
3643 </p>
3644 <p>
3645 Faults can be triggered for several reasons. Most importantly they
3646 are triggered when no CCMs are received for a period of 3.5 times the
3647 transmission interval. Faults are also triggered when any CCMs
3648 indicate that a Remote Maintenance Point is not receiving CCMs but
3649 able to send them. Finally, a fault is triggered if a CCM is
3650 received which indicates unexpected configuration. Notably, this
3651 case arises when a CCM is received which advertises the local MPID.
3652 </p>
3653 </column>
3654
3655 <column name="cfm_fault_status" key="recv">
3656 Indicates a CFM fault was triggered due to a lack of CCMs received on
3657 the <ref table="Interface"/>.
3658 </column>
3659
3660 <column name="cfm_fault_status" key="rdi">
3661 Indicates a CFM fault was triggered due to the reception of a CCM with
3662 the RDI bit flagged. Endpoints set the RDI bit in their CCMs when they
3663 are not receiving CCMs themselves. This typically indicates a
3664 unidirectional connectivity failure.
3665 </column>
3666
3667 <column name="cfm_fault_status" key="maid">
3668 Indicates a CFM fault was triggered due to the reception of a CCM with
3669 a MAID other than the one Open vSwitch uses. CFM broadcasts are tagged
3670 with an identification number in addition to the MPID called the MAID.
3671 Open vSwitch only supports receiving CCM broadcasts tagged with the
3672 MAID it uses internally.
3673 </column>
3674
3675 <column name="cfm_fault_status" key="loopback">
3676 Indicates a CFM fault was triggered due to the reception of a CCM
3677 advertising the same MPID configured in the <ref column="cfm_mpid"/>
3678 column of this <ref table="Interface"/>. This may indicate a loop in
3679 the network.
3680 </column>
3681
3682 <column name="cfm_fault_status" key="overflow">
3683 Indicates a CFM fault was triggered because the CFM module received
3684 CCMs from more remote endpoints than it can keep track of.
3685 </column>
3686
3687 <column name="cfm_fault_status" key="override">
3688 Indicates a CFM fault was manually triggered by an administrator using
3689 an <code>ovs-appctl</code> command.
3690 </column>
3691
3692 <column name="cfm_fault_status" key="interval">
3693 Indicates a CFM fault was triggered due to the reception of a CCM
3694 frame having an invalid interval.
3695 </column>
3696
3697 <column name="cfm_remote_opstate">
3698 <p>When in extended mode, indicates the operational state of the
3699 remote endpoint as either <code>up</code> or <code>down</code>. See
3700 <ref column="other_config" key="cfm_opstate"/>.
3701 </p>
3702 </column>
3703
3704 <column name="cfm_health">
3705 <p>
3706 Indicates the health of the interface as a percentage of CCM frames
3707 received over 21 <ref column="other_config" key="cfm_interval"/>s.
3708 The health of an interface is undefined if it is communicating with
3709 more than one <ref column="cfm_remote_mpids"/>. It reduces if
3710 healthy heartbeats are not received at the expected rate, and
3711 gradually improves as healthy heartbeats are received at the desired
3712 rate. Every 21 <ref column="other_config" key="cfm_interval"/>s, the
3713 health of the interface is refreshed.
3714 </p>
3715 <p>
3716 As mentioned above, the faults can be triggered for several reasons.
3717 The link health will deteriorate even if heartbeats are received but
3718 they are reported to be unhealthy. An unhealthy heartbeat in this
3719 context is a heartbeat for which either some fault is set or is out
3720 of sequence. The interface health can be 100 only on receiving
3721 healthy heartbeats at the desired rate.
3722 </p>
3723 </column>
3724
3725 <column name="cfm_remote_mpids">
3726 When CFM is properly configured, Open vSwitch will occasionally
3727 receive CCM broadcasts. These broadcasts contain the MPID of the
3728 sending Maintenance Point. The list of MPIDs from which this
3729 <ref table="Interface"/> is receiving broadcasts from is regularly
3730 collected and written to this column.
3731 </column>
3732
3733 <column name="other_config" key="cfm_interval"
3734 type='{"type": "integer"}'>
3735 <p>
3736 The interval, in milliseconds, between transmissions of CFM
3737 heartbeats. Three missed heartbeat receptions indicate a
3738 connectivity fault.
3739 </p>
3740
3741 <p>
3742 In standard operation only intervals of 3, 10, 100, 1,000, 10,000,
3743 60,000, or 600,000 ms are supported. Other values will be rounded
3744 down to the nearest value on the list. Extended mode (see <ref
3745 column="other_config" key="cfm_extended"/>) supports any interval up
3746 to 65,535 ms. In either mode, the default is 1000 ms.
3747 </p>
3748
3749 <p>We do not recommend using intervals less than 100 ms.</p>
3750 </column>
3751
3752 <column name="other_config" key="cfm_extended"
3753 type='{"type": "boolean"}'>
3754 When <code>true</code>, the CFM module operates in extended mode. This
3755 causes it to use a nonstandard destination address to avoid conflicting
3756 with compliant implementations which may be running concurrently on the
3757 network. Furthermore, extended mode increases the accuracy of the
3758 <code>cfm_interval</code> configuration parameter by breaking wire
3759 compatibility with 802.1ag compliant implementations. And extended
3760 mode allows eight byte MPIDs. Defaults to <code>false</code>.
3761 </column>
3762
3763 <column name="other_config" key="cfm_demand" type='{"type": "boolean"}'>
3764 <p>
3765 When <code>true</code>, and
3766 <ref column="other_config" key="cfm_extended"/> is true, the CFM
3767 module operates in demand mode. When in demand mode, traffic
3768 received on the <ref table="Interface"/> is used to indicate
3769 liveness. CCMs are still transmitted and received. At least one
3770 CCM must be received every 100 * <ref column="other_config"
3771 key="cfm_interval"/> amount of time. Otherwise, even if traffic
3772 are received, the CFM module will raise the connectivity fault.
3773 </p>
3774
3775 <p>
3776 Demand mode has a couple of caveats:
3777 <ul>
3778 <li>
3779 To ensure that ovs-vswitchd has enough time to pull statistics
3780 from the datapath, the fault detection interval is set to
3781 3.5 * MAX(<ref column="other_config" key="cfm_interval"/>, 500)
3782 ms.
3783 </li>
3784
3785 <li>
3786 To avoid ambiguity, demand mode disables itself when there are
3787 multiple remote maintenance points.
3788 </li>
3789
3790 <li>
3791 If the <ref table="Interface"/> is heavily congested, CCMs
3792 containing the <ref column="other_config" key="cfm_opstate"/>
3793 status may be dropped causing changes in the operational state to
3794 be delayed. Similarly, if CCMs containing the RDI bit are not
3795 received, unidirectional link failures may not be detected.
3796 </li>
3797 </ul>
3798 </p>
3799 </column>
3800
3801 <column name="other_config" key="cfm_opstate"
3802 type='{"type": "string", "enum": ["set", ["down", "up"]]}'>
3803 When <code>down</code>, the CFM module marks all CCMs it generates as
3804 operationally down without triggering a fault. This allows remote
3805 maintenance points to choose not to forward traffic to the
3806 <ref table="Interface"/> on which this CFM module is running.
3807 Currently, in Open vSwitch, the opdown bit of CCMs affects
3808 <ref table="Interface"/>s participating in bonds, and the bundle
3809 OpenFlow action. This setting is ignored when CFM is not in extended
3810 mode. Defaults to <code>up</code>.
3811 </column>
3812
3813 <column name="other_config" key="cfm_ccm_vlan"
3814 type='{"type": "integer", "minInteger": 1, "maxInteger": 4095}'>
3815 When set, the CFM module will apply a VLAN tag to all CCMs it generates
3816 with the given value. May be the string <code>random</code> in which
3817 case each CCM will be tagged with a different randomly generated VLAN.
3818 </column>
3819
3820 <column name="other_config" key="cfm_ccm_pcp"
3821 type='{"type": "integer", "minInteger": 1, "maxInteger": 7}'>
3822 When set, the CFM module will apply a VLAN tag to all CCMs it generates
3823 with the given PCP value, the VLAN ID of the tag is governed by the
3824 value of <ref column="other_config" key="cfm_ccm_vlan"/>. If
3825 <ref column="other_config" key="cfm_ccm_vlan"/> is unset, a VLAN ID of
3826 zero is used.
3827 </column>
3828
3829 </group>
3830
3831 <group title="Bonding Configuration">
3832 <column name="other_config" key="lacp-port-id"
3833 type='{"type": "integer", "minInteger": 1, "maxInteger": 65535}'>
3834 The LACP port ID of this <ref table="Interface"/>. Port IDs are
3835 used in LACP negotiations to identify individual ports
3836 participating in a bond.
3837 </column>
3838
3839 <column name="other_config" key="lacp-port-priority"
3840 type='{"type": "integer", "minInteger": 1, "maxInteger": 65535}'>
3841 The LACP port priority of this <ref table="Interface"/>. In LACP
3842 negotiations <ref table="Interface"/>s with numerically lower
3843 priorities are preferred for aggregation.
3844 </column>
3845
3846 <column name="other_config" key="lacp-aggregation-key"
3847 type='{"type": "integer", "minInteger": 1, "maxInteger": 65535}'>
3848 The LACP aggregation key of this <ref table="Interface"/>. <ref
3849 table="Interface"/>s with different aggregation keys may not be active
3850 within a given <ref table="Port"/> at the same time.
3851 </column>
3852 </group>
3853
3854 <group title="Virtual Machine Identifiers">
3855 <p>
3856 These key-value pairs specifically apply to an interface that
3857 represents a virtual Ethernet interface connected to a virtual
3858 machine. These key-value pairs should not be present for other types
3859 of interfaces. Keys whose names end in <code>-uuid</code> have
3860 values that uniquely identify the entity in question. For a Citrix
3861 XenServer hypervisor, these values are UUIDs in RFC 4122 format.
3862 Other hypervisors may use other formats.
3863 </p>
3864
3865 <column name="external_ids" key="attached-mac">
3866 The MAC address programmed into the ``virtual hardware'' for this
3867 interface, in the form
3868 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>.
3869 For Citrix XenServer, this is the value of the <code>MAC</code> field
3870 in the VIF record for this interface.
3871 </column>
3872
3873 <column name="external_ids" key="iface-id">
3874 A system-unique identifier for the interface. On XenServer, this will
3875 commonly be the same as <ref column="external_ids" key="xs-vif-uuid"/>.
3876 </column>
3877
3878 <column name="external_ids" key="iface-status"
3879 type='{"type": "string",
3880 "enum": ["set", ["active", "inactive"]]}'>
3881 <p>
3882 Hypervisors may sometimes have more than one interface associated
3883 with a given <ref column="external_ids" key="iface-id"/>, only one of
3884 which is actually in use at a given time. For example, in some
3885 circumstances XenServer has both a ``tap'' and a ``vif'' interface
3886 for a single <ref column="external_ids" key="iface-id"/>, but only
3887 uses one of them at a time. A hypervisor that behaves this way must
3888 mark the currently in use interface <code>active</code> and the
3889 others <code>inactive</code>. A hypervisor that never has more than
3890 one interface for a given <ref column="external_ids" key="iface-id"/>
3891 may mark that interface <code>active</code> or omit <ref
3892 column="external_ids" key="iface-status"/> entirely.
3893 </p>
3894
3895 <p>
3896 During VM migration, a given <ref column="external_ids"
3897 key="iface-id"/> might transiently be marked <code>active</code> on
3898 two different hypervisors. That is, <code>active</code> means that
3899 this <ref column="external_ids" key="iface-id"/> is the active
3900 instance within a single hypervisor, not in a broader scope.
3901 There is one exception: some hypervisors support ``migration'' from a
3902 given hypervisor to itself (most often for test purposes). During
3903 such a ``migration,'' two instances of a single <ref
3904 column="external_ids" key="iface-id"/> might both be briefly marked
3905 <code>active</code> on a single hypervisor.
3906 </p>
3907 </column>
3908
3909 <column name="external_ids" key="xs-vif-uuid">
3910 The virtual interface associated with this interface.
3911 </column>
3912
3913 <column name="external_ids" key="xs-network-uuid">
3914 The virtual network to which this interface is attached.
3915 </column>
3916
3917 <column name="external_ids" key="vm-id">
3918 The VM to which this interface belongs. On XenServer, this will be the
3919 same as <ref column="external_ids" key="xs-vm-uuid"/>.
3920 </column>
3921
3922 <column name="external_ids" key="xs-vm-uuid">
3923 The VM to which this interface belongs.
3924 </column>
3925 </group>
3926
3927 <group title="Auto Attach Configuration">
3928 <p>
3929 Auto Attach configuration for a particular interface.
3930 </p>
3931
3932 <column name="lldp" key="enable" type='{"type": "boolean"}'>
3933 True to enable LLDP on this <ref table="Interface"/>. If not
3934 specified, LLDP will be disabled by default.
3935 </column>
3936 </group>
3937
3938 <group title="Flow control Configuration">
3939 <p>
3940 Ethernet flow control defined in IEEE 802.1Qbb provides link level flow
3941 control using MAC pause frames. Implemented only for interfaces with
3942 type <code>dpdk</code>.
3943 </p>
3944
3945 <column name="options" key="rx-flow-ctrl" type='{"type": "boolean"}'>
3946 Set to <code>true</code> to enable Rx flow control on physical ports.
3947 By default, Rx flow control is disabled.
3948 </column>
3949
3950 <column name="options" key="tx-flow-ctrl" type='{"type": "boolean"}'>
3951 Set to <code>true</code> to enable Tx flow control on physical ports.
3952 By default, Tx flow control is disabled.
3953 </column>
3954
3955 <column name="options" key="flow-ctrl-autoneg"
3956 type='{"type": "boolean"}'>
3957 Set to <code>true</code> to enable flow control auto negotiation on
3958 physical ports. By default, auto-neg is disabled.
3959 </column>
3960 </group>
3961
3962 <group title="Link State Change detection mode">
3963 <column name="options" key="dpdk-lsc-interrupt"
3964 type='{"type": "boolean"}'>
3965 <p>
3966 Set this value to <code>true</code> to configure interrupt mode for
3967 Link State Change (LSC) detection instead of poll mode for the DPDK
3968 interface.
3969 </p>
3970 <p>
3971 If this value is not set, poll mode is configured.
3972 </p>
3973 <p>
3974 This parameter has an effect only on netdev dpdk interfaces.
3975 </p>
3976 </column>
3977 </group>
3978
3979 <group title="Common Columns">
3980 The overall purpose of these columns is described under <code>Common
3981 Columns</code> at the beginning of this document.
3982
3983 <column name="other_config"/>
3984 <column name="external_ids"/>
3985 </group>
3986 </table>
3987
3988 <table name="Flow_Table" title="OpenFlow table configuration">
3989 <p>Configuration for a particular OpenFlow table.</p>
3990
3991 <column name="name">
3992 The table's name. Set this column to change the name that controllers
3993 will receive when they request table statistics, e.g. <code>ovs-ofctl
3994 dump-tables</code>. The name does not affect switch behavior.
3995 </column>
3996
3997 <group title="Eviction Policy">
3998 <p>
3999 Open vSwitch supports limiting the number of flows that may be
4000 installed in a flow table, via the <ref column="flow_limit"/> column.
4001 When adding a flow would exceed this limit, by default Open vSwitch
4002 reports an error, but there are two ways to configure Open vSwitch to
4003 instead delete (``evict'') a flow to make room for the new one:
4004 </p>
4005
4006 <ul>
4007 <li>
4008 Set the <ref column="overflow_policy"/> column to <code>evict</code>.
4009 </li>
4010
4011 <li>
4012 Send an OpenFlow 1.4+ ``table mod request'' to enable eviction for
4013 the flow table (e.g. <code>ovs-ofctl -O OpenFlow14 mod-table br0 0
4014 evict</code> to enable eviction on flow table 0 of bridge
4015 <code>br0</code>).
4016 </li>
4017 </ul>
4018
4019 <p>
4020 When a flow must be evicted due to overflow, the flow to evict is
4021 chosen through an approximation of the following algorithm. This
4022 algorithm is used regardless of how eviction was enabled:
4023 </p>
4024
4025 <ol>
4026 <li>
4027 Divide the flows in the table into groups based on the values of the
4028 fields or subfields specified in the <ref column="groups"/> column,
4029 so that all of the flows in a given group have the same values for
4030 those fields. If a flow does not specify a given field, that field's
4031 value is treated as 0. If <ref column="groups"/> is empty, then all
4032 of the flows in the flow table are treated as a single group.
4033 </li>
4034
4035 <li>
4036 Consider the flows in the largest group, that is, the group that
4037 contains the greatest number of flows. If two or more groups all
4038 have the same largest number of flows, consider the flows in all of
4039 those groups.
4040 </li>
4041
4042 <li>
4043 If the flows under consideration have different importance values,
4044 eliminate from consideration any flows except those with the lowest
4045 importance. (``Importance,'' a 16-bit integer value attached to each
4046 flow, was introduced in OpenFlow 1.4. Flows inserted with older
4047 versions of OpenFlow always have an importance of 0.)
4048 </li>
4049
4050 <li>
4051 Among the flows under consideration, choose the flow that expires
4052 soonest for eviction.
4053 </li>
4054 </ol>
4055
4056 <p>
4057 The eviction process only considers flows that have an idle timeout
4058 or a hard timeout. That is, eviction never deletes permanent flows.
4059 (Permanent flows do count against <ref column="flow_limit"/>.)
4060 </p>
4061
4062 <column name="flow_limit">
4063 If set, limits the number of flows that may be added to the table.
4064 Open vSwitch may limit the number of flows in a table for other
4065 reasons, e.g. due to hardware limitations or for resource availability
4066 or performance reasons.
4067 </column>
4068
4069 <column name="overflow_policy">
4070 <p>
4071 Controls the switch's behavior when an OpenFlow flow table
4072 modification request would add flows in excess of <ref
4073 column="flow_limit"/>. The supported values are:
4074 </p>
4075
4076 <dl>
4077 <dt><code>refuse</code></dt>
4078 <dd>
4079 Refuse to add the flow or flows. This is also the default policy
4080 when <ref column="overflow_policy"/> is unset.
4081 </dd>
4082
4083 <dt><code>evict</code></dt>
4084 <dd>
4085 Delete a flow chosen according to the algorithm described above.
4086 </dd>
4087 </dl>
4088 </column>
4089
4090 <column name="groups">
4091 <p>
4092 When <ref column="overflow_policy"/> is <code>evict</code>, this
4093 controls how flows are chosen for eviction when the flow table would
4094 otherwise exceed <ref column="flow_limit"/> flows. Its value is a
4095 set of NXM fields or sub-fields, each of which takes one of the forms
4096 <code><var>field</var>[]</code> or
4097 <code><var>field</var>[<var>start</var>..<var>end</var>]</code>,
4098 e.g. <code>NXM_OF_IN_PORT[]</code>. Please see
4099 <code>meta-flow.h</code> for a complete list of NXM field names.
4100 </p>
4101
4102 <p>
4103 Open vSwitch ignores any invalid or unknown field specifications.
4104 </p>
4105
4106 <p>
4107 When eviction is not enabled, via <ref column="overflow_policy"/> or
4108 an OpenFlow 1.4+ ``table mod,'' this column has no effect.
4109 </p>
4110 </column>
4111 </group>
4112
4113 <group title="Classifier Optimization">
4114 <column name="prefixes">
4115 <p>
4116 This string set specifies which fields should be used for
4117 address prefix tracking. Prefix tracking allows the
4118 classifier to skip rules with longer than necessary prefixes,
4119 resulting in better wildcarding for datapath flows.
4120 </p>
4121 <p>
4122 Prefix tracking may be beneficial when a flow table contains
4123 matches on IP address fields with different prefix lengths.
4124 For example, when a flow table contains IP address matches on
4125 both full addresses and proper prefixes, the full address
4126 matches will typically cause the datapath flow to un-wildcard
4127 the whole address field (depending on flow entry priorities).
4128 In this case each packet with a different address gets handed
4129 to the userspace for flow processing and generates its own
4130 datapath flow. With prefix tracking enabled for the address
4131 field in question packets with addresses matching shorter
4132 prefixes would generate datapath flows where the irrelevant
4133 address bits are wildcarded, allowing the same datapath flow
4134 to handle all the packets within the prefix in question. In
4135 this case many userspace upcalls can be avoided and the
4136 overall performance can be better.
4137 </p>
4138 <p>
4139 This is a performance optimization only, so packets will
4140 receive the same treatment with or without prefix tracking.
4141 </p>
4142 <p>
4143 The supported fields are: <code>tun_id</code>,
4144 <code>tun_src</code>, <code>tun_dst</code>,
4145 <code>tun_ipv6_src</code>, <code>tun_ipv6_dst</code>,
4146 <code>nw_src</code>, <code>nw_dst</code> (or aliases
4147 <code>ip_src</code> and <code>ip_dst</code>),
4148 <code>ipv6_src</code>, and <code>ipv6_dst</code>. (Using this
4149 feature for <code>tun_id</code> would only make sense if the
4150 tunnel IDs have prefix structure similar to IP addresses.)
4151 </p>
4152
4153 <p>
4154 By default, the <code>prefixes=ip_dst,ip_src</code> are used
4155 on each flow table. This instructs the flow classifier to
4156 track the IP destination and source addresses used by the
4157 rules in this specific flow table.
4158 </p>
4159
4160 <p>
4161 The keyword <code>none</code> is recognized as an explicit
4162 override of the default values, causing no prefix fields to be
4163 tracked.
4164 </p>
4165
4166 <p>
4167 To set the prefix fields, the flow table record needs to
4168 exist:
4169 </p>
4170
4171 <dl>
4172 <dt><code>ovs-vsctl set Bridge br0 flow_tables:0=@N1 -- --id=@N1 create Flow_Table name=table0</code></dt>
4173 <dd>
4174 Creates a flow table record for the OpenFlow table number 0.
4175 </dd>
4176
4177 <dt><code>ovs-vsctl set Flow_Table table0 prefixes=ip_dst,ip_src</code></dt>
4178 <dd>
4179 Enables prefix tracking for IP source and destination
4180 address fields.
4181 </dd>
4182 </dl>
4183
4184 <p>
4185 There is a maximum number of fields that can be enabled for any
4186 one flow table. Currently this limit is 3.
4187 </p>
4188 </column>
4189 </group>
4190
4191 <group title="Common Columns">
4192 The overall purpose of these columns is described under <code>Common
4193 Columns</code> at the beginning of this document.
4194
4195 <column name="external_ids"/>
4196 </group>
4197 </table>
4198
4199 <table name="QoS" title="Quality of Service configuration">
4200 <p>Quality of Service (QoS) configuration for each Port that
4201 references it.</p>
4202
4203 <column name="type">
4204 <p>The type of QoS to implement. The currently defined types are
4205 listed below:</p>
4206 <dl>
4207 <dt><code>linux-htb</code></dt>
4208 <dd>
4209 Linux ``hierarchy token bucket'' classifier. See tc-htb(8) (also at
4210 <code>http://linux.die.net/man/8/tc-htb</code>) and the HTB manual
4211 (<code>http://luxik.cdi.cz/~devik/qos/htb/manual/userg.htm</code>)
4212 for information on how this classifier works and how to configure it.
4213 </dd>
4214
4215 <dt><code>linux-hfsc</code></dt>
4216 <dd>
4217 Linux "Hierarchical Fair Service Curve" classifier.
4218 See <code>http://linux-ip.net/articles/hfsc.en/</code> for
4219 information on how this classifier works.
4220 </dd>
4221
4222 <dt><code>linux-sfq</code></dt>
4223 <dd>
4224 Linux ``Stochastic Fairness Queueing'' classifier. See
4225 <code>tc-sfq</code>(8) (also at
4226 <code>http://linux.die.net/man/8/tc-sfq</code>) for information on
4227 how this classifier works.
4228 </dd>
4229
4230 <dt><code>linux-codel</code></dt>
4231 <dd>
4232 Linux ``Controlled Delay'' classifier. See <code>tc-codel</code>(8)
4233 (also at
4234 <code>http://man7.org/linux/man-pages/man8/tc-codel.8.html</code>)
4235 for information on how this classifier works.
4236 </dd>
4237
4238 <dt><code>linux-fq_codel</code></dt>
4239 <dd>
4240 Linux ``Fair Queuing with Controlled Delay'' classifier. See
4241 <code>tc-fq_codel</code>(8) (also at
4242 <code>http://man7.org/linux/man-pages/man8/tc-fq_codel.8.html</code>)
4243 for information on how this classifier works.
4244 </dd>
4245
4246 <dt><code>linux-noop</code></dt>
4247 <dd>
4248 Linux ``No operation.'' By default, Open vSwitch manages quality of
4249 service on all of its configured ports. This can be helpful, but
4250 sometimes administrators prefer to use other software to manage QoS.
4251 This <ref column="type"/> prevents Open vSwitch from changing the QoS
4252 configuration for a port.
4253 </dd>
4254
4255 <dt><code>egress-policer</code></dt>
4256 <dd>
4257 A DPDK egress policer algorithm using the DPDK
4258 rte_meter library. The rte_meter library provides an implementation
4259 which allows the metering and policing of traffic. The implementation
4260 in OVS essentially creates a single token bucket used to police
4261 traffic. It should be noted that when the rte_meter is configured as
4262 part of QoS there will be a performance overhead as the rte_meter
4263 itself will consume CPU cycles in order to police traffic. These CPU
4264 cycles ordinarily are used for packet proccessing. As such the drop
4265 in performance will be noticed in terms of overall aggregate traffic
4266 throughput.
4267 </dd>
4268 </dl>
4269 </column>
4270
4271 <column name="queues">
4272 <p>A map from queue numbers to <ref table="Queue"/> records. The
4273 supported range of queue numbers depend on <ref column="type"/>. The
4274 queue numbers are the same as the <code>queue_id</code> used in
4275 OpenFlow in <code>struct ofp_action_enqueue</code> and other
4276 structures.</p>
4277
4278 <p>
4279 Queue 0 is the ``default queue.'' It is used by OpenFlow output
4280 actions when no specific queue has been set. When no configuration for
4281 queue 0 is present, it is automatically configured as if a <ref
4282 table="Queue"/> record with empty <ref table="Queue" column="dscp"/>
4283 and <ref table="Queue" column="other_config"/> columns had been
4284 specified.
4285 (Before version 1.6, Open vSwitch would leave queue 0 unconfigured in
4286 this case. With some queuing disciplines, this dropped all packets
4287 destined for the default queue.)
4288 </p>
4289 </column>
4290
4291 <group title="Configuration for linux-htb and linux-hfsc">
4292 <p>
4293 The <code>linux-htb</code> and <code>linux-hfsc</code> classes support
4294 the following key-value pair:
4295 </p>
4296
4297 <column name="other_config" key="max-rate" type='{"type": "integer"}'>
4298 Maximum rate shared by all queued traffic, in bit/s. Optional. If not
4299 specified, for physical interfaces, the default is the link rate. For
4300 other interfaces or if the link rate cannot be determined, the default
4301 is currently 100 Mbps.
4302 </column>
4303 </group>
4304
4305 <group title="Configuration for egress-policer QoS">
4306 <p>
4307 <ref table="QoS"/> <ref table="QoS" column="type"/>
4308 <code>egress-policer</code> provides egress policing for userspace
4309 port types with DPDK.
4310
4311 It has the following key-value pairs defined.
4312 </p>
4313
4314 <column name="other_config" key="cir" type='{"type": "integer"}'>
4315 The Committed Information Rate (CIR) is measured in bytes of IP
4316 packets per second, i.e. it includes the IP header, but not link
4317 specific (e.g. Ethernet) headers. This represents the bytes per second
4318 rate at which the token bucket will be updated. The cir value is
4319 calculated by (pps x packet data size). For example assuming a user
4320 wishes to limit a stream consisting of 64 byte packets to 1 million
4321 packets per second the CIR would be set to to to 46000000. This value
4322 can be broken into '1,000,000 x 46'. Where 1,000,000 is the policing
4323 rate for the number of packets per second and 46 represents the size
4324 of the packet data for a 64 byte ip packet.
4325 </column>
4326 <column name="other_config" key="cbs" type='{"type": "integer"}'>
4327 The Committed Burst Size (CBS) is measured in bytes and represents a
4328 token bucket. At a minimum this value should be be set to the expected
4329 largest size packet in the traffic stream. In practice larger values
4330 may be used to increase the size of the token bucket. If a packet can
4331 be transmitted then the cbs will be decremented by the number of
4332 bytes/tokens of the packet. If there are not enough tokens in the cbs
4333 bucket the packet will be dropped.
4334 </column>
4335 </group>
4336
4337 <group title="Configuration for linux-sfq">
4338 <p>
4339 The <code>linux-sfq</code> QoS supports the following key-value pairs:
4340 </p>
4341
4342 <column name="other_config" key="perturb" type='{"type": "integer"}'>
4343 Number of seconds between consecutive perturbations in hashing algorithm.
4344 Different flows can end up in the same hash bucket causing unfairness.
4345 Perturbation's goal is to remove possible unfairness.
4346 The default and recommended value is 10. Too low a value is discouraged
4347 because each perturbation can cause packet reordering.
4348 </column>
4349 <column name="other_config" key="quantum" type='{"type": "integer"}'>
4350 Number of bytes <code>linux-sfq</code> QoS can dequeue in one turn in
4351 round-robin from one flow. The default and recommended value is equal
4352 to interface's MTU.
4353 </column>
4354 </group>
4355
4356 <group title="Common Columns">
4357 The overall purpose of these columns is described under <code>Common
4358 Columns</code> at the beginning of this document.
4359
4360 <column name="other_config"/>
4361 <column name="external_ids"/>
4362 </group>
4363 </table>
4364
4365 <table name="Queue" title="QoS output queue.">
4366 <p>A configuration for a port output queue, used in configuring Quality of
4367 Service (QoS) features. May be referenced by <ref column="queues"
4368 table="QoS"/> column in <ref table="QoS"/> table.</p>
4369
4370 <column name="dscp">
4371 If set, Open vSwitch will mark all traffic egressing this
4372 <ref table="Queue"/> with the given DSCP bits. Traffic egressing the
4373 default <ref table="Queue"/> is only marked if it was explicitly selected
4374 as the <ref table="Queue"/> at the time the packet was output. If unset,
4375 the DSCP bits of traffic egressing this <ref table="Queue"/> will remain
4376 unchanged.
4377 </column>
4378
4379 <group title="Configuration for linux-htb QoS">
4380 <p>
4381 <ref table="QoS"/> <ref table="QoS" column="type"/>
4382 <code>linux-htb</code> may use <code>queue_id</code>s less than 61440.
4383 It has the following key-value pairs defined.
4384 </p>
4385
4386 <column name="other_config" key="min-rate"
4387 type='{"type": "integer", "minInteger": 1}'>
4388 Minimum guaranteed bandwidth, in bit/s.
4389 </column>
4390
4391 <column name="other_config" key="max-rate"
4392 type='{"type": "integer", "minInteger": 1}'>
4393 Maximum allowed bandwidth, in bit/s. Optional. If specified, the
4394 queue's rate will not be allowed to exceed the specified value, even
4395 if excess bandwidth is available. If unspecified, defaults to no
4396 limit.
4397 </column>
4398
4399 <column name="other_config" key="burst"
4400 type='{"type": "integer", "minInteger": 1}'>
4401 Burst size, in bits. This is the maximum amount of ``credits'' that a
4402 queue can accumulate while it is idle. Optional. Details of the
4403 <code>linux-htb</code> implementation require a minimum burst size, so
4404 a too-small <code>burst</code> will be silently ignored.
4405 </column>
4406
4407 <column name="other_config" key="priority"
4408 type='{"type": "integer", "minInteger": 0, "maxInteger": 4294967295}'>
4409 A queue with a smaller <code>priority</code> will receive all the
4410 excess bandwidth that it can use before a queue with a larger value
4411 receives any. Specific priority values are unimportant; only relative
4412 ordering matters. Defaults to 0 if unspecified.
4413 </column>
4414 </group>
4415
4416 <group title="Configuration for linux-hfsc QoS">
4417 <p>
4418 <ref table="QoS"/> <ref table="QoS" column="type"/>
4419 <code>linux-hfsc</code> may use <code>queue_id</code>s less than 61440.
4420 It has the following key-value pairs defined.
4421 </p>
4422
4423 <column name="other_config" key="min-rate"
4424 type='{"type": "integer", "minInteger": 1}'>
4425 Minimum guaranteed bandwidth, in bit/s.
4426 </column>
4427
4428 <column name="other_config" key="max-rate"
4429 type='{"type": "integer", "minInteger": 1}'>
4430 Maximum allowed bandwidth, in bit/s. Optional. If specified, the
4431 queue's rate will not be allowed to exceed the specified value, even if
4432 excess bandwidth is available. If unspecified, defaults to no
4433 limit.
4434 </column>
4435 </group>
4436
4437 <group title="Common Columns">
4438 The overall purpose of these columns is described under <code>Common
4439 Columns</code> at the beginning of this document.
4440
4441 <column name="other_config"/>
4442 <column name="external_ids"/>
4443 </group>
4444 </table>
4445
4446 <table name="Mirror" title="Port mirroring.">
4447 <p>A port mirror within a <ref table="Bridge"/>.</p>
4448 <p>A port mirror configures a bridge to send selected frames to special
4449 ``mirrored'' ports, in addition to their normal destinations. Mirroring
4450 traffic may also be referred to as SPAN or RSPAN, depending on how
4451 the mirrored traffic is sent.</p>
4452
4453 <p>
4454 When a packet enters an Open vSwitch bridge, it becomes eligible for
4455 mirroring based on its ingress port and VLAN. As the packet travels
4456 through the flow tables, each time it is output to a port, it becomes
4457 eligible for mirroring based on the egress port and VLAN. In Open
4458 vSwitch 2.5 and later, mirroring occurs just after a packet first becomes
4459 eligible, using the packet as it exists at that point; in Open vSwitch
4460 2.4 and earlier, mirroring occurs only after a packet has traversed all
4461 the flow tables, using the original packet as it entered the bridge.
4462 This makes a difference only when the flow table modifies the packet: in
4463 Open vSwitch 2.4, the modifications are never visible to mirrors, whereas
4464 in Open vSwitch 2.5 and later modifications made before the first output
4465 that makes it eligible for mirroring to a particular destination are
4466 visible.
4467 </p>
4468
4469 <p>
4470 A packet that enters an Open vSwitch bridge is mirrored to a particular
4471 destination only once, even if it is eligible for multiple reasons. For
4472 example, a packet would be mirrored to a particular <ref
4473 column="output_port"/> only once, even if it is selected for mirroring to
4474 that port by <ref column="select_dst_port"/> and <ref
4475 column="select_src_port"/> in the same or different <ref table="Mirror"/>
4476 records.
4477 </p>
4478
4479 <column name="name">
4480 Arbitrary identifier for the <ref table="Mirror"/>.
4481 </column>
4482
4483 <group title="Selecting Packets for Mirroring">
4484 <p>
4485 To be selected for mirroring, a given packet must enter or leave the
4486 bridge through a selected port and it must also be in one of the
4487 selected VLANs.
4488 </p>
4489
4490 <column name="select_all">
4491 If true, every packet arriving or departing on any port is
4492 selected for mirroring.
4493 </column>
4494
4495 <column name="select_dst_port">
4496 Ports on which departing packets are selected for mirroring.
4497 </column>
4498
4499 <column name="select_src_port">
4500 Ports on which arriving packets are selected for mirroring.
4501 </column>
4502
4503 <column name="select_vlan">
4504 VLANs on which packets are selected for mirroring. An empty set
4505 selects packets on all VLANs.
4506 </column>
4507 </group>
4508
4509 <group title="Mirroring Destination Configuration">
4510 <p>
4511 These columns are mutually exclusive. Exactly one of them must be
4512 nonempty.
4513 </p>
4514
4515 <column name="output_port">
4516 <p>Output port for selected packets, if nonempty.</p>
4517 <p>Specifying a port for mirror output reserves that port exclusively
4518 for mirroring. No frames other than those selected for mirroring
4519 via this column
4520 will be forwarded to the port, and any frames received on the port
4521 will be discarded.</p>
4522 <p>
4523 The output port may be any kind of port supported by Open vSwitch.
4524 It may be, for example, a physical port (sometimes called SPAN) or a
4525 GRE tunnel.
4526 </p>
4527 </column>
4528
4529 <column name="output_vlan">
4530 <p>Output VLAN for selected packets, if nonempty.</p>
4531 <p>The frames will be sent out all ports that trunk
4532 <ref column="output_vlan"/>, as well as any ports with implicit VLAN
4533 <ref column="output_vlan"/>. When a mirrored frame is sent out a
4534 trunk port, the frame's VLAN tag will be set to
4535 <ref column="output_vlan"/>, replacing any existing tag; when it is
4536 sent out an implicit VLAN port, the frame will not be tagged. This
4537 type of mirroring is sometimes called RSPAN.</p>
4538 <p>
4539 See the documentation for
4540 <ref column="other_config" key="forward-bpdu"/> in the
4541 <ref table="Interface"/> table for a list of destination MAC
4542 addresses which will not be mirrored to a VLAN to avoid confusing
4543 switches that interpret the protocols that they represent.
4544 </p>
4545 <p><em>Please note:</em> Mirroring to a VLAN can disrupt a network that
4546 contains unmanaged switches. Consider an unmanaged physical switch
4547 with two ports: port 1, connected to an end host, and port 2,
4548 connected to an Open vSwitch configured to mirror received packets
4549 into VLAN 123 on port 2. Suppose that the end host sends a packet on
4550 port 1 that the physical switch forwards to port 2. The Open vSwitch
4551 forwards this packet to its destination and then reflects it back on
4552 port 2 in VLAN 123. This reflected packet causes the unmanaged
4553 physical switch to replace the MAC learning table entry, which
4554 correctly pointed to port 1, with one that incorrectly points to port
4555 2. Afterward, the physical switch will direct packets destined for
4556 the end host to the Open vSwitch on port 2, instead of to the end
4557 host on port 1, disrupting connectivity. If mirroring to a VLAN is
4558 desired in this scenario, then the physical switch must be replaced
4559 by one that learns Ethernet addresses on a per-VLAN basis. In
4560 addition, learning should be disabled on the VLAN containing mirrored
4561 traffic. If this is not done then intermediate switches will learn
4562 the MAC address of each end host from the mirrored traffic. If
4563 packets being sent to that end host are also mirrored, then they will
4564 be dropped since the switch will attempt to send them out the input
4565 port. Disabling learning for the VLAN will cause the switch to
4566 correctly send the packet out all ports configured for that VLAN. If
4567 Open vSwitch is being used as an intermediate switch, learning can be
4568 disabled by adding the mirrored VLAN to <ref column="flood_vlans"/>
4569 in the appropriate <ref table="Bridge"/> table or tables.</p>
4570 <p>
4571 Mirroring to a GRE tunnel has fewer caveats than mirroring to a
4572 VLAN and should generally be preferred.
4573 </p>
4574 </column>
4575
4576 <column name="snaplen">
4577 <p>Maximum per-packet number of bytes to mirror.</p>
4578 <p>A mirrored packet with size larger than <ref column="snaplen"/>
4579 will be truncated in datapath to <ref column="snaplen"/> bytes
4580 before sending to the mirror output port. If omitted, packets
4581 are not truncated.
4582 </p>
4583 </column>
4584 </group>
4585
4586 <group title="Statistics: Mirror counters">
4587 <p>
4588 Key-value pairs that report mirror statistics. The update period
4589 is controlled by <ref column="other_config"
4590 key="stats-update-interval"/> in the <code>Open_vSwitch</code> table.
4591 </p>
4592 <column name="statistics" key="tx_packets">
4593 Number of packets transmitted through this mirror.
4594 </column>
4595 <column name="statistics" key="tx_bytes">
4596 Number of bytes transmitted through this mirror.
4597 </column>
4598 </group>
4599
4600 <group title="Common Columns">
4601 The overall purpose of these columns is described under <code>Common
4602 Columns</code> at the beginning of this document.
4603
4604 <column name="external_ids"/>
4605 </group>
4606 </table>
4607
4608 <table name="Controller" title="OpenFlow controller configuration.">
4609 <p>An OpenFlow controller.</p>
4610
4611 <p>
4612 Open vSwitch supports two kinds of OpenFlow controllers:
4613 </p>
4614
4615 <dl>
4616 <dt>Primary controllers</dt>
4617 <dd>
4618 <p>
4619 This is the kind of controller envisioned by the OpenFlow 1.0
4620 specification. Usually, a primary controller implements a network
4621 policy by taking charge of the switch's flow table.
4622 </p>
4623
4624 <p>
4625 Open vSwitch initiates and maintains persistent connections to
4626 primary controllers, retrying the connection each time it fails or
4627 drops. The <ref table="Bridge" column="fail_mode"/> column in the
4628 <ref table="Bridge"/> table applies to primary controllers.
4629 </p>
4630
4631 <p>
4632 Open vSwitch permits a bridge to have any number of primary
4633 controllers. When multiple controllers are configured, Open
4634 vSwitch connects to all of them simultaneously. Because
4635 OpenFlow 1.0 does not specify how multiple controllers
4636 coordinate in interacting with a single switch, more than
4637 one primary controller should be specified only if the
4638 controllers are themselves designed to coordinate with each
4639 other. (The Nicira-defined <code>NXT_ROLE</code> OpenFlow
4640 vendor extension may be useful for this.)
4641 </p>
4642 </dd>
4643 <dt>Service controllers</dt>
4644 <dd>
4645 <p>
4646 These kinds of OpenFlow controller connections are intended for
4647 occasional support and maintenance use, e.g. with
4648 <code>ovs-ofctl</code>. Usually a service controller connects only
4649 briefly to inspect or modify some of a switch's state.
4650 </p>
4651
4652 <p>
4653 Open vSwitch listens for incoming connections from service
4654 controllers. The service controllers initiate and, if necessary,
4655 maintain the connections from their end. The <ref table="Bridge"
4656 column="fail_mode"/> column in the <ref table="Bridge"/> table does
4657 not apply to service controllers.
4658 </p>
4659
4660 <p>
4661 Open vSwitch supports configuring any number of service controllers.
4662 </p>
4663 </dd>
4664 </dl>
4665
4666 <p>
4667 The <ref column="target"/> determines the type of controller.
4668 </p>
4669
4670 <group title="Core Features">
4671 <column name="target">
4672 <p>Connection method for controller.</p>
4673 <p>
4674 The following connection methods are currently supported for primary
4675 controllers:
4676 </p>
4677 <dl>
4678 <dt><code>ssl:<var>host</var></code>[<code>:<var>port</var></code>]</dt>
4679 <dd>
4680 <p>The specified SSL <var>port</var> on the host at the
4681 given <var>host</var>, which can either be a DNS name (if built
4682 with unbound library) or an IP address. The <ref table="Open_vSwitch"
4683 column="ssl"/> column in the <ref table="Open_vSwitch"/> table must
4684 point to a valid SSL configuration when this form is used.</p>
4685 <p>If <var>port</var> is not specified, it defaults to 6653.</p>
4686 <p>SSL support is an optional feature that is not always built as
4687 part of Open vSwitch.</p>
4688 </dd>
4689 <dt><code>tcp:<var>host</var></code>[<code>:<var>port</var></code>]</dt>
4690 <dd>
4691 <p>
4692 The specified TCP <var>port</var> on the host at the given
4693 <var>host</var>, which can either be a DNS name (if built with
4694 unbound library) or an IP address (IPv4 or IPv6). If <var>host</var>
4695 is an IPv6 address, wrap it in square brackets, e.g.
4696 <code>tcp:[::1]:6653</code>.
4697 </p>
4698 <p>
4699 If <var>port</var> is not specified, it defaults to 6653.
4700 </p>
4701 </dd>
4702 </dl>
4703 <p>
4704 The following connection methods are currently supported for service
4705 controllers:
4706 </p>
4707 <dl>
4708 <dt><code>pssl:</code>[<var>port</var>][<code>:<var>host</var></code>]</dt>
4709 <dd>
4710 <p>
4711 Listens for SSL connections on the specified TCP <var>port</var>.
4712 If <var>host</var>, which can either be a DNS name (if built with
4713 unbound library) or an IP address, is specified, then connections
4714 are restricted to the resolved or specified local IP address
4715 (either IPv4 or IPv6). If <var>host</var> is an IPv6 address,
4716 wrap it in square brackets, e.g. <code>pssl:6653:[::1]</code>.
4717 </p>
4718 <p>
4719 If <var>port</var> is not specified, it defaults to
4720 6653. If <var>host</var> is not specified then it listens only on
4721 IPv4 (but not IPv6) addresses. The
4722 <ref table="Open_vSwitch" column="ssl"/>
4723 column in the <ref table="Open_vSwitch"/> table must point to a
4724 valid SSL configuration when this form is used.
4725 </p>
4726 <p>
4727 If <var>port</var> is not specified, it currently to 6653.
4728 </p>
4729 <p>
4730 SSL support is an optional feature that is not always built as
4731 part of Open vSwitch.
4732 </p>
4733 </dd>
4734 <dt><code>ptcp:</code>[<var>port</var>][<code>:<var>host</var></code>]</dt>
4735 <dd>
4736 <p>
4737 Listens for connections on the specified TCP <var>port</var>. If
4738 <var>host</var>, which can either be a DNS name (if built with
4739 unbound library) or an IP address, is specified, then connections
4740 are restricted to the resolved or specified local IP address
4741 (either IPv4 or IPv6). If <var>host</var> is an IPv6 address, wrap
4742 it in square brackets, e.g. <code>ptcp:6653:[::1]</code>. If
4743 <var>host</var> is not specified then it listens only on IPv4
4744 addresses.
4745 </p>
4746 <p>
4747 If <var>port</var> is not specified, it defaults to 6653.
4748 </p>
4749 </dd>
4750 </dl>
4751 <p>When multiple controllers are configured for a single bridge, the
4752 <ref column="target"/> values must be unique. Duplicate
4753 <ref column="target"/> values yield unspecified results.</p>
4754 </column>
4755
4756 <column name="connection_mode">
4757 <p>If it is specified, this setting must be one of the following
4758 strings that describes how Open vSwitch contacts this OpenFlow
4759 controller over the network:</p>
4760
4761 <dl>
4762 <dt><code>in-band</code></dt>
4763 <dd>In this mode, this controller's OpenFlow traffic travels over the
4764 bridge associated with the controller. With this setting, Open
4765 vSwitch allows traffic to and from the controller regardless of the
4766 contents of the OpenFlow flow table. (Otherwise, Open vSwitch
4767 would never be able to connect to the controller, because it did
4768 not have a flow to enable it.) This is the most common connection
4769 mode because it is not necessary to maintain two independent
4770 networks.</dd>
4771 <dt><code>out-of-band</code></dt>
4772 <dd>In this mode, OpenFlow traffic uses a control network separate
4773 from the bridge associated with this controller, that is, the
4774 bridge does not use any of its own network devices to communicate
4775 with the controller. The control network must be configured
4776 separately, before or after <code>ovs-vswitchd</code> is started.
4777 </dd>
4778 </dl>
4779
4780 <p>If not specified, the default is implementation-specific.</p>
4781 </column>
4782 </group>
4783
4784 <group title="Controller Failure Detection and Handling">
4785 <column name="max_backoff">
4786 Maximum number of milliseconds to wait between connection attempts.
4787 Default is implementation-specific.
4788 </column>
4789
4790 <column name="inactivity_probe">
4791 Maximum number of milliseconds of idle time on connection to
4792 controller before sending an inactivity probe message. If Open
4793 vSwitch does not communicate with the controller for the specified
4794 number of seconds, it will send a probe. If a response is not
4795 received for the same additional amount of time, Open vSwitch
4796 assumes the connection has been broken and attempts to reconnect.
4797 Default is implementation-specific. A value of 0 disables
4798 inactivity probes.
4799 </column>
4800 </group>
4801
4802 <group title="Asynchronous Messages">
4803 <p>
4804 OpenFlow switches send certain messages to controllers spontanenously,
4805 that is, not in response to any request from the controller. These
4806 messages are called ``asynchronous messages.'' These columns allow
4807 asynchronous messages to be limited or disabled to ensure the best use
4808 of network resources.
4809 </p>
4810
4811 <column name="enable_async_messages">
4812 The OpenFlow protocol enables asynchronous messages at time of
4813 connection establishment, which means that a controller can receive
4814 asynchronous messages, potentially many of them, even if it turns them
4815 off immediately after connecting. Set this column to
4816 <code>false</code> to change Open vSwitch behavior to disable, by
4817 default, all asynchronous messages. The controller can use the
4818 <code>NXT_SET_ASYNC_CONFIG</code> Nicira extension to OpenFlow to turn
4819 on any messages that it does want to receive, if any.
4820 </column>
4821
4822 <group title="Controller Rate Limiting">
4823 <p>
4824 A switch can forward packets to a controller over the OpenFlow
4825 protocol. Forwarding packets this way at too high a rate can
4826 overwhelm a controller, frustrate use of the OpenFlow connection for
4827 other purposes, increase the latency of flow setup, and use an
4828 unreasonable amount of bandwidth. Therefore, Open vSwitch supports
4829 limiting the rate of packet forwarding to a controller.
4830 </p>
4831
4832 <p>
4833 There are two main reasons in OpenFlow for a packet to be sent to a
4834 controller: either the packet ``misses'' in the flow table, that is,
4835 there is no matching flow, or a flow table action says to send the
4836 packet to the controller. Open vSwitch limits the rate of each kind
4837 of packet separately at the configured rate. Therefore, the actual
4838 rate that packets are sent to the controller can be up to twice the
4839 configured rate, when packets are sent for both reasons.
4840 </p>
4841
4842 <p>
4843 This feature is specific to forwarding packets over an OpenFlow
4844 connection. It is not general-purpose QoS. See the <ref
4845 table="QoS"/> table for quality of service configuration, and <ref
4846 column="ingress_policing_rate" table="Interface"/> in the <ref
4847 table="Interface"/> table for ingress policing configuration.
4848 </p>
4849
4850 <column name="controller_rate_limit">
4851 <p>
4852 The maximum rate at which the switch will forward packets to the
4853 OpenFlow controller, in packets per second. If no value is
4854 specified, rate limiting is disabled.
4855 </p>
4856 </column>
4857
4858 <column name="controller_burst_limit">
4859 <p>
4860 When a high rate triggers rate-limiting, Open vSwitch queues
4861 packets to the controller for each port and transmits them to the
4862 controller at the configured rate. This value limits the number of
4863 queued packets. Ports on a bridge share the packet queue fairly.
4864 </p>
4865
4866 <p>
4867 This value has no effect unless <ref
4868 column="controller_rate_limit"/> is configured. The current
4869 default when this value is not specified is one-quarter of <ref
4870 column="controller_rate_limit"/>, meaning that queuing can delay
4871 forwarding a packet to the controller by up to 250 ms.
4872 </p>
4873 </column>
4874
4875 <group title="Controller Rate Limiting Statistics">
4876 <p>
4877 These values report the effects of rate limiting. Their values are
4878 relative to establishment of the most recent OpenFlow connection,
4879 or since rate limiting was enabled, whichever happened more
4880 recently. Each consists of two values, one with <code>TYPE</code>
4881 replaced by <code>miss</code> for rate limiting flow table misses,
4882 and the other with <code>TYPE</code> replaced by
4883 <code>action</code> for rate limiting packets sent by OpenFlow
4884 actions.
4885 </p>
4886
4887 <p>
4888 These statistics are reported only when controller rate limiting is
4889 enabled.
4890 </p>
4891
4892 <column name="status" key="packet-in-TYPE-bypassed"
4893 type='{"type": "integer", "minInteger": 0}'>
4894 Number of packets sent directly to the controller, without queuing,
4895 because the rate did not exceed the configured maximum.
4896 </column>
4897
4898 <column name="status" key="packet-in-TYPE-queued"
4899 type='{"type": "integer", "minInteger": 0}'>
4900 Number of packets added to the queue to send later.
4901 </column>
4902
4903 <column name="status" key="packet-in-TYPE-dropped"
4904 type='{"type": "integer", "minInteger": 0}'>
4905 Number of packets added to the queue that were later dropped due to
4906 overflow. This value is less than or equal to <ref column="status"
4907 key="packet-in-TYPE-queued"/>.
4908 </column>
4909
4910 <column name="status" key="packet-in-TYPE-backlog"
4911 type='{"type": "integer", "minInteger": 0}'>
4912 Number of packets currently queued. The other statistics increase
4913 monotonically, but this one fluctuates between 0 and the <ref
4914 column="controller_burst_limit"/> as conditions change.
4915 </column>
4916 </group>
4917 </group>
4918 </group>
4919
4920 <group title="Additional In-Band Configuration">
4921 <p>These values are considered only in in-band control mode (see
4922 <ref column="connection_mode"/>).</p>
4923
4924 <p>When multiple controllers are configured on a single bridge, there
4925 should be only one set of unique values in these columns. If different
4926 values are set for these columns in different controllers, the effect
4927 is unspecified.</p>
4928
4929 <column name="local_ip">
4930 The IP address to configure on the local port,
4931 e.g. <code>192.168.0.123</code>. If this value is unset, then
4932 <ref column="local_netmask"/> and <ref column="local_gateway"/> are
4933 ignored.
4934 </column>
4935
4936 <column name="local_netmask">
4937 The IP netmask to configure on the local port,
4938 e.g. <code>255.255.255.0</code>. If <ref column="local_ip"/> is set
4939 but this value is unset, then the default is chosen based on whether
4940 the IP address is class A, B, or C.
4941 </column>
4942
4943 <column name="local_gateway">
4944 The IP address of the gateway to configure on the local port, as a
4945 string, e.g. <code>192.168.0.1</code>. Leave this column unset if
4946 this network has no gateway.
4947 </column>
4948 </group>
4949
4950 <group title="Controller Status">
4951 <column name="is_connected">
4952 <code>true</code> if currently connected to this controller,
4953 <code>false</code> otherwise.
4954 </column>
4955
4956 <column name="role"
4957 type='{"type": "string", "enum": ["set", ["other", "master", "slave"]]}'>
4958 <p>The level of authority this controller has on the associated
4959 bridge. Possible values are:</p>
4960 <dl>
4961 <dt><code>other</code></dt>
4962 <dd>Allows the controller access to all OpenFlow features.</dd>
4963 <dt><code>master</code></dt>
4964 <dd>Equivalent to <code>other</code>, except that there may be at
4965 most one master controller at a time. When a controller configures
4966 itself as <code>master</code>, any existing master is demoted to
4967 the <code>slave</code> role.</dd>
4968 <dt><code>slave</code></dt>
4969 <dd>Allows the controller read-only access to OpenFlow features.
4970 Attempts to modify the flow table will be rejected with an
4971 error. Slave controllers do not receive OFPT_PACKET_IN or
4972 OFPT_FLOW_REMOVED messages, but they do receive OFPT_PORT_STATUS
4973 messages.</dd>
4974 </dl>
4975 </column>
4976
4977 <column name="status" key="last_error">
4978 A human-readable description of the last error on the connection
4979 to the controller; i.e. <code>strerror(errno)</code>. This key
4980 will exist only if an error has occurred.
4981 </column>
4982
4983 <column name="status" key="state"
4984 type='{"type": "string", "enum": ["set", ["VOID", "BACKOFF", "CONNECTING", "ACTIVE", "IDLE"]]}'>
4985 <p>
4986 The state of the connection to the controller:
4987 </p>
4988 <dl>
4989 <dt><code>VOID</code></dt>
4990 <dd>Connection is disabled.</dd>
4991
4992 <dt><code>BACKOFF</code></dt>
4993 <dd>Attempting to reconnect at an increasing period.</dd>
4994
4995 <dt><code>CONNECTING</code></dt>
4996 <dd>Attempting to connect.</dd>
4997
4998 <dt><code>ACTIVE</code></dt>
4999 <dd>Connected, remote host responsive.</dd>
5000
5001 <dt><code>IDLE</code></dt>
5002 <dd>Connection is idle. Waiting for response to keep-alive.</dd>
5003 </dl>
5004 <p>
5005 These values may change in the future. They are provided only for
5006 human consumption.
5007 </p>
5008 </column>
5009
5010 <column name="status" key="sec_since_connect"
5011 type='{"type": "integer", "minInteger": 0}'>
5012 The amount of time since this controller last successfully connected to
5013 the switch (in seconds). Value is empty if controller has never
5014 successfully connected.
5015 </column>
5016
5017 <column name="status" key="sec_since_disconnect"
5018 type='{"type": "integer", "minInteger": 1}'>
5019 The amount of time since this controller last disconnected from
5020 the switch (in seconds). Value is empty if controller has never
5021 disconnected.
5022 </column>
5023 </group>
5024
5025 <group title="Connection Parameters">
5026 <p>
5027 Additional configuration for a connection between the controller
5028 and the Open vSwitch.
5029 </p>
5030
5031 <column name="other_config" key="dscp"
5032 type='{"type": "integer"}'>
5033 The Differentiated Service Code Point (DSCP) is specified using 6 bits
5034 in the Type of Service (TOS) field in the IP header. DSCP provides a
5035 mechanism to classify the network traffic and provide Quality of
5036 Service (QoS) on IP networks.
5037
5038 The DSCP value specified here is used when establishing the connection
5039 between the controller and the Open vSwitch. If no value is specified,
5040 a default value of 48 is chosen. Valid DSCP values must be in the
5041 range 0 to 63.
5042 </column>
5043 </group>
5044
5045
5046 <group title="Common Columns">
5047 The overall purpose of these columns is described under <code>Common
5048 Columns</code> at the beginning of this document.
5049
5050 <column name="external_ids"/>
5051 <column name="other_config"/>
5052 </group>
5053 </table>
5054
5055 <table name="Manager" title="OVSDB management connection.">
5056 <p>
5057 Configuration for a database connection to an Open vSwitch database
5058 (OVSDB) client.
5059 </p>
5060
5061 <p>
5062 This table primarily configures the Open vSwitch database
5063 (<code>ovsdb-server</code>), not the Open vSwitch switch
5064 (<code>ovs-vswitchd</code>). The switch does read the table to determine
5065 what connections should be treated as in-band.
5066 </p>
5067
5068 <p>
5069 The Open vSwitch database server can initiate and maintain active
5070 connections to remote clients. It can also listen for database
5071 connections.
5072 </p>
5073
5074 <group title="Core Features">
5075 <column name="target">
5076 <p>Connection method for managers.</p>
5077 <p>
5078 The following connection methods are currently supported:
5079 </p>
5080 <dl>
5081 <dt><code>ssl:<var>host</var></code>[<code>:<var>port</var></code>]</dt>
5082 <dd>
5083 <p>
5084 The specified SSL <var>port</var> on the host at the given
5085 <var>host</var>, which can either be a DNS name (if built with
5086 unbound library) or an IP address. The <ref table="Open_vSwitch"
5087 column="ssl"/> column in the <ref table="Open_vSwitch"/>
5088 table must point to a valid SSL configuration when this
5089 form is used.
5090 </p>
5091 <p>
5092 If <var>port</var> is not specified, it defaults to 6640.
5093 </p>
5094 <p>
5095 SSL support is an optional feature that is not always
5096 built as part of Open vSwitch.
5097 </p>
5098 </dd>
5099
5100 <dt><code>tcp:<var>host</var></code>[<code>:<var>port</var></code>]</dt>
5101 <dd>
5102 <p>
5103 The specified TCP <var>port</var> on the host at the given
5104 <var>host</var>, which can either be a DNS name (if built with
5105 unbound library) or an IP address (IPv4 or IPv6). If <var>host</var>
5106 is an IPv6 address, wrap it in square brackets, e.g.
5107 <code>tcp:[::1]:6640</code>.
5108 </p>
5109 <p>
5110 If <var>port</var> is not specified, it defaults to 6640.
5111 </p>
5112 </dd>
5113 <dt><code>pssl:</code>[<var>port</var>][<code>:<var>host</var></code>]</dt>
5114 <dd>
5115 <p>
5116 Listens for SSL connections on the specified TCP <var>port</var>.
5117 Specify 0 for <var>port</var> to have the kernel automatically
5118 choose an available port. If <var>host</var>, which can either
5119 be a DNS name (if built with unbound library) or an IP address,
5120 is specified, then connections are restricted to the resolved or
5121 specified local IP address (either IPv4 or IPv6 address). If
5122 <var>host</var> is an IPv6 address, wrap in square brackets,
5123 e.g. <code>pssl:6640:[::1]</code>. If <var>host</var> is not
5124 specified then it listens only on IPv4 (but not IPv6) addresses.
5125 The <ref table="Open_vSwitch" column="ssl"/> column in the <ref
5126 table="Open_vSwitch"/> table must point to a valid SSL
5127 configuration when this form is used.
5128 </p>
5129 <p>
5130 If <var>port</var> is not specified, it defaults to 6640.
5131 </p>
5132 <p>
5133 SSL support is an optional feature that is not always built as
5134 part of Open vSwitch.
5135 </p>
5136 </dd>
5137 <dt><code>ptcp:</code>[<var>port</var>][<code>:<var>host</var></code>]</dt>
5138 <dd>
5139 <p>
5140 Listens for connections on the specified TCP <var>port</var>.
5141 Specify 0 for <var>port</var> to have the kernel automatically
5142 choose an available port. If <var>host</var>, which can either
5143 be a DNS name (if built with unbound library) or an IP address,
5144 is specified, then connections are restricted to the resolved or
5145 specified local IP address (either IPv4 or IPv6 address). If
5146 <var>host</var> is an IPv6 address, wrap it in square brackets,
5147 e.g. <code>ptcp:6640:[::1]</code>. If <var>host</var> is not
5148 specified then it listens only on IPv4 addresses.
5149 </p>
5150 <p>
5151 If <var>port</var> is not specified, it defaults to 6640.
5152 </p>
5153 </dd>
5154 </dl>
5155 <p>When multiple managers are configured, the <ref column="target"/>
5156 values must be unique. Duplicate <ref column="target"/> values yield
5157 unspecified results.</p>
5158 </column>
5159
5160 <column name="connection_mode">
5161 <p>
5162 If it is specified, this setting must be one of the following strings
5163 that describes how Open vSwitch contacts this OVSDB client over the
5164 network:
5165 </p>
5166
5167 <dl>
5168 <dt><code>in-band</code></dt>
5169 <dd>
5170 In this mode, this connection's traffic travels over a bridge
5171 managed by Open vSwitch. With this setting, Open vSwitch allows
5172 traffic to and from the client regardless of the contents of the
5173 OpenFlow flow table. (Otherwise, Open vSwitch would never be able
5174 to connect to the client, because it did not have a flow to enable
5175 it.) This is the most common connection mode because it is not
5176 necessary to maintain two independent networks.
5177 </dd>
5178 <dt><code>out-of-band</code></dt>
5179 <dd>
5180 In this mode, the client's traffic uses a control network separate
5181 from that managed by Open vSwitch, that is, Open vSwitch does not
5182 use any of its own network devices to communicate with the client.
5183 The control network must be configured separately, before or after
5184 <code>ovs-vswitchd</code> is started.
5185 </dd>
5186 </dl>
5187
5188 <p>
5189 If not specified, the default is implementation-specific.
5190 </p>
5191 </column>
5192 </group>
5193
5194 <group title="Client Failure Detection and Handling">
5195 <column name="max_backoff">
5196 Maximum number of milliseconds to wait between connection attempts.
5197 Default is implementation-specific.
5198 </column>
5199
5200 <column name="inactivity_probe">
5201 Maximum number of milliseconds of idle time on connection to the client
5202 before sending an inactivity probe message. If Open vSwitch does not
5203 communicate with the client for the specified number of seconds, it
5204 will send a probe. If a response is not received for the same
5205 additional amount of time, Open vSwitch assumes the connection has been
5206 broken and attempts to reconnect. Default is implementation-specific.
5207 A value of 0 disables inactivity probes.
5208 </column>
5209 </group>
5210
5211 <group title="Status">
5212 <p>
5213 Key-value pair of <ref column="is_connected"/> is always updated.
5214 Other key-value pairs in the status columns may be updated depends
5215 on the <ref column="target"/> type.
5216 </p>
5217
5218 <p>
5219 When <ref column="target"/> specifies a connection method that
5220 listens for inbound connections (e.g. <code>ptcp:</code> or
5221 <code>punix:</code>), both <ref column="n_connections"/> and
5222 <ref column="is_connected"/> may also be updated while the
5223 remaining key-value pairs are omitted.
5224 </p>
5225
5226 <p>
5227 On the other hand, when <ref column="target"/> specifies an
5228 outbound connection, all key-value pairs may be updated, except
5229 the above-mentioned two key-value pairs associated with inbound
5230 connection targets. They are omitted.
5231 </p>
5232
5233 <column name="is_connected">
5234 <code>true</code> if currently connected to this manager,
5235 <code>false</code> otherwise.
5236 </column>
5237
5238 <column name="status" key="last_error">
5239 A human-readable description of the last error on the connection
5240 to the manager; i.e. <code>strerror(errno)</code>. This key
5241 will exist only if an error has occurred.
5242 </column>
5243
5244 <column name="status" key="state"
5245 type='{"type": "string", "enum": ["set", ["VOID", "BACKOFF", "CONNECTING", "ACTIVE", "IDLE"]]}'>
5246 <p>
5247 The state of the connection to the manager:
5248 </p>
5249 <dl>
5250 <dt><code>VOID</code></dt>
5251 <dd>Connection is disabled.</dd>
5252
5253 <dt><code>BACKOFF</code></dt>
5254 <dd>Attempting to reconnect at an increasing period.</dd>
5255
5256 <dt><code>CONNECTING</code></dt>
5257 <dd>Attempting to connect.</dd>
5258
5259 <dt><code>ACTIVE</code></dt>
5260 <dd>Connected, remote host responsive.</dd>
5261
5262 <dt><code>IDLE</code></dt>
5263 <dd>Connection is idle. Waiting for response to keep-alive.</dd>
5264 </dl>
5265 <p>
5266 These values may change in the future. They are provided only for
5267 human consumption.
5268 </p>
5269 </column>
5270
5271 <column name="status" key="sec_since_connect"
5272 type='{"type": "integer", "minInteger": 0}'>
5273 The amount of time since this manager last successfully connected
5274 to the database (in seconds). Value is empty if manager has never
5275 successfully connected.
5276 </column>
5277
5278 <column name="status" key="sec_since_disconnect"
5279 type='{"type": "integer", "minInteger": 0}'>
5280 The amount of time since this manager last disconnected from the
5281 database (in seconds). Value is empty if manager has never
5282 disconnected.
5283 </column>
5284
5285 <column name="status" key="locks_held">
5286 Space-separated list of the names of OVSDB locks that the connection
5287 holds. Omitted if the connection does not hold any locks.
5288 </column>
5289
5290 <column name="status" key="locks_waiting">
5291 Space-separated list of the names of OVSDB locks that the connection is
5292 currently waiting to acquire. Omitted if the connection is not waiting
5293 for any locks.
5294 </column>
5295
5296 <column name="status" key="locks_lost">
5297 Space-separated list of the names of OVSDB locks that the connection
5298 has had stolen by another OVSDB client. Omitted if no locks have been
5299 stolen from this connection.
5300 </column>
5301
5302 <column name="status" key="n_connections"
5303 type='{"type": "integer", "minInteger": 2}'>
5304 When <ref column="target"/> specifies a connection method that
5305 listens for inbound connections (e.g. <code>ptcp:</code> or
5306 <code>pssl:</code>) and more than one connection is actually active,
5307 the value is the number of active connections. Otherwise, this
5308 key-value pair is omitted.
5309 </column>
5310
5311 <column name="status" key="bound_port" type='{"type": "integer"}'>
5312 When <ref column="target"/> is <code>ptcp:</code> or
5313 <code>pssl:</code>, this is the TCP port on which the OVSDB server is
5314 listening. (This is particularly useful when <ref
5315 column="target"/> specifies a port of 0, allowing the kernel to
5316 choose any available port.)
5317 </column>
5318 </group>
5319
5320 <group title="Connection Parameters">
5321 <p>
5322 Additional configuration for a connection between the manager
5323 and the Open vSwitch Database.
5324 </p>
5325
5326 <column name="other_config" key="dscp"
5327 type='{"type": "integer"}'>
5328 The Differentiated Service Code Point (DSCP) is specified using 6 bits
5329 in the Type of Service (TOS) field in the IP header. DSCP provides a
5330 mechanism to classify the network traffic and provide Quality of
5331 Service (QoS) on IP networks.
5332
5333 The DSCP value specified here is used when establishing the connection
5334 between the manager and the Open vSwitch. If no value is specified, a
5335 default value of 48 is chosen. Valid DSCP values must be in the range
5336 0 to 63.
5337 </column>
5338 </group>
5339
5340 <group title="Common Columns">
5341 The overall purpose of these columns is described under <code>Common
5342 Columns</code> at the beginning of this document.
5343
5344 <column name="external_ids"/>
5345 <column name="other_config"/>
5346 </group>
5347 </table>
5348
5349 <table name="NetFlow">
5350 A NetFlow target. NetFlow is a protocol that exports a number of
5351 details about terminating IP flows, such as the principals involved
5352 and duration.
5353
5354 <column name="targets">
5355 NetFlow targets in the form
5356 <code><var>ip</var>:<var>port</var></code>. The <var>ip</var>
5357 must be specified numerically, not as a DNS name.
5358 </column>
5359
5360 <column name="engine_id">
5361 Engine ID to use in NetFlow messages. Defaults to datapath index
5362 if not specified.
5363 </column>
5364
5365 <column name="engine_type">
5366 Engine type to use in NetFlow messages. Defaults to datapath
5367 index if not specified.
5368 </column>
5369
5370 <column name="active_timeout">
5371 <p>
5372 The interval at which NetFlow records are sent for flows that
5373 are still active, in seconds. A value of <code>0</code>
5374 requests the default timeout (currently 600 seconds); a value
5375 of <code>-1</code> disables active timeouts.
5376 </p>
5377
5378 <p>
5379 The NetFlow passive timeout, for flows that become inactive,
5380 is not configurable. It will vary depending on the Open
5381 vSwitch version, the forms and contents of the OpenFlow flow
5382 tables, CPU and memory usage, and network activity. A typical
5383 passive timeout is about a second.
5384 </p>
5385 </column>
5386
5387 <column name="add_id_to_interface">
5388 <p>If this column's value is <code>false</code>, the ingress and egress
5389 interface fields of NetFlow flow records are derived from OpenFlow port
5390 numbers. When it is <code>true</code>, the 7 most significant bits of
5391 these fields will be replaced by the least significant 7 bits of the
5392 engine id. This is useful because many NetFlow collectors do not
5393 expect multiple switches to be sending messages from the same host, so
5394 they do not store the engine information which could be used to
5395 disambiguate the traffic.</p>
5396 <p>When this option is enabled, a maximum of 508 ports are supported.</p>
5397 </column>
5398
5399 <group title="Common Columns">
5400 The overall purpose of these columns is described under <code>Common
5401 Columns</code> at the beginning of this document.
5402
5403 <column name="external_ids"/>
5404 </group>
5405 </table>
5406
5407 <table name="SSL">
5408 SSL configuration for an Open_vSwitch.
5409
5410 <column name="private_key">
5411 Name of a PEM file containing the private key used as the switch's
5412 identity for SSL connections to the controller.
5413 </column>
5414
5415 <column name="certificate">
5416 Name of a PEM file containing a certificate, signed by the
5417 certificate authority (CA) used by the controller and manager,
5418 that certifies the switch's private key, identifying a trustworthy
5419 switch.
5420 </column>
5421
5422 <column name="ca_cert">
5423 Name of a PEM file containing the CA certificate used to verify
5424 that the switch is connected to a trustworthy controller.
5425 </column>
5426
5427 <column name="bootstrap_ca_cert">
5428 If set to <code>true</code>, then Open vSwitch will attempt to
5429 obtain the CA certificate from the controller on its first SSL
5430 connection and save it to the named PEM file. If it is successful,
5431 it will immediately drop the connection and reconnect, and from then
5432 on all SSL connections must be authenticated by a certificate signed
5433 by the CA certificate thus obtained. <em>This option exposes the
5434 SSL connection to a man-in-the-middle attack obtaining the initial
5435 CA certificate.</em> It may still be useful for bootstrapping.
5436 </column>
5437
5438 <group title="Common Columns">
5439 The overall purpose of these columns is described under <code>Common
5440 Columns</code> at the beginning of this document.
5441
5442 <column name="external_ids"/>
5443 </group>
5444 </table>
5445
5446 <table name="sFlow">
5447 <p>A set of sFlow(R) targets. sFlow is a protocol for remote
5448 monitoring of switches.</p>
5449
5450 <column name="agent">
5451 <p>
5452 Determines the agent address, that is, the IP address reported to
5453 collectors as the source of the sFlow data. It may be an IP address or
5454 the name of a network device. In the latter case, the network device's
5455 IP address is used,
5456 </p>
5457
5458 <p>
5459 If not specified, the agent device is figured from the first target
5460 address and the routing table. If the routing table does not contain a
5461 route to the target, the IP address defaults to the <ref
5462 table="Controller" column="local_ip"/> in the collector's <ref
5463 table="Controller"/>.
5464 </p>
5465
5466 <p>
5467 If an agent IP address cannot be determined, sFlow is disabled.
5468 </p>
5469 </column>
5470
5471 <column name="header">
5472 Number of bytes of a sampled packet to send to the collector.
5473 If not specified, the default is 128 bytes.
5474 </column>
5475
5476 <column name="polling">
5477 Polling rate in seconds to send port statistics to the collector.
5478 If not specified, defaults to 30 seconds.
5479 </column>
5480
5481 <column name="sampling">
5482 Rate at which packets should be sampled and sent to the collector.
5483 If not specified, defaults to 400, which means one out of 400
5484 packets, on average, will be sent to the collector.
5485 </column>
5486
5487 <column name="targets">
5488 sFlow targets in the form
5489 <code><var>ip</var>:<var>port</var></code>.
5490 </column>
5491
5492 <group title="Common Columns">
5493 The overall purpose of these columns is described under <code>Common
5494 Columns</code> at the beginning of this document.
5495
5496 <column name="external_ids"/>
5497 </group>
5498 </table>
5499
5500 <table name="IPFIX">
5501 <p>Configuration for sending packets to IPFIX collectors.</p>
5502
5503 <p>
5504 IPFIX is a protocol that exports a number of details about flows. The
5505 IPFIX implementation in Open vSwitch samples packets at a configurable
5506 rate, extracts flow information from those packets, optionally caches and
5507 aggregates the flow information, and sends the result to one or more
5508 collectors.
5509 </p>
5510
5511 <p>
5512 IPFIX in Open vSwitch can be configured two different ways:
5513 </p>
5514
5515 <ul>
5516 <li>
5517 With <em>per-bridge sampling</em>, Open vSwitch performs IPFIX sampling
5518 automatically on all packets that pass through a bridge. To configure
5519 per-bridge sampling, create an <ref table="IPFIX"/> record and point a
5520 <ref table="Bridge"/> table's <ref table="Bridge" column="ipfix"/>
5521 column to it. The <ref table="Flow_Sample_Collector_Set"/> table is
5522 not used for per-bridge sampling.
5523 </li>
5524
5525 <li>
5526 <p>
5527 With <em>flow-based sampling</em>, <code>sample</code> actions in the
5528 OpenFlow flow table drive IPFIX sampling. See
5529 <code>ovs-actions</code>(7) for a description of the
5530 <code>sample</code> action.
5531 </p>
5532
5533 <p>
5534 Flow-based sampling also requires database configuration: create a
5535 <ref table="IPFIX"/> record that describes the IPFIX configuration
5536 and a <ref table="Flow_Sample_Collector_Set"/> record that points to
5537 the <ref table="Bridge"/> whose flow table holds the
5538 <code>sample</code> actions and to <ref table="IPFIX"/> record. The
5539 <ref table="Bridge" column="ipfix"/> in the <ref table="Bridge"/>
5540 table is not used for flow-based sampling.
5541 </p>
5542 </li>
5543 </ul>
5544
5545 <column name="targets">
5546 IPFIX target collectors in the form
5547 <code><var>ip</var>:<var>port</var></code>.
5548 </column>
5549
5550 <column name="cache_active_timeout">
5551 The maximum period in seconds for which an IPFIX flow record is
5552 cached and aggregated before being sent. If not specified,
5553 defaults to 0. If 0, caching is disabled.
5554 </column>
5555
5556 <column name="cache_max_flows">
5557 The maximum number of IPFIX flow records that can be cached at a
5558 time. If not specified, defaults to 0. If 0, caching is
5559 disabled.
5560 </column>
5561
5562 <column name="other_config" key="enable-tunnel-sampling"
5563 type='{"type": "boolean"}'>
5564 <p>
5565 Set to <code>true</code> to enable sampling and reporting tunnel
5566 header 7-tuples in IPFIX flow records. Tunnel sampling is enabled
5567 by default.
5568 </p>
5569
5570 <p>
5571 The following enterprise entities report the sampled tunnel info:
5572 </p>
5573
5574 <dl>
5575 <dt>tunnelType:</dt>
5576 <dd>
5577 <p>ID: 891, and enterprise ID 6876 (VMware).</p>
5578 <p>type: unsigned 8-bit integer.</p>
5579 <p>data type semantics: identifier.</p>
5580 <p>description: Identifier of the layer 2 network overlay network
5581 encapsulation type: 0x01 VxLAN, 0x02 GRE, 0x03 LISP, 0x07 GENEVE.</p>
5582 </dd>
5583 <dt>tunnelKey:</dt>
5584 <dd>
5585 <p>ID: 892, and enterprise ID 6876 (VMware).</p>
5586 <p>type: variable-length octetarray.</p>
5587 <p>data type semantics: identifier.</p>
5588 <p>description: Key which is used for identifying an individual
5589 traffic flow within a VxLAN (24-bit VNI), GENEVE (24-bit VNI),
5590 GRE (32-bit key), or LISP (24-bit instance ID) tunnel. The
5591 key is encoded in this octetarray as a 3-, 4-, or 8-byte integer
5592 ID in network byte order.</p>
5593 </dd>
5594 <dt>tunnelSourceIPv4Address:</dt>
5595 <dd>
5596 <p>ID: 893, and enterprise ID 6876 (VMware).</p>
5597 <p>type: unsigned 32-bit integer.</p>
5598 <p>data type semantics: identifier.</p>
5599 <p>description: The IPv4 source address in the tunnel IP packet
5600 header.</p>
5601 </dd>
5602 <dt>tunnelDestinationIPv4Address:</dt>
5603 <dd>
5604 <p>ID: 894, and enterprise ID 6876 (VMware).</p>
5605 <p>type: unsigned 32-bit integer.</p>
5606 <p>data type semantics: identifier.</p>
5607 <p>description: The IPv4 destination address in the tunnel IP
5608 packet header.</p>
5609 </dd>
5610 <dt>tunnelProtocolIdentifier:</dt>
5611 <dd>
5612 <p>ID: 895, and enterprise ID 6876 (VMware).</p>
5613 <p>type: unsigned 8-bit integer.</p>
5614 <p>data type semantics: identifier.</p>
5615 <p>description: The value of the protocol number in the tunnel
5616 IP packet header. The protocol number identifies the tunnel IP
5617 packet payload type.</p>
5618 </dd>
5619 <dt>tunnelSourceTransportPort:</dt>
5620 <dd>
5621 <p>ID: 896, and enterprise ID 6876 (VMware).</p>
5622 <p>type: unsigned 16-bit integer.</p>
5623 <p>data type semantics: identifier.</p>
5624 <p>description: The source port identifier in the tunnel transport
5625 header. For the transport protocols UDP, TCP, and SCTP, this is
5626 the source port number given in the respective header.</p>
5627 </dd>
5628 <dt>tunnelDestinationTransportPort:</dt>
5629 <dd>
5630 <p>ID: 897, and enterprise ID 6876 (VMware).</p>
5631 <p>type: unsigned 16-bit integer.</p>
5632 <p>data type semantics: identifier.</p>
5633 <p>description: The destination port identifier in the tunnel
5634 transport header. For the transport protocols UDP, TCP, and SCTP,
5635 this is the destination port number given in the respective header.
5636 </p>
5637 </dd>
5638 </dl>
5639
5640 <p>
5641 Before Open vSwitch 2.5.90, <ref column="other_config"
5642 key="enable-tunnel-sampling"/> was only supported with per-bridge
5643 sampling, and ignored otherwise. Open vSwitch 2.5.90 and later support
5644 <ref column="other_config" key="enable-tunnel-sampling"/> for
5645 per-bridge and per-flow sampling.
5646 </p>
5647 </column>
5648
5649 <column name="other_config" key="virtual_obs_id"
5650 type='{"type": "string"}'>
5651 <p>
5652 A string that accompanies each IPFIX flow record. Its intended use is
5653 for the ``virtual observation ID,'' an identifier of a virtual
5654 observation point that is locally unique in a virtual network. It
5655 describes a location in the virtual network where IP packets can be
5656 observed. The maximum length is 254 bytes. If not specified, the
5657 field is omitted from the IPFIX flow record.
5658 </p>
5659
5660 <p>
5661 The following enterprise entity reports the specified virtual
5662 observation ID:
5663 </p>
5664
5665 <dl>
5666 <dt>virtualObsID:</dt>
5667 <dd>
5668 <p>ID: 898, and enterprise ID 6876 (VMware).</p>
5669 <p>type: variable-length string.</p>
5670 <p>data type semantics: identifier.</p>
5671 <p>description: A virtual observation domain ID that is locally
5672 unique in a virtual network.
5673 </p>
5674 </dd>
5675 </dl>
5676
5677 <p>
5678 This feature was introduced in Open vSwitch 2.5.90.
5679 </p>
5680 </column>
5681
5682 <group title="Per-Bridge Sampling">
5683 <p>
5684 These values affect only per-bridge sampling. See above for a
5685 description of the differences between per-bridge and flow-based
5686 sampling.
5687 </p>
5688
5689 <column name="sampling">
5690 The rate at which packets should be sampled and sent to each target
5691 collector. If not specified, defaults to 400, which means one out of
5692 400 packets, on average, will be sent to each target collector.
5693 </column>
5694
5695 <column name="obs_domain_id">
5696 The IPFIX Observation Domain ID sent in each IPFIX packet. If not
5697 specified, defaults to 0.
5698 </column>
5699
5700 <column name="obs_point_id">
5701 The IPFIX Observation Point ID sent in each IPFIX flow record. If not
5702 specified, defaults to 0.
5703 </column>
5704
5705 <column name="other_config" key="enable-input-sampling"
5706 type='{"type": "boolean"}'>
5707 By default, Open vSwitch samples and reports flows at bridge port input
5708 in IPFIX flow records. Set this column to <code>false</code> to
5709 disable input sampling.
5710 </column>
5711
5712 <column name="other_config" key="enable-output-sampling"
5713 type='{"type": "boolean"}'>
5714 By default, Open vSwitch samples and reports flows at bridge port
5715 output in IPFIX flow records. Set this column to <code>false</code> to
5716 disable output sampling.
5717 </column>
5718 </group>
5719
5720 <group title="Common Columns">
5721 The overall purpose of these columns is described under <code>Common
5722 Columns</code> at the beginning of this document.
5723
5724 <column name="external_ids"/>
5725 </group>
5726 </table>
5727
5728 <table name="Flow_Sample_Collector_Set">
5729 <p>
5730 A set of IPFIX collectors of packet samples generated by OpenFlow
5731 <code>sample</code> actions. This table is used only for IPFIX
5732 flow-based sampling, not for per-bridge sampling (see the <ref
5733 table="IPFIX"/> table for a description of the two forms).
5734 </p>
5735
5736 <column name="id">
5737 The ID of this collector set, unique among the bridge's
5738 collector sets, to be used as the <code>collector_set_id</code>
5739 in OpenFlow <code>sample</code> actions.
5740 </column>
5741
5742 <column name="bridge">
5743 The bridge into which OpenFlow <code>sample</code> actions can
5744 be added to send packet samples to this set of IPFIX collectors.
5745 </column>
5746
5747 <column name="ipfix">
5748 Configuration of the set of IPFIX collectors to send one flow
5749 record per sampled packet to.
5750 </column>
5751
5752 <group title="Common Columns">
5753 The overall purpose of these columns is described under <code>Common
5754 Columns</code> at the beginning of this document.
5755
5756 <column name="external_ids"/>
5757 </group>
5758 </table>
5759
5760 <table name="AutoAttach">
5761 <p>
5762 Auto Attach configuration within a bridge. The IETF Auto-Attach SPBM
5763 draft standard describes a compact method of using IEEE 802.1AB Link
5764 Layer Discovery Protocol (LLDP) together with a IEEE 802.1aq Shortest
5765 Path Bridging (SPB) network to automatically attach network devices
5766 to individual services in a SPB network. The intent here is to allow
5767 network applications and devices using OVS to be able to easily take
5768 advantage of features offered by industry standard SPB networks.
5769 </p>
5770
5771 <p>
5772 Auto Attach (AA) uses LLDP to communicate between a directly connected
5773 Auto Attach Client (AAC) and Auto Attach Server (AAS). The LLDP protocol
5774 is extended to add two new Type-Length-Value tuples (TLVs). The first
5775 new TLV supports the ongoing discovery of directly connected AA
5776 correspondents. Auto Attach operates by regularly transmitting AA
5777 discovery TLVs between the AA client and AA server. By exchanging these
5778 discovery messages, both the AAC and AAS learn the system name and
5779 system description of their peer. In the OVS context, OVS operates as
5780 the AA client and the AA server resides on a switch at the edge of the
5781 SPB network.
5782 </p>
5783
5784 <p>
5785 Once AA discovery has been completed the AAC then uses the second new TLV
5786 to deliver identifier mappings from the AAC to the AAS. A primary feature
5787 of Auto Attach is to facilitate the mapping of VLANs defined outside the
5788 SPB network onto service ids (ISIDs) defined within the SPM network. By
5789 doing so individual external VLANs can be mapped onto specific SPB
5790 network services. These VLAN id to ISID mappings can be configured and
5791 managed locally using new options added to the ovs-vsctl command.
5792 </p>
5793
5794 <p>
5795 The Auto Attach OVS feature does not provide a full implementation of
5796 the LLDP protocol. Support for the mandatory TLVs as defined by the LLDP
5797 standard and support for the AA TLV extensions is provided. LLDP
5798 protocol support in OVS can be enabled or disabled on a port by port
5799 basis. LLDP support is disabled by default.
5800 </p>
5801
5802 <column name="system_name">
5803 The system_name string is exported in LLDP messages. It should uniquely
5804 identify the bridge in the network.
5805 </column>
5806
5807 <column name="system_description">
5808 The system_description string is exported in LLDP messages. It should
5809 describe the type of software and hardware.
5810 </column>
5811
5812 <column name="mappings">
5813 A mapping from SPB network Individual Service Identifier (ISID) to VLAN
5814 id.
5815 </column>
5816 </table>
5817 </database>