]> git.proxmox.com Git - mirror_ovs.git/blob - vswitchd/vswitch.xml
dpif-netdev: Per-port configurable EMC.
[mirror_ovs.git] / vswitchd / vswitch.xml
1 <?xml version="1.0" encoding="utf-8"?>
2 <database name="ovs-vswitchd.conf.db" title="Open vSwitch Configuration Database">
3 <p>
4 A database with this schema holds the configuration for one Open
5 vSwitch daemon. The top-level configuration for the daemon is the
6 <ref table="Open_vSwitch"/> table, which must have exactly one
7 record. Records in other tables are significant only when they
8 can be reached directly or indirectly from the <ref
9 table="Open_vSwitch"/> table. Records that are not reachable from
10 the <ref table="Open_vSwitch"/> table are automatically deleted
11 from the database, except for records in a few distinguished
12 ``root set'' tables.
13 </p>
14
15 <h2>Common Columns</h2>
16
17 <p>
18 Most tables contain two special columns, named <code>other_config</code>
19 and <code>external_ids</code>. These columns have the same form and
20 purpose each place that they appear, so we describe them here to save space
21 later.
22 </p>
23
24 <dl>
25 <dt><code>other_config</code>: map of string-string pairs</dt>
26 <dd>
27 <p>
28 Key-value pairs for configuring rarely used features. Supported keys,
29 along with the forms taken by their values, are documented individually
30 for each table.
31 </p>
32 <p>
33 A few tables do not have <code>other_config</code> columns because no
34 key-value pairs have yet been defined for them.
35 </p>
36 </dd>
37
38 <dt><code>external_ids</code>: map of string-string pairs</dt>
39 <dd>
40 Key-value pairs for use by external frameworks that integrate with Open
41 vSwitch, rather than by Open vSwitch itself. System integrators should
42 either use the Open vSwitch development mailing list to coordinate on
43 common key-value definitions, or choose key names that are likely to be
44 unique. In some cases, where key-value pairs have been defined that are
45 likely to be widely useful, they are documented individually for each
46 table.
47 </dd>
48 </dl>
49
50 <table name="Open_vSwitch" title="Open vSwitch configuration.">
51 Configuration for an Open vSwitch daemon. There must be exactly
52 one record in the <ref table="Open_vSwitch"/> table.
53
54 <group title="Configuration">
55 <column name="bridges">
56 Set of bridges managed by the daemon.
57 </column>
58
59 <column name="ssl">
60 SSL used globally by the daemon.
61 </column>
62
63 <column name="external_ids" key="system-id">
64 A unique identifier for the Open vSwitch's physical host.
65 The form of the identifier depends on the type of the host.
66 On a Citrix XenServer, this will likely be the same as
67 <ref column="external_ids" key="xs-system-uuid"/>.
68 </column>
69
70 <column name="external_ids" key="xs-system-uuid">
71 The Citrix XenServer universally unique identifier for the physical
72 host as displayed by <code>xe host-list</code>.
73 </column>
74
75 <column name="external_ids" key="hostname">
76 The hostname for the host running Open vSwitch. This is a fully
77 qualified domain name since version 2.6.2.
78 </column>
79
80 <column name="external_ids" key="rundir">
81 In Open vSwitch 2.8 and later, the run directory of the running Open
82 vSwitch daemon. This directory is used for runtime state such as
83 control and management sockets. The value of <ref
84 column="other_config" key="vhost-sock-dir"/> is relative to this
85 directory.
86 </column>
87
88 <column name="other_config" key="stats-update-interval"
89 type='{"type": "integer", "minInteger": 5000}'>
90 <p>
91 Interval for updating statistics to the database, in milliseconds.
92 This option will affect the update of the <code>statistics</code>
93 column in the following tables: <code>Port</code>, <code>Interface
94 </code>, <code>Mirror</code>.
95 </p>
96 <p>
97 Default value is 5000 ms.
98 </p>
99 <p>
100 Getting statistics more frequently can be achieved via OpenFlow.
101 </p>
102 </column>
103
104 <column name="other_config" key="flow-restore-wait"
105 type='{"type": "boolean"}'>
106 <p>
107 When <code>ovs-vswitchd</code> starts up, it has an empty flow table
108 and therefore it handles all arriving packets in its default fashion
109 according to its configuration, by dropping them or sending them to
110 an OpenFlow controller or switching them as a standalone switch.
111 This behavior is ordinarily desirable. However, if
112 <code>ovs-vswitchd</code> is restarting as part of a ``hot-upgrade,''
113 then this leads to a relatively long period during which packets are
114 mishandled.
115 </p>
116 <p>
117 This option allows for improvement. When <code>ovs-vswitchd</code>
118 starts with this value set as <code>true</code>, it will neither
119 flush or expire previously set datapath flows nor will it send and
120 receive any packets to or from the datapath. When this value is
121 later set to <code>false</code>, <code>ovs-vswitchd</code> will
122 start receiving packets from the datapath and re-setup the flows.
123 </p>
124 <p>
125 Additionally, <code>ovs-vswitchd</code> is prevented from connecting
126 to controllers when this value is set to <code>true</code>. This
127 prevents controllers from making changes to the flow table in the
128 middle of flow restoration, which could result in undesirable
129 intermediate states. Once this value has been set to
130 <code>false</code> and the desired flow state has been
131 restored, <code>ovs-vswitchd</code> will be able to reconnect to
132 controllers and process any new flow table modifications.
133 </p>
134 <p>
135 Thus, with this option, the procedure for a hot-upgrade of
136 <code>ovs-vswitchd</code> becomes roughly the following:
137 </p>
138 <ol>
139 <li>
140 Stop <code>ovs-vswitchd</code>.
141 </li>
142 <li>
143 Set <ref column="other_config" key="flow-restore-wait"/>
144 to <code>true</code>.
145 </li>
146 <li>
147 Start <code>ovs-vswitchd</code>.
148 </li>
149 <li>
150 Use <code>ovs-ofctl</code> (or some other program, such as an
151 OpenFlow controller) to restore the OpenFlow flow table
152 to the desired state.
153 </li>
154 <li>
155 Set <ref column="other_config" key="flow-restore-wait"/>
156 to <code>false</code> (or remove it entirely from the database).
157 </li>
158 </ol>
159 <p>
160 The <code>ovs-ctl</code>'s ``restart'' and ``force-reload-kmod''
161 functions use the above config option during hot upgrades.
162 </p>
163 </column>
164
165 <column name="other_config" key="flow-limit"
166 type='{"type": "integer", "minInteger": 0}'>
167 <p>
168 The maximum
169 number of flows allowed in the datapath flow table. Internally OVS
170 will choose a flow limit which will likely be lower than this number,
171 based on real time network conditions. Tweaking this value is
172 discouraged unless you know exactly what you're doing.
173 </p>
174 <p>
175 The default is 200000.
176 </p>
177 </column>
178
179 <column name="other_config" key="max-idle"
180 type='{"type": "integer", "minInteger": 500}'>
181 <p>
182 The maximum time (in ms) that idle flows will remain cached in the
183 datapath. Internally OVS will check the validity and activity for
184 datapath flows regularly and may expire flows quicker than this
185 number, based on real time network conditions. Tweaking this
186 value is discouraged unless you know exactly what you're doing.
187 </p>
188 <p>
189 The default is 10000.
190 </p>
191 </column>
192
193 <column name="other_config" key="hw-offload"
194 type='{"type": "boolean"}'>
195 <p>
196 Set this value to <code>true</code> to enable netdev flow offload.
197 </p>
198 <p>
199 The default value is <code>false</code>. Changing this value requires
200 restarting the daemon
201 </p>
202 <p>
203 Currently Open vSwitch supports hardware offloading on
204 Linux systems. On other systems, this value is ignored.
205 This functionality is considered 'experimental'. Depending
206 on which OpenFlow matches and actions are configured,
207 which kernel version is used, and what hardware is
208 available, Open vSwitch may not be able to offload
209 functionality to hardware.
210 </p>
211 </column>
212
213 <column name="other_config" key="tc-policy"
214 type='{"type": "string",
215 "enum": ["set", ["none", "skip_sw", "skip_hw"]]}'>
216 <p>
217 Specified the policy used with HW offloading.
218 Options:
219 <dl>
220 <dt><code>none</code></dt>
221 <dd>Add software rule and offload rule to HW.</dd>
222 <dt><code>skip_sw</code></dt>
223 <dd>Offload rule to HW only.</dd>
224 <dt><code>skip_hw</code></dt>
225 <dd>Add software rule without offloading rule to HW.</dd>
226 </dl>
227 </p>
228 <p>
229 This is only relevant if
230 <ref column="other_config" key="hw-offload"/> is enabled.
231 </p>
232 <p>
233 The default value is <code>none</code>.
234 </p>
235 </column>
236
237 <column name="other_config" key="dpdk-init"
238 type='{"type": "string",
239 "enum": ["set", ["false", "true", "try"]]}'>
240 <p>
241 Set this value to <code>true</code> or <code>try</code> to enable
242 runtime support for DPDK ports. The vswitch must have compile-time
243 support for DPDK as well.
244 </p>
245 <p>
246 A value of <code>true</code> will cause the ovs-vswitchd process to
247 abort if DPDK cannot be initialized. A value of <code>try</code>
248 will allow the ovs-vswitchd process to continue running even if DPDK
249 cannot be initialized.
250 </p>
251 <p>
252 The default value is <code>false</code>. Changing this value requires
253 restarting the daemon
254 </p>
255 <p>
256 If this value is <code>false</code> at startup, any dpdk ports which
257 are configured in the bridge will fail due to memory errors.
258 </p>
259 </column>
260
261 <column name="other_config" key="dpdk-lcore-mask"
262 type='{"type": "integer", "minInteger": 1}'>
263 <p>
264 Specifies the CPU cores where dpdk lcore threads should be spawned.
265 The DPDK lcore threads are used for DPDK library tasks, such as
266 library internal message processing, logging, etc. Value should be in
267 the form of a hex string (so '0x123') similar to the 'taskset' mask
268 input.
269 </p>
270 <p>
271 The lowest order bit corresponds to the first CPU core. A set bit
272 means the corresponding core is available and an lcore thread will be
273 created and pinned to it. If the input does not cover all cores,
274 those uncovered cores are considered not set.
275 </p>
276 <p>
277 For performance reasons, it is best to set this to a single core on
278 the system, rather than allow lcore threads to float.
279 </p>
280 <p>
281 If not specified, the value will be determined by choosing the lowest
282 CPU core from initial cpu affinity list. Otherwise, the value will be
283 passed directly to the DPDK library.
284 </p>
285 </column>
286
287 <column name="other_config" key="pmd-cpu-mask">
288 <p>
289 Specifies CPU mask for setting the cpu affinity of PMD (Poll
290 Mode Driver) threads. Value should be in the form of hex string,
291 similar to the dpdk EAL '-c COREMASK' option input or the 'taskset'
292 mask input.
293 </p>
294 <p>
295 The lowest order bit corresponds to the first CPU core. A set bit
296 means the corresponding core is available and a pmd thread will be
297 created and pinned to it. If the input does not cover all cores,
298 those uncovered cores are considered not set.
299 </p>
300 <p>
301 If not specified, one pmd thread will be created for each numa node
302 and pinned to any available core on the numa node by default.
303 </p>
304 </column>
305
306 <column name="other_config" key="dpdk-alloc-mem"
307 type='{"type": "integer", "minInteger": 0}'>
308 <p>
309 Specifies the amount of memory to preallocate from the hugepage pool,
310 regardless of socket. It is recommended that dpdk-socket-mem is used
311 instead.
312 </p>
313 </column>
314
315 <column name="other_config" key="dpdk-socket-mem"
316 type='{"type": "string"}'>
317 <p>
318 Specifies the amount of memory to preallocate from the hugepage pool,
319 on a per-socket basis.
320 </p>
321 <p>
322 The specifier is a comma-separated string, in ascending order of CPU
323 socket. E.g. On a four socket system 1024,0,2048 would set socket 0
324 to preallocate 1024MB, socket 1 to preallocate 0MB, socket 2 to
325 preallocate 2048MB and socket 3 (no value given) to preallocate 0MB.
326 </p>
327 <p>
328 If dpdk-socket-mem and dpdk-alloc-mem are not specified, dpdk-socket-mem
329 will be used and the default value is 1024 for each numa node. If
330 dpdk-socket-mem and dpdk-alloc-mem are specified at same time,
331 dpdk-socket-mem will be used as default. Changing this value
332 requires restarting the daemon.
333 </p>
334 </column>
335
336 <column name="other_config" key="dpdk-hugepage-dir"
337 type='{"type": "string"}'>
338 <p>
339 Specifies the path to the hugetlbfs mount point.
340 </p>
341 <p>
342 If not specified, this will be guessed by the DPDK library (default
343 is /dev/hugepages). Changing this value requires restarting the
344 daemon.
345 </p>
346 </column>
347
348 <column name="other_config" key="dpdk-extra"
349 type='{"type": "string"}'>
350 <p>
351 Specifies additional eal command line arguments for DPDK.
352 </p>
353 <p>
354 The default is empty. Changing this value requires restarting the
355 daemon
356 </p>
357 </column>
358
359 <column name="other_config" key="vhost-sock-dir"
360 type='{"type": "string"}'>
361 <p>
362 Specifies a relative path from <ref column="external_ids"
363 key="rundir"/> to the vhost-user unix domain socket files. If this
364 value is unset, the sockets are put directly in <ref
365 column="external_ids" key="rundir"/>.
366 </p>
367 <p>
368 Changing this value requires restarting the daemon.
369 </p>
370 </column>
371
372 <column name="other_config" key="vhost-iommu-support"
373 type='{"type": "boolean"}'>
374 <p>
375 vHost IOMMU is a security feature, which restricts the vhost memory
376 that a virtio device may access. vHost IOMMU support is disabled by
377 default, due to a bug in QEMU implementations of the vhost REPLY_ACK
378 protocol, (on which vHost IOMMU relies) prior to v2.9.1. Setting this
379 value to <code>true</code> enables vHost IOMMU support for vHost User
380 Client ports in OvS-DPDK, starting from DPDK v17.11.
381 </p>
382 <p>
383 Changing this value requires restarting the daemon.
384 </p>
385 </column>
386
387 <column name="other_config" key="per-port-memory"
388 type='{"type": "boolean"}'>
389 <p>
390 By default OVS DPDK uses a shared memory model wherein devices
391 that have the same MTU and socket values can share the same
392 mempool. Setting this value to <code>true</code> changes this
393 behaviour. Per port memory allow DPDK devices to use private
394 memory per device. This can provide greater transparency as
395 regards memory usage but potentially at the cost of greater memory
396 requirements.
397 </p>
398 <p>
399 Changing this value requires restarting the daemon if dpdk-init has
400 already been set to true.
401 </p>
402 </column>
403
404 <column name="other_config" key="tx-flush-interval"
405 type='{"type": "integer",
406 "minInteger": 0, "maxInteger": 1000000}'>
407 <p>
408 Specifies the time in microseconds that a packet can wait in output
409 batch for sending i.e. amount of time that packet can spend in an
410 intermediate output queue before sending to netdev.
411 This option can be used to configure balance between throughput
412 and latency. Lower values decreases latency while higher values
413 may be useful to achieve higher performance.
414 </p>
415 <p>
416 Defaults to 0 i.e. instant packet sending (latency optimized).
417 </p>
418 </column>
419
420 <column name="other_config" key="pmd-perf-metrics"
421 type='{"type": "boolean"}'>
422 <p>
423 Enables recording of detailed PMD performance metrics for analysis
424 and trouble-shooting. This can have a performance impact in the
425 order of 1%.
426 </p>
427 <p>
428 Defaults to false but can be changed at any time.
429 </p>
430 </column>
431
432 <column name="other_config" key="smc-enable"
433 type='{"type": "boolean"}'>
434 <p>
435 Signature match cache or SMC is a cache between EMC and megaflow
436 cache. It does not store the full key of the flow, so it is more
437 memory efficient comparing to EMC cache. SMC is especially useful
438 when flow count is larger than EMC capacity.
439 </p>
440 <p>
441 Defaults to false but can be changed at any time.
442 </p>
443 </column>
444
445 <column name="other_config" key="pmd-rxq-assign"
446 type='{"type": "string",
447 "enum": ["set", ["cycles", "roundrobin"]]}'>
448 <p>
449 Specifies how RX queues will be automatically assigned to CPU cores.
450 Options:
451 <dl>
452 <dt><code>cycles</code></dt>
453 <dd>Rxqs will be sorted by order of measured processing cycles
454 before being assigned to CPU cores.</dd>
455 <dt><code>roundrobin</code></dt>
456 <dd>Rxqs will be round-robined across CPU cores.</dd>
457 </dl>
458 </p>
459 <p>
460 The default value is <code>cycles</code>.
461 </p>
462 <p>
463 Changing this value will affect an automatic re-assignment of Rxqs to
464 CPUs. Note: Rxqs mapped to CPU cores with
465 <code>pmd-rxq-affinity</code> are unaffected.
466 </p>
467 </column>
468
469 <column name="other_config" key="n-handler-threads"
470 type='{"type": "integer", "minInteger": 1}'>
471 <p>
472 Specifies the number of threads for software datapaths to use for
473 handling new flows. The default the number of online CPU cores minus
474 the number of revalidators.
475 </p>
476 <p>
477 This configuration is per datapath. If you have more than one
478 software datapath (e.g. some <code>system</code> bridges and some
479 <code>netdev</code> bridges), then the total number of threads is
480 <code>n-handler-threads</code> times the number of software
481 datapaths.
482 </p>
483 </column>
484
485 <column name="other_config" key="n-revalidator-threads"
486 type='{"type": "integer", "minInteger": 1}'>
487 <p>
488 Specifies the number of threads for software datapaths to use for
489 revalidating flows in the datapath. Typically, there is a direct
490 correlation between the number of revalidator threads, and the number
491 of flows allowed in the datapath. The default is the number of cpu
492 cores divided by four plus one. If <code>n-handler-threads</code> is
493 set, the default changes to the number of cpu cores minus the number
494 of handler threads.
495 </p>
496 <p>
497 This configuration is per datapath. If you have more than one
498 software datapath (e.g. some <code>system</code> bridges and some
499 <code>netdev</code> bridges), then the total number of threads is
500 <code>n-handler-threads</code> times the number of software
501 datapaths.
502 </p>
503 </column>
504
505 <column name="other_config" key="emc-insert-inv-prob"
506 type='{"type": "integer", "minInteger": 0, "maxInteger": 4294967295}'>
507 <p>
508 Specifies the inverse probability (1/emc-insert-inv-prob) of a flow
509 being inserted into the Exact Match Cache (EMC). On average one in
510 every <code>emc-insert-inv-prob</code> packets that generate a unique
511 flow will cause an insertion into the EMC.
512
513 A value of 1 will result in an insertion for every flow (1/1 = 100%)
514 whereas a value of zero will result in no insertions and essentially
515 disable the EMC.
516 </p>
517 <p>
518 Defaults to 100 ie. there is (1/100 =) 1% chance of EMC insertion.
519 </p>
520 </column>
521
522 <column name="other_config" key="vlan-limit"
523 type='{"type": "integer", "minInteger": 0}'>
524 <p>
525 Limits the number of VLAN headers that can be matched to the
526 specified number. Further VLAN headers will be treated as payload,
527 e.g. a packet with more 802.1q headers will match Ethernet type
528 0x8100.
529 </p>
530
531 <p>
532 Open vSwitch userspace currently supports at most 2 VLANs, and each
533 datapath has its own limit. If <code>vlan-limit</code> is nonzero,
534 it acts as a further limit.
535 </p>
536
537 <p>
538 If this value is absent, the default is currently 1. This maintains
539 backward compatibility with controllers that were designed for use
540 with Open vSwitch versions earlier than 2.8, which only supported one
541 VLAN.
542 </p>
543 </column>
544 <column name="other_config" key="bundle-idle-timeout"
545 type='{"type": "integer", "minInteger": 1}'>
546 <p>
547 The maximum time (in seconds) that idle bundles will wait
548 to be expired since it was either opened, modified or closed.
549 </p>
550 <p>
551 OpenFlow specification mandates the timeout to be at least one
552 second. The default is 10 seconds.
553 </p>
554 </column>
555
556 <column name="other_config" key="offload-rebalance"
557 type='{"type": "boolean"}'>
558 <p>
559 Configures HW offload rebalancing, that allows to dynamically
560 offload and un-offload flows while an offload-device is out of
561 resources (OOR). This policy allows flows to be selected for
562 offloading based on the packets-per-second (pps) rate of flows.
563 </p>
564 <p>
565 Set this value to <code>true</code> to enable this option.
566 </p>
567 <p>
568 The default value is <code>false</code>. Changing this value requires
569 restarting the daemon.
570 </p>
571 <p>
572 This is only relevant if HW offloading is enabled (hw-offload).
573 When this policy is enabled, it also requires 'tc-policy' to
574 be set to 'skip_sw'.
575 </p>
576 </column>
577 <column name="other_config" key="pmd-auto-lb"
578 type='{"type": "boolean"}'>
579 <p>
580 Configures PMD Auto Load Balancing that allows automatic assignment of
581 RX queues to PMDs if any of PMDs is overloaded (i.e. processing cycles
582 > 95%).
583 </p>
584 <p>
585 It uses current scheme of cycle based assignment of RX queues that
586 are not statically pinned to PMDs.
587 </p>
588 <p>
589 The default value is <code>false</code>.
590 </p>
591 <p>
592 Set this value to <code>true</code> to enable this option. It is
593 currently disabled by default and an experimental feature.
594 </p>
595 <p>
596 This only comes in effect if cycle based assignment is enabled and
597 there are more than one non-isolated PMDs present and at least one of
598 it polls more than one queue.
599 </p>
600 </column>
601 <column name="other_config" key="pmd-auto-lb-rebal-interval"
602 type='{"type": "integer",
603 "minInteger": 0, "maxInteger": 20000}'>
604 <p>
605 The minimum time (in minutes) 2 consecutive PMD Auto Load Balancing
606 iterations.
607 </p>
608 <p>
609 The defaul value is 1 min. If configured to 0 then it would be
610 converted to default value i.e. 1 min
611 </p>
612 <p>
613 This option can be configured to avoid frequent trigger of auto load
614 balancing of PMDs. For e.g. set the value (in min) such that it occurs
615 once in few hours or a day or a week.
616 </p>
617 </column>
618 </group>
619 <group title="Status">
620 <column name="next_cfg">
621 Sequence number for client to increment. When a client modifies
622 any part of the database configuration and wishes to wait for
623 Open vSwitch to finish applying the changes, it may increment
624 this sequence number.
625 </column>
626
627 <column name="cur_cfg">
628 Sequence number that Open vSwitch sets to the current value of
629 <ref column="next_cfg"/> after it finishes applying a set of
630 configuration changes.
631 </column>
632
633 <column name="dpdk_initialized">
634 True if <ref column="other_config" key="dpdk-init"/> is set to
635 true and the DPDK library is successfully initialized.
636 </column>
637
638 <group title="Statistics">
639 <p>
640 The <code>statistics</code> column contains key-value pairs that
641 report statistics about a system running an Open vSwitch. These are
642 updated periodically (currently, every 5 seconds). Key-value pairs
643 that cannot be determined or that do not apply to a platform are
644 omitted.
645 </p>
646
647 <column name="other_config" key="enable-statistics"
648 type='{"type": "boolean"}'>
649 Statistics are disabled by default to avoid overhead in the common
650 case when statistics gathering is not useful. Set this value to
651 <code>true</code> to enable populating the <ref column="statistics"/>
652 column or to <code>false</code> to explicitly disable it.
653 </column>
654
655 <column name="statistics" key="cpu"
656 type='{"type": "integer", "minInteger": 1}'>
657 <p>
658 Number of CPU processors, threads, or cores currently online and
659 available to the operating system on which Open vSwitch is running,
660 as an integer. This may be less than the number installed, if some
661 are not online or if they are not available to the operating
662 system.
663 </p>
664 <p>
665 Open vSwitch userspace processes are not multithreaded, but the
666 Linux kernel-based datapath is.
667 </p>
668 </column>
669
670 <column name="statistics" key="load_average">
671 A comma-separated list of three floating-point numbers,
672 representing the system load average over the last 1, 5, and 15
673 minutes, respectively.
674 </column>
675
676 <column name="statistics" key="memory">
677 <p>
678 A comma-separated list of integers, each of which represents a
679 quantity of memory in kilobytes that describes the operating
680 system on which Open vSwitch is running. In respective order,
681 these values are:
682 </p>
683
684 <ol>
685 <li>Total amount of RAM allocated to the OS.</li>
686 <li>RAM allocated to the OS that is in use.</li>
687 <li>RAM that can be flushed out to disk or otherwise discarded
688 if that space is needed for another purpose. This number is
689 necessarily less than or equal to the previous value.</li>
690 <li>Total disk space allocated for swap.</li>
691 <li>Swap space currently in use.</li>
692 </ol>
693
694 <p>
695 On Linux, all five values can be determined and are included. On
696 other operating systems, only the first two values can be
697 determined, so the list will only have two values.
698 </p>
699 </column>
700
701 <column name="statistics" key="process_NAME">
702 <p>
703 One such key-value pair, with <code>NAME</code> replaced by
704 a process name, will exist for each running Open vSwitch
705 daemon process, with <var>name</var> replaced by the
706 daemon's name (e.g. <code>process_ovs-vswitchd</code>). The
707 value is a comma-separated list of integers. The integers
708 represent the following, with memory measured in kilobytes
709 and durations in milliseconds:
710 </p>
711
712 <ol>
713 <li>The process's virtual memory size.</li>
714 <li>The process's resident set size.</li>
715 <li>The amount of user and system CPU time consumed by the
716 process.</li>
717 <li>The number of times that the process has crashed and been
718 automatically restarted by the monitor.</li>
719 <li>The duration since the process was started.</li>
720 <li>The duration for which the process has been running.</li>
721 </ol>
722
723 <p>
724 The interpretation of some of these values depends on whether the
725 process was started with the <option>--monitor</option>. If it
726 was not, then the crash count will always be 0 and the two
727 durations will always be the same. If <option>--monitor</option>
728 was given, then the crash count may be positive; if it is, the
729 latter duration is the amount of time since the most recent crash
730 and restart.
731 </p>
732
733 <p>
734 There will be one key-value pair for each file in Open vSwitch's
735 ``run directory'' (usually <code>/var/run/openvswitch</code>)
736 whose name ends in <code>.pid</code>, whose contents are a
737 process ID, and which is locked by a running process. The
738 <var>name</var> is taken from the pidfile's name.
739 </p>
740
741 <p>
742 Currently Open vSwitch is only able to obtain all of the above
743 detail on Linux systems. On other systems, the same key-value
744 pairs will be present but the values will always be the empty
745 string.
746 </p>
747 </column>
748
749 <column name="statistics" key="file_systems">
750 <p>
751 A space-separated list of information on local, writable file
752 systems. Each item in the list describes one file system and
753 consists in turn of a comma-separated list of the following:
754 </p>
755
756 <ol>
757 <li>Mount point, e.g. <code>/</code> or <code>/var/log</code>.
758 Any spaces or commas in the mount point are replaced by
759 underscores.</li>
760 <li>Total size, in kilobytes, as an integer.</li>
761 <li>Amount of storage in use, in kilobytes, as an integer.</li>
762 </ol>
763
764 <p>
765 This key-value pair is omitted if there are no local, writable
766 file systems or if Open vSwitch cannot obtain the needed
767 information.
768 </p>
769 </column>
770 </group>
771 </group>
772
773 <group title="Version Reporting">
774 <p>
775 These columns report the types and versions of the hardware and
776 software running Open vSwitch. We recommend in general that software
777 should test whether specific features are supported instead of relying
778 on version number checks. These values are primarily intended for
779 reporting to human administrators.
780 </p>
781
782 <column name="ovs_version">
783 The Open vSwitch version number, e.g. <code>1.1.0</code>.
784 </column>
785
786 <column name="db_version">
787 <p>
788 The database schema version number, e.g. <code>1.2.3</code>. See
789 ovsdb-tool(1) for an explanation of the numbering scheme.
790 </p>
791
792 <p>
793 The schema version is part of the database schema, so it can also be
794 retrieved by fetching the schema using the Open vSwitch database
795 protocol.
796 </p>
797 </column>
798
799 <column name="system_type">
800 <p>
801 An identifier for the type of system on top of which Open vSwitch
802 runs, e.g. <code>XenServer</code> or <code>KVM</code>.
803 </p>
804 <p>
805 System integrators are responsible for choosing and setting an
806 appropriate value for this column.
807 </p>
808 </column>
809
810 <column name="system_version">
811 <p>
812 The version of the system identified by <ref column="system_type"/>,
813 e.g. <code>5.6.100-39265p</code> on XenServer 5.6.100 build 39265.
814 </p>
815 <p>
816 System integrators are responsible for choosing and setting an
817 appropriate value for this column.
818 </p>
819 </column>
820
821 <column name="dpdk_version">
822 <p>
823 The version of the linked DPDK library.
824 </p>
825 </column>
826
827 </group>
828
829 <group title="Capabilities">
830 <p>
831 These columns report capabilities of the Open vSwitch instance.
832 </p>
833 <column name="datapath_types">
834 <p>
835 This column reports the different dpifs registered with the system.
836 These are the values that this instance supports in the <ref
837 column="datapath_type" table="Bridge"/> column of the <ref
838 table="Bridge"/> table.
839 </p>
840 </column>
841 <column name="iface_types">
842 <p>
843 This column reports the different netdevs registered with the system.
844 These are the values that this instance supports in the <ref
845 column="type" table="Interface"/> column of the <ref
846 table="Interface"/> table.
847 </p>
848 </column>
849 </group>
850
851 <group title="Database Configuration">
852 <p>
853 These columns primarily configure the Open vSwitch database
854 (<code>ovsdb-server</code>), not the Open vSwitch switch
855 (<code>ovs-vswitchd</code>). The OVSDB database also uses the <ref
856 column="ssl"/> settings.
857 </p>
858
859 <p>
860 The Open vSwitch switch does read the database configuration to
861 determine remote IP addresses to which in-band control should apply.
862 </p>
863
864 <column name="manager_options">
865 <p>
866 Database clients to which the Open vSwitch database server should
867 connect or to which it should listen, along with options for how
868 these connections should be configured. See the <ref
869 table="Manager"/> table for more information.
870 </p>
871
872 <p>
873 For this column to serve its purpose, <code>ovsdb-server</code> must
874 be configured to honor it. The easiest way to do this is to invoke
875 <code>ovsdb-server</code> with the option
876 <option>--remote=db:Open_vSwitch,Open_vSwitch,manager_options</option>
877 The startup scripts that accompany Open vSwitch do this by default.
878 </p>
879 </column>
880 </group>
881
882 <group title="IPsec">
883 <p>
884 These settings control the global configuration of IPsec tunnels. The
885 <code>options</code> column of the <code>Interface</code> table
886 configures IPsec for individual tunnels.
887 </p>
888 <p>
889 OVS IPsec supports the following three forms of authentication.
890 Currently, all IPsec tunnels must use the same form:
891 </p>
892 <ol>
893 <li>
894 Pre-shared keys: Omit the global settings. On each tunnel, set <ref
895 column="options" key="psk"/>.
896 </li>
897 <li>
898 Self-signed certificates: Set the <code>private_key</code> and
899 <code>certificate</code> global settings. On each tunnel, set <ref
900 column="options" key="remote_cert"/>. The remote certificate can be
901 self-signed.
902 </li>
903 <li>
904 CA-signed certificates: Set all of the global settings. On each
905 tunnel, set <ref column="options" key="remote_name"/> to the common
906 name (CN) of the remote certificate. The remote certificate must be
907 signed by the CA.
908 </li>
909 </ol>
910 <column name="other_config" key="private_key"
911 type='{"type": "string"}'>
912 <p>
913 Name of a PEM file containing the private key used as the switch's
914 identity for IPsec tunnels.
915 </p>
916 </column>
917 <column name="other_config" key="certificate"
918 type='{"type": "string"}'>
919 <p>
920 Name of a PEM file containing a certificate that certifies the
921 switch's private key, and identifies a trustworthy switch for IPsec
922 tunnels. The certificate must be x.509 version 3 and with the
923 string in common name (CN) also set in the subject alternative name
924 (SAN).
925 </p>
926 </column>
927 <column name="other_config" key="ca_cert"
928 type='{"type": "string"}'>
929 <p>
930 Name of a PEM file containing the CA certificate used to verify
931 that a remote switch of the IPsec tunnel is trustworthy.
932 </p>
933 </column>
934
935 <group title="Plaintext Tunnel Policy">
936 <p>
937 When an IPsec tunnel is configured in this database, multiple
938 independent components take responsibility for implementing it.
939 <code>ovs-vswitchd</code> and its datapath handle packet forwarding
940 to the tunnel and a separate daemon pushes the tunnel's IPsec policy
941 configuration to the kernel or other entity that implements it.
942 There is a race: if the former configuration completes before the
943 latter, then packets sent by the local host over the tunnel can be
944 transmitted in plaintext. Using this setting, OVS users can avoid
945 this undesirable situation.
946 </p>
947 <column name="other_config" key="ipsec_skb_mark"
948 type='{"type": "string"}'>
949 <p>
950 This setting takes the form
951 <code><var>value</var>/<var>mask</var></code>. If it is specified,
952 then the <code>skb_mark</code> field in every outgoing tunneled
953 packet sent in plaintext is compared against it and, if it matches,
954 the packet is dropped. This is a global setting that is applied to
955 every tunneled packet, regardless of whether IPsec encryption is
956 enabled for the tunnel, the type of tunnel, or whether OVS is
957 involved.
958 </p>
959
960 <p>
961 Example policies:
962 </p>
963
964 <dl>
965 <dt><code>1/1</code></dt>
966 <dd>
967 Drop all unencrypted tunneled packets in which the
968 least-significant bit of <code>skb_mark</code> is 1. This would
969 be a useful policy given an OpenFlow flow table that sets
970 <code>skb_mark</code> to 1 for traffic that should be encrypted.
971 The default <code>skb_mark</code> is 0, so this would not affect
972 other traffic.
973 </dd>
974
975 <dt><code>0/1</code></dt>
976 <dd>
977 Drop all unencrypted tunneled packets in which the
978 least-significant bit of <code>skb_mark</code> is 0. This would
979 be a useful policy if no unencrypted tunneled traffic should exit
980 the system without being specially whitelisted by setting
981 <code>skb_mark</code> to 1.
982 </dd>
983
984 <dt>(empty)</dt>
985 <dd>
986 If this setting is empty or unset, then all unencrypted tunneled
987 packets are transmitted in the usual way.
988 </dd>
989 </dl>
990 </column>
991 </group>
992 </group>
993
994 <group title="Common Columns">
995 The overall purpose of these columns is described under <code>Common
996 Columns</code> at the beginning of this document.
997
998 <column name="other_config"/>
999 <column name="external_ids"/>
1000 </group>
1001 </table>
1002
1003 <table name="Bridge">
1004 <p>
1005 Configuration for a bridge within an
1006 <ref table="Open_vSwitch"/>.
1007 </p>
1008 <p>
1009 A <ref table="Bridge"/> record represents an Ethernet switch with one or
1010 more ``ports,'' which are the <ref table="Port"/> records pointed to by
1011 the <ref table="Bridge"/>'s <ref column="ports"/> column.
1012 </p>
1013
1014 <group title="Core Features">
1015 <column name="name">
1016 <p>
1017 Bridge identifier. Must be unique among the names of ports,
1018 interfaces, and bridges on a host.
1019 </p>
1020
1021 <p>
1022 The name must be alphanumeric and must not contain forward or
1023 backward slashes. The name of a bridge is also the name of an <ref
1024 table="Interface"/> (and a <ref table="Port"/>) within the bridge, so
1025 the restrictions on the <ref table="Interface" column="name"/> column
1026 in the <ref table="Interface"/> table, particularly on length, also
1027 apply to bridge names. Refer to the documentation for <ref
1028 table="Interface"/> names for details.
1029 </p>
1030 </column>
1031
1032 <column name="ports">
1033 Ports included in the bridge.
1034 </column>
1035
1036 <column name="mirrors">
1037 Port mirroring configuration.
1038 </column>
1039
1040 <column name="netflow">
1041 NetFlow configuration.
1042 </column>
1043
1044 <column name="sflow">
1045 sFlow(R) configuration.
1046 </column>
1047
1048 <column name="ipfix">
1049 IPFIX configuration.
1050 </column>
1051
1052 <column name="flood_vlans">
1053 <p>
1054 VLAN IDs of VLANs on which MAC address learning should be disabled,
1055 so that packets are flooded instead of being sent to specific ports
1056 that are believed to contain packets' destination MACs. This should
1057 ordinarily be used to disable MAC learning on VLANs used for
1058 mirroring (RSPAN VLANs). It may also be useful for debugging.
1059 </p>
1060 <p>
1061 SLB bonding (see the <ref table="Port" column="bond_mode"/> column in
1062 the <ref table="Port"/> table) is incompatible with
1063 <code>flood_vlans</code>. Consider using another bonding mode or
1064 a different type of mirror instead.
1065 </p>
1066 </column>
1067
1068 <column name="auto_attach">
1069 Auto Attach configuration.
1070 </column>
1071 </group>
1072
1073 <group title="OpenFlow Configuration">
1074 <column name="controller">
1075 <p>
1076 OpenFlow controller set. If unset, then no OpenFlow controllers
1077 will be used.
1078 </p>
1079
1080 <p>
1081 If there are primary controllers, removing all of them clears the
1082 OpenFlow flow tables, group table, and meter table. If there are no
1083 primary controllers, adding one also clears these tables. Other
1084 changes to the set of controllers, such as adding or removing a
1085 service controller, adding another primary controller to supplement
1086 an existing primary controller, or removing only one of two primary
1087 controllers, have no effect on these tables.
1088 </p>
1089 </column>
1090
1091 <column name="flow_tables">
1092 Configuration for OpenFlow tables. Each pair maps from an OpenFlow
1093 table ID to configuration for that table.
1094 </column>
1095
1096 <column name="fail_mode">
1097 <p>When a controller is configured, it is, ordinarily, responsible
1098 for setting up all flows on the switch. Thus, if the connection to
1099 the controller fails, no new network connections can be set up.
1100 If the connection to the controller stays down long enough,
1101 no packets can pass through the switch at all. This setting
1102 determines the switch's response to such a situation. It may be set
1103 to one of the following:
1104 <dl>
1105 <dt><code>standalone</code></dt>
1106 <dd>If no message is received from the controller for three
1107 times the inactivity probe interval
1108 (see <ref column="inactivity_probe"/>), then Open vSwitch
1109 will take over responsibility for setting up flows. In
1110 this mode, Open vSwitch causes the bridge to act like an
1111 ordinary MAC-learning switch. Open vSwitch will continue
1112 to retry connecting to the controller in the background
1113 and, when the connection succeeds, it will discontinue its
1114 standalone behavior.</dd>
1115 <dt><code>secure</code></dt>
1116 <dd>Open vSwitch will not set up flows on its own when the
1117 controller connection fails or when no controllers are
1118 defined. The bridge will continue to retry connecting to
1119 any defined controllers forever.</dd>
1120 </dl>
1121 </p>
1122 <p>
1123 The default is <code>standalone</code> if the value is unset, but
1124 future versions of Open vSwitch may change the default.
1125 </p>
1126 <p>
1127 The <code>standalone</code> mode can create forwarding loops on a
1128 bridge that has more than one uplink port unless STP is enabled. To
1129 avoid loops on such a bridge, configure <code>secure</code> mode or
1130 enable STP (see <ref column="stp_enable"/>).
1131 </p>
1132 <p>When more than one controller is configured,
1133 <ref column="fail_mode"/> is considered only when none of the
1134 configured controllers can be contacted.</p>
1135 <p>
1136 Changing <ref column="fail_mode"/> when no primary controllers are
1137 configured clears the OpenFlow flow tables, group table, and meter
1138 table.
1139 </p>
1140 </column>
1141
1142 <column name="datapath_id">
1143 Reports the OpenFlow datapath ID in use. Exactly 16 hex digits.
1144 (Setting this column has no useful effect. Set <ref
1145 column="other-config" key="datapath-id"/> instead.)
1146 </column>
1147
1148 <column name="datapath_version">
1149 <p>
1150 Reports the version number of the Open vSwitch datapath in use.
1151 This allows management software to detect and report discrepancies
1152 between Open vSwitch userspace and datapath versions. (The <ref
1153 column="ovs_version" table="Open_vSwitch"/> column in the <ref
1154 table="Open_vSwitch"/> reports the Open vSwitch userspace version.)
1155 The version reported depends on the datapath in use:
1156 </p>
1157
1158 <ul>
1159 <li>
1160 When the kernel module included in the Open vSwitch source tree is
1161 used, this column reports the Open vSwitch version from which the
1162 module was taken.
1163 </li>
1164
1165 <li>
1166 When the kernel module that is part of the upstream Linux kernel is
1167 used, this column reports <code>&lt;unknown&gt;</code>.
1168 </li>
1169
1170 <li>
1171 When the datapath is built into the <code>ovs-vswitchd</code>
1172 binary, this column reports <code>&lt;built-in&gt;</code>. A
1173 built-in datapath is by definition the same version as the rest of
1174 the Open VSwitch userspace.
1175 </li>
1176
1177 <li>
1178 Other datapaths (such as the Hyper-V kernel datapath) currently
1179 report <code>&lt;unknown&gt;</code>.
1180 </li>
1181 </ul>
1182
1183 <p>
1184 A version discrepancy between <code>ovs-vswitchd</code> and the
1185 datapath in use is not normally cause for alarm. The Open vSwitch
1186 kernel datapaths for Linux and Hyper-V, in particular, are designed
1187 for maximum inter-version compatibility: any userspace version works
1188 with with any kernel version. Some reasons do exist to insist on
1189 particular user/kernel pairings. First, newer kernel versions add
1190 new features, that can only be used by new-enough userspace, e.g.
1191 VXLAN tunneling requires certain minimal userspace and kernel
1192 versions. Second, as an extension to the first reason, some newer
1193 kernel versions add new features for enhancing performance that only
1194 new-enough userspace versions can take advantage of.
1195 </p>
1196 </column>
1197
1198 <column name="other_config" key="datapath-id">
1199 Overrides the default OpenFlow datapath ID, setting it to the specified
1200 value specified in hex. The value must either have a <code>0x</code>
1201 prefix or be exactly 16 hex digits long. May not be all-zero.
1202 </column>
1203
1204 <column name="other_config" key="dp-desc">
1205 Human readable description of datapath. It is a maximum 256
1206 byte-long free-form string to describe the datapath for
1207 debugging purposes, e.g. <code>switch3 in room 3120</code>.
1208 </column>
1209
1210 <column name="other_config" key="disable-in-band"
1211 type='{"type": "boolean"}'>
1212 If set to <code>true</code>, disable in-band control on the bridge
1213 regardless of controller and manager settings.
1214 </column>
1215
1216 <column name="other_config" key="in-band-queue"
1217 type='{"type": "integer", "minInteger": 0, "maxInteger": 4294967295}'>
1218 A queue ID as a nonnegative integer. This sets the OpenFlow queue ID
1219 that will be used by flows set up by in-band control on this bridge.
1220 If unset, or if the port used by an in-band control flow does not have
1221 QoS configured, or if the port does not have a queue with the specified
1222 ID, the default queue is used instead.
1223 </column>
1224
1225 <column name="protocols">
1226 <p>
1227 List of OpenFlow protocols that may be used when negotiating
1228 a connection with a controller. OpenFlow 1.0, 1.1, 1.2, 1.3, and
1229 1.4 are enabled by default if this column is empty.
1230 </p>
1231
1232 <p>
1233 OpenFlow 1.5 and 1.6 are not enabled by default because their
1234 implementations are missing features. In addition, the OpenFlow 1.6
1235 specification is still under development and thus subject to change.
1236 </p>
1237 </column>
1238 </group>
1239
1240 <group title="Spanning Tree Configuration">
1241 <p>
1242 The IEEE 802.1D Spanning Tree Protocol (STP) is a network protocol
1243 that ensures loop-free topologies. It allows redundant links to
1244 be included in the network to provide automatic backup paths if
1245 the active links fails.
1246 </p>
1247
1248 <p>
1249 These settings configure the slower-to-converge but still widely
1250 supported version of Spanning Tree Protocol, sometimes known as
1251 802.1D-1998. Open vSwitch also supports the newer Rapid Spanning Tree
1252 Protocol (RSTP), documented later in the section titled <code>Rapid
1253 Spanning Tree Configuration</code>.
1254 </p>
1255
1256 <group title="STP Configuration">
1257 <column name="stp_enable" type='{"type": "boolean"}'>
1258 <p>
1259 Enable spanning tree on the bridge. By default, STP is disabled
1260 on bridges. Bond, internal, and mirror ports are not supported
1261 and will not participate in the spanning tree.
1262 </p>
1263
1264 <p>
1265 STP and RSTP are mutually exclusive. If both are enabled, RSTP
1266 will be used.
1267 </p>
1268 </column>
1269
1270 <column name="other_config" key="stp-system-id">
1271 The bridge's STP identifier (the lower 48 bits of the bridge-id)
1272 in the form
1273 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>.
1274 By default, the identifier is the MAC address of the bridge.
1275 </column>
1276
1277 <column name="other_config" key="stp-priority"
1278 type='{"type": "integer", "minInteger": 0, "maxInteger": 65535}'>
1279 The bridge's relative priority value for determining the root
1280 bridge (the upper 16 bits of the bridge-id). A bridge with the
1281 lowest bridge-id is elected the root. By default, the priority
1282 is 0x8000.
1283 </column>
1284
1285 <column name="other_config" key="stp-hello-time"
1286 type='{"type": "integer", "minInteger": 1, "maxInteger": 10}'>
1287 The interval between transmissions of hello messages by
1288 designated ports, in seconds. By default the hello interval is
1289 2 seconds.
1290 </column>
1291
1292 <column name="other_config" key="stp-max-age"
1293 type='{"type": "integer", "minInteger": 6, "maxInteger": 40}'>
1294 The maximum age of the information transmitted by the bridge
1295 when it is the root bridge, in seconds. By default, the maximum
1296 age is 20 seconds.
1297 </column>
1298
1299 <column name="other_config" key="stp-forward-delay"
1300 type='{"type": "integer", "minInteger": 4, "maxInteger": 30}'>
1301 The delay to wait between transitioning root and designated
1302 ports to <code>forwarding</code>, in seconds. By default, the
1303 forwarding delay is 15 seconds.
1304 </column>
1305
1306 <column name="other_config" key="mcast-snooping-aging-time"
1307 type='{"type": "integer", "minInteger": 1}'>
1308 <p>
1309 The maximum number of seconds to retain a multicast snooping entry for
1310 which no packets have been seen. The default is currently 300
1311 seconds (5 minutes). The value, if specified, is forced into a
1312 reasonable range, currently 15 to 3600 seconds.
1313 </p>
1314 </column>
1315
1316 <column name="other_config" key="mcast-snooping-table-size"
1317 type='{"type": "integer", "minInteger": 1}'>
1318 <p>
1319 The maximum number of multicast snooping addresses to learn. The
1320 default is currently 2048. The value, if specified, is forced into
1321 a reasonable range, currently 10 to 1,000,000.
1322 </p>
1323 </column>
1324 <column name="other_config" key="mcast-snooping-disable-flood-unregistered"
1325 type='{"type": "boolean"}'>
1326 <p>
1327 If set to <code>false</code>, unregistered multicast packets are forwarded
1328 to all ports.
1329 If set to <code>true</code>, unregistered multicast packets are forwarded
1330 to ports connected to multicast routers.
1331 </p>
1332 </column>
1333 </group>
1334
1335 <group title="STP Status">
1336 <p>
1337 These key-value pairs report the status of 802.1D-1998. They are
1338 present only if STP is enabled (via the <ref column="stp_enable"/>
1339 column).
1340 </p>
1341 <column name="status" key="stp_bridge_id">
1342 The bridge ID used in spanning tree advertisements, in the form
1343 <var>xxxx</var>.<var>yyyyyyyyyyyy</var> where the <var>x</var>s are
1344 the STP priority, the <var>y</var>s are the STP system ID, and each
1345 <var>x</var> and <var>y</var> is a hex digit.
1346 </column>
1347 <column name="status" key="stp_designated_root">
1348 The designated root for this spanning tree, in the same form as <ref
1349 column="status" key="stp_bridge_id"/>. If this bridge is the root,
1350 this will have the same value as <ref column="status"
1351 key="stp_bridge_id"/>, otherwise it will differ.
1352 </column>
1353 <column name="status" key="stp_root_path_cost">
1354 The path cost of reaching the designated bridge. A lower number is
1355 better. The value is 0 if this bridge is the root, otherwise it is
1356 higher.
1357 </column>
1358 </group>
1359 </group>
1360
1361 <group title="Rapid Spanning Tree">
1362 <p>
1363 Rapid Spanning Tree Protocol (RSTP), like STP, is a network protocol
1364 that ensures loop-free topologies. RSTP superseded STP with the
1365 publication of 802.1D-2004. Compared to STP, RSTP converges more
1366 quickly and recovers more quickly from failures.
1367 </p>
1368
1369 <group title="RSTP Configuration">
1370 <column name="rstp_enable" type='{"type": "boolean"}'>
1371 <p>
1372 Enable Rapid Spanning Tree on the bridge. By default, RSTP is disabled
1373 on bridges. Bond, internal, and mirror ports are not supported
1374 and will not participate in the spanning tree.
1375 </p>
1376
1377 <p>
1378 STP and RSTP are mutually exclusive. If both are enabled, RSTP
1379 will be used.
1380 </p>
1381 </column>
1382
1383 <column name="other_config" key="rstp-address">
1384 The bridge's RSTP address (the lower 48 bits of the bridge-id)
1385 in the form
1386 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>.
1387 By default, the address is the MAC address of the bridge.
1388 </column>
1389
1390 <column name="other_config" key="rstp-priority"
1391 type='{"type": "integer", "minInteger": 0, "maxInteger": 61440}'>
1392 The bridge's relative priority value for determining the root
1393 bridge (the upper 16 bits of the bridge-id). A bridge with the
1394 lowest bridge-id is elected the root. By default, the priority
1395 is 0x8000 (32768). This value needs to be a multiple of 4096,
1396 otherwise it's rounded to the nearest inferior one.
1397 </column>
1398
1399 <column name="other_config" key="rstp-ageing-time"
1400 type='{"type": "integer", "minInteger": 10, "maxInteger": 1000000}'>
1401 The Ageing Time parameter for the Bridge. The default value
1402 is 300 seconds.
1403 </column>
1404
1405 <column name="other_config" key="rstp-force-protocol-version"
1406 type='{"type": "integer"}'>
1407 The Force Protocol Version parameter for the Bridge. This
1408 can take the value 0 (STP Compatibility mode) or 2
1409 (the default, normal operation).
1410 </column>
1411
1412 <column name="other_config" key="rstp-max-age"
1413 type='{"type": "integer", "minInteger": 6, "maxInteger": 40}'>
1414 The maximum age of the information transmitted by the Bridge
1415 when it is the Root Bridge. The default value is 20.
1416 </column>
1417
1418 <column name="other_config" key="rstp-forward-delay"
1419 type='{"type": "integer", "minInteger": 4, "maxInteger": 30}'>
1420 The delay used by STP Bridges to transition Root and Designated
1421 Ports to Forwarding. The default value is 15.
1422 </column>
1423
1424 <column name="other_config" key="rstp-transmit-hold-count"
1425 type='{"type": "integer", "minInteger": 1, "maxInteger": 10}'>
1426 The Transmit Hold Count used by the Port Transmit state machine
1427 to limit transmission rate. The default value is 6.
1428 </column>
1429 </group>
1430
1431 <group title="RSTP Status">
1432 <p>
1433 These key-value pairs report the status of 802.1D-2004. They are
1434 present only if RSTP is enabled (via the <ref column="rstp_enable"/>
1435 column).
1436 </p>
1437 <column name="rstp_status" key="rstp_bridge_id">
1438 The bridge ID used in rapid spanning tree advertisements, in the form
1439 <var>x</var>.<var>yyy</var>.<var>zzzzzzzzzzzz</var> where
1440 <var>x</var> is the RSTP priority, the <var>y</var>s are a locally
1441 assigned system ID extension, the <var>z</var>s are the STP system
1442 ID, and each <var>x</var>, <var>y</var>, or <var>z</var> is a hex
1443 digit.
1444 </column>
1445 <column name="rstp_status" key="rstp_root_id">
1446 The root of this spanning tree, in the same form as <ref
1447 column="rstp_status" key="rstp_bridge_id"/>. If this bridge is the
1448 root, this will have the same value as <ref column="rstp_status"
1449 key="rstp_bridge_id"/>, otherwise it will differ.
1450 </column>
1451 <column name="rstp_status" key="rstp_root_path_cost"
1452 type='{"type": "integer", "minInteger": 0}'>
1453 The path cost of reaching the root. A lower number is better. The
1454 value is 0 if this bridge is the root, otherwise it is higher.
1455 </column>
1456 <column name="rstp_status" key="rstp_designated_id">
1457 The RSTP designated ID, in the same form as <ref column="rstp_status"
1458 key="rstp_bridge_id"/>.
1459 </column>
1460 <column name="rstp_status" key="rstp_designated_port_id">
1461 The RSTP designated port ID, as a 4-digit hex number.
1462 </column>
1463 <column name="rstp_status" key="rstp_bridge_port_id">
1464 The RSTP bridge port ID, as a 4-digit hex number.
1465 </column>
1466 </group>
1467 </group>
1468
1469 <group title="Multicast Snooping Configuration">
1470 Multicast snooping (RFC 4541) monitors the Internet Group Management
1471 Protocol (IGMP) and Multicast Listener Discovery traffic between hosts
1472 and multicast routers. The switch uses what IGMP and MLD snooping
1473 learns to forward multicast traffic only to interfaces that are connected
1474 to interested receivers. Currently it supports IGMPv1, IGMPv2, IGMPv3,
1475 MLDv1 and MLDv2 protocols.
1476
1477 <column name="mcast_snooping_enable">
1478 Enable multicast snooping on the bridge. For now, the default
1479 is disabled.
1480 </column>
1481 </group>
1482
1483 <group title="Other Features">
1484 <column name="datapath_type">
1485 Name of datapath provider. The kernel datapath has type
1486 <code>system</code>. The userspace datapath has type
1487 <code>netdev</code>. A manager may refer to the <ref
1488 table="Open_vSwitch" column="datapath_types"/> column of the <ref
1489 table="Open_vSwitch"/> table for a list of the types accepted by this
1490 Open vSwitch instance.
1491 </column>
1492
1493 <column name="external_ids" key="bridge-id">
1494 A unique identifier of the bridge. On Citrix XenServer this will
1495 commonly be the same as
1496 <ref column="external_ids" key="xs-network-uuids"/>.
1497 </column>
1498
1499 <column name="external_ids" key="xs-network-uuids">
1500 Semicolon-delimited set of universally unique identifier(s) for the
1501 network with which this bridge is associated on a Citrix XenServer
1502 host. The network identifiers are RFC 4122 UUIDs as displayed by,
1503 e.g., <code>xe network-list</code>.
1504 </column>
1505
1506 <column name="other_config" key="hwaddr">
1507 An Ethernet address in the form
1508 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>
1509 to set the hardware address of the local port and influence the
1510 datapath ID.
1511 </column>
1512
1513 <column name="other_config" key="forward-bpdu"
1514 type='{"type": "boolean"}'>
1515
1516 <p>
1517 Controls forwarding of BPDUs and other network control frames when
1518 NORMAL action is invoked. When this option is <code>false</code> or
1519 unset, frames with reserved Ethernet addresses (see table below) will
1520 not be forwarded. When this option is <code>true</code>, such frames
1521 will not be treated specially.
1522 </p>
1523
1524 <p>
1525 The above general rule has the following exceptions:
1526 </p>
1527
1528 <ul>
1529 <li>
1530 If STP is enabled on the bridge (see the <ref column="stp_enable"
1531 table="Bridge"/> column in the <ref table="Bridge"/> table), the
1532 bridge processes all received STP packets and never passes them to
1533 OpenFlow or forwards them. This is true even if STP is disabled on
1534 an individual port.
1535 </li>
1536
1537 <li>
1538 If LLDP is enabled on an interface (see the <ref column="lldp"
1539 table="Interface"/> column in the <ref table="Interface"/> table),
1540 the interface processes received LLDP packets and never passes them
1541 to OpenFlow or forwards them.
1542 </li>
1543 </ul>
1544
1545 <p>
1546 Set this option to <code>true</code> if the Open vSwitch bridge
1547 connects different Ethernet networks and is not configured to
1548 participate in STP.
1549 </p>
1550
1551 <p>
1552 This option affects packets with the following destination MAC
1553 addresses:
1554 </p>
1555
1556 <dl>
1557 <dt><code>01:80:c2:00:00:00</code></dt>
1558 <dd>IEEE 802.1D Spanning Tree Protocol (STP).</dd>
1559
1560 <dt><code>01:80:c2:00:00:01</code></dt>
1561 <dd>IEEE Pause frame.</dd>
1562
1563 <dt><code>01:80:c2:00:00:0<var>x</var></code></dt>
1564 <dd>Other reserved protocols.</dd>
1565
1566 <dt><code>00:e0:2b:00:00:00</code></dt>
1567 <dd>Extreme Discovery Protocol (EDP).</dd>
1568
1569 <dt>
1570 <code>00:e0:2b:00:00:04</code> and <code>00:e0:2b:00:00:06</code>
1571 </dt>
1572 <dd>Ethernet Automatic Protection Switching (EAPS).</dd>
1573
1574 <dt><code>01:00:0c:cc:cc:cc</code></dt>
1575 <dd>
1576 Cisco Discovery Protocol (CDP), VLAN Trunking Protocol (VTP),
1577 Dynamic Trunking Protocol (DTP), Port Aggregation Protocol (PAgP),
1578 and others.
1579 </dd>
1580
1581 <dt><code>01:00:0c:cc:cc:cd</code></dt>
1582 <dd>Cisco Shared Spanning Tree Protocol PVSTP+.</dd>
1583
1584 <dt><code>01:00:0c:cd:cd:cd</code></dt>
1585 <dd>Cisco STP Uplink Fast.</dd>
1586
1587 <dt><code>01:00:0c:00:00:00</code></dt>
1588 <dd>Cisco Inter Switch Link.</dd>
1589
1590 <dt><code>01:00:0c:cc:cc:c<var>x</var></code></dt>
1591 <dd>Cisco CFM.</dd>
1592 </dl>
1593 </column>
1594
1595 <column name="other_config" key="mac-aging-time"
1596 type='{"type": "integer", "minInteger": 1}'>
1597 <p>
1598 The maximum number of seconds to retain a MAC learning entry for
1599 which no packets have been seen. The default is currently 300
1600 seconds (5 minutes). The value, if specified, is forced into a
1601 reasonable range, currently 15 to 3600 seconds.
1602 </p>
1603
1604 <p>
1605 A short MAC aging time allows a network to more quickly detect that a
1606 host is no longer connected to a switch port. However, it also makes
1607 it more likely that packets will be flooded unnecessarily, when they
1608 are addressed to a connected host that rarely transmits packets. To
1609 reduce the incidence of unnecessary flooding, use a MAC aging time
1610 longer than the maximum interval at which a host will ordinarily
1611 transmit packets.
1612 </p>
1613 </column>
1614
1615 <column name="other_config" key="mac-table-size"
1616 type='{"type": "integer", "minInteger": 1}'>
1617 <p>
1618 The maximum number of MAC addresses to learn. The default is
1619 currently 8192. The value, if specified, is forced into a reasonable
1620 range, currently 10 to 1,000,000.
1621 </p>
1622 </column>
1623 </group>
1624
1625 <group title="Common Columns">
1626 The overall purpose of these columns is described under <code>Common
1627 Columns</code> at the beginning of this document.
1628
1629 <column name="other_config"/>
1630 <column name="external_ids"/>
1631 </group>
1632 </table>
1633
1634 <table name="Port" table="Port or bond configuration.">
1635 <p>A port within a <ref table="Bridge"/>.</p>
1636 <p>Most commonly, a port has exactly one ``interface,'' pointed to by its
1637 <ref column="interfaces"/> column. Such a port logically
1638 corresponds to a port on a physical Ethernet switch. A port
1639 with more than one interface is a ``bonded port'' (see
1640 <ref group="Bonding Configuration"/>).</p>
1641 <p>Some properties that one might think as belonging to a port are actually
1642 part of the port's <ref table="Interface"/> members.</p>
1643
1644 <column name="name">
1645 Port name. For a non-bonded port, this should be the same as its
1646 interface's name. Port names must otherwise be unique among the names of
1647 ports, interfaces, and bridges on a host. Because port and interfaces
1648 names are usually the same, the restrictions on the <ref
1649 table="Interface" column="name"/> column in the <ref table="Interface"/>
1650 table, particularly on length, also apply to port names. Refer to the
1651 documentation for <ref table="Interface"/> names for details.
1652 </column>
1653
1654 <column name="interfaces">
1655 The port's interfaces. If there is more than one, this is a
1656 bonded Port.
1657 </column>
1658
1659 <group title="VLAN Configuration">
1660 <p>
1661 In short, a VLAN (short for ``virtual LAN'') is a way to partition a
1662 single switch into multiple switches. VLANs can be confusing, so for
1663 an introduction, please refer to the question ``What's a VLAN?'' in the
1664 Open vSwitch FAQ.
1665 </p>
1666
1667 <p>
1668 A VLAN is sometimes encoded into a packet using a 802.1Q or 802.1ad
1669 VLAN header, but every packet is part of some VLAN whether or not it is
1670 encoded in the packet. (A packet that appears to have no VLAN is part
1671 of VLAN 0, by default.) As a result, it's useful to think of a VLAN as
1672 a metadata property of a packet, separate from how the VLAN is encoded.
1673 For a given port, this column determines how the encoding of a packet
1674 that ingresses or egresses the port maps to the packet's VLAN. When a
1675 packet enters the switch, its VLAN is determined based on its setting
1676 in this column and its VLAN headers, if any, and then, conceptually,
1677 the VLAN headers are then stripped off. Conversely, when a packet
1678 exits the switch, its VLAN and the settings in this column determine
1679 what VLAN headers, if any, are pushed onto the packet before it
1680 egresses the port.
1681 </p>
1682
1683 <p>
1684 The VLAN configuration in this column affects Open vSwitch only when it
1685 is doing ``normal switching.'' It does not affect flows set up by an
1686 OpenFlow controller, outside of the OpenFlow ``normal action.''
1687 </p>
1688
1689 <p>
1690 Bridge ports support the following types of VLAN configuration:
1691 </p>
1692
1693 <dl>
1694 <dt>trunk</dt>
1695 <dd>
1696 <p>
1697 A trunk port carries packets on one or more specified VLANs
1698 specified in the <ref column="trunks"/> column (often, on every
1699 VLAN). A packet that ingresses on a trunk port is in the VLAN
1700 specified in its 802.1Q header, or VLAN 0 if the packet has no
1701 802.1Q header. A packet that egresses through a trunk port will
1702 have an 802.1Q header if it has a nonzero VLAN ID.
1703 </p>
1704
1705 <p>
1706 Any packet that ingresses on a trunk port tagged with a VLAN that
1707 the port does not trunk is dropped.
1708 </p>
1709 </dd>
1710
1711 <dt>access</dt>
1712 <dd>
1713 <p>
1714 An access port carries packets on exactly one VLAN specified in the
1715 <ref column="tag"/> column. Packets egressing on an access port
1716 have no 802.1Q header.
1717 </p>
1718
1719 <p>
1720 Any packet with an 802.1Q header with a nonzero VLAN ID that
1721 ingresses on an access port is dropped, regardless of whether the
1722 VLAN ID in the header is the access port's VLAN ID.
1723 </p>
1724 </dd>
1725
1726 <dt>native-tagged</dt>
1727 <dd>
1728 A native-tagged port resembles a trunk port, with the exception that
1729 a packet without an 802.1Q header that ingresses on a native-tagged
1730 port is in the ``native VLAN'' (specified in the <ref column="tag"/>
1731 column).
1732 </dd>
1733
1734 <dt>native-untagged</dt>
1735 <dd>
1736 A native-untagged port resembles a native-tagged port, with the
1737 exception that a packet that egresses on a native-untagged port in
1738 the native VLAN will not have an 802.1Q header.
1739 </dd>
1740
1741 <dt>dot1q-tunnel</dt>
1742 <dd>
1743 <p>
1744 A dot1q-tunnel port is somewhat like an access port. Like an
1745 access port, it carries packets on the single VLAN specified in the
1746 <ref column="tag"/> column and this VLAN, called the service VLAN,
1747 does not appear in an 802.1Q header for packets that ingress or
1748 egress on the port. The main difference lies in the behavior when
1749 packets that include a 802.1Q header ingress on the port. Whereas
1750 an access port drops such packets, a dot1q-tunnel port treats these
1751 as double-tagged with the outer service VLAN <ref column="tag"/>
1752 and the inner customer VLAN taken from the 802.1Q header.
1753 Correspondingly, to egress on the port, a packet outer VLAN (or
1754 only VLAN) must be <ref column="tag"/>, which is removed before
1755 egress, which exposes the inner (customer) VLAN if one is present.
1756 </p>
1757
1758 <p>
1759 If <ref column="cvlans"/> is set, only allows packets in the
1760 specified customer VLANs.
1761 </p>
1762 </dd>
1763 </dl>
1764 <p>
1765 A packet will only egress through bridge ports that carry the VLAN of
1766 the packet, as described by the rules above.
1767 </p>
1768
1769 <column name="vlan_mode">
1770 <p>
1771 The VLAN mode of the port, as described above. When this column is
1772 empty, a default mode is selected as follows:
1773 </p>
1774 <ul>
1775 <li>
1776 If <ref column="tag"/> contains a value, the port is an access
1777 port. The <ref column="trunks"/> column should be empty.
1778 </li>
1779 <li>
1780 Otherwise, the port is a trunk port. The <ref column="trunks"/>
1781 column value is honored if it is present.
1782 </li>
1783 </ul>
1784 </column>
1785
1786 <column name="tag">
1787 <p>
1788 For an access port, the port's implicitly tagged VLAN. For a
1789 native-tagged or native-untagged port, the port's native VLAN. Must
1790 be empty if this is a trunk port.
1791 </p>
1792 </column>
1793
1794 <column name="trunks">
1795 <p>
1796 For a trunk, native-tagged, or native-untagged port, the 802.1Q VLAN
1797 or VLANs that this port trunks; if it is empty, then the port trunks
1798 all VLANs. Must be empty if this is an access port.
1799 </p>
1800 <p>
1801 A native-tagged or native-untagged port always trunks its native
1802 VLAN, regardless of whether <ref column="trunks"/> includes that
1803 VLAN.
1804 </p>
1805 </column>
1806
1807 <column name="cvlans">
1808 <p>
1809 For a dot1q-tunnel port, the customer VLANs that this port includes.
1810 If this is empty, the port includes all customer VLANs.
1811 </p>
1812 <p>
1813 For other kinds of ports, this setting is ignored.
1814 </p>
1815 </column>
1816
1817 <column name="other_config" key="qinq-ethtype"
1818 type='{"type": "string", "enum": ["set", ["802.1ad", "802.1q"]]}'>
1819 <p>
1820 For a dot1q-tunnel port, this is the TPID for the service tag, that
1821 is, for the 802.1Q header that contains the service VLAN ID. Because
1822 packets that actually ingress and egress a dot1q-tunnel port do not
1823 include an 802.1Q header for the service VLAN, this does not affect
1824 packets on the dot1q-tunnel port itself. Rather, it determines the
1825 service VLAN for a packet that ingresses on a dot1q-tunnel port and
1826 egresses on a trunk port.
1827 </p>
1828 <p>
1829 The value <code>802.1ad</code> specifies TPID 0x88a8, which is also
1830 the default if the setting is omitted. The value <code>802.1q</code>
1831 specifies TPID 0x8100.
1832 </p>
1833 <p>
1834 For other kinds of ports, this setting is ignored.
1835 </p>
1836 </column>
1837
1838 <column name="other_config" key="priority-tags"
1839 type='{"type": "boolean"}'>
1840 <p>
1841 An 802.1Q header contains two important pieces of information: a VLAN
1842 ID and a priority. A frame with a zero VLAN ID, called a
1843 ``priority-tagged'' frame, is supposed to be treated the same way as
1844 a frame without an 802.1Q header at all (except for the priority).
1845 </p>
1846
1847 <p>
1848 However, some network elements ignore any frame that has 802.1Q
1849 header at all, even when the VLAN ID is zero. Therefore, by default
1850 Open vSwitch does not output priority-tagged frames, instead omitting
1851 the 802.1Q header entirely if the VLAN ID is zero. Set this key to
1852 <code>true</code> to enable priority-tagged frames on a port.
1853 </p>
1854
1855 <p>
1856 Regardless of this setting, Open vSwitch omits the 802.1Q header on
1857 output if both the VLAN ID and priority would be zero.
1858 </p>
1859
1860 <p>
1861 All frames output to native-tagged ports have a nonzero VLAN ID, so
1862 this setting is not meaningful on native-tagged ports.
1863 </p>
1864 </column>
1865 </group>
1866
1867 <group title="Bonding Configuration">
1868 <p>A port that has more than one interface is a ``bonded port.'' Bonding
1869 allows for load balancing and fail-over.</p>
1870
1871 <p>
1872 The following types of bonding will work with any kind of upstream
1873 switch. On the upstream switch, do not configure the interfaces as a
1874 bond:
1875 </p>
1876
1877 <dl>
1878 <dt><code>balance-slb</code></dt>
1879 <dd>
1880 Balances flows among slaves based on source MAC address and output
1881 VLAN, with periodic rebalancing as traffic patterns change.
1882 </dd>
1883
1884 <dt><code>active-backup</code></dt>
1885 <dd>
1886 Assigns all flows to one slave, failing over to a backup slave when
1887 the active slave is disabled. This is the only bonding mode in which
1888 interfaces may be plugged into different upstream switches.
1889 </dd>
1890 </dl>
1891
1892 <p>
1893 The following modes require the upstream switch to support 802.3ad with
1894 successful LACP negotiation. If LACP negotiation fails and
1895 other-config:lacp-fallback-ab is true, then <code>active-backup</code>
1896 mode is used:
1897 </p>
1898
1899 <dl>
1900 <dt><code>balance-tcp</code></dt>
1901 <dd>
1902 Balances flows among slaves based on L3 and L4 protocol information
1903 such as IP addresses and TCP/UDP ports.
1904 </dd>
1905 </dl>
1906
1907 <p>These columns apply only to bonded ports. Their values are
1908 otherwise ignored.</p>
1909
1910 <column name="bond_mode">
1911 <p>The type of bonding used for a bonded port. Defaults to
1912 <code>active-backup</code> if unset.
1913 </p>
1914 </column>
1915
1916 <column name="other_config" key="bond-hash-basis"
1917 type='{"type": "integer"}'>
1918 An integer hashed along with flows when choosing output slaves in load
1919 balanced bonds. When changed, all flows will be assigned different
1920 hash values possibly causing slave selection decisions to change. Does
1921 not affect bonding modes which do not employ load balancing such as
1922 <code>active-backup</code>.
1923 </column>
1924
1925 <group title="Link Failure Detection">
1926 <p>
1927 An important part of link bonding is detecting that links are down so
1928 that they may be disabled. These settings determine how Open vSwitch
1929 detects link failure.
1930 </p>
1931
1932 <column name="other_config" key="bond-detect-mode"
1933 type='{"type": "string", "enum": ["set", ["carrier", "miimon"]]}'>
1934 The means used to detect link failures. Defaults to
1935 <code>carrier</code> which uses each interface's carrier to detect
1936 failures. When set to <code>miimon</code>, will check for failures
1937 by polling each interface's MII.
1938 </column>
1939
1940 <column name="other_config" key="bond-miimon-interval"
1941 type='{"type": "integer"}'>
1942 The interval, in milliseconds, between successive attempts to poll
1943 each interface's MII. Relevant only when <ref column="other_config"
1944 key="bond-detect-mode"/> is <code>miimon</code>.
1945 </column>
1946
1947 <column name="bond_updelay">
1948 <p>
1949 The number of milliseconds for which the link must stay up on an
1950 interface before the interface is considered to be up. Specify
1951 <code>0</code> to enable the interface immediately.
1952 </p>
1953
1954 <p>
1955 This setting is honored only when at least one bonded interface is
1956 already enabled. When no interfaces are enabled, then the first
1957 bond interface to come up is enabled immediately.
1958 </p>
1959 </column>
1960
1961 <column name="bond_downdelay">
1962 The number of milliseconds for which the link must stay down on an
1963 interface before the interface is considered to be down. Specify
1964 <code>0</code> to disable the interface immediately.
1965 </column>
1966 </group>
1967
1968 <group title="LACP Configuration">
1969 <p>
1970 LACP, the Link Aggregation Control Protocol, is an IEEE standard that
1971 allows switches to automatically detect that they are connected by
1972 multiple links and aggregate across those links. These settings
1973 control LACP behavior.
1974 </p>
1975
1976 <column name="lacp">
1977 Configures LACP on this port. LACP allows directly connected
1978 switches to negotiate which links may be bonded. LACP may be enabled
1979 on non-bonded ports for the benefit of any switches they may be
1980 connected to. <code>active</code> ports are allowed to initiate LACP
1981 negotiations. <code>passive</code> ports are allowed to participate
1982 in LACP negotiations initiated by a remote switch, but not allowed to
1983 initiate such negotiations themselves. If LACP is enabled on a port
1984 whose partner switch does not support LACP, the bond will be
1985 disabled, unless other-config:lacp-fallback-ab is set to true.
1986 Defaults to <code>off</code> if unset.
1987 </column>
1988
1989 <column name="other_config" key="lacp-system-id">
1990 The LACP system ID of this <ref table="Port"/>. The system ID of a
1991 LACP bond is used to identify itself to its partners. Must be a
1992 nonzero MAC address. Defaults to the bridge Ethernet address if
1993 unset.
1994 </column>
1995
1996 <column name="other_config" key="lacp-system-priority"
1997 type='{"type": "integer", "minInteger": 1, "maxInteger": 65535}'>
1998 The LACP system priority of this <ref table="Port"/>. In LACP
1999 negotiations, link status decisions are made by the system with the
2000 numerically lower priority.
2001 </column>
2002
2003 <column name="other_config" key="lacp-time"
2004 type='{"type": "string", "enum": ["set", ["fast", "slow"]]}'>
2005 <p>
2006 The LACP timing which should be used on this <ref table="Port"/>.
2007 By default <code>slow</code> is used. When configured to be
2008 <code>fast</code> LACP heartbeats are requested at a rate of once
2009 per second causing connectivity problems to be detected more
2010 quickly. In <code>slow</code> mode, heartbeats are requested at a
2011 rate of once every 30 seconds.
2012 </p>
2013 </column>
2014
2015 <column name="other_config" key="lacp-fallback-ab"
2016 type='{"type": "boolean"}'>
2017 <p>
2018 Determines the behavior of openvswitch bond in LACP mode. If
2019 the partner switch does not support LACP, setting this option
2020 to <code>true</code> allows openvswitch to fallback to
2021 active-backup. If the option is set to <code>false</code>, the
2022 bond will be disabled. In both the cases, once the partner switch
2023 is configured to LACP mode, the bond will use LACP.
2024 </p>
2025 </column>
2026 </group>
2027
2028 <group title="Rebalancing Configuration">
2029 <p>
2030 These settings control behavior when a bond is in
2031 <code>balance-slb</code> or <code>balance-tcp</code> mode.
2032 </p>
2033
2034 <column name="other_config" key="bond-rebalance-interval"
2035 type='{"type": "integer", "minInteger": 0, "maxInteger": 10000}'>
2036 For a load balanced bonded port, the number of milliseconds between
2037 successive attempts to rebalance the bond, that is, to move flows
2038 from one interface on the bond to another in an attempt to keep usage
2039 of each interface roughly equal. If zero, load balancing is disabled
2040 on the bond (link failure still cause flows to move). If
2041 less than 1000ms, the rebalance interval will be 1000ms.
2042 </column>
2043 </group>
2044
2045 <column name="bond_fake_iface">
2046 For a bonded port, whether to create a fake internal interface with the
2047 name of the port. Use only for compatibility with legacy software that
2048 requires this.
2049 </column>
2050 </group>
2051
2052 <group title="Spanning Tree Protocol">
2053 <p>
2054 The configuration here is only meaningful, and the status is only
2055 populated, when 802.1D-1998 Spanning Tree Protocol is enabled on the
2056 port's <ref column="Bridge"/> with its <ref column="stp_enable"/>
2057 column.
2058 </p>
2059
2060 <group title="STP Configuration">
2061 <column name="other_config" key="stp-enable"
2062 type='{"type": "boolean"}'>
2063 When STP is enabled on a bridge, it is enabled by default on all of
2064 the bridge's ports except bond, internal, and mirror ports (which do
2065 not work with STP). If this column's value is <code>false</code>,
2066 STP is disabled on the port.
2067 </column>
2068
2069 <column name="other_config" key="stp-port-num"
2070 type='{"type": "integer", "minInteger": 1, "maxInteger": 255}'>
2071 The port number used for the lower 8 bits of the port-id. By
2072 default, the numbers will be assigned automatically. If any
2073 port's number is manually configured on a bridge, then they
2074 must all be.
2075 </column>
2076
2077 <column name="other_config" key="stp-port-priority"
2078 type='{"type": "integer", "minInteger": 0, "maxInteger": 255}'>
2079 The port's relative priority value for determining the root
2080 port (the upper 8 bits of the port-id). A port with a lower
2081 port-id will be chosen as the root port. By default, the
2082 priority is 0x80.
2083 </column>
2084
2085 <column name="other_config" key="stp-path-cost"
2086 type='{"type": "integer", "minInteger": 0, "maxInteger": 65535}'>
2087 Spanning tree path cost for the port. A lower number indicates
2088 a faster link. By default, the cost is based on the maximum
2089 speed of the link.
2090 </column>
2091 </group>
2092
2093 <group title="STP Status">
2094 <column name="status" key="stp_port_id">
2095 The port ID used in spanning tree advertisements for this port, as 4
2096 hex digits. Configuring the port ID is described in the
2097 <code>stp-port-num</code> and <code>stp-port-priority</code> keys of
2098 the <code>other_config</code> section earlier.
2099 </column>
2100 <column name="status" key="stp_state"
2101 type='{"type": "string", "enum": ["set",
2102 ["disabled", "listening", "learning",
2103 "forwarding", "blocking"]]}'>
2104 STP state of the port.
2105 </column>
2106 <column name="status" key="stp_sec_in_state"
2107 type='{"type": "integer", "minInteger": 0}'>
2108 The amount of time this port has been in the current STP state, in
2109 seconds.
2110 </column>
2111 <column name="status" key="stp_role"
2112 type='{"type": "string", "enum": ["set",
2113 ["root", "designated", "alternate"]]}'>
2114 STP role of the port.
2115 </column>
2116 </group>
2117 </group>
2118
2119 <group title="Rapid Spanning Tree Protocol">
2120 <p>
2121 The configuration here is only meaningful, and the status and
2122 statistics are only populated, when 802.1D-1998 Spanning Tree Protocol
2123 is enabled on the port's <ref column="Bridge"/> with its <ref
2124 column="stp_enable"/> column.
2125 </p>
2126
2127 <group title="RSTP Configuration">
2128 <column name="other_config" key="rstp-enable"
2129 type='{"type": "boolean"}'>
2130 When RSTP is enabled on a bridge, it is enabled by default on all of
2131 the bridge's ports except bond, internal, and mirror ports (which do
2132 not work with RSTP). If this column's value is <code>false</code>,
2133 RSTP is disabled on the port.
2134 </column>
2135
2136 <column name="other_config" key="rstp-port-priority"
2137 type='{"type": "integer", "minInteger": 0, "maxInteger": 240}'>
2138 The port's relative priority value for determining the root port, in
2139 multiples of 16. By default, the port priority is 0x80 (128). Any
2140 value in the lower 4 bits is rounded off. The significant upper 4
2141 bits become the upper 4 bits of the port-id. A port with the lowest
2142 port-id is elected as the root.
2143 </column>
2144
2145 <column name="other_config" key="rstp-port-num"
2146 type='{"type": "integer", "minInteger": 1, "maxInteger": 4095}'>
2147 The local RSTP port number, used as the lower 12 bits of the port-id.
2148 By default the port numbers are assigned automatically, and typically
2149 may not correspond to the OpenFlow port numbers. A port with the
2150 lowest port-id is elected as the root.
2151 </column>
2152
2153 <column name="other_config" key="rstp-port-path-cost"
2154 type='{"type": "integer"}'>
2155 The port path cost. The Port's contribution, when it is
2156 the Root Port, to the Root Path Cost for the Bridge. By default the
2157 cost is automatically calculated from the port's speed.
2158 </column>
2159
2160 <column name="other_config" key="rstp-port-admin-edge"
2161 type='{"type": "boolean"}'>
2162 The admin edge port parameter for the Port. Default is
2163 <code>false</code>.
2164 </column>
2165
2166 <column name="other_config" key="rstp-port-auto-edge"
2167 type='{"type": "boolean"}'>
2168 The auto edge port parameter for the Port. Default is
2169 <code>true</code>.
2170 </column>
2171
2172 <column name="other_config" key="rstp-port-mcheck"
2173 type='{"type": "boolean"}'>
2174 <p>
2175 The mcheck port parameter for the Port. Default is
2176 <code>false</code>. May be set to force the Port Protocol
2177 Migration state machine to transmit RST BPDUs for a
2178 MigrateTime period, to test whether all STP Bridges on the
2179 attached LAN have been removed and the Port can continue to
2180 transmit RSTP BPDUs. Setting mcheck has no effect if the
2181 Bridge is operating in STP Compatibility mode.
2182 </p>
2183 <p>
2184 Changing the value from <code>true</code> to
2185 <code>false</code> has no effect, but needs to be done if
2186 this behavior is to be triggered again by subsequently
2187 changing the value from <code>false</code> to
2188 <code>true</code>.
2189 </p>
2190 </column>
2191 </group>
2192
2193 <group title="RSTP Status">
2194 <column name="rstp_status" key="rstp_port_id">
2195 The port ID used in spanning tree advertisements for this port, as 4
2196 hex digits. Configuring the port ID is described in the
2197 <code>rstp-port-num</code> and <code>rstp-port-priority</code> keys
2198 of the <code>other_config</code> section earlier.
2199 </column>
2200 <column name="rstp_status" key="rstp_port_role"
2201 type='{"type": "string", "enum": ["set",
2202 ["Root", "Designated", "Alternate", "Backup", "Disabled"]]}'>
2203 RSTP role of the port.
2204 </column>
2205 <column name="rstp_status" key="rstp_port_state"
2206 type='{"type": "string", "enum": ["set",
2207 ["Disabled", "Learning", "Forwarding", "Discarding"]]}'>
2208 RSTP state of the port.
2209 </column>
2210 <column name="rstp_status" key="rstp_designated_bridge_id">
2211 The port's RSTP designated bridge ID, in the same form as <ref
2212 column="rstp_status" key="rstp_bridge_id"/> in the <ref
2213 table="Bridge"/> table.
2214 </column>
2215 <column name="rstp_status" key="rstp_designated_port_id">
2216 The port's RSTP designated port ID, as 4 hex digits.
2217 </column>
2218 <column name="rstp_status" key="rstp_designated_path_cost"
2219 type='{"type": "integer"}'>
2220 The port's RSTP designated path cost. Lower is better.
2221 </column>
2222 </group>
2223
2224 <group title="RSTP Statistics">
2225 <column name="rstp_statistics" key="rstp_tx_count">
2226 Number of RSTP BPDUs transmitted through this port.
2227 </column>
2228 <column name="rstp_statistics" key="rstp_rx_count">
2229 Number of valid RSTP BPDUs received by this port.
2230 </column>
2231 <column name="rstp_statistics" key="rstp_error_count">
2232 Number of invalid RSTP BPDUs received by this port.
2233 </column>
2234 <column name="rstp_statistics" key="rstp_uptime">
2235 The duration covered by the other RSTP statistics, in seconds.
2236 </column>
2237 </group>
2238 </group>
2239
2240 <group title="Multicast Snooping">
2241 <column name="other_config" key="mcast-snooping-flood"
2242 type='{"type": "boolean"}'>
2243 <p>
2244 If set to <code>true</code>, multicast packets (except Reports) are
2245 unconditionally forwarded to the specific port.
2246 </p>
2247 </column>
2248 <column name="other_config" key="mcast-snooping-flood-reports"
2249 type='{"type": "boolean"}'>
2250 <p>
2251 If set to <code>true</code>, multicast Reports are unconditionally
2252 forwarded to the specific port.
2253 </p>
2254 </column>
2255 </group>
2256
2257 <group title="Other Features">
2258 <column name="qos">
2259 Quality of Service configuration for this port.
2260 </column>
2261
2262 <column name="mac">
2263 The MAC address to use for this port for the purpose of choosing the
2264 bridge's MAC address. This column does not necessarily reflect the
2265 port's actual MAC address, nor will setting it change the port's actual
2266 MAC address.
2267 </column>
2268
2269 <column name="fake_bridge">
2270 Does this port represent a sub-bridge for its tagged VLAN within the
2271 Bridge? See ovs-vsctl(8) for more information.
2272 </column>
2273
2274 <column name="protected" type='{"type": "boolean"}'>
2275 The protected ports feature allows certain ports to be designated as
2276 protected. Traffic between protected ports is blocked. Protected
2277 ports can send traffic to unprotected ports. Unprotected ports can
2278 send traffic to any port.
2279 Default is false.
2280 </column>
2281
2282 <column name="external_ids" key="fake-bridge-id-*">
2283 External IDs for a fake bridge (see the <ref column="fake_bridge"/>
2284 column) are defined by prefixing a <ref table="Bridge"/> <ref
2285 table="Bridge" column="external_ids"/> key with
2286 <code>fake-bridge-</code>,
2287 e.g. <code>fake-bridge-xs-network-uuids</code>.
2288 </column>
2289
2290 <column name="other_config" key="transient"
2291 type='{"type": "boolean"}'>
2292 <p>
2293 If set to <code>true</code>, the port will be removed when
2294 <code>ovs-ctl start --delete-transient-ports</code> is used.
2295 </p>
2296 </column>
2297 </group>
2298
2299 <column name="bond_active_slave">
2300 For a bonded port, record the mac address of the current active slave.
2301 </column>
2302
2303 <group title="Port Statistics">
2304 <p>
2305 Key-value pairs that report port statistics. The update period
2306 is controlled by <ref column="other_config"
2307 key="stats-update-interval"/> in the <code>Open_vSwitch</code> table.
2308 </p>
2309 <group title="Statistics: STP transmit and receive counters">
2310 <column name="statistics" key="stp_tx_count">
2311 Number of STP BPDUs sent on this port by the spanning
2312 tree library.
2313 </column>
2314 <column name="statistics" key="stp_rx_count">
2315 Number of STP BPDUs received on this port and accepted by the
2316 spanning tree library.
2317 </column>
2318 <column name="statistics" key="stp_error_count">
2319 Number of bad STP BPDUs received on this port. Bad BPDUs
2320 include runt packets and those with an unexpected protocol ID.
2321 </column>
2322 </group>
2323 </group>
2324
2325 <group title="Common Columns">
2326 The overall purpose of these columns is described under <code>Common
2327 Columns</code> at the beginning of this document.
2328
2329 <column name="other_config"/>
2330 <column name="external_ids"/>
2331 </group>
2332 </table>
2333
2334 <table name="Interface" title="One physical network device in a Port.">
2335 An interface within a <ref table="Port"/>.
2336
2337 <group title="Core Features">
2338 <column name="name">
2339 <p>
2340 Interface name. Should be alphanumeric. For non-bonded port, this
2341 should be the same as the port name. It must otherwise be unique
2342 among the names of ports, interfaces, and bridges on a host.
2343 </p>
2344
2345 <p>
2346 The maximum length of an interface name depends on the underlying
2347 datapath:
2348 </p>
2349
2350 <ul>
2351 <li>
2352 The names of interfaces implemented as Linux and BSD network
2353 devices, including interfaces with type <code>internal</code>,
2354 <code>tap</code>, or <code>system</code> plus the different types
2355 of tunnel ports, are limited to 15 bytes. Windows limits these
2356 names to 255 bytes.
2357 </li>
2358
2359 <li>
2360 The names of patch ports are not used in the underlying datapath,
2361 so operating system restrictions do not apply. Thus, they may have
2362 arbitrary length.
2363 </li>
2364 </ul>
2365
2366 <p>
2367 Regardless of other restrictions, OpenFlow only supports 15-byte
2368 names, which means that <code>ovs-ofctl</code> and OpenFlow
2369 controllers will show names truncated to 15 bytes.
2370 </p>
2371 </column>
2372
2373 <column name="ifindex">
2374 A positive interface index as defined for SNMP MIB-II in RFCs 1213 and
2375 2863, if the interface has one, otherwise 0. The ifindex is useful for
2376 seamless integration with protocols such as SNMP and sFlow.
2377 </column>
2378
2379 <column name="mac_in_use">
2380 The MAC address in use by this interface.
2381 </column>
2382
2383 <column name="mac">
2384 <p>Ethernet address to set for this interface. If unset then the
2385 default MAC address is used:</p>
2386 <ul>
2387 <li>For the local interface, the default is the lowest-numbered MAC
2388 address among the other bridge ports, either the value of the
2389 <ref table="Port" column="mac"/> in its <ref table="Port"/> record,
2390 if set, or its actual MAC (for bonded ports, the MAC of its slave
2391 whose name is first in alphabetical order). Internal ports and
2392 bridge ports that are used as port mirroring destinations (see the
2393 <ref table="Mirror"/> table) are ignored.</li>
2394 <li>For other internal interfaces, the default MAC is randomly
2395 generated.</li>
2396 <li>External interfaces typically have a MAC address associated with
2397 their hardware.</li>
2398 </ul>
2399 <p>Some interfaces may not have a software-controllable MAC
2400 address. This option only affects internal ports. For other type ports,
2401 you can change the MAC address outside Open vSwitch, using ip command.</p>
2402 </column>
2403
2404 <column name="error">
2405 If the configuration of the port failed, as indicated by -1 in <ref
2406 column="ofport"/>, Open vSwitch sets this column to an error
2407 description in human readable form. Otherwise, Open vSwitch clears
2408 this column.
2409 </column>
2410
2411 <group title="OpenFlow Port Number">
2412 <p>
2413 When a client adds a new interface, Open vSwitch chooses an OpenFlow
2414 port number for the new port. If the client that adds the port fills
2415 in <ref column="ofport_request"/>, then Open vSwitch tries to use its
2416 value as the OpenFlow port number. Otherwise, or if the requested
2417 port number is already in use or cannot be used for another reason,
2418 Open vSwitch automatically assigns a free port number. Regardless of
2419 how the port number was obtained, Open vSwitch then reports in <ref
2420 column="ofport"/> the port number actually assigned.
2421 </p>
2422
2423 <p>
2424 Open vSwitch limits the port numbers that it automatically assigns to
2425 the range 1 through 32,767, inclusive. Controllers therefore have
2426 free use of ports 32,768 and up.
2427 </p>
2428
2429 <column name="ofport">
2430 <p>
2431 OpenFlow port number for this interface. Open vSwitch sets this
2432 column's value, so other clients should treat it as read-only.
2433 </p>
2434 <p>
2435 The OpenFlow ``local'' port (<code>OFPP_LOCAL</code>) is 65,534.
2436 The other valid port numbers are in the range 1 to 65,279,
2437 inclusive. Value -1 indicates an error adding the interface.
2438 </p>
2439 </column>
2440
2441 <column name="ofport_request"
2442 type='{"type": "integer", "minInteger": 1, "maxInteger": 65279}'>
2443 <p>
2444 Requested OpenFlow port number for this interface.
2445 </p>
2446
2447 <p>
2448 A client should ideally set this column's value in the same
2449 database transaction that it uses to create the interface. Open
2450 vSwitch version 2.1 and later will honor a later request for a
2451 specific port number, althuogh it might confuse some controllers:
2452 OpenFlow does not have a way to announce a port number change, so
2453 Open vSwitch represents it over OpenFlow as a port deletion
2454 followed immediately by a port addition.
2455 </p>
2456
2457 <p>
2458 If <ref column="ofport_request"/> is set or changed to some other
2459 port's automatically assigned port number, Open vSwitch chooses a
2460 new port number for the latter port.
2461 </p>
2462 </column>
2463 </group>
2464 </group>
2465
2466 <group title="System-Specific Details">
2467 <column name="type">
2468 <p>
2469 The interface type. The types supported by a particular instance of
2470 Open vSwitch are listed in the <ref table="Open_vSwitch"
2471 column="iface_types"/> column in the <ref table="Open_vSwitch"/>
2472 table. The following types are defined:
2473 </p>
2474
2475 <dl>
2476 <dt><code>system</code></dt>
2477 <dd>An ordinary network device, e.g. <code>eth0</code> on Linux.
2478 Sometimes referred to as ``external interfaces'' since they are
2479 generally connected to hardware external to that on which the Open
2480 vSwitch is running. The empty string is a synonym for
2481 <code>system</code>.</dd>
2482
2483 <dt><code>internal</code></dt>
2484 <dd>A simulated network device that sends and receives traffic. An
2485 internal interface whose <ref column="name"/> is the same as its
2486 bridge's <ref table="Open_vSwitch" column="name"/> is called the
2487 ``local interface.'' It does not make sense to bond an internal
2488 interface, so the terms ``port'' and ``interface'' are often used
2489 imprecisely for internal interfaces.</dd>
2490
2491 <dt><code>tap</code></dt>
2492 <dd>
2493 <p>
2494 A TUN/TAP device managed by Open vSwitch.
2495 </p>
2496 <p>
2497 Open vSwitch checks the interface state before send packets
2498 to the device. When it is <code>down</code>, the packets are
2499 dropped and the tx_dropped statistic is updated accordingly.
2500 Older versions of Open vSwitch did not check the interface state
2501 and then the tx_packets was incremented along with tx_dropped.
2502 </p>
2503 </dd>
2504
2505 <dt><code>geneve</code></dt>
2506 <dd>
2507 An Ethernet over Geneve (<code>http://tools.ietf.org/html/draft-ietf-nvo3-geneve</code>)
2508 IPv4/IPv6 tunnel.
2509
2510 A description of how to match and set Geneve options can be found
2511 in the <code>ovs-ofctl</code> manual page.
2512 </dd>
2513
2514 <dt><code>gre</code></dt>
2515 <dd>
2516 Generic Routing Encapsulation (GRE) over IPv4/IPv6 tunnel,
2517 configurable to encapsulate layer 2 or layer 3 traffic.
2518 </dd>
2519
2520 <dt><code>vxlan</code></dt>
2521 <dd>
2522 <p>
2523 An Ethernet tunnel over the UDP-based VXLAN protocol described in
2524 RFC 7348.
2525 </p>
2526 <p>
2527 Open vSwitch uses IANA-assigned UDP destination port 4789. The
2528 source port used for VXLAN traffic varies on a per-flow basis
2529 and is in the ephemeral port range.
2530 </p>
2531 </dd>
2532
2533 <dt><code>lisp</code></dt>
2534 <dd>
2535 <p>
2536 A layer 3 tunnel over the experimental, UDP-based Locator/ID
2537 Separation Protocol (RFC 6830).
2538 </p>
2539 <p>
2540 Only IPv4 and IPv6 packets are supported by the protocol, and
2541 they are sent and received without an Ethernet header. Traffic
2542 to/from LISP ports is expected to be configured explicitly, and
2543 the ports are not intended to participate in learning based
2544 switching. As such, they are always excluded from packet
2545 flooding.
2546 </p>
2547 </dd>
2548
2549 <dt><code>stt</code></dt>
2550 <dd>
2551 The Stateless TCP Tunnel (STT) is particularly useful when tunnel
2552 endpoints are in end-systems, as it utilizes the capabilities of
2553 standard network interface cards to improve performance. STT utilizes
2554 a TCP-like header inside the IP header. It is stateless, i.e., there is
2555 no TCP connection state of any kind associated with the tunnel. The
2556 TCP-like header is used to leverage the capabilities of existing
2557 network interface cards, but should not be interpreted as implying
2558 any sort of connection state between endpoints.
2559 Since the STT protocol does not engage in the usual TCP 3-way handshake,
2560 so it will have difficulty traversing stateful firewalls.
2561 The protocol is documented at
2562 https://tools.ietf.org/html/draft-davie-stt
2563
2564 All traffic uses a default destination port of 7471.
2565 </dd>
2566
2567 <dt><code>patch</code></dt>
2568 <dd>
2569 A pair of virtual devices that act as a patch cable.
2570 </dd>
2571 </dl>
2572 </column>
2573 </group>
2574
2575 <group title="Tunnel Options">
2576 <p>
2577 These options apply to interfaces with <ref column="type"/> of
2578 <code>geneve</code>, <code>gre</code>, <code>vxlan</code>,
2579 <code>lisp</code> and <code>stt</code>.
2580 </p>
2581
2582 <p>
2583 Each tunnel must be uniquely identified by the combination of <ref
2584 column="type"/>, <ref column="options" key="remote_ip"/>, <ref
2585 column="options" key="local_ip"/>, and <ref column="options"
2586 key="in_key"/>. If two ports are defined that are the same except one
2587 has an optional identifier and the other does not, the more specific
2588 one is matched first. <ref column="options" key="in_key"/> is
2589 considered more specific than <ref column="options" key="local_ip"/> if
2590 a port defines one and another port defines the other.
2591 </p>
2592
2593 <column name="options" key="remote_ip">
2594 <p>Required. The remote tunnel endpoint, one of:</p>
2595
2596 <ul>
2597 <li>
2598 An IPv4 or IPv6 address (not a DNS name), e.g. <code>192.168.0.123</code>.
2599 Only unicast endpoints are supported.
2600 </li>
2601 <li>
2602 The word <code>flow</code>. The tunnel accepts packets from any
2603 remote tunnel endpoint. To process only packets from a specific
2604 remote tunnel endpoint, the flow entries may match on the
2605 <code>tun_src</code> or <code>tun_ipv6_src</code>field. When
2606 sending packets to a <code>remote_ip=flow</code> tunnel, the flow
2607 actions must explicitly set the <code>tun_dst</code> or
2608 <code>tun_ipv6_dst</code> field to the IP address of the desired
2609 remote tunnel endpoint, e.g. with a <code>set_field</code> action.
2610 </li>
2611 </ul>
2612
2613 <p>
2614 The remote tunnel endpoint for any packet received from a tunnel
2615 is available in the <code>tun_src</code> field for matching in the
2616 flow table.
2617 </p>
2618 </column>
2619
2620 <column name="options" key="local_ip">
2621 <p>
2622 Optional. The tunnel destination IP that received packets must match.
2623 Default is to match all addresses. If specified, may be one of:
2624 </p>
2625
2626 <ul>
2627 <li>
2628 An IPv4/IPv6 address (not a DNS name), e.g. <code>192.168.12.3</code>.
2629 </li>
2630 <li>
2631 The word <code>flow</code>. The tunnel accepts packets sent to any
2632 of the local IP addresses of the system running OVS. To process
2633 only packets sent to a specific IP address, the flow entries may
2634 match on the <code>tun_dst</code> or <code>tun_ipv6_dst</code> field.
2635 When sending packets to a <code>local_ip=flow</code> tunnel, the flow
2636 actions may explicitly set the <code>tun_src</code> or <code>tun_ipv6_src</code>
2637 field to the desired IP address, e.g. with a <code>set_field</code> action.
2638 However, while routing the tunneled packet out, the local system may
2639 override the specified address with the local IP address configured for the
2640 outgoing system interface.
2641
2642 <p>
2643 This option is valid only for tunnels also configured with the
2644 <code>remote_ip=flow</code> option.
2645 </p>
2646 </li>
2647 </ul>
2648
2649 <p>
2650 The tunnel destination IP address for any packet received from a
2651 tunnel is available in the <code>tun_dst</code> or <code>tun_ipv6_dst</code>
2652 field for matching in the flow table.
2653 </p>
2654 </column>
2655
2656 <column name="options" key="in_key">
2657 <p>Optional. The key that received packets must contain, one of:</p>
2658
2659 <ul>
2660 <li>
2661 <code>0</code>. The tunnel receives packets with no key or with a
2662 key of 0. This is equivalent to specifying no <ref column="options"
2663 key="in_key"/> at all.
2664 </li>
2665 <li>
2666 A positive 24-bit (for Geneve, VXLAN, and LISP), 32-bit (for GRE)
2667 or 64-bit (for STT) number. The tunnel receives only
2668 packets with the specified key.
2669 </li>
2670 <li>
2671 The word <code>flow</code>. The tunnel accepts packets with any
2672 key. The key will be placed in the <code>tun_id</code> field for
2673 matching in the flow table. The <code>ovs-fields</code>(7) manual
2674 page contains additional information about matching fields in
2675 OpenFlow flows.
2676 </li>
2677 </ul>
2678
2679 <p>
2680 </p>
2681 </column>
2682
2683 <column name="options" key="out_key">
2684 <p>Optional. The key to be set on outgoing packets, one of:</p>
2685
2686 <ul>
2687 <li>
2688 <code>0</code>. Packets sent through the tunnel will have no key.
2689 This is equivalent to specifying no <ref column="options"
2690 key="out_key"/> at all.
2691 </li>
2692 <li>
2693 A positive 24-bit (for Geneve, VXLAN and LISP), 32-bit (for GRE) or
2694 64-bit (for STT) number. Packets sent through the tunnel
2695 will have the specified key.
2696 </li>
2697 <li>
2698 The word <code>flow</code>. Packets sent through the tunnel will
2699 have the key set using the <code>set_tunnel</code> Nicira OpenFlow
2700 vendor extension (0 is used in the absence of an action). The
2701 <code>ovs-fields</code>(7) manual page contains additional
2702 information about the Nicira OpenFlow vendor extensions.
2703 </li>
2704 </ul>
2705 </column>
2706
2707 <column name="options" key="dst_port">
2708 Optional. The tunnel transport layer destination port, for UDP and TCP
2709 based tunnel protocols (Geneve, VXLAN, LISP, and STT).
2710 </column>
2711
2712 <column name="options" key="key">
2713 Optional. Shorthand to set <code>in_key</code> and
2714 <code>out_key</code> at the same time.
2715 </column>
2716
2717 <column name="options" key="tos">
2718 Optional. The value of the ToS bits to be set on the encapsulating
2719 packet. ToS is interpreted as DSCP and ECN bits, ECN part must be
2720 zero. It may also be the word <code>inherit</code>, in which case
2721 the ToS will be copied from the inner packet if it is IPv4 or IPv6
2722 (otherwise it will be 0). The ECN fields are always inherited.
2723 Default is 0.
2724 </column>
2725
2726 <column name="options" key="ttl">
2727 Optional. The TTL to be set on the encapsulating packet. It may also
2728 be the word <code>inherit</code>, in which case the TTL will be copied
2729 from the inner packet if it is IPv4 or IPv6 (otherwise it will be the
2730 system default, typically 64). Default is the system default TTL.
2731 </column>
2732
2733 <column name="options" key="df_default"
2734 type='{"type": "boolean"}'>
2735 Optional. If enabled, the Don't Fragment bit will be set on tunnel
2736 outer headers to allow path MTU discovery. Default is enabled; set
2737 to <code>false</code> to disable.
2738 </column>
2739
2740 <column name="options" key="egress_pkt_mark">
2741 Optional. The pkt_mark to be set on the encapsulating packet. This
2742 option sets packet mark for the tunnel endpoint for all tunnel packets
2743 including tunnel monitoring.
2744 </column>
2745
2746 <group title="Tunnel Options: lisp only">
2747 <column name="options" key="packet_type"
2748 type='{"type": "string", "enum": ["set",
2749 ["legacy_l3", "ptap"]]}'>
2750 <p>
2751 A LISP tunnel sends and receives only IPv4 and IPv6 packets. This
2752 option controls what how the tunnel represents the packets that it
2753 sends and receives:
2754 </p>
2755
2756 <ul>
2757 <li>
2758 By default, or if this option is <code>legacy_l3</code>, the
2759 tunnel represents packets as Ethernet frames for compatibility
2760 with legacy OpenFlow controllers that expect this behavior.
2761 </li>
2762 <li>
2763 If this option is <code>ptap</code>, the tunnel represents
2764 packets using the <code>packet_type</code> mechanism introduced
2765 in OpenFlow 1.5.
2766 </li>
2767 </ul>
2768 </column>
2769 </group>
2770
2771 <group title="Tunnel Options: vxlan only">
2772
2773 <column name="options" key="exts">
2774 <p>Optional. Comma separated list of optional VXLAN extensions to
2775 enable. The following extensions are supported:</p>
2776
2777 <ul>
2778 <li>
2779 <code>gbp</code>: VXLAN-GBP allows to transport the group policy
2780 context of a packet across the VXLAN tunnel to other network
2781 peers. See the description of <code>tun_gbp_id</code> and
2782 <code>tun_gbp_flags</code> in <code>ovs-fields</code>(7) for
2783 additional information.
2784 (<code>https://tools.ietf.org/html/draft-smith-vxlan-group-policy</code>)
2785 </li>
2786 <li>
2787 <code>gpe</code>: Support for Generic Protocol Encapsulation in
2788 accordance with IETF draft
2789 <code>https://tools.ietf.org/html/draft-ietf-nvo3-vxlan-gpe</code>.
2790 Without this option, a VXLAN packet always encapsulates an
2791 Ethernet frame. With this option, an VXLAN packet may also
2792 encapsulate an IPv4, IPv6, NSH, or MPLS packet.
2793 </li>
2794 </ul>
2795 </column>
2796
2797 <column name="options" key="packet_type"
2798 type='{"type": "string", "enum": ["set",
2799 ["legacy_l2", "legacy_l3", "ptap"]]}'>
2800 <p>
2801 This option controls what types of packets the tunnel sends and
2802 receives and how it represents them:
2803 </p>
2804
2805 <ul>
2806 <li>
2807 By default, or if this option is <code>legacy_l2</code>, the
2808 tunnel sends and receives only Ethernet frames.
2809 </li>
2810 <li>
2811 If this option is <code>legacy_l3</code>, the tunnel sends and
2812 receives only non-Ethernet (L3) packet, but the packets are
2813 represented as Ethernet frames for compatibility with legacy
2814 OpenFlow controllers that expect this behavior. This requires
2815 enabling <code>gpe</code> in <ref column="options" key="exts"/>.
2816 </li>
2817 <li>
2818 If this option is <code>ptap</code>, Open vSwitch represents
2819 packets in the tunnel using the <code>packet_type</code>
2820 mechanism introduced in OpenFlow 1.5. This mechanism supports
2821 any kind of packet, but actually sending and receiving
2822 non-Ethernet packets requires additionally enabling
2823 <code>gpe</code> in <ref column="options" key="exts"/>.
2824 </li>
2825 </ul>
2826 </column>
2827 </group>
2828
2829 <group title="Tunnel Options: gre only">
2830 <p>
2831 <code>gre</code> interfaces support these options.
2832 </p>
2833
2834 <column name="options" key="packet_type"
2835 type='{"type": "string", "enum": ["set",
2836 ["legacy_l2", "legacy_l3", "ptap"]]}'>
2837 <p>
2838 This option controls what types of packets the tunnel sends and
2839 receives and how it represents them:
2840 </p>
2841
2842 <ul>
2843 <li>
2844 By default, or if this option is <code>legacy_l2</code>, the
2845 tunnel sends and receives only Ethernet frames.
2846 </li>
2847 <li>
2848 If this option is <code>legacy_l3</code>, the tunnel sends and
2849 receives only non-Ethernet (L3) packet, but the packets are
2850 represented as Ethernet frames for compatibility with legacy
2851 OpenFlow controllers that expect this behavior.
2852 </li>
2853 <li>
2854 The <code>legacy_l3</code> option is only available via the
2855 user space datapath. The OVS kernel datapath does not support
2856 devices of type ARPHRD_IPGRE which is the requirement for
2857 <code>legacy_l3</code> type packets.
2858 </li>
2859 <li>
2860 If this option is <code>ptap</code>, the tunnel sends and
2861 receives any kind of packet. Open vSwitch represents packets in
2862 the tunnel using the <code>packet_type</code> mechanism
2863 introduced in OpenFlow 1.5.
2864 </li>
2865 </ul>
2866 </column>
2867 <column name="options" key="seq" type='{"type": "boolean"}'>
2868 <p>
2869 Optional. A 4-byte sequence number field for GRE tunnel only.
2870 Default is disabled, set to <code>true</code> to enable.
2871 Sequence number is incremented by one on each outgoing packet.
2872 </p>
2873 </column>
2874 </group>
2875
2876 <group title="Tunnel Options: gre, geneve, and vxlan">
2877 <p>
2878 <code>gre</code>, <code>geneve</code>, and
2879 <code>vxlan</code> interfaces support these options.
2880 </p>
2881
2882 <column name="options" key="csum" type='{"type": "boolean"}'>
2883 <p>
2884 Optional. Compute encapsulation header (either GRE or UDP)
2885 checksums on outgoing packets. Default is disabled, set to
2886 <code>true</code> to enable. Checksums present on incoming
2887 packets will be validated regardless of this setting.
2888 </p>
2889
2890 <p>
2891 When using the upstream Linux kernel module, computation of
2892 checksums for <code>geneve</code> and <code>vxlan</code> requires
2893 Linux kernel version 4.0 or higher. <code>gre</code> supports
2894 checksums for all versions of Open vSwitch that support GRE.
2895 The out of tree kernel module distributed as part of OVS
2896 can compute all tunnel checksums on any kernel version that it
2897 is compatible with.
2898 </p>
2899
2900 </column>
2901 </group>
2902
2903 <group title="Tunnel Options: IPsec">
2904 <p>
2905 Setting any of these options enables IPsec support for a given
2906 tunnel. <code>gre</code>, <code>geneve</code>, <code>vxlan</code>,
2907 and <code>stt</code> interfaces support these options. See the
2908 <code>IPsec</code> section in the <ref table="Open_vSwitch"/> table
2909 for a description of each mode.
2910 </p>
2911 <column name="options" key="psk" type='{"type": "string"}'>
2912 <p>
2913 In PSK mode only, the preshared secret to negotiate tunnel. This
2914 value must match on both tunnel ends.
2915 </p>
2916 </column>
2917 <column name="options" key="remote_cert" type='{"type": "string"}'>
2918 <p>
2919 In self-signed certificate mode only, name of a PEM file
2920 containing a certificate of the remote switch. The certificate
2921 must be x.509 version 3 and with the string in common name (CN)
2922 also set in the subject alternative name (SAN).
2923 </p>
2924 </column>
2925 <column name="options" key="remote_name" type='{"type": "string"}'>
2926 <p>
2927 In CA-signed certificate mode only, common name (CN) of the remote
2928 certificate.
2929 </p>
2930 </column>
2931 </group>
2932 </group>
2933 <group title="Tunnel Options: erspan only">
2934 <p>
2935 Only <code>erspan</code> interfaces support these options.
2936 </p>
2937 <column name="options" key="erspan_idx">
2938 <p>
2939 20 bit index/port number associated with the ERSPAN traffic's
2940 source port and direction (ingress/egress). This field is
2941 platform dependent.
2942 </p>
2943 </column>
2944
2945 <column name="options" key="erspan_ver">
2946 <p>
2947 ERSPAN version: 1 for version 1 (type II)
2948 or 2 for version 2 (type III).
2949 </p>
2950 </column>
2951
2952 <column name="options" key="erspan_dir">
2953 <p>
2954 Specifies the ERSPAN v2 mirrored traffic's direction.
2955 1 for egress traffic, and 0 for ingress traffic.
2956 </p>
2957 </column>
2958
2959 <column name="options" key="erspan_hwid">
2960 <p>
2961 ERSPAN hardware ID is a 6-bit unique identifier of an
2962 ERSPAN v2 engine within a system.
2963 </p>
2964 </column>
2965 </group>
2966
2967 <group title="Patch Options">
2968 <p>
2969 These options apply only to <dfn>patch ports</dfn>, that is, interfaces
2970 whose <ref column="type"/> column is <code>patch</code>. Patch ports
2971 are mainly a way to connect otherwise independent bridges to one
2972 another, similar to how one might plug an Ethernet cable (a ``patch
2973 cable'') into two physical switches to connect those switches. The
2974 effect of plugging a patch port into two switches is conceptually
2975 similar to that of plugging the two ends of a Linux <code>veth</code>
2976 device into those switches, but the implementation of patch ports makes
2977 them much more efficient.
2978 </p>
2979
2980 <p>
2981 Patch ports may connect two different bridges (the usual case) or the
2982 same bridge. In the latter case, take special care to avoid loops,
2983 e.g. by programming appropriate flows with OpenFlow. Patch ports do
2984 not work if its ends are attached to bridges on different datapaths,
2985 e.g. to connect bridges in <code>system</code> and <code>netdev</code>
2986 datapaths.
2987 </p>
2988
2989 <p>
2990 The following command creates and connects patch ports <code>p0</code>
2991 and <code>p1</code> and adds them to bridges <code>br0</code> and
2992 <code>br1</code>, respectively:
2993 </p>
2994
2995 <pre>
2996 ovs-vsctl add-port br0 p0 -- set Interface p0 type=patch options:peer=p1 \
2997 -- add-port br1 p1 -- set Interface p1 type=patch options:peer=p0
2998 </pre>
2999
3000 <column name="options" key="peer">
3001 The <ref column="name"/> of the <ref table="Interface"/> for the other
3002 side of the patch. The named <ref table="Interface"/>'s own
3003 <code>peer</code> option must specify this <ref table="Interface"/>'s
3004 name. That is, the two patch interfaces must have reversed <ref
3005 column="name"/> and <code>peer</code> values.
3006 </column>
3007 </group>
3008
3009 <group title="PMD (Poll Mode Driver) Options">
3010 <p>
3011 Only PMD netdevs support these options.
3012 </p>
3013
3014 <column name="options" key="n_rxq"
3015 type='{"type": "integer", "minInteger": 1}'>
3016 <p>
3017 Specifies the maximum number of rx queues to be created for PMD
3018 netdev. If not specified or specified to 0, one rx queue will
3019 be created by default.
3020 Not supported by DPDK vHost interfaces.
3021 </p>
3022 </column>
3023
3024 <column name="options" key="dpdk-devargs"
3025 type='{"type": "string"}'>
3026 <p>
3027 Specifies the PCI address associated with the port for physical
3028 devices, or the virtual driver to be used for the port when a virtual
3029 PMD is intended to be used. For the latter, the argument string
3030 typically takes the form of
3031 <code>eth_<var>driver_name</var><var>x</var></code>, where
3032 <var>driver_name</var> is a valid virtual DPDK PMD driver name and
3033 <var>x</var> is a unique identifier of your choice for the given
3034 port. Only supported by the dpdk port type.
3035 </p>
3036 </column>
3037
3038 <column name="other_config" key="pmd-rxq-affinity">
3039 <p>Specifies mapping of RX queues of this interface to CPU cores.</p>
3040 <p>Value should be set in the following form:</p>
3041 <p>
3042 <code>other_config:pmd-rxq-affinity=&lt;rxq-affinity-list&gt;</code>
3043 </p>
3044 <p>where</p>
3045 <p>
3046 <ul>
3047 <li>
3048 &lt;rxq-affinity-list&gt; ::= NULL | &lt;non-empty-list&gt;
3049 </li>
3050 <li>
3051 &lt;non-empty-list&gt; ::= &lt;affinity-pair&gt; |
3052 &lt;affinity-pair&gt; , &lt;non-empty-list&gt;
3053 </li>
3054 <li>
3055 &lt;affinity-pair&gt; ::= &lt;queue-id&gt; : &lt;core-id&gt;
3056 </li>
3057 </ul>
3058 </p>
3059 </column>
3060
3061 <column name="options" key="vhost-server-path"
3062 type='{"type": "string"}'>
3063 <p>
3064 The value specifies the path to the socket associated with a vHost
3065 User client mode device that has been or will be created by QEMU.
3066 Only supported by dpdkvhostuserclient interfaces.
3067 </p>
3068 </column>
3069
3070 <column name="options" key="dq-zero-copy"
3071 type='{"type": "boolean"}'>
3072 <p>
3073 The value specifies whether or not to enable dequeue zero copy on
3074 the given interface.
3075 Must be set before vhost-server-path is specified.
3076 Only supported by dpdkvhostuserclient interfaces.
3077 The feature is considered experimental.
3078 </p>
3079 </column>
3080
3081 <column name="options" key="n_rxq_desc"
3082 type='{"type": "integer", "minInteger": 1, "maxInteger": 4096}'>
3083 <p>
3084 Specifies the rx queue size (number rx descriptors) for dpdk ports.
3085 The value must be a power of 2, less than 4096 and supported
3086 by the hardware of the device being configured.
3087 If not specified or an incorrect value is specified, 2048 rx
3088 descriptors will be used by default.
3089 </p>
3090 </column>
3091
3092 <column name="options" key="n_txq_desc"
3093 type='{"type": "integer", "minInteger": 1, "maxInteger": 4096}'>
3094 <p>
3095 Specifies the tx queue size (number tx descriptors) for dpdk ports.
3096 The value must be a power of 2, less than 4096 and supported
3097 by the hardware of the device being configured.
3098 If not specified or an incorrect value is specified, 2048 tx
3099 descriptors will be used by default.
3100 </p>
3101 </column>
3102 </group>
3103
3104 <group title="EMC (Exact Match Cache) Configuration">
3105 <p>
3106 These settings controls behaviour of EMC lookups/insertions for packets
3107 received from the interface.
3108 </p>
3109
3110 <column name="other_config" key="emc-enable" type='{"type": "boolean"}'>
3111 <p>
3112 Specifies if Exact Match Cache (EMC) should be used while processing
3113 packets received from this interface.
3114 If true, <ref table="Open_vSwitch" column="other_config"
3115 key="emc-insert-inv-prob"/> will have effect on this interface.
3116 </p>
3117 <p>
3118 Defaults to true.
3119 </p>
3120 </column>
3121 </group>
3122
3123 <group title="MTU">
3124 <p>
3125 The MTU (maximum transmission unit) is the largest amount of data
3126 that can fit into a single Ethernet frame. The standard Ethernet
3127 MTU is 1500 bytes. Some physical media and many kinds of virtual
3128 interfaces can be configured with higher MTUs.
3129 </p>
3130
3131 <p>
3132 A client may change an interface MTU by filling in
3133 <ref column="mtu_request"/>. Open vSwitch then reports in
3134 <ref column="mtu"/> the currently configured value.
3135 </p>
3136
3137 <column name="mtu">
3138 <p>
3139 The currently configured MTU for the interface.
3140 </p>
3141
3142 <p>
3143 This column will be empty for an interface that does not
3144 have an MTU as, for example, some kinds of tunnels do not.
3145 </p>
3146
3147 <p>
3148 Open vSwitch sets this column's value, so other clients should treat
3149 it as read-only.
3150 </p>
3151 </column>
3152
3153 <column name="mtu_request"
3154 type='{"type": "integer", "minInteger": 1}'>
3155 <p>
3156 Requested MTU (Maximum Transmission Unit) for the interface. A client
3157 can fill this column to change the MTU of an interface.
3158 </p>
3159
3160 <p>
3161 RFC 791 requires every internet module to be able to forward a
3162 datagram of 68 octets without further fragmentation. The maximum
3163 size of an IP packet is 65535 bytes.
3164 </p>
3165
3166 <p>
3167 If this is not set and if the interface has <code>internal</code>
3168 type, Open vSwitch will change the MTU to match the minimum of the
3169 other interfaces in the bridge.
3170 </p>
3171 </column>
3172
3173 </group>
3174
3175 <group title="Interface Status">
3176 <p>
3177 Status information about interfaces attached to bridges, updated every
3178 5 seconds. Not all interfaces have all of these properties; virtual
3179 interfaces don't have a link speed, for example. Non-applicable
3180 columns will have empty values.
3181 </p>
3182 <column name="admin_state">
3183 <p>
3184 The administrative state of the physical network link.
3185 </p>
3186 </column>
3187
3188 <column name="link_state">
3189 <p>
3190 The observed state of the physical network link. This is ordinarily
3191 the link's carrier status. If the interface's <ref table="Port"/> is
3192 a bond configured for miimon monitoring, it is instead the network
3193 link's miimon status.
3194 </p>
3195 </column>
3196
3197 <column name="link_resets">
3198 <p>
3199 The number of times Open vSwitch has observed the
3200 <ref column="link_state"/> of this <ref table="Interface"/> change.
3201 </p>
3202 </column>
3203
3204 <column name="link_speed">
3205 <p>
3206 The negotiated speed of the physical network link.
3207 Valid values are positive integers greater than 0.
3208 </p>
3209 </column>
3210
3211 <column name="duplex">
3212 <p>
3213 The duplex mode of the physical network link.
3214 </p>
3215 </column>
3216
3217 <column name="lacp_current">
3218 Boolean value indicating LACP status for this interface. If true, this
3219 interface has current LACP information about its LACP partner. This
3220 information may be used to monitor the health of interfaces in a LACP
3221 enabled port. This column will be empty if LACP is not enabled.
3222 </column>
3223
3224 <column name="status">
3225 Key-value pairs that report port status. Supported status values are
3226 <ref column="type"/>-dependent; some interfaces may not have a valid
3227 <ref column="status" key="driver_name"/>, for example.
3228 </column>
3229
3230 <column name="status" key="driver_name">
3231 The name of the device driver controlling the network adapter.
3232 </column>
3233
3234 <column name="status" key="driver_version">
3235 The version string of the device driver controlling the network
3236 adapter.
3237 </column>
3238
3239 <column name="status" key="firmware_version">
3240 The version string of the network adapter's firmware, if available.
3241 </column>
3242
3243 <column name="status" key="source_ip">
3244 The source IP address used for an IPv4/IPv6 tunnel end-point, such as
3245 <code>gre</code>.
3246 </column>
3247
3248 <column name="status" key="tunnel_egress_iface">
3249 Egress interface for tunnels. Currently only relevant for tunnels
3250 on Linux systems, this column will show the name of the interface
3251 which is responsible for routing traffic destined for the configured
3252 <ref column="options" key="remote_ip"/>. This could be an internal
3253 interface such as a bridge port.
3254 </column>
3255
3256 <column name="status" key="tunnel_egress_iface_carrier"
3257 type='{"type": "string", "enum": ["set", ["down", "up"]]}'>
3258 Whether carrier is detected on <ref column="status"
3259 key="tunnel_egress_iface"/>.
3260 </column>
3261
3262 <group title="dpdk">
3263 <p>
3264 DPDK specific interface status options.
3265 </p>
3266
3267 <column name="status" key="port_no">
3268 DPDK port ID.
3269 </column>
3270
3271 <column name="status" key="numa_id">
3272 NUMA socket ID to which an Ethernet device is connected.
3273 </column>
3274
3275 <column name="status" key="min_rx_bufsize">
3276 Minimum size of RX buffer.
3277 </column>
3278
3279 <column name="status" key="max_rx_pktlen">
3280 Maximum configurable length of RX pkt.
3281 </column>
3282
3283 <column name="status" key="max_rx_queues">
3284 Maximum number of RX queues.
3285 </column>
3286
3287 <column name="status" key="max_tx_queues">
3288 Maximum number of TX queues.
3289 </column>
3290
3291 <column name="status" key="max_mac_addrs">
3292 Maximum number of MAC addresses.
3293 </column>
3294
3295 <column name="status" key="max_hash_mac_addrs">
3296 Maximum number of hash MAC addresses for MTA and UTA.
3297 </column>
3298
3299 <column name="status" key="max_vfs">
3300 Maximum number of hash MAC addresses for MTA and UTA.
3301 Maximum number of VFs.
3302 </column>
3303
3304 <column name="status" key="max_vmdq_pools">
3305 Maximum number of VMDq pools.
3306 </column>
3307
3308 <column name="status" key="if_type">
3309 Interface type ID according to IANA ifTYPE MIB definitions.
3310 </column>
3311
3312 <column name="status" key="if_descr">
3313 Interface description string.
3314 </column>
3315
3316 <column name="status" key="pci-vendor_id">
3317 Vendor ID of PCI device.
3318 </column>
3319
3320 <column name="status" key="pci-device_id">
3321 Device ID of PCI device.
3322 </column>
3323
3324 </group>
3325 </group>
3326
3327 <group title="Statistics">
3328 <p>
3329 Key-value pairs that report interface statistics. The current
3330 implementation updates these counters periodically. The update period
3331 is controlled by <ref column="other_config"
3332 key="stats-update-interval"/> in the <code>Open_vSwitch</code> table.
3333 Future implementations may update them when an interface is created,
3334 when they are queried (e.g. using an OVSDB <code>select</code>
3335 operation), and just before an interface is deleted due to virtual
3336 interface hot-unplug or VM shutdown, and perhaps at other times, but
3337 not on any regular periodic basis.
3338 </p>
3339 <p>
3340 These are the same statistics reported by OpenFlow in its <code>struct
3341 ofp_port_stats</code> structure. If an interface does not support a
3342 given statistic, then that pair is omitted.
3343 </p>
3344 <group title="Statistics: Successful transmit and receive counters">
3345 <column name="statistics" key="rx_packets">
3346 Number of received packets.
3347 </column>
3348 <column name="statistics" key="rx_bytes">
3349 Number of received bytes.
3350 </column>
3351 <column name="statistics" key="tx_packets">
3352 Number of transmitted packets.
3353 </column>
3354 <column name="statistics" key="tx_bytes">
3355 Number of transmitted bytes.
3356 </column>
3357 </group>
3358 <group title="Statistics: Receive errors">
3359 <column name="statistics" key="rx_dropped">
3360 Number of packets dropped by RX.
3361 </column>
3362 <column name="statistics" key="rx_frame_err">
3363 Number of frame alignment errors.
3364 </column>
3365 <column name="statistics" key="rx_over_err">
3366 Number of packets with RX overrun.
3367 </column>
3368 <column name="statistics" key="rx_crc_err">
3369 Number of CRC errors.
3370 </column>
3371 <column name="statistics" key="rx_errors">
3372 Total number of receive errors, greater than or equal to the sum of
3373 the above.
3374 </column>
3375 </group>
3376 <group title="Statistics: Transmit errors">
3377 <column name="statistics" key="tx_dropped">
3378 Number of packets dropped by TX.
3379 </column>
3380 <column name="statistics" key="collisions">
3381 Number of collisions.
3382 </column>
3383 <column name="statistics" key="tx_errors">
3384 Total number of transmit errors, greater than or equal to the sum of
3385 the above.
3386 </column>
3387 </group>
3388 </group>
3389
3390 <group title="Ingress Policing">
3391 <p>
3392 These settings control ingress policing for packets received on this
3393 interface. On a physical interface, this limits the rate at which
3394 traffic is allowed into the system from the outside; on a virtual
3395 interface (one connected to a virtual machine), this limits the rate at
3396 which the VM is able to transmit.
3397 </p>
3398 <p>
3399 Policing is a simple form of quality-of-service that simply drops
3400 packets received in excess of the configured rate. Due to its
3401 simplicity, policing is usually less accurate and less effective than
3402 egress QoS (which is configured using the <ref table="QoS"/> and <ref
3403 table="Queue"/> tables).
3404 </p>
3405 <p>
3406 Policing is currently implemented on Linux and OVS with DPDK. Both
3407 implementations use a simple ``token bucket'' approach:
3408 </p>
3409 <ul>
3410 <li>
3411 The size of the bucket corresponds to <ref
3412 column="ingress_policing_burst"/>. Initially the bucket is full.
3413 </li>
3414 <li>
3415 Whenever a packet is received, its size (converted to tokens) is
3416 compared to the number of tokens currently in the bucket. If the
3417 required number of tokens are available, they are removed and the
3418 packet is forwarded. Otherwise, the packet is dropped.
3419 </li>
3420 <li>
3421 Whenever it is not full, the bucket is refilled with tokens at the
3422 rate specified by <ref column="ingress_policing_rate"/>.
3423 </li>
3424 </ul>
3425 <p>
3426 Policing interacts badly with some network protocols, and especially
3427 with fragmented IP packets. Suppose that there is enough network
3428 activity to keep the bucket nearly empty all the time. Then this token
3429 bucket algorithm will forward a single packet every so often, with the
3430 period depending on packet size and on the configured rate. All of the
3431 fragments of an IP packets are normally transmitted back-to-back, as a
3432 group. In such a situation, therefore, only one of these fragments
3433 will be forwarded and the rest will be dropped. IP does not provide
3434 any way for the intended recipient to ask for only the remaining
3435 fragments. In such a case there are two likely possibilities for what
3436 will happen next: either all of the fragments will eventually be
3437 retransmitted (as TCP will do), in which case the same problem will
3438 recur, or the sender will not realize that its packet has been dropped
3439 and data will simply be lost (as some UDP-based protocols will do).
3440 Either way, it is possible that no forward progress will ever occur.
3441 </p>
3442 <column name="ingress_policing_rate">
3443 <p>
3444 Maximum rate for data received on this interface, in kbps. Data
3445 received faster than this rate is dropped. Set to <code>0</code>
3446 (the default) to disable policing.
3447 </p>
3448 </column>
3449
3450 <column name="ingress_policing_burst">
3451 <p>Maximum burst size for data received on this interface, in kb. The
3452 default burst size if set to <code>0</code> is 8000 kbit. This value
3453 has no effect if <ref column="ingress_policing_rate"/>
3454 is <code>0</code>.</p>
3455 <p>
3456 Specifying a larger burst size lets the algorithm be more forgiving,
3457 which is important for protocols like TCP that react severely to
3458 dropped packets. The burst size should be at least the size of the
3459 interface's MTU. Specifying a value that is numerically at least as
3460 large as 80% of <ref column="ingress_policing_rate"/> helps TCP come
3461 closer to achieving the full rate.
3462 </p>
3463 </column>
3464 </group>
3465
3466 <group title="Bidirectional Forwarding Detection (BFD)">
3467 <p>
3468 BFD, defined in RFC 5880 and RFC 5881, allows point-to-point
3469 detection of connectivity failures by occasional transmission of
3470 BFD control messages. Open vSwitch implements BFD to serve
3471 as a more popular and standards compliant alternative to CFM.
3472 </p>
3473
3474 <p>
3475 BFD operates by regularly transmitting BFD control messages at a rate
3476 negotiated independently in each direction. Each endpoint specifies
3477 the rate at which it expects to receive control messages, and the rate
3478 at which it is willing to transmit them. By default, Open vSwitch uses
3479 a detection multiplier of three, meaning that an endpoint signals a
3480 connectivity fault if three consecutive BFD control messages fail to
3481 arrive. In the case of a unidirectional connectivity issue, the system
3482 not receiving BFD control messages signals the problem to its peer in
3483 the messages it transmits.
3484 </p>
3485
3486 <p>
3487 The Open vSwitch implementation of BFD aims to comply faithfully
3488 with RFC 5880 requirements. Open vSwitch does not implement the
3489 optional Authentication or ``Echo Mode'' features.
3490 </p>
3491
3492 <group title="BFD Configuration">
3493 <p>
3494 A controller sets up key-value pairs in the <ref column="bfd"/>
3495 column to enable and configure BFD.
3496 </p>
3497
3498 <column name="bfd" key="enable" type='{"type": "boolean"}'>
3499 True to enable BFD on this <ref table="Interface"/>. If not
3500 specified, BFD will not be enabled by default.
3501 </column>
3502
3503 <column name="bfd" key="min_rx"
3504 type='{"type": "integer", "minInteger": 1}'>
3505 The shortest interval, in milliseconds, at which this BFD session
3506 offers to receive BFD control messages. The remote endpoint may
3507 choose to send messages at a slower rate. Defaults to
3508 <code>1000</code>.
3509 </column>
3510
3511 <column name="bfd" key="min_tx"
3512 type='{"type": "integer", "minInteger": 1}'>
3513 The shortest interval, in milliseconds, at which this BFD session is
3514 willing to transmit BFD control messages. Messages will actually be
3515 transmitted at a slower rate if the remote endpoint is not willing to
3516 receive as quickly as specified. Defaults to <code>100</code>.
3517 </column>
3518
3519 <column name="bfd" key="decay_min_rx" type='{"type": "integer"}'>
3520 An alternate receive interval, in milliseconds, that must be greater
3521 than or equal to <ref column="bfd" key="min_rx"/>. The
3522 implementation switches from <ref column="bfd" key="min_rx"/> to <ref
3523 column="bfd" key="decay_min_rx"/> when there is no obvious incoming
3524 data traffic at the interface, to reduce the CPU and bandwidth cost
3525 of monitoring an idle interface. This feature may be disabled by
3526 setting a value of 0. This feature is reset whenever <ref
3527 column="bfd" key="decay_min_rx"/> or <ref column="bfd" key="min_rx"/>
3528 changes.
3529 </column>
3530
3531 <column name="bfd" key="forwarding_if_rx" type='{"type": "boolean"}'>
3532 When <code>true</code>, traffic received on the
3533 <ref table="Interface"/> is used to indicate the capability of packet
3534 I/O. BFD control packets are still transmitted and received. At
3535 least one BFD control packet must be received every 100 * <ref
3536 column="bfd" key="min_rx"/> amount of time. Otherwise, even if
3537 traffic are received, the <ref column="bfd" key="forwarding"/>
3538 will be <code>false</code>.
3539 </column>
3540
3541 <column name="bfd" key="cpath_down" type='{"type": "boolean"}'>
3542 Set to true to notify the remote endpoint that traffic should not be
3543 forwarded to this system for some reason other than a connectivty
3544 failure on the interface being monitored. The typical underlying
3545 reason is ``concatenated path down,'' that is, that connectivity
3546 beyond the local system is down. Defaults to false.
3547 </column>
3548
3549 <column name="bfd" key="check_tnl_key" type='{"type": "boolean"}'>
3550 Set to true to make BFD accept only control messages with a tunnel
3551 key of zero. By default, BFD accepts control messages with any
3552 tunnel key.
3553 </column>
3554
3555 <column name="bfd" key="bfd_local_src_mac">
3556 Set to an Ethernet address in the form
3557 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>
3558 to set the MAC used as source for transmitted BFD packets. The
3559 default is the mac address of the BFD enabled interface.
3560 </column>
3561
3562 <column name="bfd" key="bfd_local_dst_mac">
3563 Set to an Ethernet address in the form
3564 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>
3565 to set the MAC used as destination for transmitted BFD packets. The
3566 default is <code>00:23:20:00:00:01</code>.
3567 </column>
3568
3569 <column name="bfd" key="bfd_remote_dst_mac">
3570 Set to an Ethernet address in the form
3571 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>
3572 to set the MAC used for checking the destination of received BFD packets.
3573 Packets with different destination MAC will not be considered as BFD packets.
3574 If not specified the destination MAC address of received BFD packets
3575 are not checked.
3576 </column>
3577
3578 <column name="bfd" key="bfd_src_ip">
3579 Set to an IPv4 address to set the IP address used as source for
3580 transmitted BFD packets. The default is <code>169.254.1.1</code>.
3581 </column>
3582
3583 <column name="bfd" key="bfd_dst_ip">
3584 Set to an IPv4 address to set the IP address used as destination
3585 for transmitted BFD packets. The default is <code>169.254.1.0</code>.
3586 </column>
3587
3588 <column name="bfd" key="oam">
3589 Some tunnel protocols (such as Geneve) include a bit in the header
3590 to indicate that the encapsulated packet is an OAM frame. By setting
3591 this to true, BFD packets will be marked as OAM if encapsulated in
3592 one of these tunnels.
3593 </column>
3594
3595 <column name="bfd" key="mult"
3596 type='{"type": "integer", "minInteger": 1, "maxInteger": 255}'>
3597 The BFD detection multiplier, which defaults to 3. An endpoint
3598 signals a connectivity fault if the given number of consecutive BFD
3599 control messages fail to arrive.
3600 </column>
3601 </group>
3602
3603 <group title="BFD Status">
3604 <p>
3605 The switch sets key-value pairs in the <ref column="bfd_status"/>
3606 column to report the status of BFD on this interface. When BFD is
3607 not enabled, with <ref column="bfd" key="enable"/>, the switch clears
3608 all key-value pairs from <ref column="bfd_status"/>.
3609 </p>
3610
3611 <column name="bfd_status" key="state"
3612 type='{"type": "string",
3613 "enum": ["set", ["admin_down", "down", "init", "up"]]}'>
3614 Reports the state of the BFD session. The BFD session is fully
3615 healthy and negotiated if <code>UP</code>.
3616 </column>
3617
3618 <column name="bfd_status" key="forwarding" type='{"type": "boolean"}'>
3619 Reports whether the BFD session believes this <ref
3620 table="Interface"/> may be used to forward traffic. Typically this
3621 means the local session is signaling <code>UP</code>, and the remote
3622 system isn't signaling a problem such as concatenated path down.
3623 </column>
3624
3625 <column name="bfd_status" key="diagnostic">
3626 A diagnostic code specifying the local system's reason for the
3627 last change in session state. The error messages are defined in
3628 section 4.1 of [RFC 5880].
3629 </column>
3630
3631 <column name="bfd_status" key="remote_state"
3632 type='{"type": "string",
3633 "enum": ["set", ["admin_down", "down", "init", "up"]]}'>
3634 Reports the state of the remote endpoint's BFD session.
3635 </column>
3636
3637 <column name="bfd_status" key="remote_diagnostic">
3638 A diagnostic code specifying the remote system's reason for the
3639 last change in session state. The error messages are defined in
3640 section 4.1 of [RFC 5880].
3641 </column>
3642
3643 <column name="bfd_status" key="flap_count"
3644 type='{"type": "integer", "minInteger": 0}'>
3645 Counts the number of <ref column="bfd_status" key="forwarding" />
3646 flaps since start. A flap is considered as a change of the
3647 <ref column="bfd_status" key="forwarding" /> value.
3648 </column>
3649 </group>
3650 </group>
3651
3652 <group title="Connectivity Fault Management">
3653 <p>
3654 802.1ag Connectivity Fault Management (CFM) allows a group of
3655 Maintenance Points (MPs) called a Maintenance Association (MA) to
3656 detect connectivity problems with each other. MPs within a MA should
3657 have complete and exclusive interconnectivity. This is verified by
3658 occasionally broadcasting Continuity Check Messages (CCMs) at a
3659 configurable transmission interval.
3660 </p>
3661
3662 <p>
3663 According to the 802.1ag specification, each Maintenance Point should
3664 be configured out-of-band with a list of Remote Maintenance Points it
3665 should have connectivity to. Open vSwitch differs from the
3666 specification in this area. It simply assumes the link is faulted if
3667 no Remote Maintenance Points are reachable, and considers it not
3668 faulted otherwise.
3669 </p>
3670
3671 <p>
3672 When operating over tunnels which have no <code>in_key</code>, or an
3673 <code>in_key</code> of <code>flow</code>. CFM will only accept CCMs
3674 with a tunnel key of zero.
3675 </p>
3676
3677 <column name="cfm_mpid">
3678 <p>
3679 A Maintenance Point ID (MPID) uniquely identifies each endpoint
3680 within a Maintenance Association. The MPID is used to identify this
3681 endpoint to other Maintenance Points in the MA. Each end of a link
3682 being monitored should have a different MPID. Must be configured to
3683 enable CFM on this <ref table="Interface"/>.
3684 </p>
3685 <p>
3686 According to the 802.1ag specification, MPIDs can only range between
3687 [1, 8191]. However, extended mode (see <ref column="other_config"
3688 key="cfm_extended"/>) supports eight byte MPIDs.
3689 </p>
3690 </column>
3691
3692 <column name="cfm_flap_count">
3693 Counts the number of cfm fault flapps since boot. A flap is
3694 considered to be a change of the <ref column="cfm_fault"/> value.
3695 </column>
3696
3697 <column name="cfm_fault">
3698 <p>
3699 Indicates a connectivity fault triggered by an inability to receive
3700 heartbeats from any remote endpoint. When a fault is triggered on
3701 <ref table="Interface"/>s participating in bonds, they will be
3702 disabled.
3703 </p>
3704 <p>
3705 Faults can be triggered for several reasons. Most importantly they
3706 are triggered when no CCMs are received for a period of 3.5 times the
3707 transmission interval. Faults are also triggered when any CCMs
3708 indicate that a Remote Maintenance Point is not receiving CCMs but
3709 able to send them. Finally, a fault is triggered if a CCM is
3710 received which indicates unexpected configuration. Notably, this
3711 case arises when a CCM is received which advertises the local MPID.
3712 </p>
3713 </column>
3714
3715 <column name="cfm_fault_status" key="recv">
3716 Indicates a CFM fault was triggered due to a lack of CCMs received on
3717 the <ref table="Interface"/>.
3718 </column>
3719
3720 <column name="cfm_fault_status" key="rdi">
3721 Indicates a CFM fault was triggered due to the reception of a CCM with
3722 the RDI bit flagged. Endpoints set the RDI bit in their CCMs when they
3723 are not receiving CCMs themselves. This typically indicates a
3724 unidirectional connectivity failure.
3725 </column>
3726
3727 <column name="cfm_fault_status" key="maid">
3728 Indicates a CFM fault was triggered due to the reception of a CCM with
3729 a MAID other than the one Open vSwitch uses. CFM broadcasts are tagged
3730 with an identification number in addition to the MPID called the MAID.
3731 Open vSwitch only supports receiving CCM broadcasts tagged with the
3732 MAID it uses internally.
3733 </column>
3734
3735 <column name="cfm_fault_status" key="loopback">
3736 Indicates a CFM fault was triggered due to the reception of a CCM
3737 advertising the same MPID configured in the <ref column="cfm_mpid"/>
3738 column of this <ref table="Interface"/>. This may indicate a loop in
3739 the network.
3740 </column>
3741
3742 <column name="cfm_fault_status" key="overflow">
3743 Indicates a CFM fault was triggered because the CFM module received
3744 CCMs from more remote endpoints than it can keep track of.
3745 </column>
3746
3747 <column name="cfm_fault_status" key="override">
3748 Indicates a CFM fault was manually triggered by an administrator using
3749 an <code>ovs-appctl</code> command.
3750 </column>
3751
3752 <column name="cfm_fault_status" key="interval">
3753 Indicates a CFM fault was triggered due to the reception of a CCM
3754 frame having an invalid interval.
3755 </column>
3756
3757 <column name="cfm_remote_opstate">
3758 <p>When in extended mode, indicates the operational state of the
3759 remote endpoint as either <code>up</code> or <code>down</code>. See
3760 <ref column="other_config" key="cfm_opstate"/>.
3761 </p>
3762 </column>
3763
3764 <column name="cfm_health">
3765 <p>
3766 Indicates the health of the interface as a percentage of CCM frames
3767 received over 21 <ref column="other_config" key="cfm_interval"/>s.
3768 The health of an interface is undefined if it is communicating with
3769 more than one <ref column="cfm_remote_mpids"/>. It reduces if
3770 healthy heartbeats are not received at the expected rate, and
3771 gradually improves as healthy heartbeats are received at the desired
3772 rate. Every 21 <ref column="other_config" key="cfm_interval"/>s, the
3773 health of the interface is refreshed.
3774 </p>
3775 <p>
3776 As mentioned above, the faults can be triggered for several reasons.
3777 The link health will deteriorate even if heartbeats are received but
3778 they are reported to be unhealthy. An unhealthy heartbeat in this
3779 context is a heartbeat for which either some fault is set or is out
3780 of sequence. The interface health can be 100 only on receiving
3781 healthy heartbeats at the desired rate.
3782 </p>
3783 </column>
3784
3785 <column name="cfm_remote_mpids">
3786 When CFM is properly configured, Open vSwitch will occasionally
3787 receive CCM broadcasts. These broadcasts contain the MPID of the
3788 sending Maintenance Point. The list of MPIDs from which this
3789 <ref table="Interface"/> is receiving broadcasts from is regularly
3790 collected and written to this column.
3791 </column>
3792
3793 <column name="other_config" key="cfm_interval"
3794 type='{"type": "integer"}'>
3795 <p>
3796 The interval, in milliseconds, between transmissions of CFM
3797 heartbeats. Three missed heartbeat receptions indicate a
3798 connectivity fault.
3799 </p>
3800
3801 <p>
3802 In standard operation only intervals of 3, 10, 100, 1,000, 10,000,
3803 60,000, or 600,000 ms are supported. Other values will be rounded
3804 down to the nearest value on the list. Extended mode (see <ref
3805 column="other_config" key="cfm_extended"/>) supports any interval up
3806 to 65,535 ms. In either mode, the default is 1000 ms.
3807 </p>
3808
3809 <p>We do not recommend using intervals less than 100 ms.</p>
3810 </column>
3811
3812 <column name="other_config" key="cfm_extended"
3813 type='{"type": "boolean"}'>
3814 When <code>true</code>, the CFM module operates in extended mode. This
3815 causes it to use a nonstandard destination address to avoid conflicting
3816 with compliant implementations which may be running concurrently on the
3817 network. Furthermore, extended mode increases the accuracy of the
3818 <code>cfm_interval</code> configuration parameter by breaking wire
3819 compatibility with 802.1ag compliant implementations. And extended
3820 mode allows eight byte MPIDs. Defaults to <code>false</code>.
3821 </column>
3822
3823 <column name="other_config" key="cfm_demand" type='{"type": "boolean"}'>
3824 <p>
3825 When <code>true</code>, and
3826 <ref column="other_config" key="cfm_extended"/> is true, the CFM
3827 module operates in demand mode. When in demand mode, traffic
3828 received on the <ref table="Interface"/> is used to indicate
3829 liveness. CCMs are still transmitted and received. At least one
3830 CCM must be received every 100 * <ref column="other_config"
3831 key="cfm_interval"/> amount of time. Otherwise, even if traffic
3832 are received, the CFM module will raise the connectivity fault.
3833 </p>
3834
3835 <p>
3836 Demand mode has a couple of caveats:
3837 <ul>
3838 <li>
3839 To ensure that ovs-vswitchd has enough time to pull statistics
3840 from the datapath, the fault detection interval is set to
3841 3.5 * MAX(<ref column="other_config" key="cfm_interval"/>, 500)
3842 ms.
3843 </li>
3844
3845 <li>
3846 To avoid ambiguity, demand mode disables itself when there are
3847 multiple remote maintenance points.
3848 </li>
3849
3850 <li>
3851 If the <ref table="Interface"/> is heavily congested, CCMs
3852 containing the <ref column="other_config" key="cfm_opstate"/>
3853 status may be dropped causing changes in the operational state to
3854 be delayed. Similarly, if CCMs containing the RDI bit are not
3855 received, unidirectional link failures may not be detected.
3856 </li>
3857 </ul>
3858 </p>
3859 </column>
3860
3861 <column name="other_config" key="cfm_opstate"
3862 type='{"type": "string", "enum": ["set", ["down", "up"]]}'>
3863 When <code>down</code>, the CFM module marks all CCMs it generates as
3864 operationally down without triggering a fault. This allows remote
3865 maintenance points to choose not to forward traffic to the
3866 <ref table="Interface"/> on which this CFM module is running.
3867 Currently, in Open vSwitch, the opdown bit of CCMs affects
3868 <ref table="Interface"/>s participating in bonds, and the bundle
3869 OpenFlow action. This setting is ignored when CFM is not in extended
3870 mode. Defaults to <code>up</code>.
3871 </column>
3872
3873 <column name="other_config" key="cfm_ccm_vlan"
3874 type='{"type": "integer", "minInteger": 1, "maxInteger": 4095}'>
3875 When set, the CFM module will apply a VLAN tag to all CCMs it generates
3876 with the given value. May be the string <code>random</code> in which
3877 case each CCM will be tagged with a different randomly generated VLAN.
3878 </column>
3879
3880 <column name="other_config" key="cfm_ccm_pcp"
3881 type='{"type": "integer", "minInteger": 1, "maxInteger": 7}'>
3882 When set, the CFM module will apply a VLAN tag to all CCMs it generates
3883 with the given PCP value, the VLAN ID of the tag is governed by the
3884 value of <ref column="other_config" key="cfm_ccm_vlan"/>. If
3885 <ref column="other_config" key="cfm_ccm_vlan"/> is unset, a VLAN ID of
3886 zero is used.
3887 </column>
3888
3889 </group>
3890
3891 <group title="Bonding Configuration">
3892 <column name="other_config" key="lacp-port-id"
3893 type='{"type": "integer", "minInteger": 1, "maxInteger": 65535}'>
3894 The LACP port ID of this <ref table="Interface"/>. Port IDs are
3895 used in LACP negotiations to identify individual ports
3896 participating in a bond.
3897 </column>
3898
3899 <column name="other_config" key="lacp-port-priority"
3900 type='{"type": "integer", "minInteger": 1, "maxInteger": 65535}'>
3901 The LACP port priority of this <ref table="Interface"/>. In LACP
3902 negotiations <ref table="Interface"/>s with numerically lower
3903 priorities are preferred for aggregation.
3904 </column>
3905
3906 <column name="other_config" key="lacp-aggregation-key"
3907 type='{"type": "integer", "minInteger": 1, "maxInteger": 65535}'>
3908 The LACP aggregation key of this <ref table="Interface"/>. <ref
3909 table="Interface"/>s with different aggregation keys may not be active
3910 within a given <ref table="Port"/> at the same time.
3911 </column>
3912 </group>
3913
3914 <group title="Virtual Machine Identifiers">
3915 <p>
3916 These key-value pairs specifically apply to an interface that
3917 represents a virtual Ethernet interface connected to a virtual
3918 machine. These key-value pairs should not be present for other types
3919 of interfaces. Keys whose names end in <code>-uuid</code> have
3920 values that uniquely identify the entity in question. For a Citrix
3921 XenServer hypervisor, these values are UUIDs in RFC 4122 format.
3922 Other hypervisors may use other formats.
3923 </p>
3924
3925 <column name="external_ids" key="attached-mac">
3926 The MAC address programmed into the ``virtual hardware'' for this
3927 interface, in the form
3928 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>.
3929 For Citrix XenServer, this is the value of the <code>MAC</code> field
3930 in the VIF record for this interface.
3931 </column>
3932
3933 <column name="external_ids" key="iface-id">
3934 A system-unique identifier for the interface. On XenServer, this will
3935 commonly be the same as <ref column="external_ids" key="xs-vif-uuid"/>.
3936 </column>
3937
3938 <column name="external_ids" key="iface-status"
3939 type='{"type": "string",
3940 "enum": ["set", ["active", "inactive"]]}'>
3941 <p>
3942 Hypervisors may sometimes have more than one interface associated
3943 with a given <ref column="external_ids" key="iface-id"/>, only one of
3944 which is actually in use at a given time. For example, in some
3945 circumstances XenServer has both a ``tap'' and a ``vif'' interface
3946 for a single <ref column="external_ids" key="iface-id"/>, but only
3947 uses one of them at a time. A hypervisor that behaves this way must
3948 mark the currently in use interface <code>active</code> and the
3949 others <code>inactive</code>. A hypervisor that never has more than
3950 one interface for a given <ref column="external_ids" key="iface-id"/>
3951 may mark that interface <code>active</code> or omit <ref
3952 column="external_ids" key="iface-status"/> entirely.
3953 </p>
3954
3955 <p>
3956 During VM migration, a given <ref column="external_ids"
3957 key="iface-id"/> might transiently be marked <code>active</code> on
3958 two different hypervisors. That is, <code>active</code> means that
3959 this <ref column="external_ids" key="iface-id"/> is the active
3960 instance within a single hypervisor, not in a broader scope.
3961 There is one exception: some hypervisors support ``migration'' from a
3962 given hypervisor to itself (most often for test purposes). During
3963 such a ``migration,'' two instances of a single <ref
3964 column="external_ids" key="iface-id"/> might both be briefly marked
3965 <code>active</code> on a single hypervisor.
3966 </p>
3967 </column>
3968
3969 <column name="external_ids" key="xs-vif-uuid">
3970 The virtual interface associated with this interface.
3971 </column>
3972
3973 <column name="external_ids" key="xs-network-uuid">
3974 The virtual network to which this interface is attached.
3975 </column>
3976
3977 <column name="external_ids" key="vm-id">
3978 The VM to which this interface belongs. On XenServer, this will be the
3979 same as <ref column="external_ids" key="xs-vm-uuid"/>.
3980 </column>
3981
3982 <column name="external_ids" key="xs-vm-uuid">
3983 The VM to which this interface belongs.
3984 </column>
3985 </group>
3986
3987 <group title="Auto Attach Configuration">
3988 <p>
3989 Auto Attach configuration for a particular interface.
3990 </p>
3991
3992 <column name="lldp" key="enable" type='{"type": "boolean"}'>
3993 True to enable LLDP on this <ref table="Interface"/>. If not
3994 specified, LLDP will be disabled by default.
3995 </column>
3996 </group>
3997
3998 <group title="Flow control Configuration">
3999 <p>
4000 Ethernet flow control defined in IEEE 802.1Qbb provides link level flow
4001 control using MAC pause frames. Implemented only for interfaces with
4002 type <code>dpdk</code>.
4003 </p>
4004
4005 <column name="options" key="rx-flow-ctrl" type='{"type": "boolean"}'>
4006 Set to <code>true</code> to enable Rx flow control on physical ports.
4007 By default, Rx flow control is disabled.
4008 </column>
4009
4010 <column name="options" key="tx-flow-ctrl" type='{"type": "boolean"}'>
4011 Set to <code>true</code> to enable Tx flow control on physical ports.
4012 By default, Tx flow control is disabled.
4013 </column>
4014
4015 <column name="options" key="flow-ctrl-autoneg"
4016 type='{"type": "boolean"}'>
4017 Set to <code>true</code> to enable flow control auto negotiation on
4018 physical ports. By default, auto-neg is disabled.
4019 </column>
4020 </group>
4021
4022 <group title="Link State Change detection mode">
4023 <column name="options" key="dpdk-lsc-interrupt"
4024 type='{"type": "boolean"}'>
4025 <p>
4026 Set this value to <code>true</code> to configure interrupt mode for
4027 Link State Change (LSC) detection instead of poll mode for the DPDK
4028 interface.
4029 </p>
4030 <p>
4031 If this value is not set, poll mode is configured.
4032 </p>
4033 <p>
4034 This parameter has an effect only on netdev dpdk interfaces.
4035 </p>
4036 </column>
4037 </group>
4038
4039 <group title="Common Columns">
4040 The overall purpose of these columns is described under <code>Common
4041 Columns</code> at the beginning of this document.
4042
4043 <column name="other_config"/>
4044 <column name="external_ids"/>
4045 </group>
4046 </table>
4047
4048 <table name="Flow_Table" title="OpenFlow table configuration">
4049 <p>Configuration for a particular OpenFlow table.</p>
4050
4051 <column name="name">
4052 The table's name. Set this column to change the name that controllers
4053 will receive when they request table statistics, e.g. <code>ovs-ofctl
4054 dump-tables</code>. The name does not affect switch behavior.
4055 </column>
4056
4057 <group title="Eviction Policy">
4058 <p>
4059 Open vSwitch supports limiting the number of flows that may be
4060 installed in a flow table, via the <ref column="flow_limit"/> column.
4061 When adding a flow would exceed this limit, by default Open vSwitch
4062 reports an error, but there are two ways to configure Open vSwitch to
4063 instead delete (``evict'') a flow to make room for the new one:
4064 </p>
4065
4066 <ul>
4067 <li>
4068 Set the <ref column="overflow_policy"/> column to <code>evict</code>.
4069 </li>
4070
4071 <li>
4072 Send an OpenFlow 1.4+ ``table mod request'' to enable eviction for
4073 the flow table (e.g. <code>ovs-ofctl -O OpenFlow14 mod-table br0 0
4074 evict</code> to enable eviction on flow table 0 of bridge
4075 <code>br0</code>).
4076 </li>
4077 </ul>
4078
4079 <p>
4080 When a flow must be evicted due to overflow, the flow to evict is
4081 chosen through an approximation of the following algorithm. This
4082 algorithm is used regardless of how eviction was enabled:
4083 </p>
4084
4085 <ol>
4086 <li>
4087 Divide the flows in the table into groups based on the values of the
4088 fields or subfields specified in the <ref column="groups"/> column,
4089 so that all of the flows in a given group have the same values for
4090 those fields. If a flow does not specify a given field, that field's
4091 value is treated as 0. If <ref column="groups"/> is empty, then all
4092 of the flows in the flow table are treated as a single group.
4093 </li>
4094
4095 <li>
4096 Consider the flows in the largest group, that is, the group that
4097 contains the greatest number of flows. If two or more groups all
4098 have the same largest number of flows, consider the flows in all of
4099 those groups.
4100 </li>
4101
4102 <li>
4103 If the flows under consideration have different importance values,
4104 eliminate from consideration any flows except those with the lowest
4105 importance. (``Importance,'' a 16-bit integer value attached to each
4106 flow, was introduced in OpenFlow 1.4. Flows inserted with older
4107 versions of OpenFlow always have an importance of 0.)
4108 </li>
4109
4110 <li>
4111 Among the flows under consideration, choose the flow that expires
4112 soonest for eviction.
4113 </li>
4114 </ol>
4115
4116 <p>
4117 The eviction process only considers flows that have an idle timeout
4118 or a hard timeout. That is, eviction never deletes permanent flows.
4119 (Permanent flows do count against <ref column="flow_limit"/>.)
4120 </p>
4121
4122 <column name="flow_limit">
4123 If set, limits the number of flows that may be added to the table.
4124 Open vSwitch may limit the number of flows in a table for other
4125 reasons, e.g. due to hardware limitations or for resource availability
4126 or performance reasons.
4127 </column>
4128
4129 <column name="overflow_policy">
4130 <p>
4131 Controls the switch's behavior when an OpenFlow flow table
4132 modification request would add flows in excess of <ref
4133 column="flow_limit"/>. The supported values are:
4134 </p>
4135
4136 <dl>
4137 <dt><code>refuse</code></dt>
4138 <dd>
4139 Refuse to add the flow or flows. This is also the default policy
4140 when <ref column="overflow_policy"/> is unset.
4141 </dd>
4142
4143 <dt><code>evict</code></dt>
4144 <dd>
4145 Delete a flow chosen according to the algorithm described above.
4146 </dd>
4147 </dl>
4148 </column>
4149
4150 <column name="groups">
4151 <p>
4152 When <ref column="overflow_policy"/> is <code>evict</code>, this
4153 controls how flows are chosen for eviction when the flow table would
4154 otherwise exceed <ref column="flow_limit"/> flows. Its value is a
4155 set of NXM fields or sub-fields, each of which takes one of the forms
4156 <code><var>field</var>[]</code> or
4157 <code><var>field</var>[<var>start</var>..<var>end</var>]</code>,
4158 e.g. <code>NXM_OF_IN_PORT[]</code>. Please see
4159 <code>meta-flow.h</code> for a complete list of NXM field names.
4160 </p>
4161
4162 <p>
4163 Open vSwitch ignores any invalid or unknown field specifications.
4164 </p>
4165
4166 <p>
4167 When eviction is not enabled, via <ref column="overflow_policy"/> or
4168 an OpenFlow 1.4+ ``table mod,'' this column has no effect.
4169 </p>
4170 </column>
4171 </group>
4172
4173 <group title="Classifier Optimization">
4174 <column name="prefixes">
4175 <p>
4176 This string set specifies which fields should be used for
4177 address prefix tracking. Prefix tracking allows the
4178 classifier to skip rules with longer than necessary prefixes,
4179 resulting in better wildcarding for datapath flows.
4180 </p>
4181 <p>
4182 Prefix tracking may be beneficial when a flow table contains
4183 matches on IP address fields with different prefix lengths.
4184 For example, when a flow table contains IP address matches on
4185 both full addresses and proper prefixes, the full address
4186 matches will typically cause the datapath flow to un-wildcard
4187 the whole address field (depending on flow entry priorities).
4188 In this case each packet with a different address gets handed
4189 to the userspace for flow processing and generates its own
4190 datapath flow. With prefix tracking enabled for the address
4191 field in question packets with addresses matching shorter
4192 prefixes would generate datapath flows where the irrelevant
4193 address bits are wildcarded, allowing the same datapath flow
4194 to handle all the packets within the prefix in question. In
4195 this case many userspace upcalls can be avoided and the
4196 overall performance can be better.
4197 </p>
4198 <p>
4199 This is a performance optimization only, so packets will
4200 receive the same treatment with or without prefix tracking.
4201 </p>
4202 <p>
4203 The supported fields are: <code>tun_id</code>,
4204 <code>tun_src</code>, <code>tun_dst</code>,
4205 <code>tun_ipv6_src</code>, <code>tun_ipv6_dst</code>,
4206 <code>nw_src</code>, <code>nw_dst</code> (or aliases
4207 <code>ip_src</code> and <code>ip_dst</code>),
4208 <code>ipv6_src</code>, and <code>ipv6_dst</code>. (Using this
4209 feature for <code>tun_id</code> would only make sense if the
4210 tunnel IDs have prefix structure similar to IP addresses.)
4211 </p>
4212
4213 <p>
4214 By default, the <code>prefixes=ip_dst,ip_src</code> are used
4215 on each flow table. This instructs the flow classifier to
4216 track the IP destination and source addresses used by the
4217 rules in this specific flow table.
4218 </p>
4219
4220 <p>
4221 The keyword <code>none</code> is recognized as an explicit
4222 override of the default values, causing no prefix fields to be
4223 tracked.
4224 </p>
4225
4226 <p>
4227 To set the prefix fields, the flow table record needs to
4228 exist:
4229 </p>
4230
4231 <dl>
4232 <dt><code>ovs-vsctl set Bridge br0 flow_tables:0=@N1 -- --id=@N1 create Flow_Table name=table0</code></dt>
4233 <dd>
4234 Creates a flow table record for the OpenFlow table number 0.
4235 </dd>
4236
4237 <dt><code>ovs-vsctl set Flow_Table table0 prefixes=ip_dst,ip_src</code></dt>
4238 <dd>
4239 Enables prefix tracking for IP source and destination
4240 address fields.
4241 </dd>
4242 </dl>
4243
4244 <p>
4245 There is a maximum number of fields that can be enabled for any
4246 one flow table. Currently this limit is 3.
4247 </p>
4248 </column>
4249 </group>
4250
4251 <group title="Common Columns">
4252 The overall purpose of these columns is described under <code>Common
4253 Columns</code> at the beginning of this document.
4254
4255 <column name="external_ids"/>
4256 </group>
4257 </table>
4258
4259 <table name="QoS" title="Quality of Service configuration">
4260 <p>Quality of Service (QoS) configuration for each Port that
4261 references it.</p>
4262
4263 <column name="type">
4264 <p>The type of QoS to implement. The currently defined types are
4265 listed below:</p>
4266 <dl>
4267 <dt><code>linux-htb</code></dt>
4268 <dd>
4269 Linux ``hierarchy token bucket'' classifier. See tc-htb(8) (also at
4270 <code>http://linux.die.net/man/8/tc-htb</code>) and the HTB manual
4271 (<code>http://luxik.cdi.cz/~devik/qos/htb/manual/userg.htm</code>)
4272 for information on how this classifier works and how to configure it.
4273 </dd>
4274
4275 <dt><code>linux-hfsc</code></dt>
4276 <dd>
4277 Linux "Hierarchical Fair Service Curve" classifier.
4278 See <code>http://linux-ip.net/articles/hfsc.en/</code> for
4279 information on how this classifier works.
4280 </dd>
4281
4282 <dt><code>linux-sfq</code></dt>
4283 <dd>
4284 Linux ``Stochastic Fairness Queueing'' classifier. See
4285 <code>tc-sfq</code>(8) (also at
4286 <code>http://linux.die.net/man/8/tc-sfq</code>) for information on
4287 how this classifier works.
4288 </dd>
4289
4290 <dt><code>linux-codel</code></dt>
4291 <dd>
4292 Linux ``Controlled Delay'' classifier. See <code>tc-codel</code>(8)
4293 (also at
4294 <code>http://man7.org/linux/man-pages/man8/tc-codel.8.html</code>)
4295 for information on how this classifier works.
4296 </dd>
4297
4298 <dt><code>linux-fq_codel</code></dt>
4299 <dd>
4300 Linux ``Fair Queuing with Controlled Delay'' classifier. See
4301 <code>tc-fq_codel</code>(8) (also at
4302 <code>http://man7.org/linux/man-pages/man8/tc-fq_codel.8.html</code>)
4303 for information on how this classifier works.
4304 </dd>
4305
4306 <dt><code>linux-noop</code></dt>
4307 <dd>
4308 Linux ``No operation.'' By default, Open vSwitch manages quality of
4309 service on all of its configured ports. This can be helpful, but
4310 sometimes administrators prefer to use other software to manage QoS.
4311 This <ref column="type"/> prevents Open vSwitch from changing the QoS
4312 configuration for a port.
4313 </dd>
4314
4315 <dt><code>egress-policer</code></dt>
4316 <dd>
4317 A DPDK egress policer algorithm using the DPDK
4318 rte_meter library. The rte_meter library provides an implementation
4319 which allows the metering and policing of traffic. The implementation
4320 in OVS essentially creates a single token bucket used to police
4321 traffic. It should be noted that when the rte_meter is configured as
4322 part of QoS there will be a performance overhead as the rte_meter
4323 itself will consume CPU cycles in order to police traffic. These CPU
4324 cycles ordinarily are used for packet proccessing. As such the drop
4325 in performance will be noticed in terms of overall aggregate traffic
4326 throughput.
4327 </dd>
4328 </dl>
4329 </column>
4330
4331 <column name="queues">
4332 <p>A map from queue numbers to <ref table="Queue"/> records. The
4333 supported range of queue numbers depend on <ref column="type"/>. The
4334 queue numbers are the same as the <code>queue_id</code> used in
4335 OpenFlow in <code>struct ofp_action_enqueue</code> and other
4336 structures.</p>
4337
4338 <p>
4339 Queue 0 is the ``default queue.'' It is used by OpenFlow output
4340 actions when no specific queue has been set. When no configuration for
4341 queue 0 is present, it is automatically configured as if a <ref
4342 table="Queue"/> record with empty <ref table="Queue" column="dscp"/>
4343 and <ref table="Queue" column="other_config"/> columns had been
4344 specified.
4345 (Before version 1.6, Open vSwitch would leave queue 0 unconfigured in
4346 this case. With some queuing disciplines, this dropped all packets
4347 destined for the default queue.)
4348 </p>
4349 </column>
4350
4351 <group title="Configuration for linux-htb and linux-hfsc">
4352 <p>
4353 The <code>linux-htb</code> and <code>linux-hfsc</code> classes support
4354 the following key-value pair:
4355 </p>
4356
4357 <column name="other_config" key="max-rate" type='{"type": "integer"}'>
4358 Maximum rate shared by all queued traffic, in bit/s. Optional. If not
4359 specified, for physical interfaces, the default is the link rate. For
4360 other interfaces or if the link rate cannot be determined, the default
4361 is currently 100 Mbps.
4362 </column>
4363 </group>
4364
4365 <group title="Configuration for egress-policer QoS">
4366 <p>
4367 <ref table="QoS"/> <ref table="QoS" column="type"/>
4368 <code>egress-policer</code> provides egress policing for userspace
4369 port types with DPDK.
4370
4371 It has the following key-value pairs defined.
4372 </p>
4373
4374 <column name="other_config" key="cir" type='{"type": "integer"}'>
4375 The Committed Information Rate (CIR) is measured in bytes of IP
4376 packets per second, i.e. it includes the IP header, but not link
4377 specific (e.g. Ethernet) headers. This represents the bytes per second
4378 rate at which the token bucket will be updated. The cir value is
4379 calculated by (pps x packet data size). For example assuming a user
4380 wishes to limit a stream consisting of 64 byte packets to 1 million
4381 packets per second the CIR would be set to to to 46000000. This value
4382 can be broken into '1,000,000 x 46'. Where 1,000,000 is the policing
4383 rate for the number of packets per second and 46 represents the size
4384 of the packet data for a 64 byte ip packet.
4385 </column>
4386 <column name="other_config" key="cbs" type='{"type": "integer"}'>
4387 The Committed Burst Size (CBS) is measured in bytes and represents a
4388 token bucket. At a minimum this value should be be set to the expected
4389 largest size packet in the traffic stream. In practice larger values
4390 may be used to increase the size of the token bucket. If a packet can
4391 be transmitted then the cbs will be decremented by the number of
4392 bytes/tokens of the packet. If there are not enough tokens in the cbs
4393 bucket the packet will be dropped.
4394 </column>
4395 </group>
4396
4397 <group title="Configuration for linux-sfq">
4398 <p>
4399 The <code>linux-sfq</code> QoS supports the following key-value pairs:
4400 </p>
4401
4402 <column name="other_config" key="perturb" type='{"type": "integer"}'>
4403 Number of seconds between consecutive perturbations in hashing algorithm.
4404 Different flows can end up in the same hash bucket causing unfairness.
4405 Perturbation's goal is to remove possible unfairness.
4406 The default and recommended value is 10. Too low a value is discouraged
4407 because each perturbation can cause packet reordering.
4408 </column>
4409 <column name="other_config" key="quantum" type='{"type": "integer"}'>
4410 Number of bytes <code>linux-sfq</code> QoS can dequeue in one turn in
4411 round-robin from one flow. The default and recommended value is equal
4412 to interface's MTU.
4413 </column>
4414 </group>
4415
4416 <group title="Common Columns">
4417 The overall purpose of these columns is described under <code>Common
4418 Columns</code> at the beginning of this document.
4419
4420 <column name="other_config"/>
4421 <column name="external_ids"/>
4422 </group>
4423 </table>
4424
4425 <table name="Queue" title="QoS output queue.">
4426 <p>A configuration for a port output queue, used in configuring Quality of
4427 Service (QoS) features. May be referenced by <ref column="queues"
4428 table="QoS"/> column in <ref table="QoS"/> table.</p>
4429
4430 <column name="dscp">
4431 If set, Open vSwitch will mark all traffic egressing this
4432 <ref table="Queue"/> with the given DSCP bits. Traffic egressing the
4433 default <ref table="Queue"/> is only marked if it was explicitly selected
4434 as the <ref table="Queue"/> at the time the packet was output. If unset,
4435 the DSCP bits of traffic egressing this <ref table="Queue"/> will remain
4436 unchanged.
4437 </column>
4438
4439 <group title="Configuration for linux-htb QoS">
4440 <p>
4441 <ref table="QoS"/> <ref table="QoS" column="type"/>
4442 <code>linux-htb</code> may use <code>queue_id</code>s less than 61440.
4443 It has the following key-value pairs defined.
4444 </p>
4445
4446 <column name="other_config" key="min-rate"
4447 type='{"type": "integer", "minInteger": 1}'>
4448 Minimum guaranteed bandwidth, in bit/s.
4449 </column>
4450
4451 <column name="other_config" key="max-rate"
4452 type='{"type": "integer", "minInteger": 1}'>
4453 Maximum allowed bandwidth, in bit/s. Optional. If specified, the
4454 queue's rate will not be allowed to exceed the specified value, even
4455 if excess bandwidth is available. If unspecified, defaults to no
4456 limit.
4457 </column>
4458
4459 <column name="other_config" key="burst"
4460 type='{"type": "integer", "minInteger": 1}'>
4461 Burst size, in bits. This is the maximum amount of ``credits'' that a
4462 queue can accumulate while it is idle. Optional. Details of the
4463 <code>linux-htb</code> implementation require a minimum burst size, so
4464 a too-small <code>burst</code> will be silently ignored.
4465 </column>
4466
4467 <column name="other_config" key="priority"
4468 type='{"type": "integer", "minInteger": 0, "maxInteger": 4294967295}'>
4469 A queue with a smaller <code>priority</code> will receive all the
4470 excess bandwidth that it can use before a queue with a larger value
4471 receives any. Specific priority values are unimportant; only relative
4472 ordering matters. Defaults to 0 if unspecified.
4473 </column>
4474 </group>
4475
4476 <group title="Configuration for linux-hfsc QoS">
4477 <p>
4478 <ref table="QoS"/> <ref table="QoS" column="type"/>
4479 <code>linux-hfsc</code> may use <code>queue_id</code>s less than 61440.
4480 It has the following key-value pairs defined.
4481 </p>
4482
4483 <column name="other_config" key="min-rate"
4484 type='{"type": "integer", "minInteger": 1}'>
4485 Minimum guaranteed bandwidth, in bit/s.
4486 </column>
4487
4488 <column name="other_config" key="max-rate"
4489 type='{"type": "integer", "minInteger": 1}'>
4490 Maximum allowed bandwidth, in bit/s. Optional. If specified, the
4491 queue's rate will not be allowed to exceed the specified value, even if
4492 excess bandwidth is available. If unspecified, defaults to no
4493 limit.
4494 </column>
4495 </group>
4496
4497 <group title="Common Columns">
4498 The overall purpose of these columns is described under <code>Common
4499 Columns</code> at the beginning of this document.
4500
4501 <column name="other_config"/>
4502 <column name="external_ids"/>
4503 </group>
4504 </table>
4505
4506 <table name="Mirror" title="Port mirroring.">
4507 <p>A port mirror within a <ref table="Bridge"/>.</p>
4508 <p>A port mirror configures a bridge to send selected frames to special
4509 ``mirrored'' ports, in addition to their normal destinations. Mirroring
4510 traffic may also be referred to as SPAN or RSPAN, depending on how
4511 the mirrored traffic is sent.</p>
4512
4513 <p>
4514 When a packet enters an Open vSwitch bridge, it becomes eligible for
4515 mirroring based on its ingress port and VLAN. As the packet travels
4516 through the flow tables, each time it is output to a port, it becomes
4517 eligible for mirroring based on the egress port and VLAN. In Open
4518 vSwitch 2.5 and later, mirroring occurs just after a packet first becomes
4519 eligible, using the packet as it exists at that point; in Open vSwitch
4520 2.4 and earlier, mirroring occurs only after a packet has traversed all
4521 the flow tables, using the original packet as it entered the bridge.
4522 This makes a difference only when the flow table modifies the packet: in
4523 Open vSwitch 2.4, the modifications are never visible to mirrors, whereas
4524 in Open vSwitch 2.5 and later modifications made before the first output
4525 that makes it eligible for mirroring to a particular destination are
4526 visible.
4527 </p>
4528
4529 <p>
4530 A packet that enters an Open vSwitch bridge is mirrored to a particular
4531 destination only once, even if it is eligible for multiple reasons. For
4532 example, a packet would be mirrored to a particular <ref
4533 column="output_port"/> only once, even if it is selected for mirroring to
4534 that port by <ref column="select_dst_port"/> and <ref
4535 column="select_src_port"/> in the same or different <ref table="Mirror"/>
4536 records.
4537 </p>
4538
4539 <column name="name">
4540 Arbitrary identifier for the <ref table="Mirror"/>.
4541 </column>
4542
4543 <group title="Selecting Packets for Mirroring">
4544 <p>
4545 To be selected for mirroring, a given packet must enter or leave the
4546 bridge through a selected port and it must also be in one of the
4547 selected VLANs.
4548 </p>
4549
4550 <column name="select_all">
4551 If true, every packet arriving or departing on any port is
4552 selected for mirroring.
4553 </column>
4554
4555 <column name="select_dst_port">
4556 Ports on which departing packets are selected for mirroring.
4557 </column>
4558
4559 <column name="select_src_port">
4560 Ports on which arriving packets are selected for mirroring.
4561 </column>
4562
4563 <column name="select_vlan">
4564 VLANs on which packets are selected for mirroring. An empty set
4565 selects packets on all VLANs.
4566 </column>
4567 </group>
4568
4569 <group title="Mirroring Destination Configuration">
4570 <p>
4571 These columns are mutually exclusive. Exactly one of them must be
4572 nonempty.
4573 </p>
4574
4575 <column name="output_port">
4576 <p>Output port for selected packets, if nonempty.</p>
4577 <p>Specifying a port for mirror output reserves that port exclusively
4578 for mirroring. No frames other than those selected for mirroring
4579 via this column
4580 will be forwarded to the port, and any frames received on the port
4581 will be discarded.</p>
4582 <p>
4583 The output port may be any kind of port supported by Open vSwitch.
4584 It may be, for example, a physical port (sometimes called SPAN) or a
4585 GRE tunnel.
4586 </p>
4587 </column>
4588
4589 <column name="output_vlan">
4590 <p>Output VLAN for selected packets, if nonempty.</p>
4591 <p>The frames will be sent out all ports that trunk
4592 <ref column="output_vlan"/>, as well as any ports with implicit VLAN
4593 <ref column="output_vlan"/>. When a mirrored frame is sent out a
4594 trunk port, the frame's VLAN tag will be set to
4595 <ref column="output_vlan"/>, replacing any existing tag; when it is
4596 sent out an implicit VLAN port, the frame will not be tagged. This
4597 type of mirroring is sometimes called RSPAN.</p>
4598 <p>
4599 See the documentation for
4600 <ref column="other_config" key="forward-bpdu"/> in the
4601 <ref table="Interface"/> table for a list of destination MAC
4602 addresses which will not be mirrored to a VLAN to avoid confusing
4603 switches that interpret the protocols that they represent.
4604 </p>
4605 <p><em>Please note:</em> Mirroring to a VLAN can disrupt a network that
4606 contains unmanaged switches. Consider an unmanaged physical switch
4607 with two ports: port 1, connected to an end host, and port 2,
4608 connected to an Open vSwitch configured to mirror received packets
4609 into VLAN 123 on port 2. Suppose that the end host sends a packet on
4610 port 1 that the physical switch forwards to port 2. The Open vSwitch
4611 forwards this packet to its destination and then reflects it back on
4612 port 2 in VLAN 123. This reflected packet causes the unmanaged
4613 physical switch to replace the MAC learning table entry, which
4614 correctly pointed to port 1, with one that incorrectly points to port
4615 2. Afterward, the physical switch will direct packets destined for
4616 the end host to the Open vSwitch on port 2, instead of to the end
4617 host on port 1, disrupting connectivity. If mirroring to a VLAN is
4618 desired in this scenario, then the physical switch must be replaced
4619 by one that learns Ethernet addresses on a per-VLAN basis. In
4620 addition, learning should be disabled on the VLAN containing mirrored
4621 traffic. If this is not done then intermediate switches will learn
4622 the MAC address of each end host from the mirrored traffic. If
4623 packets being sent to that end host are also mirrored, then they will
4624 be dropped since the switch will attempt to send them out the input
4625 port. Disabling learning for the VLAN will cause the switch to
4626 correctly send the packet out all ports configured for that VLAN. If
4627 Open vSwitch is being used as an intermediate switch, learning can be
4628 disabled by adding the mirrored VLAN to <ref column="flood_vlans"/>
4629 in the appropriate <ref table="Bridge"/> table or tables.</p>
4630 <p>
4631 Mirroring to a GRE tunnel has fewer caveats than mirroring to a
4632 VLAN and should generally be preferred.
4633 </p>
4634 </column>
4635
4636 <column name="snaplen">
4637 <p>Maximum per-packet number of bytes to mirror.</p>
4638 <p>A mirrored packet with size larger than <ref column="snaplen"/>
4639 will be truncated in datapath to <ref column="snaplen"/> bytes
4640 before sending to the mirror output port. If omitted, packets
4641 are not truncated.
4642 </p>
4643 </column>
4644 </group>
4645
4646 <group title="Statistics: Mirror counters">
4647 <p>
4648 Key-value pairs that report mirror statistics. The update period
4649 is controlled by <ref column="other_config"
4650 key="stats-update-interval"/> in the <code>Open_vSwitch</code> table.
4651 </p>
4652 <column name="statistics" key="tx_packets">
4653 Number of packets transmitted through this mirror.
4654 </column>
4655 <column name="statistics" key="tx_bytes">
4656 Number of bytes transmitted through this mirror.
4657 </column>
4658 </group>
4659
4660 <group title="Common Columns">
4661 The overall purpose of these columns is described under <code>Common
4662 Columns</code> at the beginning of this document.
4663
4664 <column name="external_ids"/>
4665 </group>
4666 </table>
4667
4668 <table name="Controller" title="OpenFlow controller configuration.">
4669 <p>An OpenFlow controller.</p>
4670
4671 <p>
4672 Open vSwitch supports two kinds of OpenFlow controllers:
4673 </p>
4674
4675 <dl>
4676 <dt>Primary controllers</dt>
4677 <dd>
4678 <p>
4679 This is the kind of controller envisioned by the OpenFlow 1.0
4680 specification. Usually, a primary controller implements a network
4681 policy by taking charge of the switch's flow table.
4682 </p>
4683
4684 <p>
4685 Open vSwitch initiates and maintains persistent connections to
4686 primary controllers, retrying the connection each time it fails or
4687 drops. The <ref table="Bridge" column="fail_mode"/> column in the
4688 <ref table="Bridge"/> table applies to primary controllers.
4689 </p>
4690
4691 <p>
4692 Open vSwitch permits a bridge to have any number of primary
4693 controllers. When multiple controllers are configured, Open
4694 vSwitch connects to all of them simultaneously. Because
4695 OpenFlow 1.0 does not specify how multiple controllers
4696 coordinate in interacting with a single switch, more than
4697 one primary controller should be specified only if the
4698 controllers are themselves designed to coordinate with each
4699 other. (The Nicira-defined <code>NXT_ROLE</code> OpenFlow
4700 vendor extension may be useful for this.)
4701 </p>
4702 </dd>
4703 <dt>Service controllers</dt>
4704 <dd>
4705 <p>
4706 These kinds of OpenFlow controller connections are intended for
4707 occasional support and maintenance use, e.g. with
4708 <code>ovs-ofctl</code>. Usually a service controller connects only
4709 briefly to inspect or modify some of a switch's state.
4710 </p>
4711
4712 <p>
4713 Open vSwitch listens for incoming connections from service
4714 controllers. The service controllers initiate and, if necessary,
4715 maintain the connections from their end. The <ref table="Bridge"
4716 column="fail_mode"/> column in the <ref table="Bridge"/> table does
4717 not apply to service controllers.
4718 </p>
4719
4720 <p>
4721 Open vSwitch supports configuring any number of service controllers.
4722 </p>
4723 </dd>
4724 </dl>
4725
4726 <p>
4727 The <ref column="target"/> determines the type of controller.
4728 </p>
4729
4730 <group title="Core Features">
4731 <column name="target">
4732 <p>Connection method for controller.</p>
4733 <p>
4734 The following connection methods are currently supported for primary
4735 controllers:
4736 </p>
4737 <dl>
4738 <dt><code>ssl:<var>host</var></code>[<code>:<var>port</var></code>]</dt>
4739 <dd>
4740 <p>The specified SSL <var>port</var> on the host at the
4741 given <var>host</var>, which can either be a DNS name (if built
4742 with unbound library) or an IP address. The <ref table="Open_vSwitch"
4743 column="ssl"/> column in the <ref table="Open_vSwitch"/> table must
4744 point to a valid SSL configuration when this form is used.</p>
4745 <p>If <var>port</var> is not specified, it defaults to 6653.</p>
4746 <p>SSL support is an optional feature that is not always built as
4747 part of Open vSwitch.</p>
4748 </dd>
4749 <dt><code>tcp:<var>host</var></code>[<code>:<var>port</var></code>]</dt>
4750 <dd>
4751 <p>
4752 The specified TCP <var>port</var> on the host at the given
4753 <var>host</var>, which can either be a DNS name (if built with
4754 unbound library) or an IP address (IPv4 or IPv6). If <var>host</var>
4755 is an IPv6 address, wrap it in square brackets, e.g.
4756 <code>tcp:[::1]:6653</code>.
4757 </p>
4758 <p>
4759 If <var>port</var> is not specified, it defaults to 6653.
4760 </p>
4761 </dd>
4762 </dl>
4763 <p>
4764 The following connection methods are currently supported for service
4765 controllers:
4766 </p>
4767 <dl>
4768 <dt><code>pssl:</code>[<var>port</var>][<code>:<var>host</var></code>]</dt>
4769 <dd>
4770 <p>
4771 Listens for SSL connections on the specified TCP <var>port</var>.
4772 If <var>host</var>, which can either be a DNS name (if built with
4773 unbound library) or an IP address, is specified, then connections
4774 are restricted to the resolved or specified local IP address
4775 (either IPv4 or IPv6). If <var>host</var> is an IPv6 address,
4776 wrap it in square brackets, e.g. <code>pssl:6653:[::1]</code>.
4777 </p>
4778 <p>
4779 If <var>port</var> is not specified, it defaults to
4780 6653. If <var>host</var> is not specified then it listens only on
4781 IPv4 (but not IPv6) addresses. The
4782 <ref table="Open_vSwitch" column="ssl"/>
4783 column in the <ref table="Open_vSwitch"/> table must point to a
4784 valid SSL configuration when this form is used.
4785 </p>
4786 <p>
4787 If <var>port</var> is not specified, it currently to 6653.
4788 </p>
4789 <p>
4790 SSL support is an optional feature that is not always built as
4791 part of Open vSwitch.
4792 </p>
4793 </dd>
4794 <dt><code>ptcp:</code>[<var>port</var>][<code>:<var>host</var></code>]</dt>
4795 <dd>
4796 <p>
4797 Listens for connections on the specified TCP <var>port</var>. If
4798 <var>host</var>, which can either be a DNS name (if built with
4799 unbound library) or an IP address, is specified, then connections
4800 are restricted to the resolved or specified local IP address
4801 (either IPv4 or IPv6). If <var>host</var> is an IPv6 address, wrap
4802 it in square brackets, e.g. <code>ptcp:6653:[::1]</code>. If
4803 <var>host</var> is not specified then it listens only on IPv4
4804 addresses.
4805 </p>
4806 <p>
4807 If <var>port</var> is not specified, it defaults to 6653.
4808 </p>
4809 </dd>
4810 </dl>
4811 <p>When multiple controllers are configured for a single bridge, the
4812 <ref column="target"/> values must be unique. Duplicate
4813 <ref column="target"/> values yield unspecified results.</p>
4814 </column>
4815
4816 <column name="connection_mode">
4817 <p>If it is specified, this setting must be one of the following
4818 strings that describes how Open vSwitch contacts this OpenFlow
4819 controller over the network:</p>
4820
4821 <dl>
4822 <dt><code>in-band</code></dt>
4823 <dd>In this mode, this controller's OpenFlow traffic travels over the
4824 bridge associated with the controller. With this setting, Open
4825 vSwitch allows traffic to and from the controller regardless of the
4826 contents of the OpenFlow flow table. (Otherwise, Open vSwitch
4827 would never be able to connect to the controller, because it did
4828 not have a flow to enable it.) This is the most common connection
4829 mode because it is not necessary to maintain two independent
4830 networks.</dd>
4831 <dt><code>out-of-band</code></dt>
4832 <dd>In this mode, OpenFlow traffic uses a control network separate
4833 from the bridge associated with this controller, that is, the
4834 bridge does not use any of its own network devices to communicate
4835 with the controller. The control network must be configured
4836 separately, before or after <code>ovs-vswitchd</code> is started.
4837 </dd>
4838 </dl>
4839
4840 <p>If not specified, the default is implementation-specific.</p>
4841 </column>
4842 </group>
4843
4844 <group title="Controller Failure Detection and Handling">
4845 <column name="max_backoff">
4846 Maximum number of milliseconds to wait between connection attempts.
4847 Default is implementation-specific.
4848 </column>
4849
4850 <column name="inactivity_probe">
4851 Maximum number of milliseconds of idle time on connection to
4852 controller before sending an inactivity probe message. If Open
4853 vSwitch does not communicate with the controller for the specified
4854 number of seconds, it will send a probe. If a response is not
4855 received for the same additional amount of time, Open vSwitch
4856 assumes the connection has been broken and attempts to reconnect.
4857 Default is implementation-specific. A value of 0 disables
4858 inactivity probes.
4859 </column>
4860 </group>
4861
4862 <group title="Asynchronous Messages">
4863 <p>
4864 OpenFlow switches send certain messages to controllers spontanenously,
4865 that is, not in response to any request from the controller. These
4866 messages are called ``asynchronous messages.'' These columns allow
4867 asynchronous messages to be limited or disabled to ensure the best use
4868 of network resources.
4869 </p>
4870
4871 <column name="enable_async_messages">
4872 The OpenFlow protocol enables asynchronous messages at time of
4873 connection establishment, which means that a controller can receive
4874 asynchronous messages, potentially many of them, even if it turns them
4875 off immediately after connecting. Set this column to
4876 <code>false</code> to change Open vSwitch behavior to disable, by
4877 default, all asynchronous messages. The controller can use the
4878 <code>NXT_SET_ASYNC_CONFIG</code> Nicira extension to OpenFlow to turn
4879 on any messages that it does want to receive, if any.
4880 </column>
4881
4882 <group title="Controller Rate Limiting">
4883 <p>
4884 A switch can forward packets to a controller over the OpenFlow
4885 protocol. Forwarding packets this way at too high a rate can
4886 overwhelm a controller, frustrate use of the OpenFlow connection for
4887 other purposes, increase the latency of flow setup, and use an
4888 unreasonable amount of bandwidth. Therefore, Open vSwitch supports
4889 limiting the rate of packet forwarding to a controller.
4890 </p>
4891
4892 <p>
4893 There are two main reasons in OpenFlow for a packet to be sent to a
4894 controller: either the packet ``misses'' in the flow table, that is,
4895 there is no matching flow, or a flow table action says to send the
4896 packet to the controller. Open vSwitch limits the rate of each kind
4897 of packet separately at the configured rate. Therefore, the actual
4898 rate that packets are sent to the controller can be up to twice the
4899 configured rate, when packets are sent for both reasons.
4900 </p>
4901
4902 <p>
4903 This feature is specific to forwarding packets over an OpenFlow
4904 connection. It is not general-purpose QoS. See the <ref
4905 table="QoS"/> table for quality of service configuration, and <ref
4906 column="ingress_policing_rate" table="Interface"/> in the <ref
4907 table="Interface"/> table for ingress policing configuration.
4908 </p>
4909
4910 <column name="controller_rate_limit">
4911 <p>
4912 The maximum rate at which the switch will forward packets to the
4913 OpenFlow controller, in packets per second. If no value is
4914 specified, rate limiting is disabled.
4915 </p>
4916 </column>
4917
4918 <column name="controller_burst_limit">
4919 <p>
4920 When a high rate triggers rate-limiting, Open vSwitch queues
4921 packets to the controller for each port and transmits them to the
4922 controller at the configured rate. This value limits the number of
4923 queued packets. Ports on a bridge share the packet queue fairly.
4924 </p>
4925
4926 <p>
4927 This value has no effect unless <ref
4928 column="controller_rate_limit"/> is configured. The current
4929 default when this value is not specified is one-quarter of <ref
4930 column="controller_rate_limit"/>, meaning that queuing can delay
4931 forwarding a packet to the controller by up to 250 ms.
4932 </p>
4933 </column>
4934
4935 <group title="Controller Rate Limiting Statistics">
4936 <p>
4937 These values report the effects of rate limiting. Their values are
4938 relative to establishment of the most recent OpenFlow connection,
4939 or since rate limiting was enabled, whichever happened more
4940 recently. Each consists of two values, one with <code>TYPE</code>
4941 replaced by <code>miss</code> for rate limiting flow table misses,
4942 and the other with <code>TYPE</code> replaced by
4943 <code>action</code> for rate limiting packets sent by OpenFlow
4944 actions.
4945 </p>
4946
4947 <p>
4948 These statistics are reported only when controller rate limiting is
4949 enabled.
4950 </p>
4951
4952 <column name="status" key="packet-in-TYPE-bypassed"
4953 type='{"type": "integer", "minInteger": 0}'>
4954 Number of packets sent directly to the controller, without queuing,
4955 because the rate did not exceed the configured maximum.
4956 </column>
4957
4958 <column name="status" key="packet-in-TYPE-queued"
4959 type='{"type": "integer", "minInteger": 0}'>
4960 Number of packets added to the queue to send later.
4961 </column>
4962
4963 <column name="status" key="packet-in-TYPE-dropped"
4964 type='{"type": "integer", "minInteger": 0}'>
4965 Number of packets added to the queue that were later dropped due to
4966 overflow. This value is less than or equal to <ref column="status"
4967 key="packet-in-TYPE-queued"/>.
4968 </column>
4969
4970 <column name="status" key="packet-in-TYPE-backlog"
4971 type='{"type": "integer", "minInteger": 0}'>
4972 Number of packets currently queued. The other statistics increase
4973 monotonically, but this one fluctuates between 0 and the <ref
4974 column="controller_burst_limit"/> as conditions change.
4975 </column>
4976 </group>
4977 </group>
4978 </group>
4979
4980 <group title="Additional In-Band Configuration">
4981 <p>These values are considered only in in-band control mode (see
4982 <ref column="connection_mode"/>).</p>
4983
4984 <p>When multiple controllers are configured on a single bridge, there
4985 should be only one set of unique values in these columns. If different
4986 values are set for these columns in different controllers, the effect
4987 is unspecified.</p>
4988
4989 <column name="local_ip">
4990 The IP address to configure on the local port,
4991 e.g. <code>192.168.0.123</code>. If this value is unset, then
4992 <ref column="local_netmask"/> and <ref column="local_gateway"/> are
4993 ignored.
4994 </column>
4995
4996 <column name="local_netmask">
4997 The IP netmask to configure on the local port,
4998 e.g. <code>255.255.255.0</code>. If <ref column="local_ip"/> is set
4999 but this value is unset, then the default is chosen based on whether
5000 the IP address is class A, B, or C.
5001 </column>
5002
5003 <column name="local_gateway">
5004 The IP address of the gateway to configure on the local port, as a
5005 string, e.g. <code>192.168.0.1</code>. Leave this column unset if
5006 this network has no gateway.
5007 </column>
5008 </group>
5009
5010 <group title="Controller Status">
5011 <column name="is_connected">
5012 <code>true</code> if currently connected to this controller,
5013 <code>false</code> otherwise.
5014 </column>
5015
5016 <column name="role"
5017 type='{"type": "string", "enum": ["set", ["other", "master", "slave"]]}'>
5018 <p>The level of authority this controller has on the associated
5019 bridge. Possible values are:</p>
5020 <dl>
5021 <dt><code>other</code></dt>
5022 <dd>Allows the controller access to all OpenFlow features.</dd>
5023 <dt><code>master</code></dt>
5024 <dd>Equivalent to <code>other</code>, except that there may be at
5025 most one master controller at a time. When a controller configures
5026 itself as <code>master</code>, any existing master is demoted to
5027 the <code>slave</code> role.</dd>
5028 <dt><code>slave</code></dt>
5029 <dd>Allows the controller read-only access to OpenFlow features.
5030 Attempts to modify the flow table will be rejected with an
5031 error. Slave controllers do not receive OFPT_PACKET_IN or
5032 OFPT_FLOW_REMOVED messages, but they do receive OFPT_PORT_STATUS
5033 messages.</dd>
5034 </dl>
5035 </column>
5036
5037 <column name="status" key="last_error">
5038 A human-readable description of the last error on the connection
5039 to the controller; i.e. <code>strerror(errno)</code>. This key
5040 will exist only if an error has occurred.
5041 </column>
5042
5043 <column name="status" key="state"
5044 type='{"type": "string", "enum": ["set", ["VOID", "BACKOFF", "CONNECTING", "ACTIVE", "IDLE"]]}'>
5045 <p>
5046 The state of the connection to the controller:
5047 </p>
5048 <dl>
5049 <dt><code>VOID</code></dt>
5050 <dd>Connection is disabled.</dd>
5051
5052 <dt><code>BACKOFF</code></dt>
5053 <dd>Attempting to reconnect at an increasing period.</dd>
5054
5055 <dt><code>CONNECTING</code></dt>
5056 <dd>Attempting to connect.</dd>
5057
5058 <dt><code>ACTIVE</code></dt>
5059 <dd>Connected, remote host responsive.</dd>
5060
5061 <dt><code>IDLE</code></dt>
5062 <dd>Connection is idle. Waiting for response to keep-alive.</dd>
5063 </dl>
5064 <p>
5065 These values may change in the future. They are provided only for
5066 human consumption.
5067 </p>
5068 </column>
5069
5070 <column name="status" key="sec_since_connect"
5071 type='{"type": "integer", "minInteger": 0}'>
5072 The amount of time since this controller last successfully connected to
5073 the switch (in seconds). Value is empty if controller has never
5074 successfully connected.
5075 </column>
5076
5077 <column name="status" key="sec_since_disconnect"
5078 type='{"type": "integer", "minInteger": 1}'>
5079 The amount of time since this controller last disconnected from
5080 the switch (in seconds). Value is empty if controller has never
5081 disconnected.
5082 </column>
5083 </group>
5084
5085 <group title="Connection Parameters">
5086 <p>
5087 Additional configuration for a connection between the controller
5088 and the Open vSwitch.
5089 </p>
5090
5091 <column name="other_config" key="dscp"
5092 type='{"type": "integer"}'>
5093 The Differentiated Service Code Point (DSCP) is specified using 6 bits
5094 in the Type of Service (TOS) field in the IP header. DSCP provides a
5095 mechanism to classify the network traffic and provide Quality of
5096 Service (QoS) on IP networks.
5097
5098 The DSCP value specified here is used when establishing the connection
5099 between the controller and the Open vSwitch. If no value is specified,
5100 a default value of 48 is chosen. Valid DSCP values must be in the
5101 range 0 to 63.
5102 </column>
5103 </group>
5104
5105
5106 <group title="Common Columns">
5107 The overall purpose of these columns is described under <code>Common
5108 Columns</code> at the beginning of this document.
5109
5110 <column name="external_ids"/>
5111 <column name="other_config"/>
5112 </group>
5113 </table>
5114
5115 <table name="Manager" title="OVSDB management connection.">
5116 <p>
5117 Configuration for a database connection to an Open vSwitch database
5118 (OVSDB) client.
5119 </p>
5120
5121 <p>
5122 This table primarily configures the Open vSwitch database
5123 (<code>ovsdb-server</code>), not the Open vSwitch switch
5124 (<code>ovs-vswitchd</code>). The switch does read the table to determine
5125 what connections should be treated as in-band.
5126 </p>
5127
5128 <p>
5129 The Open vSwitch database server can initiate and maintain active
5130 connections to remote clients. It can also listen for database
5131 connections.
5132 </p>
5133
5134 <group title="Core Features">
5135 <column name="target">
5136 <p>Connection method for managers.</p>
5137 <p>
5138 The following connection methods are currently supported:
5139 </p>
5140 <dl>
5141 <dt><code>ssl:<var>host</var></code>[<code>:<var>port</var></code>]</dt>
5142 <dd>
5143 <p>
5144 The specified SSL <var>port</var> on the host at the given
5145 <var>host</var>, which can either be a DNS name (if built with
5146 unbound library) or an IP address. The <ref table="Open_vSwitch"
5147 column="ssl"/> column in the <ref table="Open_vSwitch"/>
5148 table must point to a valid SSL configuration when this
5149 form is used.
5150 </p>
5151 <p>
5152 If <var>port</var> is not specified, it defaults to 6640.
5153 </p>
5154 <p>
5155 SSL support is an optional feature that is not always
5156 built as part of Open vSwitch.
5157 </p>
5158 </dd>
5159
5160 <dt><code>tcp:<var>host</var></code>[<code>:<var>port</var></code>]</dt>
5161 <dd>
5162 <p>
5163 The specified TCP <var>port</var> on the host at the given
5164 <var>host</var>, which can either be a DNS name (if built with
5165 unbound library) or an IP address (IPv4 or IPv6). If <var>host</var>
5166 is an IPv6 address, wrap it in square brackets, e.g.
5167 <code>tcp:[::1]:6640</code>.
5168 </p>
5169 <p>
5170 If <var>port</var> is not specified, it defaults to 6640.
5171 </p>
5172 </dd>
5173 <dt><code>pssl:</code>[<var>port</var>][<code>:<var>host</var></code>]</dt>
5174 <dd>
5175 <p>
5176 Listens for SSL connections on the specified TCP <var>port</var>.
5177 Specify 0 for <var>port</var> to have the kernel automatically
5178 choose an available port. If <var>host</var>, which can either
5179 be a DNS name (if built with unbound library) or an IP address,
5180 is specified, then connections are restricted to the resolved or
5181 specified local IP address (either IPv4 or IPv6 address). If
5182 <var>host</var> is an IPv6 address, wrap in square brackets,
5183 e.g. <code>pssl:6640:[::1]</code>. If <var>host</var> is not
5184 specified then it listens only on IPv4 (but not IPv6) addresses.
5185 The <ref table="Open_vSwitch" column="ssl"/> column in the <ref
5186 table="Open_vSwitch"/> table must point to a valid SSL
5187 configuration when this form is used.
5188 </p>
5189 <p>
5190 If <var>port</var> is not specified, it defaults to 6640.
5191 </p>
5192 <p>
5193 SSL support is an optional feature that is not always built as
5194 part of Open vSwitch.
5195 </p>
5196 </dd>
5197 <dt><code>ptcp:</code>[<var>port</var>][<code>:<var>host</var></code>]</dt>
5198 <dd>
5199 <p>
5200 Listens for connections on the specified TCP <var>port</var>.
5201 Specify 0 for <var>port</var> to have the kernel automatically
5202 choose an available port. If <var>host</var>, which can either
5203 be a DNS name (if built with unbound library) or an IP address,
5204 is specified, then connections are restricted to the resolved or
5205 specified local IP address (either IPv4 or IPv6 address). If
5206 <var>host</var> is an IPv6 address, wrap it in square brackets,
5207 e.g. <code>ptcp:6640:[::1]</code>. If <var>host</var> is not
5208 specified then it listens only on IPv4 addresses.
5209 </p>
5210 <p>
5211 If <var>port</var> is not specified, it defaults to 6640.
5212 </p>
5213 </dd>
5214 </dl>
5215 <p>When multiple managers are configured, the <ref column="target"/>
5216 values must be unique. Duplicate <ref column="target"/> values yield
5217 unspecified results.</p>
5218 </column>
5219
5220 <column name="connection_mode">
5221 <p>
5222 If it is specified, this setting must be one of the following strings
5223 that describes how Open vSwitch contacts this OVSDB client over the
5224 network:
5225 </p>
5226
5227 <dl>
5228 <dt><code>in-band</code></dt>
5229 <dd>
5230 In this mode, this connection's traffic travels over a bridge
5231 managed by Open vSwitch. With this setting, Open vSwitch allows
5232 traffic to and from the client regardless of the contents of the
5233 OpenFlow flow table. (Otherwise, Open vSwitch would never be able
5234 to connect to the client, because it did not have a flow to enable
5235 it.) This is the most common connection mode because it is not
5236 necessary to maintain two independent networks.
5237 </dd>
5238 <dt><code>out-of-band</code></dt>
5239 <dd>
5240 In this mode, the client's traffic uses a control network separate
5241 from that managed by Open vSwitch, that is, Open vSwitch does not
5242 use any of its own network devices to communicate with the client.
5243 The control network must be configured separately, before or after
5244 <code>ovs-vswitchd</code> is started.
5245 </dd>
5246 </dl>
5247
5248 <p>
5249 If not specified, the default is implementation-specific.
5250 </p>
5251 </column>
5252 </group>
5253
5254 <group title="Client Failure Detection and Handling">
5255 <column name="max_backoff">
5256 Maximum number of milliseconds to wait between connection attempts.
5257 Default is implementation-specific.
5258 </column>
5259
5260 <column name="inactivity_probe">
5261 Maximum number of milliseconds of idle time on connection to the client
5262 before sending an inactivity probe message. If Open vSwitch does not
5263 communicate with the client for the specified number of seconds, it
5264 will send a probe. If a response is not received for the same
5265 additional amount of time, Open vSwitch assumes the connection has been
5266 broken and attempts to reconnect. Default is implementation-specific.
5267 A value of 0 disables inactivity probes.
5268 </column>
5269 </group>
5270
5271 <group title="Status">
5272 <p>
5273 Key-value pair of <ref column="is_connected"/> is always updated.
5274 Other key-value pairs in the status columns may be updated depends
5275 on the <ref column="target"/> type.
5276 </p>
5277
5278 <p>
5279 When <ref column="target"/> specifies a connection method that
5280 listens for inbound connections (e.g. <code>ptcp:</code> or
5281 <code>punix:</code>), both <ref column="n_connections"/> and
5282 <ref column="is_connected"/> may also be updated while the
5283 remaining key-value pairs are omitted.
5284 </p>
5285
5286 <p>
5287 On the other hand, when <ref column="target"/> specifies an
5288 outbound connection, all key-value pairs may be updated, except
5289 the above-mentioned two key-value pairs associated with inbound
5290 connection targets. They are omitted.
5291 </p>
5292
5293 <column name="is_connected">
5294 <code>true</code> if currently connected to this manager,
5295 <code>false</code> otherwise.
5296 </column>
5297
5298 <column name="status" key="last_error">
5299 A human-readable description of the last error on the connection
5300 to the manager; i.e. <code>strerror(errno)</code>. This key
5301 will exist only if an error has occurred.
5302 </column>
5303
5304 <column name="status" key="state"
5305 type='{"type": "string", "enum": ["set", ["VOID", "BACKOFF", "CONNECTING", "ACTIVE", "IDLE"]]}'>
5306 <p>
5307 The state of the connection to the manager:
5308 </p>
5309 <dl>
5310 <dt><code>VOID</code></dt>
5311 <dd>Connection is disabled.</dd>
5312
5313 <dt><code>BACKOFF</code></dt>
5314 <dd>Attempting to reconnect at an increasing period.</dd>
5315
5316 <dt><code>CONNECTING</code></dt>
5317 <dd>Attempting to connect.</dd>
5318
5319 <dt><code>ACTIVE</code></dt>
5320 <dd>Connected, remote host responsive.</dd>
5321
5322 <dt><code>IDLE</code></dt>
5323 <dd>Connection is idle. Waiting for response to keep-alive.</dd>
5324 </dl>
5325 <p>
5326 These values may change in the future. They are provided only for
5327 human consumption.
5328 </p>
5329 </column>
5330
5331 <column name="status" key="sec_since_connect"
5332 type='{"type": "integer", "minInteger": 0}'>
5333 The amount of time since this manager last successfully connected
5334 to the database (in seconds). Value is empty if manager has never
5335 successfully connected.
5336 </column>
5337
5338 <column name="status" key="sec_since_disconnect"
5339 type='{"type": "integer", "minInteger": 0}'>
5340 The amount of time since this manager last disconnected from the
5341 database (in seconds). Value is empty if manager has never
5342 disconnected.
5343 </column>
5344
5345 <column name="status" key="locks_held">
5346 Space-separated list of the names of OVSDB locks that the connection
5347 holds. Omitted if the connection does not hold any locks.
5348 </column>
5349
5350 <column name="status" key="locks_waiting">
5351 Space-separated list of the names of OVSDB locks that the connection is
5352 currently waiting to acquire. Omitted if the connection is not waiting
5353 for any locks.
5354 </column>
5355
5356 <column name="status" key="locks_lost">
5357 Space-separated list of the names of OVSDB locks that the connection
5358 has had stolen by another OVSDB client. Omitted if no locks have been
5359 stolen from this connection.
5360 </column>
5361
5362 <column name="status" key="n_connections"
5363 type='{"type": "integer", "minInteger": 2}'>
5364 When <ref column="target"/> specifies a connection method that
5365 listens for inbound connections (e.g. <code>ptcp:</code> or
5366 <code>pssl:</code>) and more than one connection is actually active,
5367 the value is the number of active connections. Otherwise, this
5368 key-value pair is omitted.
5369 </column>
5370
5371 <column name="status" key="bound_port" type='{"type": "integer"}'>
5372 When <ref column="target"/> is <code>ptcp:</code> or
5373 <code>pssl:</code>, this is the TCP port on which the OVSDB server is
5374 listening. (This is particularly useful when <ref
5375 column="target"/> specifies a port of 0, allowing the kernel to
5376 choose any available port.)
5377 </column>
5378 </group>
5379
5380 <group title="Connection Parameters">
5381 <p>
5382 Additional configuration for a connection between the manager
5383 and the Open vSwitch Database.
5384 </p>
5385
5386 <column name="other_config" key="dscp"
5387 type='{"type": "integer"}'>
5388 The Differentiated Service Code Point (DSCP) is specified using 6 bits
5389 in the Type of Service (TOS) field in the IP header. DSCP provides a
5390 mechanism to classify the network traffic and provide Quality of
5391 Service (QoS) on IP networks.
5392
5393 The DSCP value specified here is used when establishing the connection
5394 between the manager and the Open vSwitch. If no value is specified, a
5395 default value of 48 is chosen. Valid DSCP values must be in the range
5396 0 to 63.
5397 </column>
5398 </group>
5399
5400 <group title="Common Columns">
5401 The overall purpose of these columns is described under <code>Common
5402 Columns</code> at the beginning of this document.
5403
5404 <column name="external_ids"/>
5405 <column name="other_config"/>
5406 </group>
5407 </table>
5408
5409 <table name="NetFlow">
5410 A NetFlow target. NetFlow is a protocol that exports a number of
5411 details about terminating IP flows, such as the principals involved
5412 and duration.
5413
5414 <column name="targets">
5415 NetFlow targets in the form
5416 <code><var>ip</var>:<var>port</var></code>. The <var>ip</var>
5417 must be specified numerically, not as a DNS name.
5418 </column>
5419
5420 <column name="engine_id">
5421 Engine ID to use in NetFlow messages. Defaults to datapath index
5422 if not specified.
5423 </column>
5424
5425 <column name="engine_type">
5426 Engine type to use in NetFlow messages. Defaults to datapath
5427 index if not specified.
5428 </column>
5429
5430 <column name="active_timeout">
5431 <p>
5432 The interval at which NetFlow records are sent for flows that
5433 are still active, in seconds. A value of <code>0</code>
5434 requests the default timeout (currently 600 seconds); a value
5435 of <code>-1</code> disables active timeouts.
5436 </p>
5437
5438 <p>
5439 The NetFlow passive timeout, for flows that become inactive,
5440 is not configurable. It will vary depending on the Open
5441 vSwitch version, the forms and contents of the OpenFlow flow
5442 tables, CPU and memory usage, and network activity. A typical
5443 passive timeout is about a second.
5444 </p>
5445 </column>
5446
5447 <column name="add_id_to_interface">
5448 <p>If this column's value is <code>false</code>, the ingress and egress
5449 interface fields of NetFlow flow records are derived from OpenFlow port
5450 numbers. When it is <code>true</code>, the 7 most significant bits of
5451 these fields will be replaced by the least significant 7 bits of the
5452 engine id. This is useful because many NetFlow collectors do not
5453 expect multiple switches to be sending messages from the same host, so
5454 they do not store the engine information which could be used to
5455 disambiguate the traffic.</p>
5456 <p>When this option is enabled, a maximum of 508 ports are supported.</p>
5457 </column>
5458
5459 <group title="Common Columns">
5460 The overall purpose of these columns is described under <code>Common
5461 Columns</code> at the beginning of this document.
5462
5463 <column name="external_ids"/>
5464 </group>
5465 </table>
5466
5467 <table name="SSL">
5468 SSL configuration for an Open_vSwitch.
5469
5470 <column name="private_key">
5471 Name of a PEM file containing the private key used as the switch's
5472 identity for SSL connections to the controller.
5473 </column>
5474
5475 <column name="certificate">
5476 Name of a PEM file containing a certificate, signed by the
5477 certificate authority (CA) used by the controller and manager,
5478 that certifies the switch's private key, identifying a trustworthy
5479 switch.
5480 </column>
5481
5482 <column name="ca_cert">
5483 Name of a PEM file containing the CA certificate used to verify
5484 that the switch is connected to a trustworthy controller.
5485 </column>
5486
5487 <column name="bootstrap_ca_cert">
5488 If set to <code>true</code>, then Open vSwitch will attempt to
5489 obtain the CA certificate from the controller on its first SSL
5490 connection and save it to the named PEM file. If it is successful,
5491 it will immediately drop the connection and reconnect, and from then
5492 on all SSL connections must be authenticated by a certificate signed
5493 by the CA certificate thus obtained. <em>This option exposes the
5494 SSL connection to a man-in-the-middle attack obtaining the initial
5495 CA certificate.</em> It may still be useful for bootstrapping.
5496 </column>
5497
5498 <group title="Common Columns">
5499 The overall purpose of these columns is described under <code>Common
5500 Columns</code> at the beginning of this document.
5501
5502 <column name="external_ids"/>
5503 </group>
5504 </table>
5505
5506 <table name="sFlow">
5507 <p>A set of sFlow(R) targets. sFlow is a protocol for remote
5508 monitoring of switches.</p>
5509
5510 <column name="agent">
5511 <p>
5512 Determines the agent address, that is, the IP address reported to
5513 collectors as the source of the sFlow data. It may be an IP address or
5514 the name of a network device. In the latter case, the network device's
5515 IP address is used,
5516 </p>
5517
5518 <p>
5519 If not specified, the agent device is figured from the first target
5520 address and the routing table. If the routing table does not contain a
5521 route to the target, the IP address defaults to the <ref
5522 table="Controller" column="local_ip"/> in the collector's <ref
5523 table="Controller"/>.
5524 </p>
5525
5526 <p>
5527 If an agent IP address cannot be determined, sFlow is disabled.
5528 </p>
5529 </column>
5530
5531 <column name="header">
5532 Number of bytes of a sampled packet to send to the collector.
5533 If not specified, the default is 128 bytes.
5534 </column>
5535
5536 <column name="polling">
5537 Polling rate in seconds to send port statistics to the collector.
5538 If not specified, defaults to 30 seconds.
5539 </column>
5540
5541 <column name="sampling">
5542 Rate at which packets should be sampled and sent to the collector.
5543 If not specified, defaults to 400, which means one out of 400
5544 packets, on average, will be sent to the collector.
5545 </column>
5546
5547 <column name="targets">
5548 sFlow targets in the form
5549 <code><var>ip</var>:<var>port</var></code>.
5550 </column>
5551
5552 <group title="Common Columns">
5553 The overall purpose of these columns is described under <code>Common
5554 Columns</code> at the beginning of this document.
5555
5556 <column name="external_ids"/>
5557 </group>
5558 </table>
5559
5560 <table name="IPFIX">
5561 <p>Configuration for sending packets to IPFIX collectors.</p>
5562
5563 <p>
5564 IPFIX is a protocol that exports a number of details about flows. The
5565 IPFIX implementation in Open vSwitch samples packets at a configurable
5566 rate, extracts flow information from those packets, optionally caches and
5567 aggregates the flow information, and sends the result to one or more
5568 collectors.
5569 </p>
5570
5571 <p>
5572 IPFIX in Open vSwitch can be configured two different ways:
5573 </p>
5574
5575 <ul>
5576 <li>
5577 With <em>per-bridge sampling</em>, Open vSwitch performs IPFIX sampling
5578 automatically on all packets that pass through a bridge. To configure
5579 per-bridge sampling, create an <ref table="IPFIX"/> record and point a
5580 <ref table="Bridge"/> table's <ref table="Bridge" column="ipfix"/>
5581 column to it. The <ref table="Flow_Sample_Collector_Set"/> table is
5582 not used for per-bridge sampling.
5583 </li>
5584
5585 <li>
5586 <p>
5587 With <em>flow-based sampling</em>, <code>sample</code> actions in the
5588 OpenFlow flow table drive IPFIX sampling. See
5589 <code>ovs-actions</code>(7) for a description of the
5590 <code>sample</code> action.
5591 </p>
5592
5593 <p>
5594 Flow-based sampling also requires database configuration: create a
5595 <ref table="IPFIX"/> record that describes the IPFIX configuration
5596 and a <ref table="Flow_Sample_Collector_Set"/> record that points to
5597 the <ref table="Bridge"/> whose flow table holds the
5598 <code>sample</code> actions and to <ref table="IPFIX"/> record. The
5599 <ref table="Bridge" column="ipfix"/> in the <ref table="Bridge"/>
5600 table is not used for flow-based sampling.
5601 </p>
5602 </li>
5603 </ul>
5604
5605 <column name="targets">
5606 IPFIX target collectors in the form
5607 <code><var>ip</var>:<var>port</var></code>.
5608 </column>
5609
5610 <column name="cache_active_timeout">
5611 The maximum period in seconds for which an IPFIX flow record is
5612 cached and aggregated before being sent. If not specified,
5613 defaults to 0. If 0, caching is disabled.
5614 </column>
5615
5616 <column name="cache_max_flows">
5617 The maximum number of IPFIX flow records that can be cached at a
5618 time. If not specified, defaults to 0. If 0, caching is
5619 disabled.
5620 </column>
5621
5622 <column name="other_config" key="enable-tunnel-sampling"
5623 type='{"type": "boolean"}'>
5624 <p>
5625 Set to <code>true</code> to enable sampling and reporting tunnel
5626 header 7-tuples in IPFIX flow records. Tunnel sampling is enabled
5627 by default.
5628 </p>
5629
5630 <p>
5631 The following enterprise entities report the sampled tunnel info:
5632 </p>
5633
5634 <dl>
5635 <dt>tunnelType:</dt>
5636 <dd>
5637 <p>ID: 891, and enterprise ID 6876 (VMware).</p>
5638 <p>type: unsigned 8-bit integer.</p>
5639 <p>data type semantics: identifier.</p>
5640 <p>description: Identifier of the layer 2 network overlay network
5641 encapsulation type: 0x01 VxLAN, 0x02 GRE, 0x03 LISP, 0x07 GENEVE.</p>
5642 </dd>
5643 <dt>tunnelKey:</dt>
5644 <dd>
5645 <p>ID: 892, and enterprise ID 6876 (VMware).</p>
5646 <p>type: variable-length octetarray.</p>
5647 <p>data type semantics: identifier.</p>
5648 <p>description: Key which is used for identifying an individual
5649 traffic flow within a VxLAN (24-bit VNI), GENEVE (24-bit VNI),
5650 GRE (32-bit key), or LISP (24-bit instance ID) tunnel. The
5651 key is encoded in this octetarray as a 3-, 4-, or 8-byte integer
5652 ID in network byte order.</p>
5653 </dd>
5654 <dt>tunnelSourceIPv4Address:</dt>
5655 <dd>
5656 <p>ID: 893, and enterprise ID 6876 (VMware).</p>
5657 <p>type: unsigned 32-bit integer.</p>
5658 <p>data type semantics: identifier.</p>
5659 <p>description: The IPv4 source address in the tunnel IP packet
5660 header.</p>
5661 </dd>
5662 <dt>tunnelDestinationIPv4Address:</dt>
5663 <dd>
5664 <p>ID: 894, and enterprise ID 6876 (VMware).</p>
5665 <p>type: unsigned 32-bit integer.</p>
5666 <p>data type semantics: identifier.</p>
5667 <p>description: The IPv4 destination address in the tunnel IP
5668 packet header.</p>
5669 </dd>
5670 <dt>tunnelProtocolIdentifier:</dt>
5671 <dd>
5672 <p>ID: 895, and enterprise ID 6876 (VMware).</p>
5673 <p>type: unsigned 8-bit integer.</p>
5674 <p>data type semantics: identifier.</p>
5675 <p>description: The value of the protocol number in the tunnel
5676 IP packet header. The protocol number identifies the tunnel IP
5677 packet payload type.</p>
5678 </dd>
5679 <dt>tunnelSourceTransportPort:</dt>
5680 <dd>
5681 <p>ID: 896, and enterprise ID 6876 (VMware).</p>
5682 <p>type: unsigned 16-bit integer.</p>
5683 <p>data type semantics: identifier.</p>
5684 <p>description: The source port identifier in the tunnel transport
5685 header. For the transport protocols UDP, TCP, and SCTP, this is
5686 the source port number given in the respective header.</p>
5687 </dd>
5688 <dt>tunnelDestinationTransportPort:</dt>
5689 <dd>
5690 <p>ID: 897, and enterprise ID 6876 (VMware).</p>
5691 <p>type: unsigned 16-bit integer.</p>
5692 <p>data type semantics: identifier.</p>
5693 <p>description: The destination port identifier in the tunnel
5694 transport header. For the transport protocols UDP, TCP, and SCTP,
5695 this is the destination port number given in the respective header.
5696 </p>
5697 </dd>
5698 </dl>
5699
5700 <p>
5701 Before Open vSwitch 2.5.90, <ref column="other_config"
5702 key="enable-tunnel-sampling"/> was only supported with per-bridge
5703 sampling, and ignored otherwise. Open vSwitch 2.5.90 and later support
5704 <ref column="other_config" key="enable-tunnel-sampling"/> for
5705 per-bridge and per-flow sampling.
5706 </p>
5707 </column>
5708
5709 <column name="other_config" key="virtual_obs_id"
5710 type='{"type": "string"}'>
5711 <p>
5712 A string that accompanies each IPFIX flow record. Its intended use is
5713 for the ``virtual observation ID,'' an identifier of a virtual
5714 observation point that is locally unique in a virtual network. It
5715 describes a location in the virtual network where IP packets can be
5716 observed. The maximum length is 254 bytes. If not specified, the
5717 field is omitted from the IPFIX flow record.
5718 </p>
5719
5720 <p>
5721 The following enterprise entity reports the specified virtual
5722 observation ID:
5723 </p>
5724
5725 <dl>
5726 <dt>virtualObsID:</dt>
5727 <dd>
5728 <p>ID: 898, and enterprise ID 6876 (VMware).</p>
5729 <p>type: variable-length string.</p>
5730 <p>data type semantics: identifier.</p>
5731 <p>description: A virtual observation domain ID that is locally
5732 unique in a virtual network.
5733 </p>
5734 </dd>
5735 </dl>
5736
5737 <p>
5738 This feature was introduced in Open vSwitch 2.5.90.
5739 </p>
5740 </column>
5741
5742 <group title="Per-Bridge Sampling">
5743 <p>
5744 These values affect only per-bridge sampling. See above for a
5745 description of the differences between per-bridge and flow-based
5746 sampling.
5747 </p>
5748
5749 <column name="sampling">
5750 The rate at which packets should be sampled and sent to each target
5751 collector. If not specified, defaults to 400, which means one out of
5752 400 packets, on average, will be sent to each target collector.
5753 </column>
5754
5755 <column name="obs_domain_id">
5756 The IPFIX Observation Domain ID sent in each IPFIX packet. If not
5757 specified, defaults to 0.
5758 </column>
5759
5760 <column name="obs_point_id">
5761 The IPFIX Observation Point ID sent in each IPFIX flow record. If not
5762 specified, defaults to 0.
5763 </column>
5764
5765 <column name="other_config" key="enable-input-sampling"
5766 type='{"type": "boolean"}'>
5767 By default, Open vSwitch samples and reports flows at bridge port input
5768 in IPFIX flow records. Set this column to <code>false</code> to
5769 disable input sampling.
5770 </column>
5771
5772 <column name="other_config" key="enable-output-sampling"
5773 type='{"type": "boolean"}'>
5774 By default, Open vSwitch samples and reports flows at bridge port
5775 output in IPFIX flow records. Set this column to <code>false</code> to
5776 disable output sampling.
5777 </column>
5778 </group>
5779
5780 <group title="Common Columns">
5781 The overall purpose of these columns is described under <code>Common
5782 Columns</code> at the beginning of this document.
5783
5784 <column name="external_ids"/>
5785 </group>
5786 </table>
5787
5788 <table name="Flow_Sample_Collector_Set">
5789 <p>
5790 A set of IPFIX collectors of packet samples generated by OpenFlow
5791 <code>sample</code> actions. This table is used only for IPFIX
5792 flow-based sampling, not for per-bridge sampling (see the <ref
5793 table="IPFIX"/> table for a description of the two forms).
5794 </p>
5795
5796 <column name="id">
5797 The ID of this collector set, unique among the bridge's
5798 collector sets, to be used as the <code>collector_set_id</code>
5799 in OpenFlow <code>sample</code> actions.
5800 </column>
5801
5802 <column name="bridge">
5803 The bridge into which OpenFlow <code>sample</code> actions can
5804 be added to send packet samples to this set of IPFIX collectors.
5805 </column>
5806
5807 <column name="ipfix">
5808 Configuration of the set of IPFIX collectors to send one flow
5809 record per sampled packet to.
5810 </column>
5811
5812 <group title="Common Columns">
5813 The overall purpose of these columns is described under <code>Common
5814 Columns</code> at the beginning of this document.
5815
5816 <column name="external_ids"/>
5817 </group>
5818 </table>
5819
5820 <table name="AutoAttach">
5821 <p>
5822 Auto Attach configuration within a bridge. The IETF Auto-Attach SPBM
5823 draft standard describes a compact method of using IEEE 802.1AB Link
5824 Layer Discovery Protocol (LLDP) together with a IEEE 802.1aq Shortest
5825 Path Bridging (SPB) network to automatically attach network devices
5826 to individual services in a SPB network. The intent here is to allow
5827 network applications and devices using OVS to be able to easily take
5828 advantage of features offered by industry standard SPB networks.
5829 </p>
5830
5831 <p>
5832 Auto Attach (AA) uses LLDP to communicate between a directly connected
5833 Auto Attach Client (AAC) and Auto Attach Server (AAS). The LLDP protocol
5834 is extended to add two new Type-Length-Value tuples (TLVs). The first
5835 new TLV supports the ongoing discovery of directly connected AA
5836 correspondents. Auto Attach operates by regularly transmitting AA
5837 discovery TLVs between the AA client and AA server. By exchanging these
5838 discovery messages, both the AAC and AAS learn the system name and
5839 system description of their peer. In the OVS context, OVS operates as
5840 the AA client and the AA server resides on a switch at the edge of the
5841 SPB network.
5842 </p>
5843
5844 <p>
5845 Once AA discovery has been completed the AAC then uses the second new TLV
5846 to deliver identifier mappings from the AAC to the AAS. A primary feature
5847 of Auto Attach is to facilitate the mapping of VLANs defined outside the
5848 SPB network onto service ids (ISIDs) defined within the SPM network. By
5849 doing so individual external VLANs can be mapped onto specific SPB
5850 network services. These VLAN id to ISID mappings can be configured and
5851 managed locally using new options added to the ovs-vsctl command.
5852 </p>
5853
5854 <p>
5855 The Auto Attach OVS feature does not provide a full implementation of
5856 the LLDP protocol. Support for the mandatory TLVs as defined by the LLDP
5857 standard and support for the AA TLV extensions is provided. LLDP
5858 protocol support in OVS can be enabled or disabled on a port by port
5859 basis. LLDP support is disabled by default.
5860 </p>
5861
5862 <column name="system_name">
5863 The system_name string is exported in LLDP messages. It should uniquely
5864 identify the bridge in the network.
5865 </column>
5866
5867 <column name="system_description">
5868 The system_description string is exported in LLDP messages. It should
5869 describe the type of software and hardware.
5870 </column>
5871
5872 <column name="mappings">
5873 A mapping from SPB network Individual Service Identifier (ISID) to VLAN
5874 id.
5875 </column>
5876 </table>
5877 </database>