]> git.proxmox.com Git - ovs.git/blob - vswitchd/vswitch.xml
vswitch.xml: Fix key type and description style of tc-policy.
[ovs.git] / vswitchd / vswitch.xml
1 <?xml version="1.0" encoding="utf-8"?>
2 <database name="ovs-vswitchd.conf.db" title="Open vSwitch Configuration Database">
3 <p>
4 A database with this schema holds the configuration for one Open
5 vSwitch daemon. The top-level configuration for the daemon is the
6 <ref table="Open_vSwitch"/> table, which must have exactly one
7 record. Records in other tables are significant only when they
8 can be reached directly or indirectly from the <ref
9 table="Open_vSwitch"/> table. Records that are not reachable from
10 the <ref table="Open_vSwitch"/> table are automatically deleted
11 from the database, except for records in a few distinguished
12 ``root set'' tables.
13 </p>
14
15 <h2>Common Columns</h2>
16
17 <p>
18 Most tables contain two special columns, named <code>other_config</code>
19 and <code>external_ids</code>. These columns have the same form and
20 purpose each place that they appear, so we describe them here to save space
21 later.
22 </p>
23
24 <dl>
25 <dt><code>other_config</code>: map of string-string pairs</dt>
26 <dd>
27 <p>
28 Key-value pairs for configuring rarely used features. Supported keys,
29 along with the forms taken by their values, are documented individually
30 for each table.
31 </p>
32 <p>
33 A few tables do not have <code>other_config</code> columns because no
34 key-value pairs have yet been defined for them.
35 </p>
36 </dd>
37
38 <dt><code>external_ids</code>: map of string-string pairs</dt>
39 <dd>
40 Key-value pairs for use by external frameworks that integrate with Open
41 vSwitch, rather than by Open vSwitch itself. System integrators should
42 either use the Open vSwitch development mailing list to coordinate on
43 common key-value definitions, or choose key names that are likely to be
44 unique. In some cases, where key-value pairs have been defined that are
45 likely to be widely useful, they are documented individually for each
46 table.
47 </dd>
48 </dl>
49
50 <table name="Open_vSwitch" title="Open vSwitch configuration.">
51 Configuration for an Open vSwitch daemon. There must be exactly
52 one record in the <ref table="Open_vSwitch"/> table.
53
54 <group title="Configuration">
55 <column name="bridges">
56 Set of bridges managed by the daemon.
57 </column>
58
59 <column name="ssl">
60 SSL used globally by the daemon.
61 </column>
62
63 <column name="external_ids" key="system-id">
64 A unique identifier for the Open vSwitch's physical host.
65 The form of the identifier depends on the type of the host.
66 On a Citrix XenServer, this will likely be the same as
67 <ref column="external_ids" key="xs-system-uuid"/>.
68 </column>
69
70 <column name="external_ids" key="xs-system-uuid">
71 The Citrix XenServer universally unique identifier for the physical
72 host as displayed by <code>xe host-list</code>.
73 </column>
74
75 <column name="external_ids" key="hostname">
76 The hostname for the host running Open vSwitch. This is a fully
77 qualified domain name since version 2.6.2.
78 </column>
79
80 <column name="external_ids" key="rundir">
81 In Open vSwitch 2.8 and later, the run directory of the running Open
82 vSwitch daemon. This directory is used for runtime state such as
83 control and management sockets. The value of <ref
84 column="other_config" key="vhost-sock-dir"/> is relative to this
85 directory.
86 </column>
87
88 <column name="other_config" key="stats-update-interval"
89 type='{"type": "integer", "minInteger": 5000}'>
90 <p>
91 Interval for updating statistics to the database, in milliseconds.
92 This option will affect the update of the <code>statistics</code>
93 column in the following tables: <code>Port</code>, <code>Interface
94 </code>, <code>Mirror</code>.
95 </p>
96 <p>
97 Default value is 5000 ms.
98 </p>
99 <p>
100 Getting statistics more frequently can be achieved via OpenFlow.
101 </p>
102 </column>
103
104 <column name="other_config" key="flow-restore-wait"
105 type='{"type": "boolean"}'>
106 <p>
107 When <code>ovs-vswitchd</code> starts up, it has an empty flow table
108 and therefore it handles all arriving packets in its default fashion
109 according to its configuration, by dropping them or sending them to
110 an OpenFlow controller or switching them as a standalone switch.
111 This behavior is ordinarily desirable. However, if
112 <code>ovs-vswitchd</code> is restarting as part of a ``hot-upgrade,''
113 then this leads to a relatively long period during which packets are
114 mishandled.
115 </p>
116 <p>
117 This option allows for improvement. When <code>ovs-vswitchd</code>
118 starts with this value set as <code>true</code>, it will neither
119 flush or expire previously set datapath flows nor will it send and
120 receive any packets to or from the datapath. When this value is
121 later set to <code>false</code>, <code>ovs-vswitchd</code> will
122 start receiving packets from the datapath and re-setup the flows.
123 </p>
124 <p>
125 Thus, with this option, the procedure for a hot-upgrade of
126 <code>ovs-vswitchd</code> becomes roughly the following:
127 </p>
128 <ol>
129 <li>
130 Stop <code>ovs-vswitchd</code>.
131 </li>
132 <li>
133 Set <ref column="other_config" key="flow-restore-wait"/>
134 to <code>true</code>.
135 </li>
136 <li>
137 Start <code>ovs-vswitchd</code>.
138 </li>
139 <li>
140 Use <code>ovs-ofctl</code> (or some other program, such as an
141 OpenFlow controller) to restore the OpenFlow flow table
142 to the desired state.
143 </li>
144 <li>
145 Set <ref column="other_config" key="flow-restore-wait"/>
146 to <code>false</code> (or remove it entirely from the database).
147 </li>
148 </ol>
149 <p>
150 The <code>ovs-ctl</code>'s ``restart'' and ``force-reload-kmod''
151 functions use the above config option during hot upgrades.
152 </p>
153 </column>
154
155 <column name="other_config" key="flow-limit"
156 type='{"type": "integer", "minInteger": 0}'>
157 <p>
158 The maximum
159 number of flows allowed in the datapath flow table. Internally OVS
160 will choose a flow limit which will likely be lower than this number,
161 based on real time network conditions. Tweaking this value is
162 discouraged unless you know exactly what you're doing.
163 </p>
164 <p>
165 The default is 200000.
166 </p>
167 </column>
168
169 <column name="other_config" key="max-idle"
170 type='{"type": "integer", "minInteger": 500}'>
171 <p>
172 The maximum time (in ms) that idle flows will remain cached in the
173 datapath. Internally OVS will check the validity and activity for
174 datapath flows regularly and may expire flows quicker than this
175 number, based on real time network conditions. Tweaking this
176 value is discouraged unless you know exactly what you're doing.
177 </p>
178 <p>
179 The default is 10000.
180 </p>
181 </column>
182
183 <column name="other_config" key="hw-offload"
184 type='{"type": "boolean"}'>
185 <p>
186 Set this value to <code>true</code> to enable netdev flow offload.
187 </p>
188 <p>
189 The default value is <code>false</code>. Changing this value requires
190 restarting the daemon
191 </p>
192 <p>
193 Currently Open vSwitch supports hardware offloading on
194 Linux systems. On other systems, this value is ignored.
195 This functionality is considered 'experimental'. Depending
196 on which OpenFlow matches and actions are configured,
197 which kernel version is used, and what hardware is
198 available, Open vSwitch may not be able to offload
199 functionality to hardware.
200 </p>
201 </column>
202
203 <column name="other_config" key="tc-policy"
204 type='{"type": "string",
205 "enum": ["set", ["none", "skip_sw", "skip_hw"]]}'>
206 <p>
207 Specified the policy used with HW offloading.
208 Options:
209 <dl>
210 <dt><code>none</code></dt>
211 <dd>Add software rule and offload rule to HW.</dd>
212 <dt><code>skip_sw</code></dt>
213 <dd>Offload rule to HW only.</dd>
214 <dt><code>skip_hw</code></dt>
215 <dd>Add software rule without offloading rule to HW.</dd>
216 </dl>
217 </p>
218 <p>
219 This is only relevant if
220 <ref column="other_config" key="hw-offload"/> is enabled.
221 </p>
222 <p>
223 The default value is <code>none</code>.
224 </p>
225 </column>
226
227 <column name="other_config" key="dpdk-init"
228 type='{"type": "string",
229 "enum": ["set", ["false", "true", "try"]]}'>
230 <p>
231 Set this value to <code>true</code> or <code>try</code> to enable
232 runtime support for DPDK ports. The vswitch must have compile-time
233 support for DPDK as well.
234 </p>
235 <p>
236 A value of <code>true</code> will cause the ovs-vswitchd process to
237 abort if DPDK cannot be initialized. A value of <code>try</code>
238 will allow the ovs-vswitchd process to continue running even if DPDK
239 cannot be initialized.
240 </p>
241 <p>
242 The default value is <code>false</code>. Changing this value requires
243 restarting the daemon
244 </p>
245 <p>
246 If this value is <code>false</code> at startup, any dpdk ports which
247 are configured in the bridge will fail due to memory errors.
248 </p>
249 </column>
250
251 <column name="other_config" key="dpdk-lcore-mask"
252 type='{"type": "integer", "minInteger": 1}'>
253 <p>
254 Specifies the CPU cores where dpdk lcore threads should be spawned.
255 The DPDK lcore threads are used for DPDK library tasks, such as
256 library internal message processing, logging, etc. Value should be in
257 the form of a hex string (so '0x123') similar to the 'taskset' mask
258 input.
259 </p>
260 <p>
261 The lowest order bit corresponds to the first CPU core. A set bit
262 means the corresponding core is available and an lcore thread will be
263 created and pinned to it. If the input does not cover all cores,
264 those uncovered cores are considered not set.
265 </p>
266 <p>
267 For performance reasons, it is best to set this to a single core on
268 the system, rather than allow lcore threads to float.
269 </p>
270 <p>
271 If not specified, the value will be determined by choosing the lowest
272 CPU core from initial cpu affinity list. Otherwise, the value will be
273 passed directly to the DPDK library.
274 </p>
275 </column>
276
277 <column name="other_config" key="pmd-cpu-mask">
278 <p>
279 Specifies CPU mask for setting the cpu affinity of PMD (Poll
280 Mode Driver) threads. Value should be in the form of hex string,
281 similar to the dpdk EAL '-c COREMASK' option input or the 'taskset'
282 mask input.
283 </p>
284 <p>
285 The lowest order bit corresponds to the first CPU core. A set bit
286 means the corresponding core is available and a pmd thread will be
287 created and pinned to it. If the input does not cover all cores,
288 those uncovered cores are considered not set.
289 </p>
290 <p>
291 If not specified, one pmd thread will be created for each numa node
292 and pinned to any available core on the numa node by default.
293 </p>
294 </column>
295
296 <column name="other_config" key="dpdk-alloc-mem"
297 type='{"type": "integer", "minInteger": 0}'>
298 <p>
299 Specifies the amount of memory to preallocate from the hugepage pool,
300 regardless of socket. It is recommended that dpdk-socket-mem is used
301 instead.
302 </p>
303 </column>
304
305 <column name="other_config" key="dpdk-socket-mem"
306 type='{"type": "string"}'>
307 <p>
308 Specifies the amount of memory to preallocate from the hugepage pool,
309 on a per-socket basis.
310 </p>
311 <p>
312 The specifier is a comma-separated string, in ascending order of CPU
313 socket. E.g. On a four socket system 1024,0,2048 would set socket 0
314 to preallocate 1024MB, socket 1 to preallocate 0MB, socket 2 to
315 preallocate 2048MB and socket 3 (no value given) to preallocate 0MB.
316 </p>
317 <p>
318 If dpdk-socket-mem and dpdk-alloc-mem are not specified, dpdk-socket-mem
319 will be used and the default value is 1024 for each numa node. If
320 dpdk-socket-mem and dpdk-alloc-mem are specified at same time,
321 dpdk-socket-mem will be used as default. Changing this value
322 requires restarting the daemon.
323 </p>
324 </column>
325
326 <column name="other_config" key="dpdk-hugepage-dir"
327 type='{"type": "string"}'>
328 <p>
329 Specifies the path to the hugetlbfs mount point.
330 </p>
331 <p>
332 If not specified, this will be guessed by the DPDK library (default
333 is /dev/hugepages). Changing this value requires restarting the
334 daemon.
335 </p>
336 </column>
337
338 <column name="other_config" key="dpdk-extra"
339 type='{"type": "string"}'>
340 <p>
341 Specifies additional eal command line arguments for DPDK.
342 </p>
343 <p>
344 The default is empty. Changing this value requires restarting the
345 daemon
346 </p>
347 </column>
348
349 <column name="other_config" key="vhost-sock-dir"
350 type='{"type": "string"}'>
351 <p>
352 Specifies a relative path from <ref column="external_ids"
353 key="rundir"/> to the vhost-user unix domain socket files. If this
354 value is unset, the sockets are put directly in <ref
355 column="external_ids" key="rundir"/>.
356 </p>
357 <p>
358 Changing this value requires restarting the daemon.
359 </p>
360 </column>
361
362 <column name="other_config" key="vhost-iommu-support"
363 type='{"type": "boolean"}'>
364 <p>
365 vHost IOMMU is a security feature, which restricts the vhost memory
366 that a virtio device may access. vHost IOMMU support is disabled by
367 default, due to a bug in QEMU implementations of the vhost REPLY_ACK
368 protocol, (on which vHost IOMMU relies) prior to v2.9.1. Setting this
369 value to <code>true</code> enables vHost IOMMU support for vHost User
370 Client ports in OvS-DPDK, starting from DPDK v17.11.
371 </p>
372 <p>
373 Changing this value requires restarting the daemon.
374 </p>
375 </column>
376
377 <column name="other_config" key="per-port-memory"
378 type='{"type": "boolean"}'>
379 <p>
380 By default OVS DPDK uses a shared memory model wherein devices
381 that have the same MTU and socket values can share the same
382 mempool. Setting this value to <code>true</code> changes this
383 behaviour. Per port memory allow DPDK devices to use private
384 memory per device. This can provide greater transparency as
385 regards memory usage but potentially at the cost of greater memory
386 requirements.
387 </p>
388 <p>
389 Changing this value requires restarting the daemon if dpdk-init has
390 already been set to true.
391 </p>
392 </column>
393
394 <column name="other_config" key="tx-flush-interval"
395 type='{"type": "integer",
396 "minInteger": 0, "maxInteger": 1000000}'>
397 <p>
398 Specifies the time in microseconds that a packet can wait in output
399 batch for sending i.e. amount of time that packet can spend in an
400 intermediate output queue before sending to netdev.
401 This option can be used to configure balance between throughput
402 and latency. Lower values decreases latency while higher values
403 may be useful to achieve higher performance.
404 </p>
405 <p>
406 Defaults to 0 i.e. instant packet sending (latency optimized).
407 </p>
408 </column>
409
410 <column name="other_config" key="pmd-perf-metrics"
411 type='{"type": "boolean"}'>
412 <p>
413 Enables recording of detailed PMD performance metrics for analysis
414 and trouble-shooting. This can have a performance impact in the
415 order of 1%.
416 </p>
417 <p>
418 Defaults to false but can be changed at any time.
419 </p>
420 </column>
421
422 <column name="other_config" key="smc-enable"
423 type='{"type": "boolean"}'>
424 <p>
425 Signature match cache or SMC is a cache between EMC and megaflow
426 cache. It does not store the full key of the flow, so it is more
427 memory efficient comparing to EMC cache. SMC is especially useful
428 when flow count is larger than EMC capacity.
429 </p>
430 <p>
431 Defaults to false but can be changed at any time.
432 </p>
433 </column>
434
435 <column name="other_config" key="n-handler-threads"
436 type='{"type": "integer", "minInteger": 1}'>
437 <p>
438 Specifies the number of threads for software datapaths to use for
439 handling new flows. The default the number of online CPU cores minus
440 the number of revalidators.
441 </p>
442 <p>
443 This configuration is per datapath. If you have more than one
444 software datapath (e.g. some <code>system</code> bridges and some
445 <code>netdev</code> bridges), then the total number of threads is
446 <code>n-handler-threads</code> times the number of software
447 datapaths.
448 </p>
449 </column>
450
451 <column name="other_config" key="n-revalidator-threads"
452 type='{"type": "integer", "minInteger": 1}'>
453 <p>
454 Specifies the number of threads for software datapaths to use for
455 revalidating flows in the datapath. Typically, there is a direct
456 correlation between the number of revalidator threads, and the number
457 of flows allowed in the datapath. The default is the number of cpu
458 cores divided by four plus one. If <code>n-handler-threads</code> is
459 set, the default changes to the number of cpu cores minus the number
460 of handler threads.
461 </p>
462 <p>
463 This configuration is per datapath. If you have more than one
464 software datapath (e.g. some <code>system</code> bridges and some
465 <code>netdev</code> bridges), then the total number of threads is
466 <code>n-handler-threads</code> times the number of software
467 datapaths.
468 </p>
469 </column>
470
471 <column name="other_config" key="emc-insert-inv-prob"
472 type='{"type": "integer", "minInteger": 0, "maxInteger": 4294967295}'>
473 <p>
474 Specifies the inverse probability (1/emc-insert-inv-prob) of a flow
475 being inserted into the Exact Match Cache (EMC). On average one in
476 every <code>emc-insert-inv-prob</code> packets that generate a unique
477 flow will cause an insertion into the EMC.
478
479 A value of 1 will result in an insertion for every flow (1/1 = 100%)
480 whereas a value of zero will result in no insertions and essentially
481 disable the EMC.
482 </p>
483 <p>
484 Defaults to 100 ie. there is (1/100 =) 1% chance of EMC insertion.
485 </p>
486 </column>
487
488 <column name="other_config" key="vlan-limit"
489 type='{"type": "integer", "minInteger": 0}'>
490 <p>
491 Limits the number of VLAN headers that can be matched to the
492 specified number. Further VLAN headers will be treated as payload,
493 e.g. a packet with more 802.1q headers will match Ethernet type
494 0x8100.
495 </p>
496 <p>
497 Value <code>0</code> means unlimited. The actual number of supported
498 VLAN headers is the smallest of <code>vlan-limit</code>, the number
499 of VLANs supported by Open vSwitch userspace (currently 2), and the
500 number supported by the datapath.
501 </p>
502
503 <p>
504 If this value is absent, the default is currently 1. This maintains
505 backward compatibility with controllers that were designed for use
506 with Open vSwitch versions earlier than 2.8, which only supported one
507 VLAN.
508 </p>
509 </column>
510 <column name="other_config" key="bundle-idle-timeout"
511 type='{"type": "integer", "minInteger": 1}'>
512 <p>
513 The maximum time (in seconds) that idle bundles will wait
514 to be expired since it was either opened, modified or closed.
515 </p>
516 <p>
517 OpenFlow specification mandates the timeout to be at least one
518 second. The default is 10 seconds.
519 </p>
520 </column>
521
522 </group>
523
524 <group title="Status">
525 <column name="next_cfg">
526 Sequence number for client to increment. When a client modifies
527 any part of the database configuration and wishes to wait for
528 Open vSwitch to finish applying the changes, it may increment
529 this sequence number.
530 </column>
531
532 <column name="cur_cfg">
533 Sequence number that Open vSwitch sets to the current value of
534 <ref column="next_cfg"/> after it finishes applying a set of
535 configuration changes.
536 </column>
537
538 <column name="dpdk_initialized">
539 True if <ref column="other_config" key="dpdk-init"/> is set to
540 true and the DPDK library is successfully initialized.
541 </column>
542
543 <group title="Statistics">
544 <p>
545 The <code>statistics</code> column contains key-value pairs that
546 report statistics about a system running an Open vSwitch. These are
547 updated periodically (currently, every 5 seconds). Key-value pairs
548 that cannot be determined or that do not apply to a platform are
549 omitted.
550 </p>
551
552 <column name="other_config" key="enable-statistics"
553 type='{"type": "boolean"}'>
554 Statistics are disabled by default to avoid overhead in the common
555 case when statistics gathering is not useful. Set this value to
556 <code>true</code> to enable populating the <ref column="statistics"/>
557 column or to <code>false</code> to explicitly disable it.
558 </column>
559
560 <column name="statistics" key="cpu"
561 type='{"type": "integer", "minInteger": 1}'>
562 <p>
563 Number of CPU processors, threads, or cores currently online and
564 available to the operating system on which Open vSwitch is running,
565 as an integer. This may be less than the number installed, if some
566 are not online or if they are not available to the operating
567 system.
568 </p>
569 <p>
570 Open vSwitch userspace processes are not multithreaded, but the
571 Linux kernel-based datapath is.
572 </p>
573 </column>
574
575 <column name="statistics" key="load_average">
576 A comma-separated list of three floating-point numbers,
577 representing the system load average over the last 1, 5, and 15
578 minutes, respectively.
579 </column>
580
581 <column name="statistics" key="memory">
582 <p>
583 A comma-separated list of integers, each of which represents a
584 quantity of memory in kilobytes that describes the operating
585 system on which Open vSwitch is running. In respective order,
586 these values are:
587 </p>
588
589 <ol>
590 <li>Total amount of RAM allocated to the OS.</li>
591 <li>RAM allocated to the OS that is in use.</li>
592 <li>RAM that can be flushed out to disk or otherwise discarded
593 if that space is needed for another purpose. This number is
594 necessarily less than or equal to the previous value.</li>
595 <li>Total disk space allocated for swap.</li>
596 <li>Swap space currently in use.</li>
597 </ol>
598
599 <p>
600 On Linux, all five values can be determined and are included. On
601 other operating systems, only the first two values can be
602 determined, so the list will only have two values.
603 </p>
604 </column>
605
606 <column name="statistics" key="process_NAME">
607 <p>
608 One such key-value pair, with <code>NAME</code> replaced by
609 a process name, will exist for each running Open vSwitch
610 daemon process, with <var>name</var> replaced by the
611 daemon's name (e.g. <code>process_ovs-vswitchd</code>). The
612 value is a comma-separated list of integers. The integers
613 represent the following, with memory measured in kilobytes
614 and durations in milliseconds:
615 </p>
616
617 <ol>
618 <li>The process's virtual memory size.</li>
619 <li>The process's resident set size.</li>
620 <li>The amount of user and system CPU time consumed by the
621 process.</li>
622 <li>The number of times that the process has crashed and been
623 automatically restarted by the monitor.</li>
624 <li>The duration since the process was started.</li>
625 <li>The duration for which the process has been running.</li>
626 </ol>
627
628 <p>
629 The interpretation of some of these values depends on whether the
630 process was started with the <option>--monitor</option>. If it
631 was not, then the crash count will always be 0 and the two
632 durations will always be the same. If <option>--monitor</option>
633 was given, then the crash count may be positive; if it is, the
634 latter duration is the amount of time since the most recent crash
635 and restart.
636 </p>
637
638 <p>
639 There will be one key-value pair for each file in Open vSwitch's
640 ``run directory'' (usually <code>/var/run/openvswitch</code>)
641 whose name ends in <code>.pid</code>, whose contents are a
642 process ID, and which is locked by a running process. The
643 <var>name</var> is taken from the pidfile's name.
644 </p>
645
646 <p>
647 Currently Open vSwitch is only able to obtain all of the above
648 detail on Linux systems. On other systems, the same key-value
649 pairs will be present but the values will always be the empty
650 string.
651 </p>
652 </column>
653
654 <column name="statistics" key="file_systems">
655 <p>
656 A space-separated list of information on local, writable file
657 systems. Each item in the list describes one file system and
658 consists in turn of a comma-separated list of the following:
659 </p>
660
661 <ol>
662 <li>Mount point, e.g. <code>/</code> or <code>/var/log</code>.
663 Any spaces or commas in the mount point are replaced by
664 underscores.</li>
665 <li>Total size, in kilobytes, as an integer.</li>
666 <li>Amount of storage in use, in kilobytes, as an integer.</li>
667 </ol>
668
669 <p>
670 This key-value pair is omitted if there are no local, writable
671 file systems or if Open vSwitch cannot obtain the needed
672 information.
673 </p>
674 </column>
675 </group>
676 </group>
677
678 <group title="Version Reporting">
679 <p>
680 These columns report the types and versions of the hardware and
681 software running Open vSwitch. We recommend in general that software
682 should test whether specific features are supported instead of relying
683 on version number checks. These values are primarily intended for
684 reporting to human administrators.
685 </p>
686
687 <column name="ovs_version">
688 The Open vSwitch version number, e.g. <code>1.1.0</code>.
689 </column>
690
691 <column name="db_version">
692 <p>
693 The database schema version number, e.g. <code>1.2.3</code>. See
694 ovsdb-tool(1) for an explanation of the numbering scheme.
695 </p>
696
697 <p>
698 The schema version is part of the database schema, so it can also be
699 retrieved by fetching the schema using the Open vSwitch database
700 protocol.
701 </p>
702 </column>
703
704 <column name="system_type">
705 <p>
706 An identifier for the type of system on top of which Open vSwitch
707 runs, e.g. <code>XenServer</code> or <code>KVM</code>.
708 </p>
709 <p>
710 System integrators are responsible for choosing and setting an
711 appropriate value for this column.
712 </p>
713 </column>
714
715 <column name="system_version">
716 <p>
717 The version of the system identified by <ref column="system_type"/>,
718 e.g. <code>5.6.100-39265p</code> on XenServer 5.6.100 build 39265.
719 </p>
720 <p>
721 System integrators are responsible for choosing and setting an
722 appropriate value for this column.
723 </p>
724 </column>
725
726 <column name="dpdk_version">
727 <p>
728 The version of the linked DPDK library.
729 </p>
730 </column>
731
732 </group>
733
734 <group title="Capabilities">
735 <p>
736 These columns report capabilities of the Open vSwitch instance.
737 </p>
738 <column name="datapath_types">
739 <p>
740 This column reports the different dpifs registered with the system.
741 These are the values that this instance supports in the <ref
742 column="datapath_type" table="Bridge"/> column of the <ref
743 table="Bridge"/> table.
744 </p>
745 </column>
746 <column name="iface_types">
747 <p>
748 This column reports the different netdevs registered with the system.
749 These are the values that this instance supports in the <ref
750 column="type" table="Interface"/> column of the <ref
751 table="Interface"/> table.
752 </p>
753 </column>
754 </group>
755
756 <group title="Database Configuration">
757 <p>
758 These columns primarily configure the Open vSwitch database
759 (<code>ovsdb-server</code>), not the Open vSwitch switch
760 (<code>ovs-vswitchd</code>). The OVSDB database also uses the <ref
761 column="ssl"/> settings.
762 </p>
763
764 <p>
765 The Open vSwitch switch does read the database configuration to
766 determine remote IP addresses to which in-band control should apply.
767 </p>
768
769 <column name="manager_options">
770 <p>
771 Database clients to which the Open vSwitch database server should
772 connect or to which it should listen, along with options for how
773 these connections should be configured. See the <ref
774 table="Manager"/> table for more information.
775 </p>
776
777 <p>
778 For this column to serve its purpose, <code>ovsdb-server</code> must
779 be configured to honor it. The easiest way to do this is to invoke
780 <code>ovsdb-server</code> with the option
781 <option>--remote=db:Open_vSwitch,Open_vSwitch,manager_options</option>
782 The startup scripts that accompany Open vSwitch do this by default.
783 </p>
784 </column>
785 </group>
786
787 <group title="Common Columns">
788 The overall purpose of these columns is described under <code>Common
789 Columns</code> at the beginning of this document.
790
791 <column name="other_config"/>
792 <column name="external_ids"/>
793 </group>
794 </table>
795
796 <table name="Bridge">
797 <p>
798 Configuration for a bridge within an
799 <ref table="Open_vSwitch"/>.
800 </p>
801 <p>
802 A <ref table="Bridge"/> record represents an Ethernet switch with one or
803 more ``ports,'' which are the <ref table="Port"/> records pointed to by
804 the <ref table="Bridge"/>'s <ref column="ports"/> column.
805 </p>
806
807 <group title="Core Features">
808 <column name="name">
809 <p>
810 Bridge identifier. Must be unique among the names of ports,
811 interfaces, and bridges on a host.
812 </p>
813
814 <p>
815 The name must be alphanumeric and must not contain forward or
816 backward slashes. The name of a bridge is also the name of an <ref
817 table="Interface"/> (and a <ref table="Port"/>) within the bridge, so
818 the restrictions on the <ref table="Interface" column="name"/> column
819 in the <ref table="Interface"/> table, particularly on length, also
820 apply to bridge names. Refer to the documentation for <ref
821 table="Interface"/> names for details.
822 </p>
823 </column>
824
825 <column name="ports">
826 Ports included in the bridge.
827 </column>
828
829 <column name="mirrors">
830 Port mirroring configuration.
831 </column>
832
833 <column name="netflow">
834 NetFlow configuration.
835 </column>
836
837 <column name="sflow">
838 sFlow(R) configuration.
839 </column>
840
841 <column name="ipfix">
842 IPFIX configuration.
843 </column>
844
845 <column name="flood_vlans">
846 <p>
847 VLAN IDs of VLANs on which MAC address learning should be disabled,
848 so that packets are flooded instead of being sent to specific ports
849 that are believed to contain packets' destination MACs. This should
850 ordinarily be used to disable MAC learning on VLANs used for
851 mirroring (RSPAN VLANs). It may also be useful for debugging.
852 </p>
853 <p>
854 SLB bonding (see the <ref table="Port" column="bond_mode"/> column in
855 the <ref table="Port"/> table) is incompatible with
856 <code>flood_vlans</code>. Consider using another bonding mode or
857 a different type of mirror instead.
858 </p>
859 </column>
860
861 <column name="auto_attach">
862 Auto Attach configuration.
863 </column>
864 </group>
865
866 <group title="OpenFlow Configuration">
867 <column name="controller">
868 <p>
869 OpenFlow controller set. If unset, then no OpenFlow controllers
870 will be used.
871 </p>
872
873 <p>
874 If there are primary controllers, removing all of them clears the
875 OpenFlow flow tables, group table, and meter table. If there are no
876 primary controllers, adding one also clears these tables. Other
877 changes to the set of controllers, such as adding or removing a
878 service controller, adding another primary controller to supplement
879 an existing primary controller, or removing only one of two primary
880 controllers, have no effect on these tables.
881 </p>
882 </column>
883
884 <column name="flow_tables">
885 Configuration for OpenFlow tables. Each pair maps from an OpenFlow
886 table ID to configuration for that table.
887 </column>
888
889 <column name="fail_mode">
890 <p>When a controller is configured, it is, ordinarily, responsible
891 for setting up all flows on the switch. Thus, if the connection to
892 the controller fails, no new network connections can be set up.
893 If the connection to the controller stays down long enough,
894 no packets can pass through the switch at all. This setting
895 determines the switch's response to such a situation. It may be set
896 to one of the following:
897 <dl>
898 <dt><code>standalone</code></dt>
899 <dd>If no message is received from the controller for three
900 times the inactivity probe interval
901 (see <ref column="inactivity_probe"/>), then Open vSwitch
902 will take over responsibility for setting up flows. In
903 this mode, Open vSwitch causes the bridge to act like an
904 ordinary MAC-learning switch. Open vSwitch will continue
905 to retry connecting to the controller in the background
906 and, when the connection succeeds, it will discontinue its
907 standalone behavior.</dd>
908 <dt><code>secure</code></dt>
909 <dd>Open vSwitch will not set up flows on its own when the
910 controller connection fails or when no controllers are
911 defined. The bridge will continue to retry connecting to
912 any defined controllers forever.</dd>
913 </dl>
914 </p>
915 <p>
916 The default is <code>standalone</code> if the value is unset, but
917 future versions of Open vSwitch may change the default.
918 </p>
919 <p>
920 The <code>standalone</code> mode can create forwarding loops on a
921 bridge that has more than one uplink port unless STP is enabled. To
922 avoid loops on such a bridge, configure <code>secure</code> mode or
923 enable STP (see <ref column="stp_enable"/>).
924 </p>
925 <p>When more than one controller is configured,
926 <ref column="fail_mode"/> is considered only when none of the
927 configured controllers can be contacted.</p>
928 <p>
929 Changing <ref column="fail_mode"/> when no primary controllers are
930 configured clears the OpenFlow flow tables, group table, and meter
931 table.
932 </p>
933 </column>
934
935 <column name="datapath_id">
936 Reports the OpenFlow datapath ID in use. Exactly 16 hex digits.
937 (Setting this column has no useful effect. Set <ref
938 column="other-config" key="datapath-id"/> instead.)
939 </column>
940
941 <column name="datapath_version">
942 <p>
943 Reports the version number of the Open vSwitch datapath in use.
944 This allows management software to detect and report discrepancies
945 between Open vSwitch userspace and datapath versions. (The <ref
946 column="ovs_version" table="Open_vSwitch"/> column in the <ref
947 table="Open_vSwitch"/> reports the Open vSwitch userspace version.)
948 The version reported depends on the datapath in use:
949 </p>
950
951 <ul>
952 <li>
953 When the kernel module included in the Open vSwitch source tree is
954 used, this column reports the Open vSwitch version from which the
955 module was taken.
956 </li>
957
958 <li>
959 When the kernel module that is part of the upstream Linux kernel is
960 used, this column reports <code>&lt;unknown&gt;</code>.
961 </li>
962
963 <li>
964 When the datapath is built into the <code>ovs-vswitchd</code>
965 binary, this column reports <code>&lt;built-in&gt;</code>. A
966 built-in datapath is by definition the same version as the rest of
967 the Open VSwitch userspace.
968 </li>
969
970 <li>
971 Other datapaths (such as the Hyper-V kernel datapath) currently
972 report <code>&lt;unknown&gt;</code>.
973 </li>
974 </ul>
975
976 <p>
977 A version discrepancy between <code>ovs-vswitchd</code> and the
978 datapath in use is not normally cause for alarm. The Open vSwitch
979 kernel datapaths for Linux and Hyper-V, in particular, are designed
980 for maximum inter-version compatibility: any userspace version works
981 with with any kernel version. Some reasons do exist to insist on
982 particular user/kernel pairings. First, newer kernel versions add
983 new features, that can only be used by new-enough userspace, e.g.
984 VXLAN tunneling requires certain minimal userspace and kernel
985 versions. Second, as an extension to the first reason, some newer
986 kernel versions add new features for enhancing performance that only
987 new-enough userspace versions can take advantage of.
988 </p>
989 </column>
990
991 <column name="other_config" key="datapath-id">
992 Overrides the default OpenFlow datapath ID, setting it to the specified
993 value specified in hex. The value must either have a <code>0x</code>
994 prefix or be exactly 16 hex digits long. May not be all-zero.
995 </column>
996
997 <column name="other_config" key="dp-desc">
998 Human readable description of datapath. It is a maximum 256
999 byte-long free-form string to describe the datapath for
1000 debugging purposes, e.g. <code>switch3 in room 3120</code>.
1001 </column>
1002
1003 <column name="other_config" key="disable-in-band"
1004 type='{"type": "boolean"}'>
1005 If set to <code>true</code>, disable in-band control on the bridge
1006 regardless of controller and manager settings.
1007 </column>
1008
1009 <column name="other_config" key="in-band-queue"
1010 type='{"type": "integer", "minInteger": 0, "maxInteger": 4294967295}'>
1011 A queue ID as a nonnegative integer. This sets the OpenFlow queue ID
1012 that will be used by flows set up by in-band control on this bridge.
1013 If unset, or if the port used by an in-band control flow does not have
1014 QoS configured, or if the port does not have a queue with the specified
1015 ID, the default queue is used instead.
1016 </column>
1017
1018 <column name="protocols">
1019 <p>
1020 List of OpenFlow protocols that may be used when negotiating
1021 a connection with a controller. OpenFlow 1.0, 1.1, 1.2, 1.3, and
1022 1.4 are enabled by default if this column is empty.
1023 </p>
1024
1025 <p>
1026 OpenFlow 1.5 and 1.6 are not enabled by default because their
1027 implementations are missing features. In addition, the OpenFlow 1.6
1028 specification is still under development and thus subject to change.
1029 </p>
1030 </column>
1031 </group>
1032
1033 <group title="Spanning Tree Configuration">
1034 <p>
1035 The IEEE 802.1D Spanning Tree Protocol (STP) is a network protocol
1036 that ensures loop-free topologies. It allows redundant links to
1037 be included in the network to provide automatic backup paths if
1038 the active links fails.
1039 </p>
1040
1041 <p>
1042 These settings configure the slower-to-converge but still widely
1043 supported version of Spanning Tree Protocol, sometimes known as
1044 802.1D-1998. Open vSwitch also supports the newer Rapid Spanning Tree
1045 Protocol (RSTP), documented later in the section titled <code>Rapid
1046 Spanning Tree Configuration</code>.
1047 </p>
1048
1049 <group title="STP Configuration">
1050 <column name="stp_enable" type='{"type": "boolean"}'>
1051 <p>
1052 Enable spanning tree on the bridge. By default, STP is disabled
1053 on bridges. Bond, internal, and mirror ports are not supported
1054 and will not participate in the spanning tree.
1055 </p>
1056
1057 <p>
1058 STP and RSTP are mutually exclusive. If both are enabled, RSTP
1059 will be used.
1060 </p>
1061 </column>
1062
1063 <column name="other_config" key="stp-system-id">
1064 The bridge's STP identifier (the lower 48 bits of the bridge-id)
1065 in the form
1066 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>.
1067 By default, the identifier is the MAC address of the bridge.
1068 </column>
1069
1070 <column name="other_config" key="stp-priority"
1071 type='{"type": "integer", "minInteger": 0, "maxInteger": 65535}'>
1072 The bridge's relative priority value for determining the root
1073 bridge (the upper 16 bits of the bridge-id). A bridge with the
1074 lowest bridge-id is elected the root. By default, the priority
1075 is 0x8000.
1076 </column>
1077
1078 <column name="other_config" key="stp-hello-time"
1079 type='{"type": "integer", "minInteger": 1, "maxInteger": 10}'>
1080 The interval between transmissions of hello messages by
1081 designated ports, in seconds. By default the hello interval is
1082 2 seconds.
1083 </column>
1084
1085 <column name="other_config" key="stp-max-age"
1086 type='{"type": "integer", "minInteger": 6, "maxInteger": 40}'>
1087 The maximum age of the information transmitted by the bridge
1088 when it is the root bridge, in seconds. By default, the maximum
1089 age is 20 seconds.
1090 </column>
1091
1092 <column name="other_config" key="stp-forward-delay"
1093 type='{"type": "integer", "minInteger": 4, "maxInteger": 30}'>
1094 The delay to wait between transitioning root and designated
1095 ports to <code>forwarding</code>, in seconds. By default, the
1096 forwarding delay is 15 seconds.
1097 </column>
1098
1099 <column name="other_config" key="mcast-snooping-aging-time"
1100 type='{"type": "integer", "minInteger": 1}'>
1101 <p>
1102 The maximum number of seconds to retain a multicast snooping entry for
1103 which no packets have been seen. The default is currently 300
1104 seconds (5 minutes). The value, if specified, is forced into a
1105 reasonable range, currently 15 to 3600 seconds.
1106 </p>
1107 </column>
1108
1109 <column name="other_config" key="mcast-snooping-table-size"
1110 type='{"type": "integer", "minInteger": 1}'>
1111 <p>
1112 The maximum number of multicast snooping addresses to learn. The
1113 default is currently 2048. The value, if specified, is forced into
1114 a reasonable range, currently 10 to 1,000,000.
1115 </p>
1116 </column>
1117 <column name="other_config" key="mcast-snooping-disable-flood-unregistered"
1118 type='{"type": "boolean"}'>
1119 <p>
1120 If set to <code>false</code>, unregistered multicast packets are forwarded
1121 to all ports.
1122 If set to <code>true</code>, unregistered multicast packets are forwarded
1123 to ports connected to multicast routers.
1124 </p>
1125 </column>
1126 </group>
1127
1128 <group title="STP Status">
1129 <p>
1130 These key-value pairs report the status of 802.1D-1998. They are
1131 present only if STP is enabled (via the <ref column="stp_enable"/>
1132 column).
1133 </p>
1134 <column name="status" key="stp_bridge_id">
1135 The bridge ID used in spanning tree advertisements, in the form
1136 <var>xxxx</var>.<var>yyyyyyyyyyyy</var> where the <var>x</var>s are
1137 the STP priority, the <var>y</var>s are the STP system ID, and each
1138 <var>x</var> and <var>y</var> is a hex digit.
1139 </column>
1140 <column name="status" key="stp_designated_root">
1141 The designated root for this spanning tree, in the same form as <ref
1142 column="status" key="stp_bridge_id"/>. If this bridge is the root,
1143 this will have the same value as <ref column="status"
1144 key="stp_bridge_id"/>, otherwise it will differ.
1145 </column>
1146 <column name="status" key="stp_root_path_cost">
1147 The path cost of reaching the designated bridge. A lower number is
1148 better. The value is 0 if this bridge is the root, otherwise it is
1149 higher.
1150 </column>
1151 </group>
1152 </group>
1153
1154 <group title="Rapid Spanning Tree">
1155 <p>
1156 Rapid Spanning Tree Protocol (RSTP), like STP, is a network protocol
1157 that ensures loop-free topologies. RSTP superseded STP with the
1158 publication of 802.1D-2004. Compared to STP, RSTP converges more
1159 quickly and recovers more quickly from failures.
1160 </p>
1161
1162 <group title="RSTP Configuration">
1163 <column name="rstp_enable" type='{"type": "boolean"}'>
1164 <p>
1165 Enable Rapid Spanning Tree on the bridge. By default, RSTP is disabled
1166 on bridges. Bond, internal, and mirror ports are not supported
1167 and will not participate in the spanning tree.
1168 </p>
1169
1170 <p>
1171 STP and RSTP are mutually exclusive. If both are enabled, RSTP
1172 will be used.
1173 </p>
1174 </column>
1175
1176 <column name="other_config" key="rstp-address">
1177 The bridge's RSTP address (the lower 48 bits of the bridge-id)
1178 in the form
1179 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>.
1180 By default, the address is the MAC address of the bridge.
1181 </column>
1182
1183 <column name="other_config" key="rstp-priority"
1184 type='{"type": "integer", "minInteger": 0, "maxInteger": 61440}'>
1185 The bridge's relative priority value for determining the root
1186 bridge (the upper 16 bits of the bridge-id). A bridge with the
1187 lowest bridge-id is elected the root. By default, the priority
1188 is 0x8000 (32768). This value needs to be a multiple of 4096,
1189 otherwise it's rounded to the nearest inferior one.
1190 </column>
1191
1192 <column name="other_config" key="rstp-ageing-time"
1193 type='{"type": "integer", "minInteger": 10, "maxInteger": 1000000}'>
1194 The Ageing Time parameter for the Bridge. The default value
1195 is 300 seconds.
1196 </column>
1197
1198 <column name="other_config" key="rstp-force-protocol-version"
1199 type='{"type": "integer"}'>
1200 The Force Protocol Version parameter for the Bridge. This
1201 can take the value 0 (STP Compatibility mode) or 2
1202 (the default, normal operation).
1203 </column>
1204
1205 <column name="other_config" key="rstp-max-age"
1206 type='{"type": "integer", "minInteger": 6, "maxInteger": 40}'>
1207 The maximum age of the information transmitted by the Bridge
1208 when it is the Root Bridge. The default value is 20.
1209 </column>
1210
1211 <column name="other_config" key="rstp-forward-delay"
1212 type='{"type": "integer", "minInteger": 4, "maxInteger": 30}'>
1213 The delay used by STP Bridges to transition Root and Designated
1214 Ports to Forwarding. The default value is 15.
1215 </column>
1216
1217 <column name="other_config" key="rstp-transmit-hold-count"
1218 type='{"type": "integer", "minInteger": 1, "maxInteger": 10}'>
1219 The Transmit Hold Count used by the Port Transmit state machine
1220 to limit transmission rate. The default value is 6.
1221 </column>
1222 </group>
1223
1224 <group title="RSTP Status">
1225 <p>
1226 These key-value pairs report the status of 802.1D-2004. They are
1227 present only if RSTP is enabled (via the <ref column="rstp_enable"/>
1228 column).
1229 </p>
1230 <column name="rstp_status" key="rstp_bridge_id">
1231 The bridge ID used in rapid spanning tree advertisements, in the form
1232 <var>x</var>.<var>yyy</var>.<var>zzzzzzzzzzzz</var> where
1233 <var>x</var> is the RSTP priority, the <var>y</var>s are a locally
1234 assigned system ID extension, the <var>z</var>s are the STP system
1235 ID, and each <var>x</var>, <var>y</var>, or <var>z</var> is a hex
1236 digit.
1237 </column>
1238 <column name="rstp_status" key="rstp_root_id">
1239 The root of this spanning tree, in the same form as <ref
1240 column="rstp_status" key="rstp_bridge_id"/>. If this bridge is the
1241 root, this will have the same value as <ref column="rstp_status"
1242 key="rstp_bridge_id"/>, otherwise it will differ.
1243 </column>
1244 <column name="rstp_status" key="rstp_root_path_cost"
1245 type='{"type": "integer", "minInteger": 0}'>
1246 The path cost of reaching the root. A lower number is better. The
1247 value is 0 if this bridge is the root, otherwise it is higher.
1248 </column>
1249 <column name="rstp_status" key="rstp_designated_id">
1250 The RSTP designated ID, in the same form as <ref column="rstp_status"
1251 key="rstp_bridge_id"/>.
1252 </column>
1253 <column name="rstp_status" key="rstp_designated_port_id">
1254 The RSTP designated port ID, as a 4-digit hex number.
1255 </column>
1256 <column name="rstp_status" key="rstp_bridge_port_id">
1257 The RSTP bridge port ID, as a 4-digit hex number.
1258 </column>
1259 </group>
1260 </group>
1261
1262 <group title="Multicast Snooping Configuration">
1263 Multicast snooping (RFC 4541) monitors the Internet Group Management
1264 Protocol (IGMP) and Multicast Listener Discovery traffic between hosts
1265 and multicast routers. The switch uses what IGMP and MLD snooping
1266 learns to forward multicast traffic only to interfaces that are connected
1267 to interested receivers. Currently it supports IGMPv1, IGMPv2, IGMPv3,
1268 MLDv1 and MLDv2 protocols.
1269
1270 <column name="mcast_snooping_enable">
1271 Enable multicast snooping on the bridge. For now, the default
1272 is disabled.
1273 </column>
1274 </group>
1275
1276 <group title="Other Features">
1277 <column name="datapath_type">
1278 Name of datapath provider. The kernel datapath has type
1279 <code>system</code>. The userspace datapath has type
1280 <code>netdev</code>. A manager may refer to the <ref
1281 table="Open_vSwitch" column="datapath_types"/> column of the <ref
1282 table="Open_vSwitch"/> table for a list of the types accepted by this
1283 Open vSwitch instance.
1284 </column>
1285
1286 <column name="external_ids" key="bridge-id">
1287 A unique identifier of the bridge. On Citrix XenServer this will
1288 commonly be the same as
1289 <ref column="external_ids" key="xs-network-uuids"/>.
1290 </column>
1291
1292 <column name="external_ids" key="xs-network-uuids">
1293 Semicolon-delimited set of universally unique identifier(s) for the
1294 network with which this bridge is associated on a Citrix XenServer
1295 host. The network identifiers are RFC 4122 UUIDs as displayed by,
1296 e.g., <code>xe network-list</code>.
1297 </column>
1298
1299 <column name="other_config" key="hwaddr">
1300 An Ethernet address in the form
1301 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>
1302 to set the hardware address of the local port and influence the
1303 datapath ID.
1304 </column>
1305
1306 <column name="other_config" key="forward-bpdu"
1307 type='{"type": "boolean"}'>
1308
1309 <p>
1310 Controls forwarding of BPDUs and other network control frames when
1311 NORMAL action is invoked. When this option is <code>false</code> or
1312 unset, frames with reserved Ethernet addresses (see table below) will
1313 not be forwarded. When this option is <code>true</code>, such frames
1314 will not be treated specially.
1315 </p>
1316
1317 <p>
1318 The above general rule has the following exceptions:
1319 </p>
1320
1321 <ul>
1322 <li>
1323 If STP is enabled on the bridge (see the <ref column="stp_enable"
1324 table="Bridge"/> column in the <ref table="Bridge"/> table), the
1325 bridge processes all received STP packets and never passes them to
1326 OpenFlow or forwards them. This is true even if STP is disabled on
1327 an individual port.
1328 </li>
1329
1330 <li>
1331 If LLDP is enabled on an interface (see the <ref column="lldp"
1332 table="Interface"/> column in the <ref table="Interface"/> table),
1333 the interface processes received LLDP packets and never passes them
1334 to OpenFlow or forwards them.
1335 </li>
1336 </ul>
1337
1338 <p>
1339 Set this option to <code>true</code> if the Open vSwitch bridge
1340 connects different Ethernet networks and is not configured to
1341 participate in STP.
1342 </p>
1343
1344 <p>
1345 This option affects packets with the following destination MAC
1346 addresses:
1347 </p>
1348
1349 <dl>
1350 <dt><code>01:80:c2:00:00:00</code></dt>
1351 <dd>IEEE 802.1D Spanning Tree Protocol (STP).</dd>
1352
1353 <dt><code>01:80:c2:00:00:01</code></dt>
1354 <dd>IEEE Pause frame.</dd>
1355
1356 <dt><code>01:80:c2:00:00:0<var>x</var></code></dt>
1357 <dd>Other reserved protocols.</dd>
1358
1359 <dt><code>00:e0:2b:00:00:00</code></dt>
1360 <dd>Extreme Discovery Protocol (EDP).</dd>
1361
1362 <dt>
1363 <code>00:e0:2b:00:00:04</code> and <code>00:e0:2b:00:00:06</code>
1364 </dt>
1365 <dd>Ethernet Automatic Protection Switching (EAPS).</dd>
1366
1367 <dt><code>01:00:0c:cc:cc:cc</code></dt>
1368 <dd>
1369 Cisco Discovery Protocol (CDP), VLAN Trunking Protocol (VTP),
1370 Dynamic Trunking Protocol (DTP), Port Aggregation Protocol (PAgP),
1371 and others.
1372 </dd>
1373
1374 <dt><code>01:00:0c:cc:cc:cd</code></dt>
1375 <dd>Cisco Shared Spanning Tree Protocol PVSTP+.</dd>
1376
1377 <dt><code>01:00:0c:cd:cd:cd</code></dt>
1378 <dd>Cisco STP Uplink Fast.</dd>
1379
1380 <dt><code>01:00:0c:00:00:00</code></dt>
1381 <dd>Cisco Inter Switch Link.</dd>
1382
1383 <dt><code>01:00:0c:cc:cc:c<var>x</var></code></dt>
1384 <dd>Cisco CFM.</dd>
1385 </dl>
1386 </column>
1387
1388 <column name="other_config" key="mac-aging-time"
1389 type='{"type": "integer", "minInteger": 1}'>
1390 <p>
1391 The maximum number of seconds to retain a MAC learning entry for
1392 which no packets have been seen. The default is currently 300
1393 seconds (5 minutes). The value, if specified, is forced into a
1394 reasonable range, currently 15 to 3600 seconds.
1395 </p>
1396
1397 <p>
1398 A short MAC aging time allows a network to more quickly detect that a
1399 host is no longer connected to a switch port. However, it also makes
1400 it more likely that packets will be flooded unnecessarily, when they
1401 are addressed to a connected host that rarely transmits packets. To
1402 reduce the incidence of unnecessary flooding, use a MAC aging time
1403 longer than the maximum interval at which a host will ordinarily
1404 transmit packets.
1405 </p>
1406 </column>
1407
1408 <column name="other_config" key="mac-table-size"
1409 type='{"type": "integer", "minInteger": 1}'>
1410 <p>
1411 The maximum number of MAC addresses to learn. The default is
1412 currently 8192. The value, if specified, is forced into a reasonable
1413 range, currently 10 to 1,000,000.
1414 </p>
1415 </column>
1416 </group>
1417
1418 <group title="Common Columns">
1419 The overall purpose of these columns is described under <code>Common
1420 Columns</code> at the beginning of this document.
1421
1422 <column name="other_config"/>
1423 <column name="external_ids"/>
1424 </group>
1425 </table>
1426
1427 <table name="Port" table="Port or bond configuration.">
1428 <p>A port within a <ref table="Bridge"/>.</p>
1429 <p>Most commonly, a port has exactly one ``interface,'' pointed to by its
1430 <ref column="interfaces"/> column. Such a port logically
1431 corresponds to a port on a physical Ethernet switch. A port
1432 with more than one interface is a ``bonded port'' (see
1433 <ref group="Bonding Configuration"/>).</p>
1434 <p>Some properties that one might think as belonging to a port are actually
1435 part of the port's <ref table="Interface"/> members.</p>
1436
1437 <column name="name">
1438 Port name. For a non-bonded port, this should be the same as its
1439 interface's name. Port names must otherwise be unique among the names of
1440 ports, interfaces, and bridges on a host. Because port and interfaces
1441 names are usually the same, the restrictions on the <ref
1442 table="Interface" column="name"/> column in the <ref table="Interface"/>
1443 table, particularly on length, also apply to port names. Refer to the
1444 documentation for <ref table="Interface"/> names for details.
1445 </column>
1446
1447 <column name="interfaces">
1448 The port's interfaces. If there is more than one, this is a
1449 bonded Port.
1450 </column>
1451
1452 <group title="VLAN Configuration">
1453 <p>
1454 In short, a VLAN (short for ``virtual LAN'') is a way to partition a
1455 single switch into multiple switches. VLANs can be confusing, so for
1456 an introduction, please refer to the question ``What's a VLAN?'' in the
1457 Open vSwitch FAQ.
1458 </p>
1459
1460 <p>
1461 A VLAN is sometimes encoded into a packet using a 802.1Q or 802.1ad
1462 VLAN header, but every packet is part of some VLAN whether or not it is
1463 encoded in the packet. (A packet that appears to have no VLAN is part
1464 of VLAN 0, by default.) As a result, it's useful to think of a VLAN as
1465 a metadata property of a packet, separate from how the VLAN is encoded.
1466 For a given port, this column determines how the encoding of a packet
1467 that ingresses or egresses the port maps to the packet's VLAN. When a
1468 packet enters the switch, its VLAN is determined based on its setting
1469 in this column and its VLAN headers, if any, and then, conceptually,
1470 the VLAN headers are then stripped off. Conversely, when a packet
1471 exits the switch, its VLAN and the settings in this column determine
1472 what VLAN headers, if any, are pushed onto the packet before it
1473 egresses the port.
1474 </p>
1475
1476 <p>
1477 The VLAN configuration in this column affects Open vSwitch only when it
1478 is doing ``normal switching.'' It does not affect flows set up by an
1479 OpenFlow controller, outside of the OpenFlow ``normal action.''
1480 </p>
1481
1482 <p>
1483 Bridge ports support the following types of VLAN configuration:
1484 </p>
1485
1486 <dl>
1487 <dt>trunk</dt>
1488 <dd>
1489 <p>
1490 A trunk port carries packets on one or more specified VLANs
1491 specified in the <ref column="trunks"/> column (often, on every
1492 VLAN). A packet that ingresses on a trunk port is in the VLAN
1493 specified in its 802.1Q header, or VLAN 0 if the packet has no
1494 802.1Q header. A packet that egresses through a trunk port will
1495 have an 802.1Q header if it has a nonzero VLAN ID.
1496 </p>
1497
1498 <p>
1499 Any packet that ingresses on a trunk port tagged with a VLAN that
1500 the port does not trunk is dropped.
1501 </p>
1502 </dd>
1503
1504 <dt>access</dt>
1505 <dd>
1506 <p>
1507 An access port carries packets on exactly one VLAN specified in the
1508 <ref column="tag"/> column. Packets egressing on an access port
1509 have no 802.1Q header.
1510 </p>
1511
1512 <p>
1513 Any packet with an 802.1Q header with a nonzero VLAN ID that
1514 ingresses on an access port is dropped, regardless of whether the
1515 VLAN ID in the header is the access port's VLAN ID.
1516 </p>
1517 </dd>
1518
1519 <dt>native-tagged</dt>
1520 <dd>
1521 A native-tagged port resembles a trunk port, with the exception that
1522 a packet without an 802.1Q header that ingresses on a native-tagged
1523 port is in the ``native VLAN'' (specified in the <ref column="tag"/>
1524 column).
1525 </dd>
1526
1527 <dt>native-untagged</dt>
1528 <dd>
1529 A native-untagged port resembles a native-tagged port, with the
1530 exception that a packet that egresses on a native-untagged port in
1531 the native VLAN will not have an 802.1Q header.
1532 </dd>
1533
1534 <dt>dot1q-tunnel</dt>
1535 <dd>
1536 <p>
1537 A dot1q-tunnel port is somewhat like an access port. Like an
1538 access port, it carries packets on the single VLAN specified in the
1539 <ref column="tag"/> column and this VLAN, called the service VLAN,
1540 does not appear in an 802.1Q header for packets that ingress or
1541 egress on the port. The main difference lies in the behavior when
1542 packets that include a 802.1Q header ingress on the port. Whereas
1543 an access port drops such packets, a dot1q-tunnel port treats these
1544 as double-tagged with the outer service VLAN <ref column="tag"/>
1545 and the inner customer VLAN taken from the 802.1Q header.
1546 Correspondingly, to egress on the port, a packet outer VLAN (or
1547 only VLAN) must be <ref column="tag"/>, which is removed before
1548 egress, which exposes the inner (customer) VLAN if one is present.
1549 </p>
1550
1551 <p>
1552 If <ref column="cvlans"/> is set, only allows packets in the
1553 specified customer VLANs.
1554 </p>
1555 </dd>
1556 </dl>
1557 <p>
1558 A packet will only egress through bridge ports that carry the VLAN of
1559 the packet, as described by the rules above.
1560 </p>
1561
1562 <column name="vlan_mode">
1563 <p>
1564 The VLAN mode of the port, as described above. When this column is
1565 empty, a default mode is selected as follows:
1566 </p>
1567 <ul>
1568 <li>
1569 If <ref column="tag"/> contains a value, the port is an access
1570 port. The <ref column="trunks"/> column should be empty.
1571 </li>
1572 <li>
1573 Otherwise, the port is a trunk port. The <ref column="trunks"/>
1574 column value is honored if it is present.
1575 </li>
1576 </ul>
1577 </column>
1578
1579 <column name="tag">
1580 <p>
1581 For an access port, the port's implicitly tagged VLAN. For a
1582 native-tagged or native-untagged port, the port's native VLAN. Must
1583 be empty if this is a trunk port.
1584 </p>
1585 </column>
1586
1587 <column name="trunks">
1588 <p>
1589 For a trunk, native-tagged, or native-untagged port, the 802.1Q VLAN
1590 or VLANs that this port trunks; if it is empty, then the port trunks
1591 all VLANs. Must be empty if this is an access port.
1592 </p>
1593 <p>
1594 A native-tagged or native-untagged port always trunks its native
1595 VLAN, regardless of whether <ref column="trunks"/> includes that
1596 VLAN.
1597 </p>
1598 </column>
1599
1600 <column name="cvlans">
1601 <p>
1602 For a dot1q-tunnel port, the customer VLANs that this port includes.
1603 If this is empty, the port includes all customer VLANs.
1604 </p>
1605 <p>
1606 For other kinds of ports, this setting is ignored.
1607 </p>
1608 </column>
1609
1610 <column name="other_config" key="qinq-ethtype"
1611 type='{"type": "string", "enum": ["set", ["802.1ad", "802.1q"]]}'>
1612 <p>
1613 For a dot1q-tunnel port, this is the TPID for the service tag, that
1614 is, for the 802.1Q header that contains the service VLAN ID. Because
1615 packets that actually ingress and egress a dot1q-tunnel port do not
1616 include an 802.1Q header for the service VLAN, this does not affect
1617 packets on the dot1q-tunnel port itself. Rather, it determines the
1618 service VLAN for a packet that ingresses on a dot1q-tunnel port and
1619 egresses on a trunk port.
1620 </p>
1621 <p>
1622 The value <code>802.1ad</code> specifies TPID 0x88a8, which is also
1623 the default if the setting is omitted. The value <code>802.1q</code>
1624 specifies TPID 0x8100.
1625 </p>
1626 <p>
1627 For other kinds of ports, this setting is ignored.
1628 </p>
1629 </column>
1630
1631 <column name="other_config" key="priority-tags"
1632 type='{"type": "boolean"}'>
1633 <p>
1634 An 802.1Q header contains two important pieces of information: a VLAN
1635 ID and a priority. A frame with a zero VLAN ID, called a
1636 ``priority-tagged'' frame, is supposed to be treated the same way as
1637 a frame without an 802.1Q header at all (except for the priority).
1638 </p>
1639
1640 <p>
1641 However, some network elements ignore any frame that has 802.1Q
1642 header at all, even when the VLAN ID is zero. Therefore, by default
1643 Open vSwitch does not output priority-tagged frames, instead omitting
1644 the 802.1Q header entirely if the VLAN ID is zero. Set this key to
1645 <code>true</code> to enable priority-tagged frames on a port.
1646 </p>
1647
1648 <p>
1649 Regardless of this setting, Open vSwitch omits the 802.1Q header on
1650 output if both the VLAN ID and priority would be zero.
1651 </p>
1652
1653 <p>
1654 All frames output to native-tagged ports have a nonzero VLAN ID, so
1655 this setting is not meaningful on native-tagged ports.
1656 </p>
1657 </column>
1658 </group>
1659
1660 <group title="Bonding Configuration">
1661 <p>A port that has more than one interface is a ``bonded port.'' Bonding
1662 allows for load balancing and fail-over.</p>
1663
1664 <p>
1665 The following types of bonding will work with any kind of upstream
1666 switch. On the upstream switch, do not configure the interfaces as a
1667 bond:
1668 </p>
1669
1670 <dl>
1671 <dt><code>balance-slb</code></dt>
1672 <dd>
1673 Balances flows among slaves based on source MAC address and output
1674 VLAN, with periodic rebalancing as traffic patterns change.
1675 </dd>
1676
1677 <dt><code>active-backup</code></dt>
1678 <dd>
1679 Assigns all flows to one slave, failing over to a backup slave when
1680 the active slave is disabled. This is the only bonding mode in which
1681 interfaces may be plugged into different upstream switches.
1682 </dd>
1683 </dl>
1684
1685 <p>
1686 The following modes require the upstream switch to support 802.3ad with
1687 successful LACP negotiation. If LACP negotiation fails and
1688 other-config:lacp-fallback-ab is true, then <code>active-backup</code>
1689 mode is used:
1690 </p>
1691
1692 <dl>
1693 <dt><code>balance-tcp</code></dt>
1694 <dd>
1695 Balances flows among slaves based on L3 and L4 protocol information
1696 such as IP addresses and TCP/UDP ports.
1697 </dd>
1698 </dl>
1699
1700 <p>These columns apply only to bonded ports. Their values are
1701 otherwise ignored.</p>
1702
1703 <column name="bond_mode">
1704 <p>The type of bonding used for a bonded port. Defaults to
1705 <code>active-backup</code> if unset.
1706 </p>
1707 </column>
1708
1709 <column name="other_config" key="bond-hash-basis"
1710 type='{"type": "integer"}'>
1711 An integer hashed along with flows when choosing output slaves in load
1712 balanced bonds. When changed, all flows will be assigned different
1713 hash values possibly causing slave selection decisions to change. Does
1714 not affect bonding modes which do not employ load balancing such as
1715 <code>active-backup</code>.
1716 </column>
1717
1718 <group title="Link Failure Detection">
1719 <p>
1720 An important part of link bonding is detecting that links are down so
1721 that they may be disabled. These settings determine how Open vSwitch
1722 detects link failure.
1723 </p>
1724
1725 <column name="other_config" key="bond-detect-mode"
1726 type='{"type": "string", "enum": ["set", ["carrier", "miimon"]]}'>
1727 The means used to detect link failures. Defaults to
1728 <code>carrier</code> which uses each interface's carrier to detect
1729 failures. When set to <code>miimon</code>, will check for failures
1730 by polling each interface's MII.
1731 </column>
1732
1733 <column name="other_config" key="bond-miimon-interval"
1734 type='{"type": "integer"}'>
1735 The interval, in milliseconds, between successive attempts to poll
1736 each interface's MII. Relevant only when <ref column="other_config"
1737 key="bond-detect-mode"/> is <code>miimon</code>.
1738 </column>
1739
1740 <column name="bond_updelay">
1741 <p>
1742 The number of milliseconds for which the link must stay up on an
1743 interface before the interface is considered to be up. Specify
1744 <code>0</code> to enable the interface immediately.
1745 </p>
1746
1747 <p>
1748 This setting is honored only when at least one bonded interface is
1749 already enabled. When no interfaces are enabled, then the first
1750 bond interface to come up is enabled immediately.
1751 </p>
1752 </column>
1753
1754 <column name="bond_downdelay">
1755 The number of milliseconds for which the link must stay down on an
1756 interface before the interface is considered to be down. Specify
1757 <code>0</code> to disable the interface immediately.
1758 </column>
1759 </group>
1760
1761 <group title="LACP Configuration">
1762 <p>
1763 LACP, the Link Aggregation Control Protocol, is an IEEE standard that
1764 allows switches to automatically detect that they are connected by
1765 multiple links and aggregate across those links. These settings
1766 control LACP behavior.
1767 </p>
1768
1769 <column name="lacp">
1770 Configures LACP on this port. LACP allows directly connected
1771 switches to negotiate which links may be bonded. LACP may be enabled
1772 on non-bonded ports for the benefit of any switches they may be
1773 connected to. <code>active</code> ports are allowed to initiate LACP
1774 negotiations. <code>passive</code> ports are allowed to participate
1775 in LACP negotiations initiated by a remote switch, but not allowed to
1776 initiate such negotiations themselves. If LACP is enabled on a port
1777 whose partner switch does not support LACP, the bond will be
1778 disabled, unless other-config:lacp-fallback-ab is set to true.
1779 Defaults to <code>off</code> if unset.
1780 </column>
1781
1782 <column name="other_config" key="lacp-system-id">
1783 The LACP system ID of this <ref table="Port"/>. The system ID of a
1784 LACP bond is used to identify itself to its partners. Must be a
1785 nonzero MAC address. Defaults to the bridge Ethernet address if
1786 unset.
1787 </column>
1788
1789 <column name="other_config" key="lacp-system-priority"
1790 type='{"type": "integer", "minInteger": 1, "maxInteger": 65535}'>
1791 The LACP system priority of this <ref table="Port"/>. In LACP
1792 negotiations, link status decisions are made by the system with the
1793 numerically lower priority.
1794 </column>
1795
1796 <column name="other_config" key="lacp-time"
1797 type='{"type": "string", "enum": ["set", ["fast", "slow"]]}'>
1798 <p>
1799 The LACP timing which should be used on this <ref table="Port"/>.
1800 By default <code>slow</code> is used. When configured to be
1801 <code>fast</code> LACP heartbeats are requested at a rate of once
1802 per second causing connectivity problems to be detected more
1803 quickly. In <code>slow</code> mode, heartbeats are requested at a
1804 rate of once every 30 seconds.
1805 </p>
1806 </column>
1807
1808 <column name="other_config" key="lacp-fallback-ab"
1809 type='{"type": "boolean"}'>
1810 <p>
1811 Determines the behavior of openvswitch bond in LACP mode. If
1812 the partner switch does not support LACP, setting this option
1813 to <code>true</code> allows openvswitch to fallback to
1814 active-backup. If the option is set to <code>false</code>, the
1815 bond will be disabled. In both the cases, once the partner switch
1816 is configured to LACP mode, the bond will use LACP.
1817 </p>
1818 </column>
1819 </group>
1820
1821 <group title="Rebalancing Configuration">
1822 <p>
1823 These settings control behavior when a bond is in
1824 <code>balance-slb</code> or <code>balance-tcp</code> mode.
1825 </p>
1826
1827 <column name="other_config" key="bond-rebalance-interval"
1828 type='{"type": "integer", "minInteger": 0, "maxInteger": 10000}'>
1829 For a load balanced bonded port, the number of milliseconds between
1830 successive attempts to rebalance the bond, that is, to move flows
1831 from one interface on the bond to another in an attempt to keep usage
1832 of each interface roughly equal. If zero, load balancing is disabled
1833 on the bond (link failure still cause flows to move). If
1834 less than 1000ms, the rebalance interval will be 1000ms.
1835 </column>
1836 </group>
1837
1838 <column name="bond_fake_iface">
1839 For a bonded port, whether to create a fake internal interface with the
1840 name of the port. Use only for compatibility with legacy software that
1841 requires this.
1842 </column>
1843 </group>
1844
1845 <group title="Spanning Tree Protocol">
1846 <p>
1847 The configuration here is only meaningful, and the status is only
1848 populated, when 802.1D-1998 Spanning Tree Protocol is enabled on the
1849 port's <ref column="Bridge"/> with its <ref column="stp_enable"/>
1850 column.
1851 </p>
1852
1853 <group title="STP Configuration">
1854 <column name="other_config" key="stp-enable"
1855 type='{"type": "boolean"}'>
1856 When STP is enabled on a bridge, it is enabled by default on all of
1857 the bridge's ports except bond, internal, and mirror ports (which do
1858 not work with STP). If this column's value is <code>false</code>,
1859 STP is disabled on the port.
1860 </column>
1861
1862 <column name="other_config" key="stp-port-num"
1863 type='{"type": "integer", "minInteger": 1, "maxInteger": 255}'>
1864 The port number used for the lower 8 bits of the port-id. By
1865 default, the numbers will be assigned automatically. If any
1866 port's number is manually configured on a bridge, then they
1867 must all be.
1868 </column>
1869
1870 <column name="other_config" key="stp-port-priority"
1871 type='{"type": "integer", "minInteger": 0, "maxInteger": 255}'>
1872 The port's relative priority value for determining the root
1873 port (the upper 8 bits of the port-id). A port with a lower
1874 port-id will be chosen as the root port. By default, the
1875 priority is 0x80.
1876 </column>
1877
1878 <column name="other_config" key="stp-path-cost"
1879 type='{"type": "integer", "minInteger": 0, "maxInteger": 65535}'>
1880 Spanning tree path cost for the port. A lower number indicates
1881 a faster link. By default, the cost is based on the maximum
1882 speed of the link.
1883 </column>
1884 </group>
1885
1886 <group title="STP Status">
1887 <column name="status" key="stp_port_id">
1888 The port ID used in spanning tree advertisements for this port, as 4
1889 hex digits. Configuring the port ID is described in the
1890 <code>stp-port-num</code> and <code>stp-port-priority</code> keys of
1891 the <code>other_config</code> section earlier.
1892 </column>
1893 <column name="status" key="stp_state"
1894 type='{"type": "string", "enum": ["set",
1895 ["disabled", "listening", "learning",
1896 "forwarding", "blocking"]]}'>
1897 STP state of the port.
1898 </column>
1899 <column name="status" key="stp_sec_in_state"
1900 type='{"type": "integer", "minInteger": 0}'>
1901 The amount of time this port has been in the current STP state, in
1902 seconds.
1903 </column>
1904 <column name="status" key="stp_role"
1905 type='{"type": "string", "enum": ["set",
1906 ["root", "designated", "alternate"]]}'>
1907 STP role of the port.
1908 </column>
1909 </group>
1910 </group>
1911
1912 <group title="Rapid Spanning Tree Protocol">
1913 <p>
1914 The configuration here is only meaningful, and the status and
1915 statistics are only populated, when 802.1D-1998 Spanning Tree Protocol
1916 is enabled on the port's <ref column="Bridge"/> with its <ref
1917 column="stp_enable"/> column.
1918 </p>
1919
1920 <group title="RSTP Configuration">
1921 <column name="other_config" key="rstp-enable"
1922 type='{"type": "boolean"}'>
1923 When RSTP is enabled on a bridge, it is enabled by default on all of
1924 the bridge's ports except bond, internal, and mirror ports (which do
1925 not work with RSTP). If this column's value is <code>false</code>,
1926 RSTP is disabled on the port.
1927 </column>
1928
1929 <column name="other_config" key="rstp-port-priority"
1930 type='{"type": "integer", "minInteger": 0, "maxInteger": 240}'>
1931 The port's relative priority value for determining the root port, in
1932 multiples of 16. By default, the port priority is 0x80 (128). Any
1933 value in the lower 4 bits is rounded off. The significant upper 4
1934 bits become the upper 4 bits of the port-id. A port with the lowest
1935 port-id is elected as the root.
1936 </column>
1937
1938 <column name="other_config" key="rstp-port-num"
1939 type='{"type": "integer", "minInteger": 1, "maxInteger": 4095}'>
1940 The local RSTP port number, used as the lower 12 bits of the port-id.
1941 By default the port numbers are assigned automatically, and typically
1942 may not correspond to the OpenFlow port numbers. A port with the
1943 lowest port-id is elected as the root.
1944 </column>
1945
1946 <column name="other_config" key="rstp-port-path-cost"
1947 type='{"type": "integer"}'>
1948 The port path cost. The Port's contribution, when it is
1949 the Root Port, to the Root Path Cost for the Bridge. By default the
1950 cost is automatically calculated from the port's speed.
1951 </column>
1952
1953 <column name="other_config" key="rstp-port-admin-edge"
1954 type='{"type": "boolean"}'>
1955 The admin edge port parameter for the Port. Default is
1956 <code>false</code>.
1957 </column>
1958
1959 <column name="other_config" key="rstp-port-auto-edge"
1960 type='{"type": "boolean"}'>
1961 The auto edge port parameter for the Port. Default is
1962 <code>true</code>.
1963 </column>
1964
1965 <column name="other_config" key="rstp-port-mcheck"
1966 type='{"type": "boolean"}'>
1967 <p>
1968 The mcheck port parameter for the Port. Default is
1969 <code>false</code>. May be set to force the Port Protocol
1970 Migration state machine to transmit RST BPDUs for a
1971 MigrateTime period, to test whether all STP Bridges on the
1972 attached LAN have been removed and the Port can continue to
1973 transmit RSTP BPDUs. Setting mcheck has no effect if the
1974 Bridge is operating in STP Compatibility mode.
1975 </p>
1976 <p>
1977 Changing the value from <code>true</code> to
1978 <code>false</code> has no effect, but needs to be done if
1979 this behavior is to be triggered again by subsequently
1980 changing the value from <code>false</code> to
1981 <code>true</code>.
1982 </p>
1983 </column>
1984 </group>
1985
1986 <group title="RSTP Status">
1987 <column name="rstp_status" key="rstp_port_id">
1988 The port ID used in spanning tree advertisements for this port, as 4
1989 hex digits. Configuring the port ID is described in the
1990 <code>rstp-port-num</code> and <code>rstp-port-priority</code> keys
1991 of the <code>other_config</code> section earlier.
1992 </column>
1993 <column name="rstp_status" key="rstp_port_role"
1994 type='{"type": "string", "enum": ["set",
1995 ["Root", "Designated", "Alternate", "Backup", "Disabled"]]}'>
1996 RSTP role of the port.
1997 </column>
1998 <column name="rstp_status" key="rstp_port_state"
1999 type='{"type": "string", "enum": ["set",
2000 ["Disabled", "Learning", "Forwarding", "Discarding"]]}'>
2001 RSTP state of the port.
2002 </column>
2003 <column name="rstp_status" key="rstp_designated_bridge_id">
2004 The port's RSTP designated bridge ID, in the same form as <ref
2005 column="rstp_status" key="rstp_bridge_id"/> in the <ref
2006 table="Bridge"/> table.
2007 </column>
2008 <column name="rstp_status" key="rstp_designated_port_id">
2009 The port's RSTP designated port ID, as 4 hex digits.
2010 </column>
2011 <column name="rstp_status" key="rstp_designated_path_cost"
2012 type='{"type": "integer"}'>
2013 The port's RSTP designated path cost. Lower is better.
2014 </column>
2015 </group>
2016
2017 <group title="RSTP Statistics">
2018 <column name="rstp_statistics" key="rstp_tx_count">
2019 Number of RSTP BPDUs transmitted through this port.
2020 </column>
2021 <column name="rstp_statistics" key="rstp_rx_count">
2022 Number of valid RSTP BPDUs received by this port.
2023 </column>
2024 <column name="rstp_statistics" key="rstp_error_count">
2025 Number of invalid RSTP BPDUs received by this port.
2026 </column>
2027 <column name="rstp_statistics" key="rstp_uptime">
2028 The duration covered by the other RSTP statistics, in seconds.
2029 </column>
2030 </group>
2031 </group>
2032
2033 <group title="Multicast Snooping">
2034 <column name="other_config" key="mcast-snooping-flood"
2035 type='{"type": "boolean"}'>
2036 <p>
2037 If set to <code>true</code>, multicast packets (except Reports) are
2038 unconditionally forwarded to the specific port.
2039 </p>
2040 </column>
2041 <column name="other_config" key="mcast-snooping-flood-reports"
2042 type='{"type": "boolean"}'>
2043 <p>
2044 If set to <code>true</code>, multicast Reports are unconditionally
2045 forwarded to the specific port.
2046 </p>
2047 </column>
2048 </group>
2049
2050 <group title="Other Features">
2051 <column name="qos">
2052 Quality of Service configuration for this port.
2053 </column>
2054
2055 <column name="mac">
2056 The MAC address to use for this port for the purpose of choosing the
2057 bridge's MAC address. This column does not necessarily reflect the
2058 port's actual MAC address, nor will setting it change the port's actual
2059 MAC address.
2060 </column>
2061
2062 <column name="fake_bridge">
2063 Does this port represent a sub-bridge for its tagged VLAN within the
2064 Bridge? See ovs-vsctl(8) for more information.
2065 </column>
2066
2067 <column name="protected" type='{"type": "boolean"}'>
2068 The protected ports feature allows certain ports to be designated as
2069 protected. Traffic between protected ports is blocked. Protected
2070 ports can send traffic to unprotected ports. Unprotected ports can
2071 send traffic to any port.
2072 Default is false.
2073 </column>
2074
2075 <column name="external_ids" key="fake-bridge-id-*">
2076 External IDs for a fake bridge (see the <ref column="fake_bridge"/>
2077 column) are defined by prefixing a <ref table="Bridge"/> <ref
2078 table="Bridge" column="external_ids"/> key with
2079 <code>fake-bridge-</code>,
2080 e.g. <code>fake-bridge-xs-network-uuids</code>.
2081 </column>
2082
2083 <column name="other_config" key="transient"
2084 type='{"type": "boolean"}'>
2085 <p>
2086 If set to <code>true</code>, the port will be removed when
2087 <code>ovs-ctl start --delete-transient-ports</code> is used.
2088 </p>
2089 </column>
2090 </group>
2091
2092 <column name="bond_active_slave">
2093 For a bonded port, record the mac address of the current active slave.
2094 </column>
2095
2096 <group title="Port Statistics">
2097 <p>
2098 Key-value pairs that report port statistics. The update period
2099 is controlled by <ref column="other_config"
2100 key="stats-update-interval"/> in the <code>Open_vSwitch</code> table.
2101 </p>
2102 <group title="Statistics: STP transmit and receive counters">
2103 <column name="statistics" key="stp_tx_count">
2104 Number of STP BPDUs sent on this port by the spanning
2105 tree library.
2106 </column>
2107 <column name="statistics" key="stp_rx_count">
2108 Number of STP BPDUs received on this port and accepted by the
2109 spanning tree library.
2110 </column>
2111 <column name="statistics" key="stp_error_count">
2112 Number of bad STP BPDUs received on this port. Bad BPDUs
2113 include runt packets and those with an unexpected protocol ID.
2114 </column>
2115 </group>
2116 </group>
2117
2118 <group title="Common Columns">
2119 The overall purpose of these columns is described under <code>Common
2120 Columns</code> at the beginning of this document.
2121
2122 <column name="other_config"/>
2123 <column name="external_ids"/>
2124 </group>
2125 </table>
2126
2127 <table name="Interface" title="One physical network device in a Port.">
2128 An interface within a <ref table="Port"/>.
2129
2130 <group title="Core Features">
2131 <column name="name">
2132 <p>
2133 Interface name. Should be alphanumeric. For non-bonded port, this
2134 should be the same as the port name. It must otherwise be unique
2135 among the names of ports, interfaces, and bridges on a host.
2136 </p>
2137
2138 <p>
2139 The maximum length of an interface name depends on the underlying
2140 datapath:
2141 </p>
2142
2143 <ul>
2144 <li>
2145 The names of interfaces implemented as Linux and BSD network
2146 devices, including interfaces with type <code>internal</code>,
2147 <code>tap</code>, or <code>system</code> plus the different types
2148 of tunnel ports, are limited to 15 bytes. Windows limits these
2149 names to 255 bytes.
2150 </li>
2151
2152 <li>
2153 The names of patch ports are not used in the underlying datapath,
2154 so operating system restrictions do not apply. Thus, they may have
2155 arbitrary length.
2156 </li>
2157 </ul>
2158
2159 <p>
2160 Regardless of other restrictions, OpenFlow only supports 15-byte
2161 names, which means that <code>ovs-ofctl</code> and OpenFlow
2162 controllers will show names truncated to 15 bytes.
2163 </p>
2164 </column>
2165
2166 <column name="ifindex">
2167 A positive interface index as defined for SNMP MIB-II in RFCs 1213 and
2168 2863, if the interface has one, otherwise 0. The ifindex is useful for
2169 seamless integration with protocols such as SNMP and sFlow.
2170 </column>
2171
2172 <column name="mac_in_use">
2173 The MAC address in use by this interface.
2174 </column>
2175
2176 <column name="mac">
2177 <p>Ethernet address to set for this interface. If unset then the
2178 default MAC address is used:</p>
2179 <ul>
2180 <li>For the local interface, the default is the lowest-numbered MAC
2181 address among the other bridge ports, either the value of the
2182 <ref table="Port" column="mac"/> in its <ref table="Port"/> record,
2183 if set, or its actual MAC (for bonded ports, the MAC of its slave
2184 whose name is first in alphabetical order). Internal ports and
2185 bridge ports that are used as port mirroring destinations (see the
2186 <ref table="Mirror"/> table) are ignored.</li>
2187 <li>For other internal interfaces, the default MAC is randomly
2188 generated.</li>
2189 <li>External interfaces typically have a MAC address associated with
2190 their hardware.</li>
2191 </ul>
2192 <p>Some interfaces may not have a software-controllable MAC
2193 address. This option only affects internal ports. For other type ports,
2194 you can change the MAC address outside Open vSwitch, using ip command.</p>
2195 </column>
2196
2197 <column name="error">
2198 If the configuration of the port failed, as indicated by -1 in <ref
2199 column="ofport"/>, Open vSwitch sets this column to an error
2200 description in human readable form. Otherwise, Open vSwitch clears
2201 this column.
2202 </column>
2203
2204 <group title="OpenFlow Port Number">
2205 <p>
2206 When a client adds a new interface, Open vSwitch chooses an OpenFlow
2207 port number for the new port. If the client that adds the port fills
2208 in <ref column="ofport_request"/>, then Open vSwitch tries to use its
2209 value as the OpenFlow port number. Otherwise, or if the requested
2210 port number is already in use or cannot be used for another reason,
2211 Open vSwitch automatically assigns a free port number. Regardless of
2212 how the port number was obtained, Open vSwitch then reports in <ref
2213 column="ofport"/> the port number actually assigned.
2214 </p>
2215
2216 <p>
2217 Open vSwitch limits the port numbers that it automatically assigns to
2218 the range 1 through 32,767, inclusive. Controllers therefore have
2219 free use of ports 32,768 and up.
2220 </p>
2221
2222 <column name="ofport">
2223 <p>
2224 OpenFlow port number for this interface. Open vSwitch sets this
2225 column's value, so other clients should treat it as read-only.
2226 </p>
2227 <p>
2228 The OpenFlow ``local'' port (<code>OFPP_LOCAL</code>) is 65,534.
2229 The other valid port numbers are in the range 1 to 65,279,
2230 inclusive. Value -1 indicates an error adding the interface.
2231 </p>
2232 </column>
2233
2234 <column name="ofport_request"
2235 type='{"type": "integer", "minInteger": 1, "maxInteger": 65279}'>
2236 <p>
2237 Requested OpenFlow port number for this interface.
2238 </p>
2239
2240 <p>
2241 A client should ideally set this column's value in the same
2242 database transaction that it uses to create the interface. Open
2243 vSwitch version 2.1 and later will honor a later request for a
2244 specific port number, althuogh it might confuse some controllers:
2245 OpenFlow does not have a way to announce a port number change, so
2246 Open vSwitch represents it over OpenFlow as a port deletion
2247 followed immediately by a port addition.
2248 </p>
2249
2250 <p>
2251 If <ref column="ofport_request"/> is set or changed to some other
2252 port's automatically assigned port number, Open vSwitch chooses a
2253 new port number for the latter port.
2254 </p>
2255 </column>
2256 </group>
2257 </group>
2258
2259 <group title="System-Specific Details">
2260 <column name="type">
2261 <p>
2262 The interface type. The types supported by a particular instance of
2263 Open vSwitch are listed in the <ref table="Open_vSwitch"
2264 column="iface_types"/> column in the <ref table="Open_vSwitch"/>
2265 table. The following types are defined:
2266 </p>
2267
2268 <dl>
2269 <dt><code>system</code></dt>
2270 <dd>An ordinary network device, e.g. <code>eth0</code> on Linux.
2271 Sometimes referred to as ``external interfaces'' since they are
2272 generally connected to hardware external to that on which the Open
2273 vSwitch is running. The empty string is a synonym for
2274 <code>system</code>.</dd>
2275
2276 <dt><code>internal</code></dt>
2277 <dd>A simulated network device that sends and receives traffic. An
2278 internal interface whose <ref column="name"/> is the same as its
2279 bridge's <ref table="Open_vSwitch" column="name"/> is called the
2280 ``local interface.'' It does not make sense to bond an internal
2281 interface, so the terms ``port'' and ``interface'' are often used
2282 imprecisely for internal interfaces.</dd>
2283
2284 <dt><code>tap</code></dt>
2285 <dd>
2286 <p>
2287 A TUN/TAP device managed by Open vSwitch.
2288 </p>
2289 <p>
2290 Open vSwitch checks the interface state before send packets
2291 to the device. When it is <code>down</code>, the packets are
2292 dropped and the tx_dropped statistic is updated accordingly.
2293 Older versions of Open vSwitch did not check the interface state
2294 and then the tx_packets was incremented along with tx_dropped.
2295 </p>
2296 </dd>
2297
2298 <dt><code>geneve</code></dt>
2299 <dd>
2300 An Ethernet over Geneve (<code>http://tools.ietf.org/html/draft-ietf-nvo3-geneve</code>)
2301 IPv4/IPv6 tunnel.
2302
2303 A description of how to match and set Geneve options can be found
2304 in the <code>ovs-ofctl</code> manual page.
2305 </dd>
2306
2307 <dt><code>gre</code></dt>
2308 <dd>
2309 Generic Routing Encapsulation (GRE) over IPv4/IPv6 tunnel,
2310 configurable to encapsulate layer 2 or layer 3 traffic.
2311 </dd>
2312
2313 <dt><code>vxlan</code></dt>
2314 <dd>
2315 <p>
2316 An Ethernet tunnel over the UDP-based VXLAN protocol described in
2317 RFC 7348.
2318 </p>
2319 <p>
2320 Open vSwitch uses IANA-assigned UDP destination port 4789. The
2321 source port used for VXLAN traffic varies on a per-flow basis
2322 and is in the ephemeral port range.
2323 </p>
2324 </dd>
2325
2326 <dt><code>lisp</code></dt>
2327 <dd>
2328 <p>
2329 A layer 3 tunnel over the experimental, UDP-based Locator/ID
2330 Separation Protocol (RFC 6830).
2331 </p>
2332 <p>
2333 Only IPv4 and IPv6 packets are supported by the protocol, and
2334 they are sent and received without an Ethernet header. Traffic
2335 to/from LISP ports is expected to be configured explicitly, and
2336 the ports are not intended to participate in learning based
2337 switching. As such, they are always excluded from packet
2338 flooding.
2339 </p>
2340 </dd>
2341
2342 <dt><code>stt</code></dt>
2343 <dd>
2344 The Stateless TCP Tunnel (STT) is particularly useful when tunnel
2345 endpoints are in end-systems, as it utilizes the capabilities of
2346 standard network interface cards to improve performance. STT utilizes
2347 a TCP-like header inside the IP header. It is stateless, i.e., there is
2348 no TCP connection state of any kind associated with the tunnel. The
2349 TCP-like header is used to leverage the capabilities of existing
2350 network interface cards, but should not be interpreted as implying
2351 any sort of connection state between endpoints.
2352 Since the STT protocol does not engage in the usual TCP 3-way handshake,
2353 so it will have difficulty traversing stateful firewalls.
2354 The protocol is documented at
2355 https://tools.ietf.org/html/draft-davie-stt
2356
2357 All traffic uses a default destination port of 7471.
2358 </dd>
2359
2360 <dt><code>patch</code></dt>
2361 <dd>
2362 A pair of virtual devices that act as a patch cable.
2363 </dd>
2364 </dl>
2365 </column>
2366 </group>
2367
2368 <group title="Tunnel Options">
2369 <p>
2370 These options apply to interfaces with <ref column="type"/> of
2371 <code>geneve</code>, <code>gre</code>, <code>vxlan</code>,
2372 <code>lisp</code> and <code>stt</code>.
2373 </p>
2374
2375 <p>
2376 Each tunnel must be uniquely identified by the combination of <ref
2377 column="type"/>, <ref column="options" key="remote_ip"/>, <ref
2378 column="options" key="local_ip"/>, and <ref column="options"
2379 key="in_key"/>. If two ports are defined that are the same except one
2380 has an optional identifier and the other does not, the more specific
2381 one is matched first. <ref column="options" key="in_key"/> is
2382 considered more specific than <ref column="options" key="local_ip"/> if
2383 a port defines one and another port defines the other.
2384 </p>
2385
2386 <column name="options" key="remote_ip">
2387 <p>Required. The remote tunnel endpoint, one of:</p>
2388
2389 <ul>
2390 <li>
2391 An IPv4 or IPv6 address (not a DNS name), e.g. <code>192.168.0.123</code>.
2392 Only unicast endpoints are supported.
2393 </li>
2394 <li>
2395 The word <code>flow</code>. The tunnel accepts packets from any
2396 remote tunnel endpoint. To process only packets from a specific
2397 remote tunnel endpoint, the flow entries may match on the
2398 <code>tun_src</code> or <code>tun_ipv6_src</code>field. When
2399 sending packets to a <code>remote_ip=flow</code> tunnel, the flow
2400 actions must explicitly set the <code>tun_dst</code> or
2401 <code>tun_ipv6_dst</code> field to the IP address of the desired
2402 remote tunnel endpoint, e.g. with a <code>set_field</code> action.
2403 </li>
2404 </ul>
2405
2406 <p>
2407 The remote tunnel endpoint for any packet received from a tunnel
2408 is available in the <code>tun_src</code> field for matching in the
2409 flow table.
2410 </p>
2411 </column>
2412
2413 <column name="options" key="local_ip">
2414 <p>
2415 Optional. The tunnel destination IP that received packets must
2416 match. Default is to match all addresses. If specified, may be one
2417 of:
2418 </p>
2419
2420 <ul>
2421 <li>
2422 An IPv4/IPv6 address (not a DNS name), e.g. <code>192.168.12.3</code>.
2423 </li>
2424 <li>
2425 The word <code>flow</code>. The tunnel accepts packets sent to any
2426 of the local IP addresses of the system running OVS. To process
2427 only packets sent to a specific IP address, the flow entries may
2428 match on the <code>tun_dst</code> or <code>tun_ipv6_dst</code> field.
2429 When sending packets to a <code>local_ip=flow</code> tunnel, the flow
2430 actions may explicitly set the <code>tun_src</code> or <code>tun_ipv6_src</code>
2431 field to the desired IP address, e.g. with a <code>set_field</code> action.
2432 However, while routing the tunneled packet out, the local system may
2433 override the specified address with the local IP address configured for the
2434 outgoing system interface.
2435
2436 <p>
2437 This option is valid only for tunnels also configured with the
2438 <code>remote_ip=flow</code> option.
2439 </p>
2440 </li>
2441 </ul>
2442
2443 <p>
2444 The tunnel destination IP address for any packet received from a
2445 tunnel is available in the <code>tun_dst</code> or <code>tun_ipv6_dst</code>
2446 field for matching in the flow table.
2447 </p>
2448 </column>
2449
2450 <column name="options" key="in_key">
2451 <p>Optional. The key that received packets must contain, one of:</p>
2452
2453 <ul>
2454 <li>
2455 <code>0</code>. The tunnel receives packets with no key or with a
2456 key of 0. This is equivalent to specifying no <ref column="options"
2457 key="in_key"/> at all.
2458 </li>
2459 <li>
2460 A positive 24-bit (for Geneve, VXLAN, and LISP), 32-bit (for GRE)
2461 or 64-bit (for STT) number. The tunnel receives only
2462 packets with the specified key.
2463 </li>
2464 <li>
2465 The word <code>flow</code>. The tunnel accepts packets with any
2466 key. The key will be placed in the <code>tun_id</code> field for
2467 matching in the flow table. The <code>ovs-ofctl</code> manual page
2468 contains additional information about matching fields in OpenFlow
2469 flows.
2470 </li>
2471 </ul>
2472
2473 <p>
2474 </p>
2475 </column>
2476
2477 <column name="options" key="out_key">
2478 <p>Optional. The key to be set on outgoing packets, one of:</p>
2479
2480 <ul>
2481 <li>
2482 <code>0</code>. Packets sent through the tunnel will have no key.
2483 This is equivalent to specifying no <ref column="options"
2484 key="out_key"/> at all.
2485 </li>
2486 <li>
2487 A positive 24-bit (for Geneve, VXLAN and LISP), 32-bit (for GRE) or
2488 64-bit (for STT) number. Packets sent through the tunnel
2489 will have the specified key.
2490 </li>
2491 <li>
2492 The word <code>flow</code>. Packets sent through the tunnel will
2493 have the key set using the <code>set_tunnel</code> Nicira OpenFlow
2494 vendor extension (0 is used in the absence of an action). The
2495 <code>ovs-ofctl</code> manual page contains additional information
2496 about the Nicira OpenFlow vendor extensions.
2497 </li>
2498 </ul>
2499 </column>
2500
2501 <column name="options" key="dst_port">
2502 Optional. The tunnel transport layer destination port, for UDP and TCP
2503 based tunnel protocols (Geneve, VXLAN, LISP, and STT).
2504 </column>
2505
2506 <column name="options" key="key">
2507 Optional. Shorthand to set <code>in_key</code> and
2508 <code>out_key</code> at the same time.
2509 </column>
2510
2511 <column name="options" key="tos">
2512 Optional. The value of the ToS bits to be set on the encapsulating
2513 packet. ToS is interpreted as DSCP and ECN bits, ECN part must be
2514 zero. It may also be the word <code>inherit</code>, in which case
2515 the ToS will be copied from the inner packet if it is IPv4 or IPv6
2516 (otherwise it will be 0). The ECN fields are always inherited.
2517 Default is 0.
2518 </column>
2519
2520 <column name="options" key="ttl">
2521 Optional. The TTL to be set on the encapsulating packet. It may also
2522 be the word <code>inherit</code>, in which case the TTL will be copied
2523 from the inner packet if it is IPv4 or IPv6 (otherwise it will be the
2524 system default, typically 64). Default is the system default TTL.
2525 </column>
2526
2527 <column name="options" key="df_default"
2528 type='{"type": "boolean"}'>
2529 Optional. If enabled, the Don't Fragment bit will be set on tunnel
2530 outer headers to allow path MTU discovery. Default is enabled; set
2531 to <code>false</code> to disable.
2532 </column>
2533
2534 <column name="options" key="egress_pkt_mark">
2535 Optional. The pkt_mark to be set on the encapsulating packet. This
2536 option sets packet mark for the tunnel endpoint for all tunnel packets
2537 including tunnel monitoring.
2538 </column>
2539
2540 <group title="Tunnel Options: lisp only">
2541 <column name="options" key="packet_type"
2542 type='{"type": "string", "enum": ["set",
2543 ["legacy_l3", "ptap"]]}'>
2544 <p>
2545 A LISP tunnel sends and receives only IPv4 and IPv6 packets. This
2546 option controls what how the tunnel represents the packets that it
2547 sends and receives:
2548 </p>
2549
2550 <ul>
2551 <li>
2552 By default, or if this option is <code>legacy_l3</code>, the
2553 tunnel represents packets as Ethernet frames for compatibility
2554 with legacy OpenFlow controllers that expect this behavior.
2555 </li>
2556 <li>
2557 If this option is <code>ptap</code>, the tunnel represents
2558 packets using the <code>packet_type</code> mechanism introduced
2559 in OpenFlow 1.5.
2560 </li>
2561 </ul>
2562 </column>
2563 </group>
2564
2565 <group title="Tunnel Options: vxlan only">
2566
2567 <column name="options" key="exts">
2568 <p>Optional. Comma separated list of optional VXLAN extensions to
2569 enable. The following extensions are supported:</p>
2570
2571 <ul>
2572 <li>
2573 <code>gbp</code>: VXLAN-GBP allows to transport the group policy
2574 context of a packet across the VXLAN tunnel to other network
2575 peers. See the description of <code>tun_gbp_id</code> and
2576 <code>tun_gbp_flags</code> in <code>ovs-fields</code>(7) for
2577 additional information.
2578 (<code>https://tools.ietf.org/html/draft-smith-vxlan-group-policy</code>)
2579 </li>
2580 <li>
2581 <code>gpe</code>: Support for Generic Protocol Encapsulation in
2582 accordance with IETF draft
2583 <code>https://tools.ietf.org/html/draft-ietf-nvo3-vxlan-gpe</code>.
2584 Without this option, a VXLAN packet always encapsulates an
2585 Ethernet frame. With this option, an VXLAN packet may also
2586 encapsulate an IPv4, IPv6, NSH, or MPLS packet.
2587 </li>
2588 </ul>
2589 </column>
2590
2591 <column name="options" key="packet_type"
2592 type='{"type": "string", "enum": ["set",
2593 ["legacy_l2", "legacy_l3", "ptap"]]}'>
2594 <p>
2595 This option controls what types of packets the tunnel sends and
2596 receives and how it represents them:
2597 </p>
2598
2599 <ul>
2600 <li>
2601 By default, or if this option is <code>legacy_l2</code>, the
2602 tunnel sends and receives only Ethernet frames.
2603 </li>
2604 <li>
2605 If this option is <code>legacy_l3</code>, the tunnel sends and
2606 receives only non-Ethernet (L3) packet, but the packets are
2607 represented as Ethernet frames for compatibility with legacy
2608 OpenFlow controllers that expect this behavior. This requires
2609 enabling <code>gpe</code> in <ref column="options" key="exts"/>.
2610 </li>
2611 <li>
2612 If this option is <code>ptap</code>, Open vSwitch represents
2613 packets in the tunnel using the <code>packet_type</code>
2614 mechanism introduced in OpenFlow 1.5. This mechanism supports
2615 any kind of packet, but actually sending and receiving
2616 non-Ethernet packets requires additionally enabling
2617 <code>gpe</code> in <ref column="options" key="exts"/>.
2618 </li>
2619 </ul>
2620 </column>
2621 </group>
2622
2623 <group title="Tunnel Options: gre only">
2624 <p>
2625 <code>gre</code> interfaces support these options.
2626 </p>
2627
2628 <column name="options" key="packet_type"
2629 type='{"type": "string", "enum": ["set",
2630 ["legacy_l2", "legacy_l3", "ptap"]]}'>
2631 <p>
2632 This option controls what types of packets the tunnel sends and
2633 receives and how it represents them:
2634 </p>
2635
2636 <ul>
2637 <li>
2638 By default, or if this option is <code>legacy_l2</code>, the
2639 tunnel sends and receives only Ethernet frames.
2640 </li>
2641 <li>
2642 If this option is <code>legacy_l3</code>, the tunnel sends and
2643 receives only non-Ethernet (L3) packet, but the packets are
2644 represented as Ethernet frames for compatibility with legacy
2645 OpenFlow controllers that expect this behavior.
2646 </li>
2647 <li>
2648 If this option is <code>ptap</code>, the tunnel sends and
2649 receives any kind of packet. Open vSwitch represents packets in
2650 the tunnel using the <code>packet_type</code> mechanism
2651 introduced in OpenFlow 1.5.
2652 </li>
2653 </ul>
2654 </column>
2655 <column name="options" key="seq" type='{"type": "boolean"}'>
2656 <p>
2657 Optional. A 4-byte sequence number field for GRE tunnel only.
2658 Default is disabled, set to <code>true</code> to enable.
2659 Sequence number is incremented by one on each outgoing packet.
2660 </p>
2661 </column>
2662 </group>
2663
2664 <group title="Tunnel Options: gre, geneve, and vxlan">
2665 <p>
2666 <code>gre</code>, <code>geneve</code>, and
2667 <code>vxlan</code> interfaces support these options.
2668 </p>
2669
2670 <column name="options" key="csum" type='{"type": "boolean"}'>
2671 <p>
2672 Optional. Compute encapsulation header (either GRE or UDP)
2673 checksums on outgoing packets. Default is disabled, set to
2674 <code>true</code> to enable. Checksums present on incoming
2675 packets will be validated regardless of this setting.
2676 </p>
2677
2678 <p>
2679 When using the upstream Linux kernel module, computation of
2680 checksums for <code>geneve</code> and <code>vxlan</code> requires
2681 Linux kernel version 4.0 or higher. <code>gre</code> supports
2682 checksums for all versions of Open vSwitch that support GRE.
2683 The out of tree kernel module distributed as part of OVS
2684 can compute all tunnel checksums on any kernel version that it
2685 is compatible with.
2686 </p>
2687
2688 </column>
2689 </group>
2690 </group>
2691
2692 <group title="Tunnel Options: erspan only">
2693 <p>
2694 Only <code>erspan</code> interfaces support these options.
2695 </p>
2696 <column name="options" key="erspan_idx">
2697 <p>
2698 20 bit index/port number associated with the ERSPAN traffic's
2699 source port and direction (ingress/egress). This field is
2700 platform dependent.
2701 </p>
2702 </column>
2703
2704 <column name="options" key="erspan_ver">
2705 <p>
2706 ERSPAN version: 1 for version 1 (type II)
2707 or 2 for version 2 (type III).
2708 </p>
2709 </column>
2710
2711 <column name="options" key="erspan_dir">
2712 <p>
2713 Specifies the ERSPAN v2 mirrored traffic's direction.
2714 1 for egress traffic, and 0 for ingress traffic.
2715 </p>
2716 </column>
2717
2718 <column name="options" key="erspan_hwid">
2719 <p>
2720 ERSPAN hardware ID is a 6-bit unique identifier of an
2721 ERSPAN v2 engine within a system.
2722 </p>
2723 </column>
2724 </group>
2725
2726 <group title="Patch Options">
2727 <p>
2728 These options apply only to <dfn>patch ports</dfn>, that is, interfaces
2729 whose <ref column="type"/> column is <code>patch</code>. Patch ports
2730 are mainly a way to connect otherwise independent bridges to one
2731 another, similar to how one might plug an Ethernet cable (a ``patch
2732 cable'') into two physical switches to connect those switches. The
2733 effect of plugging a patch port into two switches is conceptually
2734 similar to that of plugging the two ends of a Linux <code>veth</code>
2735 device into those switches, but the implementation of patch ports makes
2736 them much more efficient.
2737 </p>
2738
2739 <p>
2740 Patch ports may connect two different bridges (the usual case) or the
2741 same bridge. In the latter case, take special care to avoid loops,
2742 e.g. by programming appropriate flows with OpenFlow. Patch ports do
2743 not work if its ends are attached to bridges on different datapaths,
2744 e.g. to connect bridges in <code>system</code> and <code>netdev</code>
2745 datapaths.
2746 </p>
2747
2748 <p>
2749 The following command creates and connects patch ports <code>p0</code>
2750 and <code>p1</code> and adds them to bridges <code>br0</code> and
2751 <code>br1</code>, respectively:
2752 </p>
2753
2754 <pre>
2755 ovs-vsctl add-port br0 p0 -- set Interface p0 type=patch options:peer=p1 \
2756 -- add-port br1 p1 -- set Interface p1 type=patch options:peer=p0
2757 </pre>
2758
2759 <column name="options" key="peer">
2760 The <ref column="name"/> of the <ref table="Interface"/> for the other
2761 side of the patch. The named <ref table="Interface"/>'s own
2762 <code>peer</code> option must specify this <ref table="Interface"/>'s
2763 name. That is, the two patch interfaces must have reversed <ref
2764 column="name"/> and <code>peer</code> values.
2765 </column>
2766 </group>
2767
2768 <group title="PMD (Poll Mode Driver) Options">
2769 <p>
2770 Only PMD netdevs support these options.
2771 </p>
2772
2773 <column name="options" key="n_rxq"
2774 type='{"type": "integer", "minInteger": 1}'>
2775 <p>
2776 Specifies the maximum number of rx queues to be created for PMD
2777 netdev. If not specified or specified to 0, one rx queue will
2778 be created by default.
2779 Not supported by DPDK vHost interfaces.
2780 </p>
2781 </column>
2782
2783 <column name="options" key="dpdk-devargs"
2784 type='{"type": "string"}'>
2785 <p>
2786 Specifies the PCI address associated with the port for physical
2787 devices, or the virtual driver to be used for the port when a virtual
2788 PMD is intended to be used. For the latter, the argument string
2789 typically takes the form of
2790 <code>eth_<var>driver_name</var><var>x</var></code>, where
2791 <var>driver_name</var> is a valid virtual DPDK PMD driver name and
2792 <var>x</var> is a unique identifier of your choice for the given
2793 port. Only supported by the dpdk port type.
2794 </p>
2795 </column>
2796
2797 <column name="other_config" key="pmd-rxq-affinity">
2798 <p>Specifies mapping of RX queues of this interface to CPU cores.</p>
2799 <p>Value should be set in the following form:</p>
2800 <p>
2801 <code>other_config:pmd-rxq-affinity=&lt;rxq-affinity-list&gt;</code>
2802 </p>
2803 <p>where</p>
2804 <p>
2805 <ul>
2806 <li>
2807 &lt;rxq-affinity-list&gt; ::= NULL | &lt;non-empty-list&gt;
2808 </li>
2809 <li>
2810 &lt;non-empty-list&gt; ::= &lt;affinity-pair&gt; |
2811 &lt;affinity-pair&gt; , &lt;non-empty-list&gt;
2812 </li>
2813 <li>
2814 &lt;affinity-pair&gt; ::= &lt;queue-id&gt; : &lt;core-id&gt;
2815 </li>
2816 </ul>
2817 </p>
2818 </column>
2819
2820 <column name="options" key="vhost-server-path"
2821 type='{"type": "string"}'>
2822 <p>
2823 The value specifies the path to the socket associated with a vHost
2824 User client mode device that has been or will be created by QEMU.
2825 Only supported by dpdkvhostuserclient interfaces.
2826 </p>
2827 </column>
2828
2829 <column name="options" key="dq-zero-copy"
2830 type='{"type": "boolean"}'>
2831 <p>
2832 The value specifies whether or not to enable dequeue zero copy on
2833 the given interface.
2834 Must be set before vhost-server-path is specified.
2835 Only supported by dpdkvhostuserclient interfaces.
2836 The feature is considered experimental.
2837 </p>
2838 </column>
2839
2840 <column name="options" key="n_rxq_desc"
2841 type='{"type": "integer", "minInteger": 1, "maxInteger": 4096}'>
2842 <p>
2843 Specifies the rx queue size (number rx descriptors) for dpdk ports.
2844 The value must be a power of 2, less than 4096 and supported
2845 by the hardware of the device being configured.
2846 If not specified or an incorrect value is specified, 2048 rx
2847 descriptors will be used by default.
2848 </p>
2849 </column>
2850
2851 <column name="options" key="n_txq_desc"
2852 type='{"type": "integer", "minInteger": 1, "maxInteger": 4096}'>
2853 <p>
2854 Specifies the tx queue size (number tx descriptors) for dpdk ports.
2855 The value must be a power of 2, less than 4096 and supported
2856 by the hardware of the device being configured.
2857 If not specified or an incorrect value is specified, 2048 tx
2858 descriptors will be used by default.
2859 </p>
2860 </column>
2861 </group>
2862
2863 <group title="MTU">
2864 <p>
2865 The MTU (maximum transmission unit) is the largest amount of data
2866 that can fit into a single Ethernet frame. The standard Ethernet
2867 MTU is 1500 bytes. Some physical media and many kinds of virtual
2868 interfaces can be configured with higher MTUs.
2869 </p>
2870
2871 <p>
2872 A client may change an interface MTU by filling in
2873 <ref column="mtu_request"/>. Open vSwitch then reports in
2874 <ref column="mtu"/> the currently configured value.
2875 </p>
2876
2877 <column name="mtu">
2878 <p>
2879 The currently configured MTU for the interface.
2880 </p>
2881
2882 <p>
2883 This column will be empty for an interface that does not
2884 have an MTU as, for example, some kinds of tunnels do not.
2885 </p>
2886
2887 <p>
2888 Open vSwitch sets this column's value, so other clients should treat
2889 it as read-only.
2890 </p>
2891 </column>
2892
2893 <column name="mtu_request"
2894 type='{"type": "integer", "minInteger": 1}'>
2895 <p>
2896 Requested MTU (Maximum Transmission Unit) for the interface. A client
2897 can fill this column to change the MTU of an interface.
2898 </p>
2899
2900 <p>
2901 RFC 791 requires every internet module to be able to forward a
2902 datagram of 68 octets without further fragmentation. The maximum
2903 size of an IP packet is 65535 bytes.
2904 </p>
2905
2906 <p>
2907 If this is not set and if the interface has <code>internal</code>
2908 type, Open vSwitch will change the MTU to match the minimum of the
2909 other interfaces in the bridge.
2910 </p>
2911 </column>
2912
2913 </group>
2914
2915 <group title="Interface Status">
2916 <p>
2917 Status information about interfaces attached to bridges, updated every
2918 5 seconds. Not all interfaces have all of these properties; virtual
2919 interfaces don't have a link speed, for example. Non-applicable
2920 columns will have empty values.
2921 </p>
2922 <column name="admin_state">
2923 <p>
2924 The administrative state of the physical network link.
2925 </p>
2926 </column>
2927
2928 <column name="link_state">
2929 <p>
2930 The observed state of the physical network link. This is ordinarily
2931 the link's carrier status. If the interface's <ref table="Port"/> is
2932 a bond configured for miimon monitoring, it is instead the network
2933 link's miimon status.
2934 </p>
2935 </column>
2936
2937 <column name="link_resets">
2938 <p>
2939 The number of times Open vSwitch has observed the
2940 <ref column="link_state"/> of this <ref table="Interface"/> change.
2941 </p>
2942 </column>
2943
2944 <column name="link_speed">
2945 <p>
2946 The negotiated speed of the physical network link.
2947 Valid values are positive integers greater than 0.
2948 </p>
2949 </column>
2950
2951 <column name="duplex">
2952 <p>
2953 The duplex mode of the physical network link.
2954 </p>
2955 </column>
2956
2957 <column name="lacp_current">
2958 Boolean value indicating LACP status for this interface. If true, this
2959 interface has current LACP information about its LACP partner. This
2960 information may be used to monitor the health of interfaces in a LACP
2961 enabled port. This column will be empty if LACP is not enabled.
2962 </column>
2963
2964 <column name="status">
2965 Key-value pairs that report port status. Supported status values are
2966 <ref column="type"/>-dependent; some interfaces may not have a valid
2967 <ref column="status" key="driver_name"/>, for example.
2968 </column>
2969
2970 <column name="status" key="driver_name">
2971 The name of the device driver controlling the network adapter.
2972 </column>
2973
2974 <column name="status" key="driver_version">
2975 The version string of the device driver controlling the network
2976 adapter.
2977 </column>
2978
2979 <column name="status" key="firmware_version">
2980 The version string of the network adapter's firmware, if available.
2981 </column>
2982
2983 <column name="status" key="source_ip">
2984 The source IP address used for an IPv4/IPv6 tunnel end-point, such as
2985 <code>gre</code>.
2986 </column>
2987
2988 <column name="status" key="tunnel_egress_iface">
2989 Egress interface for tunnels. Currently only relevant for tunnels
2990 on Linux systems, this column will show the name of the interface
2991 which is responsible for routing traffic destined for the configured
2992 <ref column="options" key="remote_ip"/>. This could be an internal
2993 interface such as a bridge port.
2994 </column>
2995
2996 <column name="status" key="tunnel_egress_iface_carrier"
2997 type='{"type": "string", "enum": ["set", ["down", "up"]]}'>
2998 Whether carrier is detected on <ref column="status"
2999 key="tunnel_egress_iface"/>.
3000 </column>
3001
3002 <group title="dpdk">
3003 <p>
3004 DPDK specific interface status options.
3005 </p>
3006
3007 <column name="status" key="port_no">
3008 DPDK port ID.
3009 </column>
3010
3011 <column name="status" key="numa_id">
3012 NUMA socket ID to which an Ethernet device is connected.
3013 </column>
3014
3015 <column name="status" key="min_rx_bufsize">
3016 Minimum size of RX buffer.
3017 </column>
3018
3019 <column name="status" key="max_rx_pktlen">
3020 Maximum configurable length of RX pkt.
3021 </column>
3022
3023 <column name="status" key="max_rx_queues">
3024 Maximum number of RX queues.
3025 </column>
3026
3027 <column name="status" key="max_tx_queues">
3028 Maximum number of TX queues.
3029 </column>
3030
3031 <column name="status" key="max_mac_addrs">
3032 Maximum number of MAC addresses.
3033 </column>
3034
3035 <column name="status" key="max_hash_mac_addrs">
3036 Maximum number of hash MAC addresses for MTA and UTA.
3037 </column>
3038
3039 <column name="status" key="max_vfs">
3040 Maximum number of hash MAC addresses for MTA and UTA.
3041 Maximum number of VFs.
3042 </column>
3043
3044 <column name="status" key="max_vmdq_pools">
3045 Maximum number of VMDq pools.
3046 </column>
3047
3048 <column name="status" key="if_type">
3049 Interface type ID according to IANA ifTYPE MIB definitions.
3050 </column>
3051
3052 <column name="status" key="if_descr">
3053 Interface description string.
3054 </column>
3055
3056 <column name="status" key="pci-vendor_id">
3057 Vendor ID of PCI device.
3058 </column>
3059
3060 <column name="status" key="pci-device_id">
3061 Device ID of PCI device.
3062 </column>
3063
3064 </group>
3065 </group>
3066
3067 <group title="Statistics">
3068 <p>
3069 Key-value pairs that report interface statistics. The current
3070 implementation updates these counters periodically. The update period
3071 is controlled by <ref column="other_config"
3072 key="stats-update-interval"/> in the <code>Open_vSwitch</code> table.
3073 Future implementations may update them when an interface is created,
3074 when they are queried (e.g. using an OVSDB <code>select</code>
3075 operation), and just before an interface is deleted due to virtual
3076 interface hot-unplug or VM shutdown, and perhaps at other times, but
3077 not on any regular periodic basis.
3078 </p>
3079 <p>
3080 These are the same statistics reported by OpenFlow in its <code>struct
3081 ofp_port_stats</code> structure. If an interface does not support a
3082 given statistic, then that pair is omitted.
3083 </p>
3084 <group title="Statistics: Successful transmit and receive counters">
3085 <column name="statistics" key="rx_packets">
3086 Number of received packets.
3087 </column>
3088 <column name="statistics" key="rx_bytes">
3089 Number of received bytes.
3090 </column>
3091 <column name="statistics" key="tx_packets">
3092 Number of transmitted packets.
3093 </column>
3094 <column name="statistics" key="tx_bytes">
3095 Number of transmitted bytes.
3096 </column>
3097 </group>
3098 <group title="Statistics: Receive errors">
3099 <column name="statistics" key="rx_dropped">
3100 Number of packets dropped by RX.
3101 </column>
3102 <column name="statistics" key="rx_frame_err">
3103 Number of frame alignment errors.
3104 </column>
3105 <column name="statistics" key="rx_over_err">
3106 Number of packets with RX overrun.
3107 </column>
3108 <column name="statistics" key="rx_crc_err">
3109 Number of CRC errors.
3110 </column>
3111 <column name="statistics" key="rx_errors">
3112 Total number of receive errors, greater than or equal to the sum of
3113 the above.
3114 </column>
3115 </group>
3116 <group title="Statistics: Transmit errors">
3117 <column name="statistics" key="tx_dropped">
3118 Number of packets dropped by TX.
3119 </column>
3120 <column name="statistics" key="collisions">
3121 Number of collisions.
3122 </column>
3123 <column name="statistics" key="tx_errors">
3124 Total number of transmit errors, greater than or equal to the sum of
3125 the above.
3126 </column>
3127 </group>
3128 </group>
3129
3130 <group title="Ingress Policing">
3131 <p>
3132 These settings control ingress policing for packets received on this
3133 interface. On a physical interface, this limits the rate at which
3134 traffic is allowed into the system from the outside; on a virtual
3135 interface (one connected to a virtual machine), this limits the rate at
3136 which the VM is able to transmit.
3137 </p>
3138 <p>
3139 Policing is a simple form of quality-of-service that simply drops
3140 packets received in excess of the configured rate. Due to its
3141 simplicity, policing is usually less accurate and less effective than
3142 egress QoS (which is configured using the <ref table="QoS"/> and <ref
3143 table="Queue"/> tables).
3144 </p>
3145 <p>
3146 Policing is currently implemented on Linux and OVS with DPDK. Both
3147 implementations use a simple ``token bucket'' approach:
3148 </p>
3149 <ul>
3150 <li>
3151 The size of the bucket corresponds to <ref
3152 column="ingress_policing_burst"/>. Initially the bucket is full.
3153 </li>
3154 <li>
3155 Whenever a packet is received, its size (converted to tokens) is
3156 compared to the number of tokens currently in the bucket. If the
3157 required number of tokens are available, they are removed and the
3158 packet is forwarded. Otherwise, the packet is dropped.
3159 </li>
3160 <li>
3161 Whenever it is not full, the bucket is refilled with tokens at the
3162 rate specified by <ref column="ingress_policing_rate"/>.
3163 </li>
3164 </ul>
3165 <p>
3166 Policing interacts badly with some network protocols, and especially
3167 with fragmented IP packets. Suppose that there is enough network
3168 activity to keep the bucket nearly empty all the time. Then this token
3169 bucket algorithm will forward a single packet every so often, with the
3170 period depending on packet size and on the configured rate. All of the
3171 fragments of an IP packets are normally transmitted back-to-back, as a
3172 group. In such a situation, therefore, only one of these fragments
3173 will be forwarded and the rest will be dropped. IP does not provide
3174 any way for the intended recipient to ask for only the remaining
3175 fragments. In such a case there are two likely possibilities for what
3176 will happen next: either all of the fragments will eventually be
3177 retransmitted (as TCP will do), in which case the same problem will
3178 recur, or the sender will not realize that its packet has been dropped
3179 and data will simply be lost (as some UDP-based protocols will do).
3180 Either way, it is possible that no forward progress will ever occur.
3181 </p>
3182 <column name="ingress_policing_rate">
3183 <p>
3184 Maximum rate for data received on this interface, in kbps. Data
3185 received faster than this rate is dropped. Set to <code>0</code>
3186 (the default) to disable policing.
3187 </p>
3188 </column>
3189
3190 <column name="ingress_policing_burst">
3191 <p>Maximum burst size for data received on this interface, in kb. The
3192 default burst size if set to <code>0</code> is 8000 kbit. This value
3193 has no effect if <ref column="ingress_policing_rate"/>
3194 is <code>0</code>.</p>
3195 <p>
3196 Specifying a larger burst size lets the algorithm be more forgiving,
3197 which is important for protocols like TCP that react severely to
3198 dropped packets. The burst size should be at least the size of the
3199 interface's MTU. Specifying a value that is numerically at least as
3200 large as 80% of <ref column="ingress_policing_rate"/> helps TCP come
3201 closer to achieving the full rate.
3202 </p>
3203 </column>
3204 </group>
3205
3206 <group title="Bidirectional Forwarding Detection (BFD)">
3207 <p>
3208 BFD, defined in RFC 5880 and RFC 5881, allows point-to-point
3209 detection of connectivity failures by occasional transmission of
3210 BFD control messages. Open vSwitch implements BFD to serve
3211 as a more popular and standards compliant alternative to CFM.
3212 </p>
3213
3214 <p>
3215 BFD operates by regularly transmitting BFD control messages at a rate
3216 negotiated independently in each direction. Each endpoint specifies
3217 the rate at which it expects to receive control messages, and the rate
3218 at which it is willing to transmit them. By default, Open vSwitch uses
3219 a detection multiplier of three, meaning that an endpoint signals a
3220 connectivity fault if three consecutive BFD control messages fail to
3221 arrive. In the case of a unidirectional connectivity issue, the system
3222 not receiving BFD control messages signals the problem to its peer in
3223 the messages it transmits.
3224 </p>
3225
3226 <p>
3227 The Open vSwitch implementation of BFD aims to comply faithfully
3228 with RFC 5880 requirements. Open vSwitch does not implement the
3229 optional Authentication or ``Echo Mode'' features.
3230 </p>
3231
3232 <group title="BFD Configuration">
3233 <p>
3234 A controller sets up key-value pairs in the <ref column="bfd"/>
3235 column to enable and configure BFD.
3236 </p>
3237
3238 <column name="bfd" key="enable" type='{"type": "boolean"}'>
3239 True to enable BFD on this <ref table="Interface"/>. If not
3240 specified, BFD will not be enabled by default.
3241 </column>
3242
3243 <column name="bfd" key="min_rx"
3244 type='{"type": "integer", "minInteger": 1}'>
3245 The shortest interval, in milliseconds, at which this BFD session
3246 offers to receive BFD control messages. The remote endpoint may
3247 choose to send messages at a slower rate. Defaults to
3248 <code>1000</code>.
3249 </column>
3250
3251 <column name="bfd" key="min_tx"
3252 type='{"type": "integer", "minInteger": 1}'>
3253 The shortest interval, in milliseconds, at which this BFD session is
3254 willing to transmit BFD control messages. Messages will actually be
3255 transmitted at a slower rate if the remote endpoint is not willing to
3256 receive as quickly as specified. Defaults to <code>100</code>.
3257 </column>
3258
3259 <column name="bfd" key="decay_min_rx" type='{"type": "integer"}'>
3260 An alternate receive interval, in milliseconds, that must be greater
3261 than or equal to <ref column="bfd" key="min_rx"/>. The
3262 implementation switches from <ref column="bfd" key="min_rx"/> to <ref
3263 column="bfd" key="decay_min_rx"/> when there is no obvious incoming
3264 data traffic at the interface, to reduce the CPU and bandwidth cost
3265 of monitoring an idle interface. This feature may be disabled by
3266 setting a value of 0. This feature is reset whenever <ref
3267 column="bfd" key="decay_min_rx"/> or <ref column="bfd" key="min_rx"/>
3268 changes.
3269 </column>
3270
3271 <column name="bfd" key="forwarding_if_rx" type='{"type": "boolean"}'>
3272 When <code>true</code>, traffic received on the
3273 <ref table="Interface"/> is used to indicate the capability of packet
3274 I/O. BFD control packets are still transmitted and received. At
3275 least one BFD control packet must be received every 100 * <ref
3276 column="bfd" key="min_rx"/> amount of time. Otherwise, even if
3277 traffic are received, the <ref column="bfd" key="forwarding"/>
3278 will be <code>false</code>.
3279 </column>
3280
3281 <column name="bfd" key="cpath_down" type='{"type": "boolean"}'>
3282 Set to true to notify the remote endpoint that traffic should not be
3283 forwarded to this system for some reason other than a connectivty
3284 failure on the interface being monitored. The typical underlying
3285 reason is ``concatenated path down,'' that is, that connectivity
3286 beyond the local system is down. Defaults to false.
3287 </column>
3288
3289 <column name="bfd" key="check_tnl_key" type='{"type": "boolean"}'>
3290 Set to true to make BFD accept only control messages with a tunnel
3291 key of zero. By default, BFD accepts control messages with any
3292 tunnel key.
3293 </column>
3294
3295 <column name="bfd" key="bfd_local_src_mac">
3296 Set to an Ethernet address in the form
3297 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>
3298 to set the MAC used as source for transmitted BFD packets. The
3299 default is the mac address of the BFD enabled interface.
3300 </column>
3301
3302 <column name="bfd" key="bfd_local_dst_mac">
3303 Set to an Ethernet address in the form
3304 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>
3305 to set the MAC used as destination for transmitted BFD packets. The
3306 default is <code>00:23:20:00:00:01</code>.
3307 </column>
3308
3309 <column name="bfd" key="bfd_remote_dst_mac">
3310 Set to an Ethernet address in the form
3311 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>
3312 to set the MAC used for checking the destination of received BFD packets.
3313 Packets with different destination MAC will not be considered as BFD packets.
3314 If not specified the destination MAC address of received BFD packets
3315 are not checked.
3316 </column>
3317
3318 <column name="bfd" key="bfd_src_ip">
3319 Set to an IPv4 address to set the IP address used as source for
3320 transmitted BFD packets. The default is <code>169.254.1.1</code>.
3321 </column>
3322
3323 <column name="bfd" key="bfd_dst_ip">
3324 Set to an IPv4 address to set the IP address used as destination
3325 for transmitted BFD packets. The default is <code>169.254.1.0</code>.
3326 </column>
3327
3328 <column name="bfd" key="oam">
3329 Some tunnel protocols (such as Geneve) include a bit in the header
3330 to indicate that the encapsulated packet is an OAM frame. By setting
3331 this to true, BFD packets will be marked as OAM if encapsulated in
3332 one of these tunnels.
3333 </column>
3334
3335 <column name="bfd" key="mult"
3336 type='{"type": "integer", "minInteger": 1, "maxInteger": 255}'>
3337 The BFD detection multiplier, which defaults to 3. An endpoint
3338 signals a connectivity fault if the given number of consecutive BFD
3339 control messages fail to arrive.
3340 </column>
3341 </group>
3342
3343 <group title="BFD Status">
3344 <p>
3345 The switch sets key-value pairs in the <ref column="bfd_status"/>
3346 column to report the status of BFD on this interface. When BFD is
3347 not enabled, with <ref column="bfd" key="enable"/>, the switch clears
3348 all key-value pairs from <ref column="bfd_status"/>.
3349 </p>
3350
3351 <column name="bfd_status" key="state"
3352 type='{"type": "string",
3353 "enum": ["set", ["admin_down", "down", "init", "up"]]}'>
3354 Reports the state of the BFD session. The BFD session is fully
3355 healthy and negotiated if <code>UP</code>.
3356 </column>
3357
3358 <column name="bfd_status" key="forwarding" type='{"type": "boolean"}'>
3359 Reports whether the BFD session believes this <ref
3360 table="Interface"/> may be used to forward traffic. Typically this
3361 means the local session is signaling <code>UP</code>, and the remote
3362 system isn't signaling a problem such as concatenated path down.
3363 </column>
3364
3365 <column name="bfd_status" key="diagnostic">
3366 A diagnostic code specifying the local system's reason for the
3367 last change in session state. The error messages are defined in
3368 section 4.1 of [RFC 5880].
3369 </column>
3370
3371 <column name="bfd_status" key="remote_state"
3372 type='{"type": "string",
3373 "enum": ["set", ["admin_down", "down", "init", "up"]]}'>
3374 Reports the state of the remote endpoint's BFD session.
3375 </column>
3376
3377 <column name="bfd_status" key="remote_diagnostic">
3378 A diagnostic code specifying the remote system's reason for the
3379 last change in session state. The error messages are defined in
3380 section 4.1 of [RFC 5880].
3381 </column>
3382
3383 <column name="bfd_status" key="flap_count"
3384 type='{"type": "integer", "minInteger": 0}'>
3385 Counts the number of <ref column="bfd_status" key="forwarding" />
3386 flaps since start. A flap is considered as a change of the
3387 <ref column="bfd_status" key="forwarding" /> value.
3388 </column>
3389 </group>
3390 </group>
3391
3392 <group title="Connectivity Fault Management">
3393 <p>
3394 802.1ag Connectivity Fault Management (CFM) allows a group of
3395 Maintenance Points (MPs) called a Maintenance Association (MA) to
3396 detect connectivity problems with each other. MPs within a MA should
3397 have complete and exclusive interconnectivity. This is verified by
3398 occasionally broadcasting Continuity Check Messages (CCMs) at a
3399 configurable transmission interval.
3400 </p>
3401
3402 <p>
3403 According to the 802.1ag specification, each Maintenance Point should
3404 be configured out-of-band with a list of Remote Maintenance Points it
3405 should have connectivity to. Open vSwitch differs from the
3406 specification in this area. It simply assumes the link is faulted if
3407 no Remote Maintenance Points are reachable, and considers it not
3408 faulted otherwise.
3409 </p>
3410
3411 <p>
3412 When operating over tunnels which have no <code>in_key</code>, or an
3413 <code>in_key</code> of <code>flow</code>. CFM will only accept CCMs
3414 with a tunnel key of zero.
3415 </p>
3416
3417 <column name="cfm_mpid">
3418 <p>
3419 A Maintenance Point ID (MPID) uniquely identifies each endpoint
3420 within a Maintenance Association. The MPID is used to identify this
3421 endpoint to other Maintenance Points in the MA. Each end of a link
3422 being monitored should have a different MPID. Must be configured to
3423 enable CFM on this <ref table="Interface"/>.
3424 </p>
3425 <p>
3426 According to the 802.1ag specification, MPIDs can only range between
3427 [1, 8191]. However, extended mode (see <ref column="other_config"
3428 key="cfm_extended"/>) supports eight byte MPIDs.
3429 </p>
3430 </column>
3431
3432 <column name="cfm_flap_count">
3433 Counts the number of cfm fault flapps since boot. A flap is
3434 considered to be a change of the <ref column="cfm_fault"/> value.
3435 </column>
3436
3437 <column name="cfm_fault">
3438 <p>
3439 Indicates a connectivity fault triggered by an inability to receive
3440 heartbeats from any remote endpoint. When a fault is triggered on
3441 <ref table="Interface"/>s participating in bonds, they will be
3442 disabled.
3443 </p>
3444 <p>
3445 Faults can be triggered for several reasons. Most importantly they
3446 are triggered when no CCMs are received for a period of 3.5 times the
3447 transmission interval. Faults are also triggered when any CCMs
3448 indicate that a Remote Maintenance Point is not receiving CCMs but
3449 able to send them. Finally, a fault is triggered if a CCM is
3450 received which indicates unexpected configuration. Notably, this
3451 case arises when a CCM is received which advertises the local MPID.
3452 </p>
3453 </column>
3454
3455 <column name="cfm_fault_status" key="recv">
3456 Indicates a CFM fault was triggered due to a lack of CCMs received on
3457 the <ref table="Interface"/>.
3458 </column>
3459
3460 <column name="cfm_fault_status" key="rdi">
3461 Indicates a CFM fault was triggered due to the reception of a CCM with
3462 the RDI bit flagged. Endpoints set the RDI bit in their CCMs when they
3463 are not receiving CCMs themselves. This typically indicates a
3464 unidirectional connectivity failure.
3465 </column>
3466
3467 <column name="cfm_fault_status" key="maid">
3468 Indicates a CFM fault was triggered due to the reception of a CCM with
3469 a MAID other than the one Open vSwitch uses. CFM broadcasts are tagged
3470 with an identification number in addition to the MPID called the MAID.
3471 Open vSwitch only supports receiving CCM broadcasts tagged with the
3472 MAID it uses internally.
3473 </column>
3474
3475 <column name="cfm_fault_status" key="loopback">
3476 Indicates a CFM fault was triggered due to the reception of a CCM
3477 advertising the same MPID configured in the <ref column="cfm_mpid"/>
3478 column of this <ref table="Interface"/>. This may indicate a loop in
3479 the network.
3480 </column>
3481
3482 <column name="cfm_fault_status" key="overflow">
3483 Indicates a CFM fault was triggered because the CFM module received
3484 CCMs from more remote endpoints than it can keep track of.
3485 </column>
3486
3487 <column name="cfm_fault_status" key="override">
3488 Indicates a CFM fault was manually triggered by an administrator using
3489 an <code>ovs-appctl</code> command.
3490 </column>
3491
3492 <column name="cfm_fault_status" key="interval">
3493 Indicates a CFM fault was triggered due to the reception of a CCM
3494 frame having an invalid interval.
3495 </column>
3496
3497 <column name="cfm_remote_opstate">
3498 <p>When in extended mode, indicates the operational state of the
3499 remote endpoint as either <code>up</code> or <code>down</code>. See
3500 <ref column="other_config" key="cfm_opstate"/>.
3501 </p>
3502 </column>
3503
3504 <column name="cfm_health">
3505 <p>
3506 Indicates the health of the interface as a percentage of CCM frames
3507 received over 21 <ref column="other_config" key="cfm_interval"/>s.
3508 The health of an interface is undefined if it is communicating with
3509 more than one <ref column="cfm_remote_mpids"/>. It reduces if
3510 healthy heartbeats are not received at the expected rate, and
3511 gradually improves as healthy heartbeats are received at the desired
3512 rate. Every 21 <ref column="other_config" key="cfm_interval"/>s, the
3513 health of the interface is refreshed.
3514 </p>
3515 <p>
3516 As mentioned above, the faults can be triggered for several reasons.
3517 The link health will deteriorate even if heartbeats are received but
3518 they are reported to be unhealthy. An unhealthy heartbeat in this
3519 context is a heartbeat for which either some fault is set or is out
3520 of sequence. The interface health can be 100 only on receiving
3521 healthy heartbeats at the desired rate.
3522 </p>
3523 </column>
3524
3525 <column name="cfm_remote_mpids">
3526 When CFM is properly configured, Open vSwitch will occasionally
3527 receive CCM broadcasts. These broadcasts contain the MPID of the
3528 sending Maintenance Point. The list of MPIDs from which this
3529 <ref table="Interface"/> is receiving broadcasts from is regularly
3530 collected and written to this column.
3531 </column>
3532
3533 <column name="other_config" key="cfm_interval"
3534 type='{"type": "integer"}'>
3535 <p>
3536 The interval, in milliseconds, between transmissions of CFM
3537 heartbeats. Three missed heartbeat receptions indicate a
3538 connectivity fault.
3539 </p>
3540
3541 <p>
3542 In standard operation only intervals of 3, 10, 100, 1,000, 10,000,
3543 60,000, or 600,000 ms are supported. Other values will be rounded
3544 down to the nearest value on the list. Extended mode (see <ref
3545 column="other_config" key="cfm_extended"/>) supports any interval up
3546 to 65,535 ms. In either mode, the default is 1000 ms.
3547 </p>
3548
3549 <p>We do not recommend using intervals less than 100 ms.</p>
3550 </column>
3551
3552 <column name="other_config" key="cfm_extended"
3553 type='{"type": "boolean"}'>
3554 When <code>true</code>, the CFM module operates in extended mode. This
3555 causes it to use a nonstandard destination address to avoid conflicting
3556 with compliant implementations which may be running concurrently on the
3557 network. Furthermore, extended mode increases the accuracy of the
3558 <code>cfm_interval</code> configuration parameter by breaking wire
3559 compatibility with 802.1ag compliant implementations. And extended
3560 mode allows eight byte MPIDs. Defaults to <code>false</code>.
3561 </column>
3562
3563 <column name="other_config" key="cfm_demand" type='{"type": "boolean"}'>
3564 <p>
3565 When <code>true</code>, and
3566 <ref column="other_config" key="cfm_extended"/> is true, the CFM
3567 module operates in demand mode. When in demand mode, traffic
3568 received on the <ref table="Interface"/> is used to indicate
3569 liveness. CCMs are still transmitted and received. At least one
3570 CCM must be received every 100 * <ref column="other_config"
3571 key="cfm_interval"/> amount of time. Otherwise, even if traffic
3572 are received, the CFM module will raise the connectivity fault.
3573 </p>
3574
3575 <p>
3576 Demand mode has a couple of caveats:
3577 <ul>
3578 <li>
3579 To ensure that ovs-vswitchd has enough time to pull statistics
3580 from the datapath, the fault detection interval is set to
3581 3.5 * MAX(<ref column="other_config" key="cfm_interval"/>, 500)
3582 ms.
3583 </li>
3584
3585 <li>
3586 To avoid ambiguity, demand mode disables itself when there are
3587 multiple remote maintenance points.
3588 </li>
3589
3590 <li>
3591 If the <ref table="Interface"/> is heavily congested, CCMs
3592 containing the <ref column="other_config" key="cfm_opstate"/>
3593 status may be dropped causing changes in the operational state to
3594 be delayed. Similarly, if CCMs containing the RDI bit are not
3595 received, unidirectional link failures may not be detected.
3596 </li>
3597 </ul>
3598 </p>
3599 </column>
3600
3601 <column name="other_config" key="cfm_opstate"
3602 type='{"type": "string", "enum": ["set", ["down", "up"]]}'>
3603 When <code>down</code>, the CFM module marks all CCMs it generates as
3604 operationally down without triggering a fault. This allows remote
3605 maintenance points to choose not to forward traffic to the
3606 <ref table="Interface"/> on which this CFM module is running.
3607 Currently, in Open vSwitch, the opdown bit of CCMs affects
3608 <ref table="Interface"/>s participating in bonds, and the bundle
3609 OpenFlow action. This setting is ignored when CFM is not in extended
3610 mode. Defaults to <code>up</code>.
3611 </column>
3612
3613 <column name="other_config" key="cfm_ccm_vlan"
3614 type='{"type": "integer", "minInteger": 1, "maxInteger": 4095}'>
3615 When set, the CFM module will apply a VLAN tag to all CCMs it generates
3616 with the given value. May be the string <code>random</code> in which
3617 case each CCM will be tagged with a different randomly generated VLAN.
3618 </column>
3619
3620 <column name="other_config" key="cfm_ccm_pcp"
3621 type='{"type": "integer", "minInteger": 1, "maxInteger": 7}'>
3622 When set, the CFM module will apply a VLAN tag to all CCMs it generates
3623 with the given PCP value, the VLAN ID of the tag is governed by the
3624 value of <ref column="other_config" key="cfm_ccm_vlan"/>. If
3625 <ref column="other_config" key="cfm_ccm_vlan"/> is unset, a VLAN ID of
3626 zero is used.
3627 </column>
3628
3629 </group>
3630
3631 <group title="Bonding Configuration">
3632 <column name="other_config" key="lacp-port-id"
3633 type='{"type": "integer", "minInteger": 1, "maxInteger": 65535}'>
3634 The LACP port ID of this <ref table="Interface"/>. Port IDs are
3635 used in LACP negotiations to identify individual ports
3636 participating in a bond.
3637 </column>
3638
3639 <column name="other_config" key="lacp-port-priority"
3640 type='{"type": "integer", "minInteger": 1, "maxInteger": 65535}'>
3641 The LACP port priority of this <ref table="Interface"/>. In LACP
3642 negotiations <ref table="Interface"/>s with numerically lower
3643 priorities are preferred for aggregation.
3644 </column>
3645
3646 <column name="other_config" key="lacp-aggregation-key"
3647 type='{"type": "integer", "minInteger": 1, "maxInteger": 65535}'>
3648 The LACP aggregation key of this <ref table="Interface"/>. <ref
3649 table="Interface"/>s with different aggregation keys may not be active
3650 within a given <ref table="Port"/> at the same time.
3651 </column>
3652 </group>
3653
3654 <group title="Virtual Machine Identifiers">
3655 <p>
3656 These key-value pairs specifically apply to an interface that
3657 represents a virtual Ethernet interface connected to a virtual
3658 machine. These key-value pairs should not be present for other types
3659 of interfaces. Keys whose names end in <code>-uuid</code> have
3660 values that uniquely identify the entity in question. For a Citrix
3661 XenServer hypervisor, these values are UUIDs in RFC 4122 format.
3662 Other hypervisors may use other formats.
3663 </p>
3664
3665 <column name="external_ids" key="attached-mac">
3666 The MAC address programmed into the ``virtual hardware'' for this
3667 interface, in the form
3668 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>.
3669 For Citrix XenServer, this is the value of the <code>MAC</code> field
3670 in the VIF record for this interface.
3671 </column>
3672
3673 <column name="external_ids" key="iface-id">
3674 A system-unique identifier for the interface. On XenServer, this will
3675 commonly be the same as <ref column="external_ids" key="xs-vif-uuid"/>.
3676 </column>
3677
3678 <column name="external_ids" key="iface-status"
3679 type='{"type": "string",
3680 "enum": ["set", ["active", "inactive"]]}'>
3681 <p>
3682 Hypervisors may sometimes have more than one interface associated
3683 with a given <ref column="external_ids" key="iface-id"/>, only one of
3684 which is actually in use at a given time. For example, in some
3685 circumstances XenServer has both a ``tap'' and a ``vif'' interface
3686 for a single <ref column="external_ids" key="iface-id"/>, but only
3687 uses one of them at a time. A hypervisor that behaves this way must
3688 mark the currently in use interface <code>active</code> and the
3689 others <code>inactive</code>. A hypervisor that never has more than
3690 one interface for a given <ref column="external_ids" key="iface-id"/>
3691 may mark that interface <code>active</code> or omit <ref
3692 column="external_ids" key="iface-status"/> entirely.
3693 </p>
3694
3695 <p>
3696 During VM migration, a given <ref column="external_ids"
3697 key="iface-id"/> might transiently be marked <code>active</code> on
3698 two different hypervisors. That is, <code>active</code> means that
3699 this <ref column="external_ids" key="iface-id"/> is the active
3700 instance within a single hypervisor, not in a broader scope.
3701 There is one exception: some hypervisors support ``migration'' from a
3702 given hypervisor to itself (most often for test purposes). During
3703 such a ``migration,'' two instances of a single <ref
3704 column="external_ids" key="iface-id"/> might both be briefly marked
3705 <code>active</code> on a single hypervisor.
3706 </p>
3707 </column>
3708
3709 <column name="external_ids" key="xs-vif-uuid">
3710 The virtual interface associated with this interface.
3711 </column>
3712
3713 <column name="external_ids" key="xs-network-uuid">
3714 The virtual network to which this interface is attached.
3715 </column>
3716
3717 <column name="external_ids" key="vm-id">
3718 The VM to which this interface belongs. On XenServer, this will be the
3719 same as <ref column="external_ids" key="xs-vm-uuid"/>.
3720 </column>
3721
3722 <column name="external_ids" key="xs-vm-uuid">
3723 The VM to which this interface belongs.
3724 </column>
3725 </group>
3726
3727 <group title="Auto Attach Configuration">
3728 <p>
3729 Auto Attach configuration for a particular interface.
3730 </p>
3731
3732 <column name="lldp" key="enable" type='{"type": "boolean"}'>
3733 True to enable LLDP on this <ref table="Interface"/>. If not
3734 specified, LLDP will be disabled by default.
3735 </column>
3736 </group>
3737
3738 <group title="Flow control Configuration">
3739 <p>
3740 Ethernet flow control defined in IEEE 802.1Qbb provides link level flow
3741 control using MAC pause frames. Implemented only for interfaces with
3742 type <code>dpdk</code>.
3743 </p>
3744
3745 <column name="options" key="rx-flow-ctrl" type='{"type": "boolean"}'>
3746 Set to <code>true</code> to enable Rx flow control on physical ports.
3747 By default, Rx flow control is disabled.
3748 </column>
3749
3750 <column name="options" key="tx-flow-ctrl" type='{"type": "boolean"}'>
3751 Set to <code>true</code> to enable Tx flow control on physical ports.
3752 By default, Tx flow control is disabled.
3753 </column>
3754
3755 <column name="options" key="flow-ctrl-autoneg"
3756 type='{"type": "boolean"}'>
3757 Set to <code>true</code> to enable flow control auto negotiation on
3758 physical ports. By default, auto-neg is disabled.
3759 </column>
3760 </group>
3761
3762 <group title="Link State Change detection mode">
3763 <column name="options" key="dpdk-lsc-interrupt"
3764 type='{"type": "boolean"}'>
3765 <p>
3766 Set this value to <code>true</code> to configure interrupt mode for
3767 Link State Change (LSC) detection instead of poll mode for the DPDK
3768 interface.
3769 </p>
3770 <p>
3771 If this value is not set, poll mode is configured.
3772 </p>
3773 <p>
3774 This parameter has an effect only on netdev dpdk interfaces.
3775 </p>
3776 </column>
3777 </group>
3778
3779 <group title="Common Columns">
3780 The overall purpose of these columns is described under <code>Common
3781 Columns</code> at the beginning of this document.
3782
3783 <column name="other_config"/>
3784 <column name="external_ids"/>
3785 </group>
3786 </table>
3787
3788 <table name="Flow_Table" title="OpenFlow table configuration">
3789 <p>Configuration for a particular OpenFlow table.</p>
3790
3791 <column name="name">
3792 The table's name. Set this column to change the name that controllers
3793 will receive when they request table statistics, e.g. <code>ovs-ofctl
3794 dump-tables</code>. The name does not affect switch behavior.
3795 </column>
3796
3797 <group title="Eviction Policy">
3798 <p>
3799 Open vSwitch supports limiting the number of flows that may be
3800 installed in a flow table, via the <ref column="flow_limit"/> column.
3801 When adding a flow would exceed this limit, by default Open vSwitch
3802 reports an error, but there are two ways to configure Open vSwitch to
3803 instead delete (``evict'') a flow to make room for the new one:
3804 </p>
3805
3806 <ul>
3807 <li>
3808 Set the <ref column="overflow_policy"/> column to <code>evict</code>.
3809 </li>
3810
3811 <li>
3812 Send an OpenFlow 1.4+ ``table mod request'' to enable eviction for
3813 the flow table (e.g. <code>ovs-ofctl -O OpenFlow14 mod-table br0 0
3814 evict</code> to enable eviction on flow table 0 of bridge
3815 <code>br0</code>).
3816 </li>
3817 </ul>
3818
3819 <p>
3820 When a flow must be evicted due to overflow, the flow to evict is
3821 chosen through an approximation of the following algorithm. This
3822 algorithm is used regardless of how eviction was enabled:
3823 </p>
3824
3825 <ol>
3826 <li>
3827 Divide the flows in the table into groups based on the values of the
3828 fields or subfields specified in the <ref column="groups"/> column,
3829 so that all of the flows in a given group have the same values for
3830 those fields. If a flow does not specify a given field, that field's
3831 value is treated as 0. If <ref column="groups"/> is empty, then all
3832 of the flows in the flow table are treated as a single group.
3833 </li>
3834
3835 <li>
3836 Consider the flows in the largest group, that is, the group that
3837 contains the greatest number of flows. If two or more groups all
3838 have the same largest number of flows, consider the flows in all of
3839 those groups.
3840 </li>
3841
3842 <li>
3843 If the flows under consideration have different importance values,
3844 eliminate from consideration any flows except those with the lowest
3845 importance. (``Importance,'' a 16-bit integer value attached to each
3846 flow, was introduced in OpenFlow 1.4. Flows inserted with older
3847 versions of OpenFlow always have an importance of 0.)
3848 </li>
3849
3850 <li>
3851 Among the flows under consideration, choose the flow that expires
3852 soonest for eviction.
3853 </li>
3854 </ol>
3855
3856 <p>
3857 The eviction process only considers flows that have an idle timeout
3858 or a hard timeout. That is, eviction never deletes permanent flows.
3859 (Permanent flows do count against <ref column="flow_limit"/>.)
3860 </p>
3861
3862 <column name="flow_limit">
3863 If set, limits the number of flows that may be added to the table.
3864 Open vSwitch may limit the number of flows in a table for other
3865 reasons, e.g. due to hardware limitations or for resource availability
3866 or performance reasons.
3867 </column>
3868
3869 <column name="overflow_policy">
3870 <p>
3871 Controls the switch's behavior when an OpenFlow flow table
3872 modification request would add flows in excess of <ref
3873 column="flow_limit"/>. The supported values are:
3874 </p>
3875
3876 <dl>
3877 <dt><code>refuse</code></dt>
3878 <dd>
3879 Refuse to add the flow or flows. This is also the default policy
3880 when <ref column="overflow_policy"/> is unset.
3881 </dd>
3882
3883 <dt><code>evict</code></dt>
3884 <dd>
3885 Delete a flow chosen according to the algorithm described above.
3886 </dd>
3887 </dl>
3888 </column>
3889
3890 <column name="groups">
3891 <p>
3892 When <ref column="overflow_policy"/> is <code>evict</code>, this
3893 controls how flows are chosen for eviction when the flow table would
3894 otherwise exceed <ref column="flow_limit"/> flows. Its value is a
3895 set of NXM fields or sub-fields, each of which takes one of the forms
3896 <code><var>field</var>[]</code> or
3897 <code><var>field</var>[<var>start</var>..<var>end</var>]</code>,
3898 e.g. <code>NXM_OF_IN_PORT[]</code>. Please see
3899 <code>meta-flow.h</code> for a complete list of NXM field names.
3900 </p>
3901
3902 <p>
3903 Open vSwitch ignores any invalid or unknown field specifications.
3904 </p>
3905
3906 <p>
3907 When eviction is not enabled, via <ref column="overflow_policy"/> or
3908 an OpenFlow 1.4+ ``table mod,'' this column has no effect.
3909 </p>
3910 </column>
3911 </group>
3912
3913 <group title="Classifier Optimization">
3914 <column name="prefixes">
3915 <p>
3916 This string set specifies which fields should be used for
3917 address prefix tracking. Prefix tracking allows the
3918 classifier to skip rules with longer than necessary prefixes,
3919 resulting in better wildcarding for datapath flows.
3920 </p>
3921 <p>
3922 Prefix tracking may be beneficial when a flow table contains
3923 matches on IP address fields with different prefix lengths.
3924 For example, when a flow table contains IP address matches on
3925 both full addresses and proper prefixes, the full address
3926 matches will typically cause the datapath flow to un-wildcard
3927 the whole address field (depending on flow entry priorities).
3928 In this case each packet with a different address gets handed
3929 to the userspace for flow processing and generates its own
3930 datapath flow. With prefix tracking enabled for the address
3931 field in question packets with addresses matching shorter
3932 prefixes would generate datapath flows where the irrelevant
3933 address bits are wildcarded, allowing the same datapath flow
3934 to handle all the packets within the prefix in question. In
3935 this case many userspace upcalls can be avoided and the
3936 overall performance can be better.
3937 </p>
3938 <p>
3939 This is a performance optimization only, so packets will
3940 receive the same treatment with or without prefix tracking.
3941 </p>
3942 <p>
3943 The supported fields are: <code>tun_id</code>,
3944 <code>tun_src</code>, <code>tun_dst</code>,
3945 <code>tun_ipv6_src</code>, <code>tun_ipv6_dst</code>,
3946 <code>nw_src</code>, <code>nw_dst</code> (or aliases
3947 <code>ip_src</code> and <code>ip_dst</code>),
3948 <code>ipv6_src</code>, and <code>ipv6_dst</code>. (Using this
3949 feature for <code>tun_id</code> would only make sense if the
3950 tunnel IDs have prefix structure similar to IP addresses.)
3951 </p>
3952
3953 <p>
3954 By default, the <code>prefixes=ip_dst,ip_src</code> are used
3955 on each flow table. This instructs the flow classifier to
3956 track the IP destination and source addresses used by the
3957 rules in this specific flow table.
3958 </p>
3959
3960 <p>
3961 The keyword <code>none</code> is recognized as an explicit
3962 override of the default values, causing no prefix fields to be
3963 tracked.
3964 </p>
3965
3966 <p>
3967 To set the prefix fields, the flow table record needs to
3968 exist:
3969 </p>
3970
3971 <dl>
3972 <dt><code>ovs-vsctl set Bridge br0 flow_tables:0=@N1 -- --id=@N1 create Flow_Table name=table0</code></dt>
3973 <dd>
3974 Creates a flow table record for the OpenFlow table number 0.
3975 </dd>
3976
3977 <dt><code>ovs-vsctl set Flow_Table table0 prefixes=ip_dst,ip_src</code></dt>
3978 <dd>
3979 Enables prefix tracking for IP source and destination
3980 address fields.
3981 </dd>
3982 </dl>
3983
3984 <p>
3985 There is a maximum number of fields that can be enabled for any
3986 one flow table. Currently this limit is 3.
3987 </p>
3988 </column>
3989 </group>
3990
3991 <group title="Common Columns">
3992 The overall purpose of these columns is described under <code>Common
3993 Columns</code> at the beginning of this document.
3994
3995 <column name="external_ids"/>
3996 </group>
3997 </table>
3998
3999 <table name="QoS" title="Quality of Service configuration">
4000 <p>Quality of Service (QoS) configuration for each Port that
4001 references it.</p>
4002
4003 <column name="type">
4004 <p>The type of QoS to implement. The currently defined types are
4005 listed below:</p>
4006 <dl>
4007 <dt><code>linux-htb</code></dt>
4008 <dd>
4009 Linux ``hierarchy token bucket'' classifier. See tc-htb(8) (also at
4010 <code>http://linux.die.net/man/8/tc-htb</code>) and the HTB manual
4011 (<code>http://luxik.cdi.cz/~devik/qos/htb/manual/userg.htm</code>)
4012 for information on how this classifier works and how to configure it.
4013 </dd>
4014
4015 <dt><code>linux-hfsc</code></dt>
4016 <dd>
4017 Linux "Hierarchical Fair Service Curve" classifier.
4018 See <code>http://linux-ip.net/articles/hfsc.en/</code> for
4019 information on how this classifier works.
4020 </dd>
4021
4022 <dt><code>linux-sfq</code></dt>
4023 <dd>
4024 Linux ``Stochastic Fairness Queueing'' classifier. See
4025 <code>tc-sfq</code>(8) (also at
4026 <code>http://linux.die.net/man/8/tc-sfq</code>) for information on
4027 how this classifier works.
4028 </dd>
4029
4030 <dt><code>linux-codel</code></dt>
4031 <dd>
4032 Linux ``Controlled Delay'' classifier. See <code>tc-codel</code>(8)
4033 (also at
4034 <code>http://man7.org/linux/man-pages/man8/tc-codel.8.html</code>)
4035 for information on how this classifier works.
4036 </dd>
4037
4038 <dt><code>linux-fq_codel</code></dt>
4039 <dd>
4040 Linux ``Fair Queuing with Controlled Delay'' classifier. See
4041 <code>tc-fq_codel</code>(8) (also at
4042 <code>http://man7.org/linux/man-pages/man8/tc-fq_codel.8.html</code>)
4043 for information on how this classifier works.
4044 </dd>
4045
4046 <dt><code>linux-noop</code></dt>
4047 <dd>
4048 Linux ``No operation.'' By default, Open vSwitch manages quality of
4049 service on all of its configured ports. This can be helpful, but
4050 sometimes administrators prefer to use other software to manage QoS.
4051 This <ref column="type"/> prevents Open vSwitch from changing the QoS
4052 configuration for a port.
4053 </dd>
4054
4055 <dt><code>egress-policer</code></dt>
4056 <dd>
4057 A DPDK egress policer algorithm using the DPDK
4058 rte_meter library. The rte_meter library provides an implementation
4059 which allows the metering and policing of traffic. The implementation
4060 in OVS essentially creates a single token bucket used to police
4061 traffic. It should be noted that when the rte_meter is configured as
4062 part of QoS there will be a performance overhead as the rte_meter
4063 itself will consume CPU cycles in order to police traffic. These CPU
4064 cycles ordinarily are used for packet proccessing. As such the drop
4065 in performance will be noticed in terms of overall aggregate traffic
4066 throughput.
4067 </dd>
4068 </dl>
4069 </column>
4070
4071 <column name="queues">
4072 <p>A map from queue numbers to <ref table="Queue"/> records. The
4073 supported range of queue numbers depend on <ref column="type"/>. The
4074 queue numbers are the same as the <code>queue_id</code> used in
4075 OpenFlow in <code>struct ofp_action_enqueue</code> and other
4076 structures.</p>
4077
4078 <p>
4079 Queue 0 is the ``default queue.'' It is used by OpenFlow output
4080 actions when no specific queue has been set. When no configuration for
4081 queue 0 is present, it is automatically configured as if a <ref
4082 table="Queue"/> record with empty <ref table="Queue" column="dscp"/>
4083 and <ref table="Queue" column="other_config"/> columns had been
4084 specified.
4085 (Before version 1.6, Open vSwitch would leave queue 0 unconfigured in
4086 this case. With some queuing disciplines, this dropped all packets
4087 destined for the default queue.)
4088 </p>
4089 </column>
4090
4091 <group title="Configuration for linux-htb and linux-hfsc">
4092 <p>
4093 The <code>linux-htb</code> and <code>linux-hfsc</code> classes support
4094 the following key-value pair:
4095 </p>
4096
4097 <column name="other_config" key="max-rate" type='{"type": "integer"}'>
4098 Maximum rate shared by all queued traffic, in bit/s. Optional. If not
4099 specified, for physical interfaces, the default is the link rate. For
4100 other interfaces or if the link rate cannot be determined, the default
4101 is currently 100 Mbps.
4102 </column>
4103 </group>
4104
4105 <group title="Configuration for egress-policer QoS">
4106 <p>
4107 <ref table="QoS"/> <ref table="QoS" column="type"/>
4108 <code>egress-policer</code> provides egress policing for userspace
4109 port types with DPDK.
4110
4111 It has the following key-value pairs defined.
4112 </p>
4113
4114 <column name="other_config" key="cir" type='{"type": "integer"}'>
4115 The Committed Information Rate (CIR) is measured in bytes of IP
4116 packets per second, i.e. it includes the IP header, but not link
4117 specific (e.g. Ethernet) headers. This represents the bytes per second
4118 rate at which the token bucket will be updated. The cir value is
4119 calculated by (pps x packet data size). For example assuming a user
4120 wishes to limit a stream consisting of 64 byte packets to 1 million
4121 packets per second the CIR would be set to to to 46000000. This value
4122 can be broken into '1,000,000 x 46'. Where 1,000,000 is the policing
4123 rate for the number of packets per second and 46 represents the size
4124 of the packet data for a 64 byte ip packet.
4125 </column>
4126 <column name="other_config" key="cbs" type='{"type": "integer"}'>
4127 The Committed Burst Size (CBS) is measured in bytes and represents a
4128 token bucket. At a minimum this value should be be set to the expected
4129 largest size packet in the traffic stream. In practice larger values
4130 may be used to increase the size of the token bucket. If a packet can
4131 be transmitted then the cbs will be decremented by the number of
4132 bytes/tokens of the packet. If there are not enough tokens in the cbs
4133 bucket the packet will be dropped.
4134 </column>
4135 </group>
4136
4137 <group title="Configuration for linux-sfq">
4138 <p>
4139 The <code>linux-sfq</code> QoS supports the following key-value pairs:
4140 </p>
4141
4142 <column name="other_config" key="perturb" type='{"type": "integer"}'>
4143 Number of seconds between consecutive perturbations in hashing algorithm.
4144 Different flows can end up in the same hash bucket causing unfairness.
4145 Perturbation's goal is to remove possible unfairness.
4146 The default and recommended value is 10. Too low a value is discouraged
4147 because each perturbation can cause packet reordering.
4148 </column>
4149 <column name="other_config" key="quantum" type='{"type": "integer"}'>
4150 Number of bytes <code>linux-sfq</code> QoS can dequeue in one turn in
4151 round-robin from one flow. The default and recommended value is equal
4152 to interface's MTU.
4153 </column>
4154 </group>
4155
4156 <group title="Common Columns">
4157 The overall purpose of these columns is described under <code>Common
4158 Columns</code> at the beginning of this document.
4159
4160 <column name="other_config"/>
4161 <column name="external_ids"/>
4162 </group>
4163 </table>
4164
4165 <table name="Queue" title="QoS output queue.">
4166 <p>A configuration for a port output queue, used in configuring Quality of
4167 Service (QoS) features. May be referenced by <ref column="queues"
4168 table="QoS"/> column in <ref table="QoS"/> table.</p>
4169
4170 <column name="dscp">
4171 If set, Open vSwitch will mark all traffic egressing this
4172 <ref table="Queue"/> with the given DSCP bits. Traffic egressing the
4173 default <ref table="Queue"/> is only marked if it was explicitly selected
4174 as the <ref table="Queue"/> at the time the packet was output. If unset,
4175 the DSCP bits of traffic egressing this <ref table="Queue"/> will remain
4176 unchanged.
4177 </column>
4178
4179 <group title="Configuration for linux-htb QoS">
4180 <p>
4181 <ref table="QoS"/> <ref table="QoS" column="type"/>
4182 <code>linux-htb</code> may use <code>queue_id</code>s less than 61440.
4183 It has the following key-value pairs defined.
4184 </p>
4185
4186 <column name="other_config" key="min-rate"
4187 type='{"type": "integer", "minInteger": 1}'>
4188 Minimum guaranteed bandwidth, in bit/s.
4189 </column>
4190
4191 <column name="other_config" key="max-rate"
4192 type='{"type": "integer", "minInteger": 1}'>
4193 Maximum allowed bandwidth, in bit/s. Optional. If specified, the
4194 queue's rate will not be allowed to exceed the specified value, even
4195 if excess bandwidth is available. If unspecified, defaults to no
4196 limit.
4197 </column>
4198
4199 <column name="other_config" key="burst"
4200 type='{"type": "integer", "minInteger": 1}'>
4201 Burst size, in bits. This is the maximum amount of ``credits'' that a
4202 queue can accumulate while it is idle. Optional. Details of the
4203 <code>linux-htb</code> implementation require a minimum burst size, so
4204 a too-small <code>burst</code> will be silently ignored.
4205 </column>
4206
4207 <column name="other_config" key="priority"
4208 type='{"type": "integer", "minInteger": 0, "maxInteger": 4294967295}'>
4209 A queue with a smaller <code>priority</code> will receive all the
4210 excess bandwidth that it can use before a queue with a larger value
4211 receives any. Specific priority values are unimportant; only relative
4212 ordering matters. Defaults to 0 if unspecified.
4213 </column>
4214 </group>
4215
4216 <group title="Configuration for linux-hfsc QoS">
4217 <p>
4218 <ref table="QoS"/> <ref table="QoS" column="type"/>
4219 <code>linux-hfsc</code> may use <code>queue_id</code>s less than 61440.
4220 It has the following key-value pairs defined.
4221 </p>
4222
4223 <column name="other_config" key="min-rate"
4224 type='{"type": "integer", "minInteger": 1}'>
4225 Minimum guaranteed bandwidth, in bit/s.
4226 </column>
4227
4228 <column name="other_config" key="max-rate"
4229 type='{"type": "integer", "minInteger": 1}'>
4230 Maximum allowed bandwidth, in bit/s. Optional. If specified, the
4231 queue's rate will not be allowed to exceed the specified value, even if
4232 excess bandwidth is available. If unspecified, defaults to no
4233 limit.
4234 </column>
4235 </group>
4236
4237 <group title="Common Columns">
4238 The overall purpose of these columns is described under <code>Common
4239 Columns</code> at the beginning of this document.
4240
4241 <column name="other_config"/>
4242 <column name="external_ids"/>
4243 </group>
4244 </table>
4245
4246 <table name="Mirror" title="Port mirroring.">
4247 <p>A port mirror within a <ref table="Bridge"/>.</p>
4248 <p>A port mirror configures a bridge to send selected frames to special
4249 ``mirrored'' ports, in addition to their normal destinations. Mirroring
4250 traffic may also be referred to as SPAN or RSPAN, depending on how
4251 the mirrored traffic is sent.</p>
4252
4253 <p>
4254 When a packet enters an Open vSwitch bridge, it becomes eligible for
4255 mirroring based on its ingress port and VLAN. As the packet travels
4256 through the flow tables, each time it is output to a port, it becomes
4257 eligible for mirroring based on the egress port and VLAN. In Open
4258 vSwitch 2.5 and later, mirroring occurs just after a packet first becomes
4259 eligible, using the packet as it exists at that point; in Open vSwitch
4260 2.4 and earlier, mirroring occurs only after a packet has traversed all
4261 the flow tables, using the original packet as it entered the bridge.
4262 This makes a difference only when the flow table modifies the packet: in
4263 Open vSwitch 2.4, the modifications are never visible to mirrors, whereas
4264 in Open vSwitch 2.5 and later modifications made before the first output
4265 that makes it eligible for mirroring to a particular destination are
4266 visible.
4267 </p>
4268
4269 <p>
4270 A packet that enters an Open vSwitch bridge is mirrored to a particular
4271 destination only once, even if it is eligible for multiple reasons. For
4272 example, a packet would be mirrored to a particular <ref
4273 column="output_port"/> only once, even if it is selected for mirroring to
4274 that port by <ref column="select_dst_port"/> and <ref
4275 column="select_src_port"/> in the same or different <ref table="Mirror"/>
4276 records.
4277 </p>
4278
4279 <column name="name">
4280 Arbitrary identifier for the <ref table="Mirror"/>.
4281 </column>
4282
4283 <group title="Selecting Packets for Mirroring">
4284 <p>
4285 To be selected for mirroring, a given packet must enter or leave the
4286 bridge through a selected port and it must also be in one of the
4287 selected VLANs.
4288 </p>
4289
4290 <column name="select_all">
4291 If true, every packet arriving or departing on any port is
4292 selected for mirroring.
4293 </column>
4294
4295 <column name="select_dst_port">
4296 Ports on which departing packets are selected for mirroring.
4297 </column>
4298
4299 <column name="select_src_port">
4300 Ports on which arriving packets are selected for mirroring.
4301 </column>
4302
4303 <column name="select_vlan">
4304 VLANs on which packets are selected for mirroring. An empty set
4305 selects packets on all VLANs.
4306 </column>
4307 </group>
4308
4309 <group title="Mirroring Destination Configuration">
4310 <p>
4311 These columns are mutually exclusive. Exactly one of them must be
4312 nonempty.
4313 </p>
4314
4315 <column name="output_port">
4316 <p>Output port for selected packets, if nonempty.</p>
4317 <p>Specifying a port for mirror output reserves that port exclusively
4318 for mirroring. No frames other than those selected for mirroring
4319 via this column
4320 will be forwarded to the port, and any frames received on the port
4321 will be discarded.</p>
4322 <p>
4323 The output port may be any kind of port supported by Open vSwitch.
4324 It may be, for example, a physical port (sometimes called SPAN) or a
4325 GRE tunnel.
4326 </p>
4327 </column>
4328
4329 <column name="output_vlan">
4330 <p>Output VLAN for selected packets, if nonempty.</p>
4331 <p>The frames will be sent out all ports that trunk
4332 <ref column="output_vlan"/>, as well as any ports with implicit VLAN
4333 <ref column="output_vlan"/>. When a mirrored frame is sent out a
4334 trunk port, the frame's VLAN tag will be set to
4335 <ref column="output_vlan"/>, replacing any existing tag; when it is
4336 sent out an implicit VLAN port, the frame will not be tagged. This
4337 type of mirroring is sometimes called RSPAN.</p>
4338 <p>
4339 See the documentation for
4340 <ref column="other_config" key="forward-bpdu"/> in the
4341 <ref table="Interface"/> table for a list of destination MAC
4342 addresses which will not be mirrored to a VLAN to avoid confusing
4343 switches that interpret the protocols that they represent.
4344 </p>
4345 <p><em>Please note:</em> Mirroring to a VLAN can disrupt a network that
4346 contains unmanaged switches. Consider an unmanaged physical switch
4347 with two ports: port 1, connected to an end host, and port 2,
4348 connected to an Open vSwitch configured to mirror received packets
4349 into VLAN 123 on port 2. Suppose that the end host sends a packet on
4350 port 1 that the physical switch forwards to port 2. The Open vSwitch
4351 forwards this packet to its destination and then reflects it back on
4352 port 2 in VLAN 123. This reflected packet causes the unmanaged
4353 physical switch to replace the MAC learning table entry, which
4354 correctly pointed to port 1, with one that incorrectly points to port
4355 2. Afterward, the physical switch will direct packets destined for
4356 the end host to the Open vSwitch on port 2, instead of to the end
4357 host on port 1, disrupting connectivity. If mirroring to a VLAN is
4358 desired in this scenario, then the physical switch must be replaced
4359 by one that learns Ethernet addresses on a per-VLAN basis. In
4360 addition, learning should be disabled on the VLAN containing mirrored
4361 traffic. If this is not done then intermediate switches will learn
4362 the MAC address of each end host from the mirrored traffic. If
4363 packets being sent to that end host are also mirrored, then they will
4364 be dropped since the switch will attempt to send them out the input
4365 port. Disabling learning for the VLAN will cause the switch to
4366 correctly send the packet out all ports configured for that VLAN. If
4367 Open vSwitch is being used as an intermediate switch, learning can be
4368 disabled by adding the mirrored VLAN to <ref column="flood_vlans"/>
4369 in the appropriate <ref table="Bridge"/> table or tables.</p>
4370 <p>
4371 Mirroring to a GRE tunnel has fewer caveats than mirroring to a
4372 VLAN and should generally be preferred.
4373 </p>
4374 </column>
4375
4376 <column name="snaplen">
4377 <p>Maximum per-packet number of bytes to mirror.</p>
4378 <p>A mirrored packet with size larger than <ref column="snaplen"/>
4379 will be truncated in datapath to <ref column="snaplen"/> bytes
4380 before sending to the mirror output port. If omitted, packets
4381 are not truncated.
4382 </p>
4383 </column>
4384 </group>
4385
4386 <group title="Statistics: Mirror counters">
4387 <p>
4388 Key-value pairs that report mirror statistics. The update period
4389 is controlled by <ref column="other_config"
4390 key="stats-update-interval"/> in the <code>Open_vSwitch</code> table.
4391 </p>
4392 <column name="statistics" key="tx_packets">
4393 Number of packets transmitted through this mirror.
4394 </column>
4395 <column name="statistics" key="tx_bytes">
4396 Number of bytes transmitted through this mirror.
4397 </column>
4398 </group>
4399
4400 <group title="Common Columns">
4401 The overall purpose of these columns is described under <code>Common
4402 Columns</code> at the beginning of this document.
4403
4404 <column name="external_ids"/>
4405 </group>
4406 </table>
4407
4408 <table name="Controller" title="OpenFlow controller configuration.">
4409 <p>An OpenFlow controller.</p>
4410
4411 <p>
4412 Open vSwitch supports two kinds of OpenFlow controllers:
4413 </p>
4414
4415 <dl>
4416 <dt>Primary controllers</dt>
4417 <dd>
4418 <p>
4419 This is the kind of controller envisioned by the OpenFlow 1.0
4420 specification. Usually, a primary controller implements a network
4421 policy by taking charge of the switch's flow table.
4422 </p>
4423
4424 <p>
4425 Open vSwitch initiates and maintains persistent connections to
4426 primary controllers, retrying the connection each time it fails or
4427 drops. The <ref table="Bridge" column="fail_mode"/> column in the
4428 <ref table="Bridge"/> table applies to primary controllers.
4429 </p>
4430
4431 <p>
4432 Open vSwitch permits a bridge to have any number of primary
4433 controllers. When multiple controllers are configured, Open
4434 vSwitch connects to all of them simultaneously. Because
4435 OpenFlow 1.0 does not specify how multiple controllers
4436 coordinate in interacting with a single switch, more than
4437 one primary controller should be specified only if the
4438 controllers are themselves designed to coordinate with each
4439 other. (The Nicira-defined <code>NXT_ROLE</code> OpenFlow
4440 vendor extension may be useful for this.)
4441 </p>
4442 </dd>
4443 <dt>Service controllers</dt>
4444 <dd>
4445 <p>
4446 These kinds of OpenFlow controller connections are intended for
4447 occasional support and maintenance use, e.g. with
4448 <code>ovs-ofctl</code>. Usually a service controller connects only
4449 briefly to inspect or modify some of a switch's state.
4450 </p>
4451
4452 <p>
4453 Open vSwitch listens for incoming connections from service
4454 controllers. The service controllers initiate and, if necessary,
4455 maintain the connections from their end. The <ref table="Bridge"
4456 column="fail_mode"/> column in the <ref table="Bridge"/> table does
4457 not apply to service controllers.
4458 </p>
4459
4460 <p>
4461 Open vSwitch supports configuring any number of service controllers.
4462 </p>
4463 </dd>
4464 </dl>
4465
4466 <p>
4467 The <ref column="target"/> determines the type of controller.
4468 </p>
4469
4470 <group title="Core Features">
4471 <column name="target">
4472 <p>Connection method for controller.</p>
4473 <p>
4474 The following connection methods are currently supported for primary
4475 controllers:
4476 </p>
4477 <dl>
4478 <dt><code>ssl:<var>host</var></code>[<code>:<var>port</var></code>]</dt>
4479 <dd>
4480 <p>The specified SSL <var>port</var> on the host at the
4481 given <var>host</var>, which can either be a DNS name (if built
4482 with unbound library) or an IP address. The <ref table="Open_vSwitch"
4483 column="ssl"/> column in the <ref table="Open_vSwitch"/> table must
4484 point to a valid SSL configuration when this form is used.</p>
4485 <p>If <var>port</var> is not specified, it defaults to 6653.</p>
4486 <p>SSL support is an optional feature that is not always built as
4487 part of Open vSwitch.</p>
4488 </dd>
4489 <dt><code>tcp:<var>host</var></code>[<code>:<var>port</var></code>]</dt>
4490 <dd>
4491 <p>
4492 The specified TCP <var>port</var> on the host at the given
4493 <var>host</var>, which can either be a DNS name (if built with
4494 unbound library) or an IP address (IPv4 or IPv6). If <var>host</var>
4495 is an IPv6 address, wrap it in square brackets, e.g.
4496 <code>tcp:[::1]:6653</code>.
4497 </p>
4498 <p>
4499 If <var>port</var> is not specified, it defaults to 6653.
4500 </p>
4501 </dd>
4502 </dl>
4503 <p>
4504 The following connection methods are currently supported for service
4505 controllers:
4506 </p>
4507 <dl>
4508 <dt><code>pssl:</code>[<var>port</var>][<code>:<var>host</var></code>]</dt>
4509 <dd>
4510 <p>
4511 Listens for SSL connections on the specified TCP <var>port</var>.
4512 If <var>host</var>, which can either be a DNS name (if built with
4513 unbound library) or an IP address, is specified, then connections
4514 are restricted to the resolved or specified local IP address
4515 (either IPv4 or IPv6). If <var>host</var> is an IPv6 address,
4516 wrap it in square brackets, e.g. <code>pssl:6653:[::1]</code>.
4517 </p>
4518 <p>
4519 If <var>port</var> is not specified, it defaults to
4520 6653. If <var>host</var> is not specified then it listens only on
4521 IPv4 (but not IPv6) addresses. The
4522 <ref table="Open_vSwitch" column="ssl"/>
4523 column in the <ref table="Open_vSwitch"/> table must point to a
4524 valid SSL configuration when this form is used.
4525 </p>
4526 <p>
4527 If <var>port</var> is not specified, it currently to 6653.
4528 </p>
4529 <p>
4530 SSL support is an optional feature that is not always built as
4531 part of Open vSwitch.
4532 </p>
4533 </dd>
4534 <dt><code>ptcp:</code>[<var>port</var>][<code>:<var>host</var></code>]</dt>
4535 <dd>
4536 <p>
4537 Listens for connections on the specified TCP <var>port</var>. If
4538 <var>host</var>, which can either be a DNS name (if built with
4539 unbound library) or an IP address, is specified, then connections
4540 are restricted to the resolved or specified local IP address
4541 (either IPv4 or IPv6). If <var>host</var> is an IPv6 address, wrap
4542 it in square brackets, e.g. <code>ptcp:6653:[::1]</code>. If
4543 <var>host</var> is not specified then it listens only on IPv4
4544 addresses.
4545 </p>
4546 <p>
4547 If <var>port</var> is not specified, it defaults to 6653.
4548 </p>
4549 </dd>
4550 </dl>
4551 <p>When multiple controllers are configured for a single bridge, the
4552 <ref column="target"/> values must be unique. Duplicate
4553 <ref column="target"/> values yield unspecified results.</p>
4554 </column>
4555
4556 <column name="connection_mode">
4557 <p>If it is specified, this setting must be one of the following
4558 strings that describes how Open vSwitch contacts this OpenFlow
4559 controller over the network:</p>
4560
4561 <dl>
4562 <dt><code>in-band</code></dt>
4563 <dd>In this mode, this controller's OpenFlow traffic travels over the
4564 bridge associated with the controller. With this setting, Open
4565 vSwitch allows traffic to and from the controller regardless of the
4566 contents of the OpenFlow flow table. (Otherwise, Open vSwitch
4567 would never be able to connect to the controller, because it did
4568 not have a flow to enable it.) This is the most common connection
4569 mode because it is not necessary to maintain two independent
4570 networks.</dd>
4571 <dt><code>out-of-band</code></dt>
4572 <dd>In this mode, OpenFlow traffic uses a control network separate
4573 from the bridge associated with this controller, that is, the
4574 bridge does not use any of its own network devices to communicate
4575 with the controller. The control network must be configured
4576 separately, before or after <code>ovs-vswitchd</code> is started.
4577 </dd>
4578 </dl>
4579
4580 <p>If not specified, the default is implementation-specific.</p>
4581 </column>
4582 </group>
4583
4584 <group title="Controller Failure Detection and Handling">
4585 <column name="max_backoff">
4586 Maximum number of milliseconds to wait between connection attempts.
4587 Default is implementation-specific.
4588 </column>
4589
4590 <column name="inactivity_probe">
4591 Maximum number of milliseconds of idle time on connection to
4592 controller before sending an inactivity probe message. If Open
4593 vSwitch does not communicate with the controller for the specified
4594 number of seconds, it will send a probe. If a response is not
4595 received for the same additional amount of time, Open vSwitch
4596 assumes the connection has been broken and attempts to reconnect.
4597 Default is implementation-specific. A value of 0 disables
4598 inactivity probes.
4599 </column>
4600 </group>
4601
4602 <group title="Asynchronous Messages">
4603 <p>
4604 OpenFlow switches send certain messages to controllers spontanenously,
4605 that is, not in response to any request from the controller. These
4606 messages are called ``asynchronous messages.'' These columns allow
4607 asynchronous messages to be limited or disabled to ensure the best use
4608 of network resources.
4609 </p>
4610
4611 <column name="enable_async_messages">
4612 The OpenFlow protocol enables asynchronous messages at time of
4613 connection establishment, which means that a controller can receive
4614 asynchronous messages, potentially many of them, even if it turns them
4615 off immediately after connecting. Set this column to
4616 <code>false</code> to change Open vSwitch behavior to disable, by
4617 default, all asynchronous messages. The controller can use the
4618 <code>NXT_SET_ASYNC_CONFIG</code> Nicira extension to OpenFlow to turn
4619 on any messages that it does want to receive, if any.
4620 </column>
4621
4622 <group title="Controller Rate Limiting">
4623 <p>
4624 A switch can forward packets to a controller over the OpenFlow
4625 protocol. Forwarding packets this way at too high a rate can
4626 overwhelm a controller, frustrate use of the OpenFlow connection for
4627 other purposes, increase the latency of flow setup, and use an
4628 unreasonable amount of bandwidth. Therefore, Open vSwitch supports
4629 limiting the rate of packet forwarding to a controller.
4630 </p>
4631
4632 <p>
4633 There are two main reasons in OpenFlow for a packet to be sent to a
4634 controller: either the packet ``misses'' in the flow table, that is,
4635 there is no matching flow, or a flow table action says to send the
4636 packet to the controller. Open vSwitch limits the rate of each kind
4637 of packet separately at the configured rate. Therefore, the actual
4638 rate that packets are sent to the controller can be up to twice the
4639 configured rate, when packets are sent for both reasons.
4640 </p>
4641
4642 <p>
4643 This feature is specific to forwarding packets over an OpenFlow
4644 connection. It is not general-purpose QoS. See the <ref
4645 table="QoS"/> table for quality of service configuration, and <ref
4646 column="ingress_policing_rate" table="Interface"/> in the <ref
4647 table="Interface"/> table for ingress policing configuration.
4648 </p>
4649
4650 <column name="controller_rate_limit">
4651 <p>
4652 The maximum rate at which the switch will forward packets to the
4653 OpenFlow controller, in packets per second. If no value is
4654 specified, rate limiting is disabled.
4655 </p>
4656 </column>
4657
4658 <column name="controller_burst_limit">
4659 <p>
4660 When a high rate triggers rate-limiting, Open vSwitch queues
4661 packets to the controller for each port and transmits them to the
4662 controller at the configured rate. This value limits the number of
4663 queued packets. Ports on a bridge share the packet queue fairly.
4664 </p>
4665
4666 <p>
4667 This value has no effect unless <ref
4668 column="controller_rate_limit"/> is configured. The current
4669 default when this value is not specified is one-quarter of <ref
4670 column="controller_rate_limit"/>, meaning that queuing can delay
4671 forwarding a packet to the controller by up to 250 ms.
4672 </p>
4673 </column>
4674
4675 <group title="Controller Rate Limiting Statistics">
4676 <p>
4677 These values report the effects of rate limiting. Their values are
4678 relative to establishment of the most recent OpenFlow connection,
4679 or since rate limiting was enabled, whichever happened more
4680 recently. Each consists of two values, one with <code>TYPE</code>
4681 replaced by <code>miss</code> for rate limiting flow table misses,
4682 and the other with <code>TYPE</code> replaced by
4683 <code>action</code> for rate limiting packets sent by OpenFlow
4684 actions.
4685 </p>
4686
4687 <p>
4688 These statistics are reported only when controller rate limiting is
4689 enabled.
4690 </p>
4691
4692 <column name="status" key="packet-in-TYPE-bypassed"
4693 type='{"type": "integer", "minInteger": 0}'>
4694 Number of packets sent directly to the controller, without queuing,
4695 because the rate did not exceed the configured maximum.
4696 </column>
4697
4698 <column name="status" key="packet-in-TYPE-queued"
4699 type='{"type": "integer", "minInteger": 0}'>
4700 Number of packets added to the queue to send later.
4701 </column>
4702
4703 <column name="status" key="packet-in-TYPE-dropped"
4704 type='{"type": "integer", "minInteger": 0}'>
4705 Number of packets added to the queue that were later dropped due to
4706 overflow. This value is less than or equal to <ref column="status"
4707 key="packet-in-TYPE-queued"/>.
4708 </column>
4709
4710 <column name="status" key="packet-in-TYPE-backlog"
4711 type='{"type": "integer", "minInteger": 0}'>
4712 Number of packets currently queued. The other statistics increase
4713 monotonically, but this one fluctuates between 0 and the <ref
4714 column="controller_burst_limit"/> as conditions change.
4715 </column>
4716 </group>
4717 </group>
4718 </group>
4719
4720 <group title="Additional In-Band Configuration">
4721 <p>These values are considered only in in-band control mode (see
4722 <ref column="connection_mode"/>).</p>
4723
4724 <p>When multiple controllers are configured on a single bridge, there
4725 should be only one set of unique values in these columns. If different
4726 values are set for these columns in different controllers, the effect
4727 is unspecified.</p>
4728
4729 <column name="local_ip">
4730 The IP address to configure on the local port,
4731 e.g. <code>192.168.0.123</code>. If this value is unset, then
4732 <ref column="local_netmask"/> and <ref column="local_gateway"/> are
4733 ignored.
4734 </column>
4735
4736 <column name="local_netmask">
4737 The IP netmask to configure on the local port,
4738 e.g. <code>255.255.255.0</code>. If <ref column="local_ip"/> is set
4739 but this value is unset, then the default is chosen based on whether
4740 the IP address is class A, B, or C.
4741 </column>
4742
4743 <column name="local_gateway">
4744 The IP address of the gateway to configure on the local port, as a
4745 string, e.g. <code>192.168.0.1</code>. Leave this column unset if
4746 this network has no gateway.
4747 </column>
4748 </group>
4749
4750 <group title="Controller Status">
4751 <column name="is_connected">
4752 <code>true</code> if currently connected to this controller,
4753 <code>false</code> otherwise.
4754 </column>
4755
4756 <column name="role"
4757 type='{"type": "string", "enum": ["set", ["other", "master", "slave"]]}'>
4758 <p>The level of authority this controller has on the associated
4759 bridge. Possible values are:</p>
4760 <dl>
4761 <dt><code>other</code></dt>
4762 <dd>Allows the controller access to all OpenFlow features.</dd>
4763 <dt><code>master</code></dt>
4764 <dd>Equivalent to <code>other</code>, except that there may be at
4765 most one master controller at a time. When a controller configures
4766 itself as <code>master</code>, any existing master is demoted to
4767 the <code>slave</code> role.</dd>
4768 <dt><code>slave</code></dt>
4769 <dd>Allows the controller read-only access to OpenFlow features.
4770 Attempts to modify the flow table will be rejected with an
4771 error. Slave controllers do not receive OFPT_PACKET_IN or
4772 OFPT_FLOW_REMOVED messages, but they do receive OFPT_PORT_STATUS
4773 messages.</dd>
4774 </dl>
4775 </column>
4776
4777 <column name="status" key="last_error">
4778 A human-readable description of the last error on the connection
4779 to the controller; i.e. <code>strerror(errno)</code>. This key
4780 will exist only if an error has occurred.
4781 </column>
4782
4783 <column name="status" key="state"
4784 type='{"type": "string", "enum": ["set", ["VOID", "BACKOFF", "CONNECTING", "ACTIVE", "IDLE"]]}'>
4785 <p>
4786 The state of the connection to the controller:
4787 </p>
4788 <dl>
4789 <dt><code>VOID</code></dt>
4790 <dd>Connection is disabled.</dd>
4791
4792 <dt><code>BACKOFF</code></dt>
4793 <dd>Attempting to reconnect at an increasing period.</dd>
4794
4795 <dt><code>CONNECTING</code></dt>
4796 <dd>Attempting to connect.</dd>
4797
4798 <dt><code>ACTIVE</code></dt>
4799 <dd>Connected, remote host responsive.</dd>
4800
4801 <dt><code>IDLE</code></dt>
4802 <dd>Connection is idle. Waiting for response to keep-alive.</dd>
4803 </dl>
4804 <p>
4805 These values may change in the future. They are provided only for
4806 human consumption.
4807 </p>
4808 </column>
4809
4810 <column name="status" key="sec_since_connect"
4811 type='{"type": "integer", "minInteger": 0}'>
4812 The amount of time since this controller last successfully connected to
4813 the switch (in seconds). Value is empty if controller has never
4814 successfully connected.
4815 </column>
4816
4817 <column name="status" key="sec_since_disconnect"
4818 type='{"type": "integer", "minInteger": 1}'>
4819 The amount of time since this controller last disconnected from
4820 the switch (in seconds). Value is empty if controller has never
4821 disconnected.
4822 </column>
4823 </group>
4824
4825 <group title="Connection Parameters">
4826 <p>
4827 Additional configuration for a connection between the controller
4828 and the Open vSwitch.
4829 </p>
4830
4831 <column name="other_config" key="dscp"
4832 type='{"type": "integer"}'>
4833 The Differentiated Service Code Point (DSCP) is specified using 6 bits
4834 in the Type of Service (TOS) field in the IP header. DSCP provides a
4835 mechanism to classify the network traffic and provide Quality of
4836 Service (QoS) on IP networks.
4837
4838 The DSCP value specified here is used when establishing the connection
4839 between the controller and the Open vSwitch. If no value is specified,
4840 a default value of 48 is chosen. Valid DSCP values must be in the
4841 range 0 to 63.
4842 </column>
4843 </group>
4844
4845
4846 <group title="Common Columns">
4847 The overall purpose of these columns is described under <code>Common
4848 Columns</code> at the beginning of this document.
4849
4850 <column name="external_ids"/>
4851 <column name="other_config"/>
4852 </group>
4853 </table>
4854
4855 <table name="Manager" title="OVSDB management connection.">
4856 <p>
4857 Configuration for a database connection to an Open vSwitch database
4858 (OVSDB) client.
4859 </p>
4860
4861 <p>
4862 This table primarily configures the Open vSwitch database
4863 (<code>ovsdb-server</code>), not the Open vSwitch switch
4864 (<code>ovs-vswitchd</code>). The switch does read the table to determine
4865 what connections should be treated as in-band.
4866 </p>
4867
4868 <p>
4869 The Open vSwitch database server can initiate and maintain active
4870 connections to remote clients. It can also listen for database
4871 connections.
4872 </p>
4873
4874 <group title="Core Features">
4875 <column name="target">
4876 <p>Connection method for managers.</p>
4877 <p>
4878 The following connection methods are currently supported:
4879 </p>
4880 <dl>
4881 <dt><code>ssl:<var>host</var></code>[<code>:<var>port</var></code>]</dt>
4882 <dd>
4883 <p>
4884 The specified SSL <var>port</var> on the host at the given
4885 <var>host</var>, which can either be a DNS name (if built with
4886 unbound library) or an IP address. The <ref table="Open_vSwitch"
4887 column="ssl"/> column in the <ref table="Open_vSwitch"/>
4888 table must point to a valid SSL configuration when this
4889 form is used.
4890 </p>
4891 <p>
4892 If <var>port</var> is not specified, it defaults to 6640.
4893 </p>
4894 <p>
4895 SSL support is an optional feature that is not always
4896 built as part of Open vSwitch.
4897 </p>
4898 </dd>
4899
4900 <dt><code>tcp:<var>host</var></code>[<code>:<var>port</var></code>]</dt>
4901 <dd>
4902 <p>
4903 The specified TCP <var>port</var> on the host at the given
4904 <var>host</var>, which can either be a DNS name (if built with
4905 unbound library) or an IP address (IPv4 or IPv6). If <var>host</var>
4906 is an IPv6 address, wrap it in square brackets, e.g.
4907 <code>tcp:[::1]:6640</code>.
4908 </p>
4909 <p>
4910 If <var>port</var> is not specified, it defaults to 6640.
4911 </p>
4912 </dd>
4913 <dt><code>pssl:</code>[<var>port</var>][<code>:<var>host</var></code>]</dt>
4914 <dd>
4915 <p>
4916 Listens for SSL connections on the specified TCP <var>port</var>.
4917 Specify 0 for <var>port</var> to have the kernel automatically
4918 choose an available port. If <var>host</var>, which can either
4919 be a DNS name (if built with unbound library) or an IP address,
4920 is specified, then connections are restricted to the resolved or
4921 specified local IP address (either IPv4 or IPv6 address). If
4922 <var>host</var> is an IPv6 address, wrap in square brackets,
4923 e.g. <code>pssl:6640:[::1]</code>. If <var>host</var> is not
4924 specified then it listens only on IPv4 (but not IPv6) addresses.
4925 The <ref table="Open_vSwitch" column="ssl"/> column in the <ref
4926 table="Open_vSwitch"/> table must point to a valid SSL
4927 configuration when this form is used.
4928 </p>
4929 <p>
4930 If <var>port</var> is not specified, it defaults to 6640.
4931 </p>
4932 <p>
4933 SSL support is an optional feature that is not always built as
4934 part of Open vSwitch.
4935 </p>
4936 </dd>
4937 <dt><code>ptcp:</code>[<var>port</var>][<code>:<var>host</var></code>]</dt>
4938 <dd>
4939 <p>
4940 Listens for connections on the specified TCP <var>port</var>.
4941 Specify 0 for <var>port</var> to have the kernel automatically
4942 choose an available port. If <var>host</var>, which can either
4943 be a DNS name (if built with unbound library) or an IP address,
4944 is specified, then connections are restricted to the resolved or
4945 specified local IP address (either IPv4 or IPv6 address). If
4946 <var>host</var> is an IPv6 address, wrap it in square brackets,
4947 e.g. <code>ptcp:6640:[::1]</code>. If <var>host</var> is not
4948 specified then it listens only on IPv4 addresses.
4949 </p>
4950 <p>
4951 If <var>port</var> is not specified, it defaults to 6640.
4952 </p>
4953 </dd>
4954 </dl>
4955 <p>When multiple managers are configured, the <ref column="target"/>
4956 values must be unique. Duplicate <ref column="target"/> values yield
4957 unspecified results.</p>
4958 </column>
4959
4960 <column name="connection_mode">
4961 <p>
4962 If it is specified, this setting must be one of the following strings
4963 that describes how Open vSwitch contacts this OVSDB client over the
4964 network:
4965 </p>
4966
4967 <dl>
4968 <dt><code>in-band</code></dt>
4969 <dd>
4970 In this mode, this connection's traffic travels over a bridge
4971 managed by Open vSwitch. With this setting, Open vSwitch allows
4972 traffic to and from the client regardless of the contents of the
4973 OpenFlow flow table. (Otherwise, Open vSwitch would never be able
4974 to connect to the client, because it did not have a flow to enable
4975 it.) This is the most common connection mode because it is not
4976 necessary to maintain two independent networks.
4977 </dd>
4978 <dt><code>out-of-band</code></dt>
4979 <dd>
4980 In this mode, the client's traffic uses a control network separate
4981 from that managed by Open vSwitch, that is, Open vSwitch does not
4982 use any of its own network devices to communicate with the client.
4983 The control network must be configured separately, before or after
4984 <code>ovs-vswitchd</code> is started.
4985 </dd>
4986 </dl>
4987
4988 <p>
4989 If not specified, the default is implementation-specific.
4990 </p>
4991 </column>
4992 </group>
4993
4994 <group title="Client Failure Detection and Handling">
4995 <column name="max_backoff">
4996 Maximum number of milliseconds to wait between connection attempts.
4997 Default is implementation-specific.
4998 </column>
4999
5000 <column name="inactivity_probe">
5001 Maximum number of milliseconds of idle time on connection to the client
5002 before sending an inactivity probe message. If Open vSwitch does not
5003 communicate with the client for the specified number of seconds, it
5004 will send a probe. If a response is not received for the same
5005 additional amount of time, Open vSwitch assumes the connection has been
5006 broken and attempts to reconnect. Default is implementation-specific.
5007 A value of 0 disables inactivity probes.
5008 </column>
5009 </group>
5010
5011 <group title="Status">
5012 <p>
5013 Key-value pair of <ref column="is_connected"/> is always updated.
5014 Other key-value pairs in the status columns may be updated depends
5015 on the <ref column="target"/> type.
5016 </p>
5017
5018 <p>
5019 When <ref column="target"/> specifies a connection method that
5020 listens for inbound connections (e.g. <code>ptcp:</code> or
5021 <code>punix:</code>), both <ref column="n_connections"/> and
5022 <ref column="is_connected"/> may also be updated while the
5023 remaining key-value pairs are omitted.
5024 </p>
5025
5026 <p>
5027 On the other hand, when <ref column="target"/> specifies an
5028 outbound connection, all key-value pairs may be updated, except
5029 the above-mentioned two key-value pairs associated with inbound
5030 connection targets. They are omitted.
5031 </p>
5032
5033 <column name="is_connected">
5034 <code>true</code> if currently connected to this manager,
5035 <code>false</code> otherwise.
5036 </column>
5037
5038 <column name="status" key="last_error">
5039 A human-readable description of the last error on the connection
5040 to the manager; i.e. <code>strerror(errno)</code>. This key
5041 will exist only if an error has occurred.
5042 </column>
5043
5044 <column name="status" key="state"
5045 type='{"type": "string", "enum": ["set", ["VOID", "BACKOFF", "CONNECTING", "ACTIVE", "IDLE"]]}'>
5046 <p>
5047 The state of the connection to the manager:
5048 </p>
5049 <dl>
5050 <dt><code>VOID</code></dt>
5051 <dd>Connection is disabled.</dd>
5052
5053 <dt><code>BACKOFF</code></dt>
5054 <dd>Attempting to reconnect at an increasing period.</dd>
5055
5056 <dt><code>CONNECTING</code></dt>
5057 <dd>Attempting to connect.</dd>
5058
5059 <dt><code>ACTIVE</code></dt>
5060 <dd>Connected, remote host responsive.</dd>
5061
5062 <dt><code>IDLE</code></dt>
5063 <dd>Connection is idle. Waiting for response to keep-alive.</dd>
5064 </dl>
5065 <p>
5066 These values may change in the future. They are provided only for
5067 human consumption.
5068 </p>
5069 </column>
5070
5071 <column name="status" key="sec_since_connect"
5072 type='{"type": "integer", "minInteger": 0}'>
5073 The amount of time since this manager last successfully connected
5074 to the database (in seconds). Value is empty if manager has never
5075 successfully connected.
5076 </column>
5077
5078 <column name="status" key="sec_since_disconnect"
5079 type='{"type": "integer", "minInteger": 0}'>
5080 The amount of time since this manager last disconnected from the
5081 database (in seconds). Value is empty if manager has never
5082 disconnected.
5083 </column>
5084
5085 <column name="status" key="locks_held">
5086 Space-separated list of the names of OVSDB locks that the connection
5087 holds. Omitted if the connection does not hold any locks.
5088 </column>
5089
5090 <column name="status" key="locks_waiting">
5091 Space-separated list of the names of OVSDB locks that the connection is
5092 currently waiting to acquire. Omitted if the connection is not waiting
5093 for any locks.
5094 </column>
5095
5096 <column name="status" key="locks_lost">
5097 Space-separated list of the names of OVSDB locks that the connection
5098 has had stolen by another OVSDB client. Omitted if no locks have been
5099 stolen from this connection.
5100 </column>
5101
5102 <column name="status" key="n_connections"
5103 type='{"type": "integer", "minInteger": 2}'>
5104 When <ref column="target"/> specifies a connection method that
5105 listens for inbound connections (e.g. <code>ptcp:</code> or
5106 <code>pssl:</code>) and more than one connection is actually active,
5107 the value is the number of active connections. Otherwise, this
5108 key-value pair is omitted.
5109 </column>
5110
5111 <column name="status" key="bound_port" type='{"type": "integer"}'>
5112 When <ref column="target"/> is <code>ptcp:</code> or
5113 <code>pssl:</code>, this is the TCP port on which the OVSDB server is
5114 listening. (This is particularly useful when <ref
5115 column="target"/> specifies a port of 0, allowing the kernel to
5116 choose any available port.)
5117 </column>
5118 </group>
5119
5120 <group title="Connection Parameters">
5121 <p>
5122 Additional configuration for a connection between the manager
5123 and the Open vSwitch Database.
5124 </p>
5125
5126 <column name="other_config" key="dscp"
5127 type='{"type": "integer"}'>
5128 The Differentiated Service Code Point (DSCP) is specified using 6 bits
5129 in the Type of Service (TOS) field in the IP header. DSCP provides a
5130 mechanism to classify the network traffic and provide Quality of
5131 Service (QoS) on IP networks.
5132
5133 The DSCP value specified here is used when establishing the connection
5134 between the manager and the Open vSwitch. If no value is specified, a
5135 default value of 48 is chosen. Valid DSCP values must be in the range
5136 0 to 63.
5137 </column>
5138 </group>
5139
5140 <group title="Common Columns">
5141 The overall purpose of these columns is described under <code>Common
5142 Columns</code> at the beginning of this document.
5143
5144 <column name="external_ids"/>
5145 <column name="other_config"/>
5146 </group>
5147 </table>
5148
5149 <table name="NetFlow">
5150 A NetFlow target. NetFlow is a protocol that exports a number of
5151 details about terminating IP flows, such as the principals involved
5152 and duration.
5153
5154 <column name="targets">
5155 NetFlow targets in the form
5156 <code><var>ip</var>:<var>port</var></code>. The <var>ip</var>
5157 must be specified numerically, not as a DNS name.
5158 </column>
5159
5160 <column name="engine_id">
5161 Engine ID to use in NetFlow messages. Defaults to datapath index
5162 if not specified.
5163 </column>
5164
5165 <column name="engine_type">
5166 Engine type to use in NetFlow messages. Defaults to datapath
5167 index if not specified.
5168 </column>
5169
5170 <column name="active_timeout">
5171 <p>
5172 The interval at which NetFlow records are sent for flows that
5173 are still active, in seconds. A value of <code>0</code>
5174 requests the default timeout (currently 600 seconds); a value
5175 of <code>-1</code> disables active timeouts.
5176 </p>
5177
5178 <p>
5179 The NetFlow passive timeout, for flows that become inactive,
5180 is not configurable. It will vary depending on the Open
5181 vSwitch version, the forms and contents of the OpenFlow flow
5182 tables, CPU and memory usage, and network activity. A typical
5183 passive timeout is about a second.
5184 </p>
5185 </column>
5186
5187 <column name="add_id_to_interface">
5188 <p>If this column's value is <code>false</code>, the ingress and egress
5189 interface fields of NetFlow flow records are derived from OpenFlow port
5190 numbers. When it is <code>true</code>, the 7 most significant bits of
5191 these fields will be replaced by the least significant 7 bits of the
5192 engine id. This is useful because many NetFlow collectors do not
5193 expect multiple switches to be sending messages from the same host, so
5194 they do not store the engine information which could be used to
5195 disambiguate the traffic.</p>
5196 <p>When this option is enabled, a maximum of 508 ports are supported.</p>
5197 </column>
5198
5199 <group title="Common Columns">
5200 The overall purpose of these columns is described under <code>Common
5201 Columns</code> at the beginning of this document.
5202
5203 <column name="external_ids"/>
5204 </group>
5205 </table>
5206
5207 <table name="SSL">
5208 SSL configuration for an Open_vSwitch.
5209
5210 <column name="private_key">
5211 Name of a PEM file containing the private key used as the switch's
5212 identity for SSL connections to the controller.
5213 </column>
5214
5215 <column name="certificate">
5216 Name of a PEM file containing a certificate, signed by the
5217 certificate authority (CA) used by the controller and manager,
5218 that certifies the switch's private key, identifying a trustworthy
5219 switch.
5220 </column>
5221
5222 <column name="ca_cert">
5223 Name of a PEM file containing the CA certificate used to verify
5224 that the switch is connected to a trustworthy controller.
5225 </column>
5226
5227 <column name="bootstrap_ca_cert">
5228 If set to <code>true</code>, then Open vSwitch will attempt to
5229 obtain the CA certificate from the controller on its first SSL
5230 connection and save it to the named PEM file. If it is successful,
5231 it will immediately drop the connection and reconnect, and from then
5232 on all SSL connections must be authenticated by a certificate signed
5233 by the CA certificate thus obtained. <em>This option exposes the
5234 SSL connection to a man-in-the-middle attack obtaining the initial
5235 CA certificate.</em> It may still be useful for bootstrapping.
5236 </column>
5237
5238 <group title="Common Columns">
5239 The overall purpose of these columns is described under <code>Common
5240 Columns</code> at the beginning of this document.
5241
5242 <column name="external_ids"/>
5243 </group>
5244 </table>
5245
5246 <table name="sFlow">
5247 <p>A set of sFlow(R) targets. sFlow is a protocol for remote
5248 monitoring of switches.</p>
5249
5250 <column name="agent">
5251 <p>
5252 Determines the agent address, that is, the IP address reported to
5253 collectors as the source of the sFlow data. It may be an IP address or
5254 the name of a network device. In the latter case, the network device's
5255 IP address is used,
5256 </p>
5257
5258 <p>
5259 If not specified, the agent device is figured from the first target
5260 address and the routing table. If the routing table does not contain a
5261 route to the target, the IP address defaults to the <ref
5262 table="Controller" column="local_ip"/> in the collector's <ref
5263 table="Controller"/>.
5264 </p>
5265
5266 <p>
5267 If an agent IP address cannot be determined, sFlow is disabled.
5268 </p>
5269 </column>
5270
5271 <column name="header">
5272 Number of bytes of a sampled packet to send to the collector.
5273 If not specified, the default is 128 bytes.
5274 </column>
5275
5276 <column name="polling">
5277 Polling rate in seconds to send port statistics to the collector.
5278 If not specified, defaults to 30 seconds.
5279 </column>
5280
5281 <column name="sampling">
5282 Rate at which packets should be sampled and sent to the collector.
5283 If not specified, defaults to 400, which means one out of 400
5284 packets, on average, will be sent to the collector.
5285 </column>
5286
5287 <column name="targets">
5288 sFlow targets in the form
5289 <code><var>ip</var>:<var>port</var></code>.
5290 </column>
5291
5292 <group title="Common Columns">
5293 The overall purpose of these columns is described under <code>Common
5294 Columns</code> at the beginning of this document.
5295
5296 <column name="external_ids"/>
5297 </group>
5298 </table>
5299
5300 <table name="IPFIX">
5301 <p>Configuration for sending packets to IPFIX collectors.</p>
5302
5303 <p>
5304 IPFIX is a protocol that exports a number of details about flows. The
5305 IPFIX implementation in Open vSwitch samples packets at a configurable
5306 rate, extracts flow information from those packets, optionally caches and
5307 aggregates the flow information, and sends the result to one or more
5308 collectors.
5309 </p>
5310
5311 <p>
5312 IPFIX in Open vSwitch can be configured two different ways:
5313 </p>
5314
5315 <ul>
5316 <li>
5317 With <em>per-bridge sampling</em>, Open vSwitch performs IPFIX sampling
5318 automatically on all packets that pass through a bridge. To configure
5319 per-bridge sampling, create an <ref table="IPFIX"/> record and point a
5320 <ref table="Bridge"/> table's <ref table="Bridge" column="ipfix"/>
5321 column to it. The <ref table="Flow_Sample_Collector_Set"/> table is
5322 not used for per-bridge sampling.
5323 </li>
5324
5325 <li>
5326 <p>
5327 With <em>flow-based sampling</em>, <code>sample</code> actions in the
5328 OpenFlow flow table drive IPFIX sampling. See
5329 <code>ovs-ofctl</code>(8) for a description of the
5330 <code>sample</code> action.
5331 </p>
5332
5333 <p>
5334 Flow-based sampling also requires database configuration: create a
5335 <ref table="IPFIX"/> record that describes the IPFIX configuration
5336 and a <ref table="Flow_Sample_Collector_Set"/> record that points to
5337 the <ref table="Bridge"/> whose flow table holds the
5338 <code>sample</code> actions and to <ref table="IPFIX"/> record. The
5339 <ref table="Bridge" column="ipfix"/> in the <ref table="Bridge"/>
5340 table is not used for flow-based sampling.
5341 </p>
5342 </li>
5343 </ul>
5344
5345 <column name="targets">
5346 IPFIX target collectors in the form
5347 <code><var>ip</var>:<var>port</var></code>.
5348 </column>
5349
5350 <column name="cache_active_timeout">
5351 The maximum period in seconds for which an IPFIX flow record is
5352 cached and aggregated before being sent. If not specified,
5353 defaults to 0. If 0, caching is disabled.
5354 </column>
5355
5356 <column name="cache_max_flows">
5357 The maximum number of IPFIX flow records that can be cached at a
5358 time. If not specified, defaults to 0. If 0, caching is
5359 disabled.
5360 </column>
5361
5362 <column name="other_config" key="enable-tunnel-sampling"
5363 type='{"type": "boolean"}'>
5364 <p>
5365 Set to <code>true</code> to enable sampling and reporting tunnel
5366 header 7-tuples in IPFIX flow records. Tunnel sampling is enabled
5367 by default.
5368 </p>
5369
5370 <p>
5371 The following enterprise entities report the sampled tunnel info:
5372 </p>
5373
5374 <dl>
5375 <dt>tunnelType:</dt>
5376 <dd>
5377 <p>ID: 891, and enterprise ID 6876 (VMware).</p>
5378 <p>type: unsigned 8-bit integer.</p>
5379 <p>data type semantics: identifier.</p>
5380 <p>description: Identifier of the layer 2 network overlay network
5381 encapsulation type: 0x01 VxLAN, 0x02 GRE, 0x03 LISP, 0x07 GENEVE.</p>
5382 </dd>
5383 <dt>tunnelKey:</dt>
5384 <dd>
5385 <p>ID: 892, and enterprise ID 6876 (VMware).</p>
5386 <p>type: variable-length octetarray.</p>
5387 <p>data type semantics: identifier.</p>
5388 <p>description: Key which is used for identifying an individual
5389 traffic flow within a VxLAN (24-bit VNI), GENEVE (24-bit VNI),
5390 GRE (32-bit key), or LISP (24-bit instance ID) tunnel. The
5391 key is encoded in this octetarray as a 3-, 4-, or 8-byte integer
5392 ID in network byte order.</p>
5393 </dd>
5394 <dt>tunnelSourceIPv4Address:</dt>
5395 <dd>
5396 <p>ID: 893, and enterprise ID 6876 (VMware).</p>
5397 <p>type: unsigned 32-bit integer.</p>
5398 <p>data type semantics: identifier.</p>
5399 <p>description: The IPv4 source address in the tunnel IP packet
5400 header.</p>
5401 </dd>
5402 <dt>tunnelDestinationIPv4Address:</dt>
5403 <dd>
5404 <p>ID: 894, and enterprise ID 6876 (VMware).</p>
5405 <p>type: unsigned 32-bit integer.</p>
5406 <p>data type semantics: identifier.</p>
5407 <p>description: The IPv4 destination address in the tunnel IP
5408 packet header.</p>
5409 </dd>
5410 <dt>tunnelProtocolIdentifier:</dt>
5411 <dd>
5412 <p>ID: 895, and enterprise ID 6876 (VMware).</p>
5413 <p>type: unsigned 8-bit integer.</p>
5414 <p>data type semantics: identifier.</p>
5415 <p>description: The value of the protocol number in the tunnel
5416 IP packet header. The protocol number identifies the tunnel IP
5417 packet payload type.</p>
5418 </dd>
5419 <dt>tunnelSourceTransportPort:</dt>
5420 <dd>
5421 <p>ID: 896, and enterprise ID 6876 (VMware).</p>
5422 <p>type: unsigned 16-bit integer.</p>
5423 <p>data type semantics: identifier.</p>
5424 <p>description: The source port identifier in the tunnel transport
5425 header. For the transport protocols UDP, TCP, and SCTP, this is
5426 the source port number given in the respective header.</p>
5427 </dd>
5428 <dt>tunnelDestinationTransportPort:</dt>
5429 <dd>
5430 <p>ID: 897, and enterprise ID 6876 (VMware).</p>
5431 <p>type: unsigned 16-bit integer.</p>
5432 <p>data type semantics: identifier.</p>
5433 <p>description: The destination port identifier in the tunnel
5434 transport header. For the transport protocols UDP, TCP, and SCTP,
5435 this is the destination port number given in the respective header.
5436 </p>
5437 </dd>
5438 </dl>
5439
5440 <p>
5441 Before Open vSwitch 2.5.90, <ref column="other_config"
5442 key="enable-tunnel-sampling"/> was only supported with per-bridge
5443 sampling, and ignored otherwise. Open vSwitch 2.5.90 and later support
5444 <ref column="other_config" key="enable-tunnel-sampling"/> for
5445 per-bridge and per-flow sampling.
5446 </p>
5447 </column>
5448
5449 <column name="other_config" key="virtual_obs_id"
5450 type='{"type": "string"}'>
5451 <p>
5452 A string that accompanies each IPFIX flow record. Its intended use is
5453 for the ``virtual observation ID,'' an identifier of a virtual
5454 observation point that is locally unique in a virtual network. It
5455 describes a location in the virtual network where IP packets can be
5456 observed. The maximum length is 254 bytes. If not specified, the
5457 field is omitted from the IPFIX flow record.
5458 </p>
5459
5460 <p>
5461 The following enterprise entity reports the specified virtual
5462 observation ID:
5463 </p>
5464
5465 <dl>
5466 <dt>virtualObsID:</dt>
5467 <dd>
5468 <p>ID: 898, and enterprise ID 6876 (VMware).</p>
5469 <p>type: variable-length string.</p>
5470 <p>data type semantics: identifier.</p>
5471 <p>description: A virtual observation domain ID that is locally
5472 unique in a virtual network.
5473 </p>
5474 </dd>
5475 </dl>
5476
5477 <p>
5478 This feature was introduced in Open vSwitch 2.5.90.
5479 </p>
5480 </column>
5481
5482 <group title="Per-Bridge Sampling">
5483 <p>
5484 These values affect only per-bridge sampling. See above for a
5485 description of the differences between per-bridge and flow-based
5486 sampling.
5487 </p>
5488
5489 <column name="sampling">
5490 The rate at which packets should be sampled and sent to each target
5491 collector. If not specified, defaults to 400, which means one out of
5492 400 packets, on average, will be sent to each target collector.
5493 </column>
5494
5495 <column name="obs_domain_id">
5496 The IPFIX Observation Domain ID sent in each IPFIX packet. If not
5497 specified, defaults to 0.
5498 </column>
5499
5500 <column name="obs_point_id">
5501 The IPFIX Observation Point ID sent in each IPFIX flow record. If not
5502 specified, defaults to 0.
5503 </column>
5504
5505 <column name="other_config" key="enable-input-sampling"
5506 type='{"type": "boolean"}'>
5507 By default, Open vSwitch samples and reports flows at bridge port input
5508 in IPFIX flow records. Set this column to <code>false</code> to
5509 disable input sampling.
5510 </column>
5511
5512 <column name="other_config" key="enable-output-sampling"
5513 type='{"type": "boolean"}'>
5514 By default, Open vSwitch samples and reports flows at bridge port
5515 output in IPFIX flow records. Set this column to <code>false</code> to
5516 disable output sampling.
5517 </column>
5518 </group>
5519
5520 <group title="Common Columns">
5521 The overall purpose of these columns is described under <code>Common
5522 Columns</code> at the beginning of this document.
5523
5524 <column name="external_ids"/>
5525 </group>
5526 </table>
5527
5528 <table name="Flow_Sample_Collector_Set">
5529 <p>
5530 A set of IPFIX collectors of packet samples generated by OpenFlow
5531 <code>sample</code> actions. This table is used only for IPFIX
5532 flow-based sampling, not for per-bridge sampling (see the <ref
5533 table="IPFIX"/> table for a description of the two forms).
5534 </p>
5535
5536 <column name="id">
5537 The ID of this collector set, unique among the bridge's
5538 collector sets, to be used as the <code>collector_set_id</code>
5539 in OpenFlow <code>sample</code> actions.
5540 </column>
5541
5542 <column name="bridge">
5543 The bridge into which OpenFlow <code>sample</code> actions can
5544 be added to send packet samples to this set of IPFIX collectors.
5545 </column>
5546
5547 <column name="ipfix">
5548 Configuration of the set of IPFIX collectors to send one flow
5549 record per sampled packet to.
5550 </column>
5551
5552 <group title="Common Columns">
5553 The overall purpose of these columns is described under <code>Common
5554 Columns</code> at the beginning of this document.
5555
5556 <column name="external_ids"/>
5557 </group>
5558 </table>
5559
5560 <table name="AutoAttach">
5561 <p>
5562 Auto Attach configuration within a bridge. The IETF Auto-Attach SPBM
5563 draft standard describes a compact method of using IEEE 802.1AB Link
5564 Layer Discovery Protocol (LLDP) together with a IEEE 802.1aq Shortest
5565 Path Bridging (SPB) network to automatically attach network devices
5566 to individual services in a SPB network. The intent here is to allow
5567 network applications and devices using OVS to be able to easily take
5568 advantage of features offered by industry standard SPB networks.
5569 </p>
5570
5571 <p>
5572 Auto Attach (AA) uses LLDP to communicate between a directly connected
5573 Auto Attach Client (AAC) and Auto Attach Server (AAS). The LLDP protocol
5574 is extended to add two new Type-Length-Value tuples (TLVs). The first
5575 new TLV supports the ongoing discovery of directly connected AA
5576 correspondents. Auto Attach operates by regularly transmitting AA
5577 discovery TLVs between the AA client and AA server. By exchanging these
5578 discovery messages, both the AAC and AAS learn the system name and
5579 system description of their peer. In the OVS context, OVS operates as
5580 the AA client and the AA server resides on a switch at the edge of the
5581 SPB network.
5582 </p>
5583
5584 <p>
5585 Once AA discovery has been completed the AAC then uses the second new TLV
5586 to deliver identifier mappings from the AAC to the AAS. A primary feature
5587 of Auto Attach is to facilitate the mapping of VLANs defined outside the
5588 SPB network onto service ids (ISIDs) defined within the SPM network. By
5589 doing so individual external VLANs can be mapped onto specific SPB
5590 network services. These VLAN id to ISID mappings can be configured and
5591 managed locally using new options added to the ovs-vsctl command.
5592 </p>
5593
5594 <p>
5595 The Auto Attach OVS feature does not provide a full implementation of
5596 the LLDP protocol. Support for the mandatory TLVs as defined by the LLDP
5597 standard and support for the AA TLV extensions is provided. LLDP
5598 protocol support in OVS can be enabled or disabled on a port by port
5599 basis. LLDP support is disabled by default.
5600 </p>
5601
5602 <column name="system_name">
5603 The system_name string is exported in LLDP messages. It should uniquely
5604 identify the bridge in the network.
5605 </column>
5606
5607 <column name="system_description">
5608 The system_description string is exported in LLDP messages. It should
5609 describe the type of software and hardware.
5610 </column>
5611
5612 <column name="mappings">
5613 A mapping from SPB network Individual Service Identifier (ISID) to VLAN
5614 id.
5615 </column>
5616 </table>
5617 </database>