]> git.proxmox.com Git - mirror_ovs.git/blob - vswitchd/vswitch.xml
treewide: Convert leading tabs to spaces.
[mirror_ovs.git] / vswitchd / vswitch.xml
1 <?xml version="1.0" encoding="utf-8"?>
2 <database name="ovs-vswitchd.conf.db" title="Open vSwitch Configuration Database">
3 <p>
4 A database with this schema holds the configuration for one Open
5 vSwitch daemon. The top-level configuration for the daemon is the
6 <ref table="Open_vSwitch"/> table, which must have exactly one
7 record. Records in other tables are significant only when they
8 can be reached directly or indirectly from the <ref
9 table="Open_vSwitch"/> table. Records that are not reachable from
10 the <ref table="Open_vSwitch"/> table are automatically deleted
11 from the database, except for records in a few distinguished
12 ``root set'' tables.
13 </p>
14
15 <h2>Common Columns</h2>
16
17 <p>
18 Most tables contain two special columns, named <code>other_config</code>
19 and <code>external_ids</code>. These columns have the same form and
20 purpose each place that they appear, so we describe them here to save space
21 later.
22 </p>
23
24 <dl>
25 <dt><code>other_config</code>: map of string-string pairs</dt>
26 <dd>
27 <p>
28 Key-value pairs for configuring rarely used features. Supported keys,
29 along with the forms taken by their values, are documented individually
30 for each table.
31 </p>
32 <p>
33 A few tables do not have <code>other_config</code> columns because no
34 key-value pairs have yet been defined for them.
35 </p>
36 </dd>
37
38 <dt><code>external_ids</code>: map of string-string pairs</dt>
39 <dd>
40 Key-value pairs for use by external frameworks that integrate with Open
41 vSwitch, rather than by Open vSwitch itself. System integrators should
42 either use the Open vSwitch development mailing list to coordinate on
43 common key-value definitions, or choose key names that are likely to be
44 unique. In some cases, where key-value pairs have been defined that are
45 likely to be widely useful, they are documented individually for each
46 table.
47 </dd>
48 </dl>
49
50 <table name="Open_vSwitch" title="Open vSwitch configuration.">
51 Configuration for an Open vSwitch daemon. There must be exactly
52 one record in the <ref table="Open_vSwitch"/> table.
53
54 <group title="Configuration">
55 <column name="bridges">
56 Set of bridges managed by the daemon.
57 </column>
58
59 <column name="ssl">
60 SSL used globally by the daemon.
61 </column>
62
63 <column name="external_ids" key="system-id">
64 A unique identifier for the Open vSwitch's physical host.
65 The form of the identifier depends on the type of the host.
66 On a Citrix XenServer, this will likely be the same as
67 <ref column="external_ids" key="xs-system-uuid"/>.
68 </column>
69
70 <column name="external_ids" key="xs-system-uuid">
71 The Citrix XenServer universally unique identifier for the physical
72 host as displayed by <code>xe host-list</code>.
73 </column>
74
75 <column name="external_ids" key="hostname">
76 The hostname for the host running Open vSwitch. This is a fully
77 qualified domain name since version 2.6.2.
78 </column>
79
80 <column name="external_ids" key="rundir">
81 In Open vSwitch 2.8 and later, the run directory of the running Open
82 vSwitch daemon. This directory is used for runtime state such as
83 control and management sockets. The value of <ref
84 column="other_config" key="vhost-sock-dir"/> is relative to this
85 directory.
86 </column>
87
88 <column name="other_config" key="stats-update-interval"
89 type='{"type": "integer", "minInteger": 5000}'>
90 <p>
91 Interval for updating statistics to the database, in milliseconds.
92 This option will affect the update of the <code>statistics</code>
93 column in the following tables: <code>Port</code>, <code>Interface
94 </code>, <code>Mirror</code>.
95 </p>
96 <p>
97 Default value is 5000 ms.
98 </p>
99 <p>
100 Getting statistics more frequently can be achieved via OpenFlow.
101 </p>
102 </column>
103
104 <column name="other_config" key="flow-restore-wait"
105 type='{"type": "boolean"}'>
106 <p>
107 When <code>ovs-vswitchd</code> starts up, it has an empty flow table
108 and therefore it handles all arriving packets in its default fashion
109 according to its configuration, by dropping them or sending them to
110 an OpenFlow controller or switching them as a standalone switch.
111 This behavior is ordinarily desirable. However, if
112 <code>ovs-vswitchd</code> is restarting as part of a ``hot-upgrade,''
113 then this leads to a relatively long period during which packets are
114 mishandled.
115 </p>
116 <p>
117 This option allows for improvement. When <code>ovs-vswitchd</code>
118 starts with this value set as <code>true</code>, it will neither
119 flush or expire previously set datapath flows nor will it send and
120 receive any packets to or from the datapath. When this value is
121 later set to <code>false</code>, <code>ovs-vswitchd</code> will
122 start receiving packets from the datapath and re-setup the flows.
123 </p>
124 <p>
125 Thus, with this option, the procedure for a hot-upgrade of
126 <code>ovs-vswitchd</code> becomes roughly the following:
127 </p>
128 <ol>
129 <li>
130 Stop <code>ovs-vswitchd</code>.
131 </li>
132 <li>
133 Set <ref column="other_config" key="flow-restore-wait"/>
134 to <code>true</code>.
135 </li>
136 <li>
137 Start <code>ovs-vswitchd</code>.
138 </li>
139 <li>
140 Use <code>ovs-ofctl</code> (or some other program, such as an
141 OpenFlow controller) to restore the OpenFlow flow table
142 to the desired state.
143 </li>
144 <li>
145 Set <ref column="other_config" key="flow-restore-wait"/>
146 to <code>false</code> (or remove it entirely from the database).
147 </li>
148 </ol>
149 <p>
150 The <code>ovs-ctl</code>'s ``restart'' and ``force-reload-kmod''
151 functions use the above config option during hot upgrades.
152 </p>
153 </column>
154
155 <column name="other_config" key="flow-limit"
156 type='{"type": "integer", "minInteger": 0}'>
157 <p>
158 The maximum
159 number of flows allowed in the datapath flow table. Internally OVS
160 will choose a flow limit which will likely be lower than this number,
161 based on real time network conditions. Tweaking this value is
162 discouraged unless you know exactly what you're doing.
163 </p>
164 <p>
165 The default is 200000.
166 </p>
167 </column>
168
169 <column name="other_config" key="max-idle"
170 type='{"type": "integer", "minInteger": 500}'>
171 <p>
172 The maximum time (in ms) that idle flows will remain cached in the
173 datapath. Internally OVS will check the validity and activity for
174 datapath flows regularly and may expire flows quicker than this
175 number, based on real time network conditions. Tweaking this
176 value is discouraged unless you know exactly what you're doing.
177 </p>
178 <p>
179 The default is 10000.
180 </p>
181 </column>
182
183 <column name="other_config" key="hw-offload"
184 type='{"type": "boolean"}'>
185 <p>
186 Set this value to <code>true</code> to enable netdev flow offload.
187 </p>
188 <p>
189 The default value is <code>false</code>. Changing this value requires
190 restarting the daemon
191 </p>
192 <p>
193 Currently Open vSwitch supports hardware offloading on
194 Linux systems. On other systems, this value is ignored.
195 This functionality is considered 'experimental'. Depending
196 on which OpenFlow matches and actions are configured,
197 which kernel version is used, and what hardware is
198 available, Open vSwitch may not be able to offload
199 functionality to hardware.
200 </p>
201 </column>
202
203 <column name="other_config" key="tc-policy"
204 type='{"type": "string"}'>
205 <p>
206 Specified the policy used with HW offloading.
207 Options:
208 <code>none</code> - Add software rule and offload rule to HW.
209 <code>skip_sw</code> - Offload rule to HW only.
210 <code>skip_hw</code> - Add software rule without offloading rule to HW.
211 </p>
212 <p>
213 This is only relevant if HW offloading is enabled (hw-offload).
214 </p>
215 <p>
216 The default value is <code>none</code>.
217 </p>
218 </column>
219
220 <column name="other_config" key="dpdk-init"
221 type='{"type": "boolean"}'>
222 <p>
223 Set this value to <code>true</code> to enable runtime support for
224 DPDK ports. The vswitch must have compile-time support for DPDK as
225 well.
226 </p>
227 <p>
228 The default value is <code>false</code>. Changing this value requires
229 restarting the daemon
230 </p>
231 <p>
232 If this value is <code>false</code> at startup, any dpdk ports which
233 are configured in the bridge will fail due to memory errors.
234 </p>
235 </column>
236
237 <column name="other_config" key="dpdk-lcore-mask"
238 type='{"type": "integer", "minInteger": 1}'>
239 <p>
240 Specifies the CPU cores where dpdk lcore threads should be spawned.
241 The DPDK lcore threads are used for DPDK library tasks, such as
242 library internal message processing, logging, etc. Value should be in
243 the form of a hex string (so '0x123') similar to the 'taskset' mask
244 input.
245 </p>
246 <p>
247 The lowest order bit corresponds to the first CPU core. A set bit
248 means the corresponding core is available and an lcore thread will be
249 created and pinned to it. If the input does not cover all cores,
250 those uncovered cores are considered not set.
251 </p>
252 <p>
253 For performance reasons, it is best to set this to a single core on
254 the system, rather than allow lcore threads to float.
255 </p>
256 <p>
257 If not specified, the value will be determined by choosing the lowest
258 CPU core from initial cpu affinity list. Otherwise, the value will be
259 passed directly to the DPDK library.
260 </p>
261 </column>
262
263 <column name="other_config" key="pmd-cpu-mask">
264 <p>
265 Specifies CPU mask for setting the cpu affinity of PMD (Poll
266 Mode Driver) threads. Value should be in the form of hex string,
267 similar to the dpdk EAL '-c COREMASK' option input or the 'taskset'
268 mask input.
269 </p>
270 <p>
271 The lowest order bit corresponds to the first CPU core. A set bit
272 means the corresponding core is available and a pmd thread will be
273 created and pinned to it. If the input does not cover all cores,
274 those uncovered cores are considered not set.
275 </p>
276 <p>
277 If not specified, one pmd thread will be created for each numa node
278 and pinned to any available core on the numa node by default.
279 </p>
280 </column>
281
282 <column name="other_config" key="dpdk-alloc-mem"
283 type='{"type": "integer", "minInteger": 0}'>
284 <p>
285 Specifies the amount of memory to preallocate from the hugepage pool,
286 regardless of socket. It is recommended that dpdk-socket-mem is used
287 instead.
288 </p>
289 </column>
290
291 <column name="other_config" key="dpdk-socket-mem"
292 type='{"type": "string"}'>
293 <p>
294 Specifies the amount of memory to preallocate from the hugepage pool,
295 on a per-socket basis.
296 </p>
297 <p>
298 The specifier is a comma-separated string, in ascending order of CPU
299 socket. E.g. On a four socket system 1024,0,2048 would set socket 0
300 to preallocate 1024MB, socket 1 to preallocate 0MB, socket 2 to
301 preallocate 2048MB and socket 3 (no value given) to preallocate 0MB.
302 </p>
303 <p>
304 If dpdk-socket-mem and dpdk-alloc-mem are not specified, dpdk-socket-mem
305 will be used and the default value is 1024,0. If dpdk-socket-mem and
306 dpdk-alloc-mem are specified at same time, dpdk-socket-mem will be
307 used as default. Changing this value requires restarting the daemon.
308 </p>
309 </column>
310
311 <column name="other_config" key="dpdk-hugepage-dir"
312 type='{"type": "string"}'>
313 <p>
314 Specifies the path to the hugetlbfs mount point.
315 </p>
316 <p>
317 If not specified, this will be guessed by the DPDK library (default
318 is /dev/hugepages). Changing this value requires restarting the
319 daemon.
320 </p>
321 </column>
322
323 <column name="other_config" key="dpdk-extra"
324 type='{"type": "string"}'>
325 <p>
326 Specifies additional eal command line arguments for DPDK.
327 </p>
328 <p>
329 The default is empty. Changing this value requires restarting the
330 daemon
331 </p>
332 </column>
333
334 <column name="other_config" key="vhost-sock-dir"
335 type='{"type": "string"}'>
336 <p>
337 Specifies a relative path from <ref column="external_ids"
338 key="rundir"/> to the vhost-user unix domain socket files. If this
339 value is unset, the sockets are put directly in <ref
340 column="external_ids" key="rundir"/>.
341 </p>
342 <p>
343 Changing this value requires restarting the daemon.
344 </p>
345 </column>
346
347 <column name="other_config" key="vhost-iommu-support"
348 type='{"type": "boolean"}'>
349 <p>
350 vHost IOMMU is a security feature, which restricts the vhost memory
351 that a virtio device may access. vHost IOMMU support is disabled by
352 default, due to a bug in QEMU implementations of the vhost REPLY_ACK
353 protocol, (on which vHost IOMMU relies) prior to v2.9.1. Setting this
354 value to <code>true</code> enables vHost IOMMU support for vHost User
355 Client ports in OvS-DPDK, starting from DPDK v17.11.
356 </p>
357 <p>
358 Changing this value requires restarting the daemon.
359 </p>
360 </column>
361
362 <column name="other_config" key="tx-flush-interval"
363 type='{"type": "integer",
364 "minInteger": 0, "maxInteger": 1000000}'>
365 <p>
366 Specifies the time in microseconds that a packet can wait in output
367 batch for sending i.e. amount of time that packet can spend in an
368 intermediate output queue before sending to netdev.
369 This option can be used to configure balance between throughput
370 and latency. Lower values decreases latency while higher values
371 may be useful to achieve higher performance.
372 </p>
373 <p>
374 Defaults to 0 i.e. instant packet sending (latency optimized).
375 </p>
376 </column>
377
378 <column name="other_config" key="pmd-perf-metrics"
379 type='{"type": "boolean"}'>
380 <p>
381 Enables recording of detailed PMD performance metrics for analysis
382 and trouble-shooting. This can have a performance impact in the
383 order of 1%.
384 </p>
385 <p>
386 Defaults to false but can be changed at any time.
387 </p>
388 </column>
389
390 <column name="other_config" key="n-handler-threads"
391 type='{"type": "integer", "minInteger": 1}'>
392 <p>
393 Specifies the number of threads for software datapaths to use for
394 handling new flows. The default the number of online CPU cores minus
395 the number of revalidators.
396 </p>
397 <p>
398 This configuration is per datapath. If you have more than one
399 software datapath (e.g. some <code>system</code> bridges and some
400 <code>netdev</code> bridges), then the total number of threads is
401 <code>n-handler-threads</code> times the number of software
402 datapaths.
403 </p>
404 </column>
405
406 <column name="other_config" key="n-revalidator-threads"
407 type='{"type": "integer", "minInteger": 1}'>
408 <p>
409 Specifies the number of threads for software datapaths to use for
410 revalidating flows in the datapath. Typically, there is a direct
411 correlation between the number of revalidator threads, and the number
412 of flows allowed in the datapath. The default is the number of cpu
413 cores divided by four plus one. If <code>n-handler-threads</code> is
414 set, the default changes to the number of cpu cores minus the number
415 of handler threads.
416 </p>
417 <p>
418 This configuration is per datapath. If you have more than one
419 software datapath (e.g. some <code>system</code> bridges and some
420 <code>netdev</code> bridges), then the total number of threads is
421 <code>n-handler-threads</code> times the number of software
422 datapaths.
423 </p>
424 </column>
425
426 <column name="other_config" key="emc-insert-inv-prob"
427 type='{"type": "integer", "minInteger": 0, "maxInteger": 4294967295}'>
428 <p>
429 Specifies the inverse probability (1/emc-insert-inv-prob) of a flow
430 being inserted into the Exact Match Cache (EMC). On average one in
431 every <code>emc-insert-inv-prob</code> packets that generate a unique
432 flow will cause an insertion into the EMC.
433
434 A value of 1 will result in an insertion for every flow (1/1 = 100%)
435 whereas a value of zero will result in no insertions and essentially
436 disable the EMC.
437 </p>
438 <p>
439 Defaults to 100 ie. there is (1/100 =) 1% chance of EMC insertion.
440 </p>
441 </column>
442
443 <column name="other_config" key="vlan-limit"
444 type='{"type": "integer", "minInteger": 0}'>
445 <p>
446 Limits the number of VLAN headers that can be matched to the
447 specified number. Further VLAN headers will be treated as payload,
448 e.g. a packet with more 802.1q headers will match Ethernet type
449 0x8100.
450 </p>
451 <p>
452 Value <code>0</code> means unlimited. The actual number of supported
453 VLAN headers is the smallest of <code>vlan-limit</code>, the number
454 of VLANs supported by Open vSwitch userspace (currently 2), and the
455 number supported by the datapath.
456 </p>
457
458 <p>
459 If this value is absent, the default is currently 1. This maintains
460 backward compatibility with controllers that were designed for use
461 with Open vSwitch versions earlier than 2.8, which only supported one
462 VLAN.
463 </p>
464 </column>
465 <column name="other_config" key="bundle-idle-timeout"
466 type='{"type": "integer", "minInteger": 1}'>
467 <p>
468 The maximum time (in seconds) that idle bundles will wait
469 to be expired since it was either opened, modified or closed.
470 </p>
471 <p>
472 OpenFlow specification mandates the timeout to be at least one
473 second. The default is 10 seconds.
474 </p>
475 </column>
476
477 </group>
478
479 <group title="Status">
480 <column name="next_cfg">
481 Sequence number for client to increment. When a client modifies
482 any part of the database configuration and wishes to wait for
483 Open vSwitch to finish applying the changes, it may increment
484 this sequence number.
485 </column>
486
487 <column name="cur_cfg">
488 Sequence number that Open vSwitch sets to the current value of
489 <ref column="next_cfg"/> after it finishes applying a set of
490 configuration changes.
491 </column>
492
493 <column name="dpdk_initialized">
494 True if <ref column="other_config" key="dpdk-init"/> is set to
495 true and the DPDK library is successfully initialized.
496 </column>
497
498 <group title="Statistics">
499 <p>
500 The <code>statistics</code> column contains key-value pairs that
501 report statistics about a system running an Open vSwitch. These are
502 updated periodically (currently, every 5 seconds). Key-value pairs
503 that cannot be determined or that do not apply to a platform are
504 omitted.
505 </p>
506
507 <column name="other_config" key="enable-statistics"
508 type='{"type": "boolean"}'>
509 Statistics are disabled by default to avoid overhead in the common
510 case when statistics gathering is not useful. Set this value to
511 <code>true</code> to enable populating the <ref column="statistics"/>
512 column or to <code>false</code> to explicitly disable it.
513 </column>
514
515 <column name="statistics" key="cpu"
516 type='{"type": "integer", "minInteger": 1}'>
517 <p>
518 Number of CPU processors, threads, or cores currently online and
519 available to the operating system on which Open vSwitch is running,
520 as an integer. This may be less than the number installed, if some
521 are not online or if they are not available to the operating
522 system.
523 </p>
524 <p>
525 Open vSwitch userspace processes are not multithreaded, but the
526 Linux kernel-based datapath is.
527 </p>
528 </column>
529
530 <column name="statistics" key="load_average">
531 A comma-separated list of three floating-point numbers,
532 representing the system load average over the last 1, 5, and 15
533 minutes, respectively.
534 </column>
535
536 <column name="statistics" key="memory">
537 <p>
538 A comma-separated list of integers, each of which represents a
539 quantity of memory in kilobytes that describes the operating
540 system on which Open vSwitch is running. In respective order,
541 these values are:
542 </p>
543
544 <ol>
545 <li>Total amount of RAM allocated to the OS.</li>
546 <li>RAM allocated to the OS that is in use.</li>
547 <li>RAM that can be flushed out to disk or otherwise discarded
548 if that space is needed for another purpose. This number is
549 necessarily less than or equal to the previous value.</li>
550 <li>Total disk space allocated for swap.</li>
551 <li>Swap space currently in use.</li>
552 </ol>
553
554 <p>
555 On Linux, all five values can be determined and are included. On
556 other operating systems, only the first two values can be
557 determined, so the list will only have two values.
558 </p>
559 </column>
560
561 <column name="statistics" key="process_NAME">
562 <p>
563 One such key-value pair, with <code>NAME</code> replaced by
564 a process name, will exist for each running Open vSwitch
565 daemon process, with <var>name</var> replaced by the
566 daemon's name (e.g. <code>process_ovs-vswitchd</code>). The
567 value is a comma-separated list of integers. The integers
568 represent the following, with memory measured in kilobytes
569 and durations in milliseconds:
570 </p>
571
572 <ol>
573 <li>The process's virtual memory size.</li>
574 <li>The process's resident set size.</li>
575 <li>The amount of user and system CPU time consumed by the
576 process.</li>
577 <li>The number of times that the process has crashed and been
578 automatically restarted by the monitor.</li>
579 <li>The duration since the process was started.</li>
580 <li>The duration for which the process has been running.</li>
581 </ol>
582
583 <p>
584 The interpretation of some of these values depends on whether the
585 process was started with the <option>--monitor</option>. If it
586 was not, then the crash count will always be 0 and the two
587 durations will always be the same. If <option>--monitor</option>
588 was given, then the crash count may be positive; if it is, the
589 latter duration is the amount of time since the most recent crash
590 and restart.
591 </p>
592
593 <p>
594 There will be one key-value pair for each file in Open vSwitch's
595 ``run directory'' (usually <code>/var/run/openvswitch</code>)
596 whose name ends in <code>.pid</code>, whose contents are a
597 process ID, and which is locked by a running process. The
598 <var>name</var> is taken from the pidfile's name.
599 </p>
600
601 <p>
602 Currently Open vSwitch is only able to obtain all of the above
603 detail on Linux systems. On other systems, the same key-value
604 pairs will be present but the values will always be the empty
605 string.
606 </p>
607 </column>
608
609 <column name="statistics" key="file_systems">
610 <p>
611 A space-separated list of information on local, writable file
612 systems. Each item in the list describes one file system and
613 consists in turn of a comma-separated list of the following:
614 </p>
615
616 <ol>
617 <li>Mount point, e.g. <code>/</code> or <code>/var/log</code>.
618 Any spaces or commas in the mount point are replaced by
619 underscores.</li>
620 <li>Total size, in kilobytes, as an integer.</li>
621 <li>Amount of storage in use, in kilobytes, as an integer.</li>
622 </ol>
623
624 <p>
625 This key-value pair is omitted if there are no local, writable
626 file systems or if Open vSwitch cannot obtain the needed
627 information.
628 </p>
629 </column>
630 </group>
631 </group>
632
633 <group title="Version Reporting">
634 <p>
635 These columns report the types and versions of the hardware and
636 software running Open vSwitch. We recommend in general that software
637 should test whether specific features are supported instead of relying
638 on version number checks. These values are primarily intended for
639 reporting to human administrators.
640 </p>
641
642 <column name="ovs_version">
643 The Open vSwitch version number, e.g. <code>1.1.0</code>.
644 </column>
645
646 <column name="db_version">
647 <p>
648 The database schema version number, e.g. <code>1.2.3</code>. See
649 ovsdb-tool(1) for an explanation of the numbering scheme.
650 </p>
651
652 <p>
653 The schema version is part of the database schema, so it can also be
654 retrieved by fetching the schema using the Open vSwitch database
655 protocol.
656 </p>
657 </column>
658
659 <column name="system_type">
660 <p>
661 An identifier for the type of system on top of which Open vSwitch
662 runs, e.g. <code>XenServer</code> or <code>KVM</code>.
663 </p>
664 <p>
665 System integrators are responsible for choosing and setting an
666 appropriate value for this column.
667 </p>
668 </column>
669
670 <column name="system_version">
671 <p>
672 The version of the system identified by <ref column="system_type"/>,
673 e.g. <code>5.6.100-39265p</code> on XenServer 5.6.100 build 39265.
674 </p>
675 <p>
676 System integrators are responsible for choosing and setting an
677 appropriate value for this column.
678 </p>
679 </column>
680
681 <column name="dpdk_version">
682 <p>
683 The version of the linked DPDK library.
684 </p>
685 </column>
686
687 </group>
688
689 <group title="Capabilities">
690 <p>
691 These columns report capabilities of the Open vSwitch instance.
692 </p>
693 <column name="datapath_types">
694 <p>
695 This column reports the different dpifs registered with the system.
696 These are the values that this instance supports in the <ref
697 column="datapath_type" table="Bridge"/> column of the <ref
698 table="Bridge"/> table.
699 </p>
700 </column>
701 <column name="iface_types">
702 <p>
703 This column reports the different netdevs registered with the system.
704 These are the values that this instance supports in the <ref
705 column="type" table="Interface"/> column of the <ref
706 table="Interface"/> table.
707 </p>
708 </column>
709 </group>
710
711 <group title="Database Configuration">
712 <p>
713 These columns primarily configure the Open vSwitch database
714 (<code>ovsdb-server</code>), not the Open vSwitch switch
715 (<code>ovs-vswitchd</code>). The OVSDB database also uses the <ref
716 column="ssl"/> settings.
717 </p>
718
719 <p>
720 The Open vSwitch switch does read the database configuration to
721 determine remote IP addresses to which in-band control should apply.
722 </p>
723
724 <column name="manager_options">
725 <p>
726 Database clients to which the Open vSwitch database server should
727 connect or to which it should listen, along with options for how
728 these connections should be configured. See the <ref
729 table="Manager"/> table for more information.
730 </p>
731
732 <p>
733 For this column to serve its purpose, <code>ovsdb-server</code> must
734 be configured to honor it. The easiest way to do this is to invoke
735 <code>ovsdb-server</code> with the option
736 <option>--remote=db:Open_vSwitch,Open_vSwitch,manager_options</option>
737 The startup scripts that accompany Open vSwitch do this by default.
738 </p>
739 </column>
740 </group>
741
742 <group title="Common Columns">
743 The overall purpose of these columns is described under <code>Common
744 Columns</code> at the beginning of this document.
745
746 <column name="other_config"/>
747 <column name="external_ids"/>
748 </group>
749 </table>
750
751 <table name="Bridge">
752 <p>
753 Configuration for a bridge within an
754 <ref table="Open_vSwitch"/>.
755 </p>
756 <p>
757 A <ref table="Bridge"/> record represents an Ethernet switch with one or
758 more ``ports,'' which are the <ref table="Port"/> records pointed to by
759 the <ref table="Bridge"/>'s <ref column="ports"/> column.
760 </p>
761
762 <group title="Core Features">
763 <column name="name">
764 <p>
765 Bridge identifier. Must be unique among the names of ports,
766 interfaces, and bridges on a host.
767 </p>
768
769 <p>
770 The name must be alphanumeric and must not contain forward or
771 backward slashes. The name of a bridge is also the name of an <ref
772 table="Interface"/> (and a <ref table="Port"/>) within the bridge, so
773 the restrictions on the <ref table="Interface" column="name"/> column
774 in the <ref table="Interface"/> table, particularly on length, also
775 apply to bridge names. Refer to the documentation for <ref
776 table="Interface"/> names for details.
777 </p>
778 </column>
779
780 <column name="ports">
781 Ports included in the bridge.
782 </column>
783
784 <column name="mirrors">
785 Port mirroring configuration.
786 </column>
787
788 <column name="netflow">
789 NetFlow configuration.
790 </column>
791
792 <column name="sflow">
793 sFlow(R) configuration.
794 </column>
795
796 <column name="ipfix">
797 IPFIX configuration.
798 </column>
799
800 <column name="flood_vlans">
801 <p>
802 VLAN IDs of VLANs on which MAC address learning should be disabled,
803 so that packets are flooded instead of being sent to specific ports
804 that are believed to contain packets' destination MACs. This should
805 ordinarily be used to disable MAC learning on VLANs used for
806 mirroring (RSPAN VLANs). It may also be useful for debugging.
807 </p>
808 <p>
809 SLB bonding (see the <ref table="Port" column="bond_mode"/> column in
810 the <ref table="Port"/> table) is incompatible with
811 <code>flood_vlans</code>. Consider using another bonding mode or
812 a different type of mirror instead.
813 </p>
814 </column>
815
816 <column name="auto_attach">
817 Auto Attach configuration.
818 </column>
819 </group>
820
821 <group title="OpenFlow Configuration">
822 <column name="controller">
823 <p>
824 OpenFlow controller set. If unset, then no OpenFlow controllers
825 will be used.
826 </p>
827
828 <p>
829 If there are primary controllers, removing all of them clears the
830 OpenFlow flow tables, group table, and meter table. If there are no
831 primary controllers, adding one also clears these tables. Other
832 changes to the set of controllers, such as adding or removing a
833 service controller, adding another primary controller to supplement
834 an existing primary controller, or removing only one of two primary
835 controllers, have no effect on these tables.
836 </p>
837 </column>
838
839 <column name="flow_tables">
840 Configuration for OpenFlow tables. Each pair maps from an OpenFlow
841 table ID to configuration for that table.
842 </column>
843
844 <column name="fail_mode">
845 <p>When a controller is configured, it is, ordinarily, responsible
846 for setting up all flows on the switch. Thus, if the connection to
847 the controller fails, no new network connections can be set up.
848 If the connection to the controller stays down long enough,
849 no packets can pass through the switch at all. This setting
850 determines the switch's response to such a situation. It may be set
851 to one of the following:
852 <dl>
853 <dt><code>standalone</code></dt>
854 <dd>If no message is received from the controller for three
855 times the inactivity probe interval
856 (see <ref column="inactivity_probe"/>), then Open vSwitch
857 will take over responsibility for setting up flows. In
858 this mode, Open vSwitch causes the bridge to act like an
859 ordinary MAC-learning switch. Open vSwitch will continue
860 to retry connecting to the controller in the background
861 and, when the connection succeeds, it will discontinue its
862 standalone behavior.</dd>
863 <dt><code>secure</code></dt>
864 <dd>Open vSwitch will not set up flows on its own when the
865 controller connection fails or when no controllers are
866 defined. The bridge will continue to retry connecting to
867 any defined controllers forever.</dd>
868 </dl>
869 </p>
870 <p>
871 The default is <code>standalone</code> if the value is unset, but
872 future versions of Open vSwitch may change the default.
873 </p>
874 <p>
875 The <code>standalone</code> mode can create forwarding loops on a
876 bridge that has more than one uplink port unless STP is enabled. To
877 avoid loops on such a bridge, configure <code>secure</code> mode or
878 enable STP (see <ref column="stp_enable"/>).
879 </p>
880 <p>When more than one controller is configured,
881 <ref column="fail_mode"/> is considered only when none of the
882 configured controllers can be contacted.</p>
883 <p>
884 Changing <ref column="fail_mode"/> when no primary controllers are
885 configured clears the OpenFlow flow tables, group table, and meter
886 table.
887 </p>
888 </column>
889
890 <column name="datapath_id">
891 Reports the OpenFlow datapath ID in use. Exactly 16 hex digits.
892 (Setting this column has no useful effect. Set <ref
893 column="other-config" key="datapath-id"/> instead.)
894 </column>
895
896 <column name="datapath_version">
897 <p>
898 Reports the version number of the Open vSwitch datapath in use.
899 This allows management software to detect and report discrepancies
900 between Open vSwitch userspace and datapath versions. (The <ref
901 column="ovs_version" table="Open_vSwitch"/> column in the <ref
902 table="Open_vSwitch"/> reports the Open vSwitch userspace version.)
903 The version reported depends on the datapath in use:
904 </p>
905
906 <ul>
907 <li>
908 When the kernel module included in the Open vSwitch source tree is
909 used, this column reports the Open vSwitch version from which the
910 module was taken.
911 </li>
912
913 <li>
914 When the kernel module that is part of the upstream Linux kernel is
915 used, this column reports <code>&lt;unknown&gt;</code>.
916 </li>
917
918 <li>
919 When the datapath is built into the <code>ovs-vswitchd</code>
920 binary, this column reports <code>&lt;built-in&gt;</code>. A
921 built-in datapath is by definition the same version as the rest of
922 the Open VSwitch userspace.
923 </li>
924
925 <li>
926 Other datapaths (such as the Hyper-V kernel datapath) currently
927 report <code>&lt;unknown&gt;</code>.
928 </li>
929 </ul>
930
931 <p>
932 A version discrepancy between <code>ovs-vswitchd</code> and the
933 datapath in use is not normally cause for alarm. The Open vSwitch
934 kernel datapaths for Linux and Hyper-V, in particular, are designed
935 for maximum inter-version compatibility: any userspace version works
936 with with any kernel version. Some reasons do exist to insist on
937 particular user/kernel pairings. First, newer kernel versions add
938 new features, that can only be used by new-enough userspace, e.g.
939 VXLAN tunneling requires certain minimal userspace and kernel
940 versions. Second, as an extension to the first reason, some newer
941 kernel versions add new features for enhancing performance that only
942 new-enough userspace versions can take advantage of.
943 </p>
944 </column>
945
946 <column name="other_config" key="datapath-id">
947 Overrides the default OpenFlow datapath ID, setting it to the specified
948 value specified in hex. The value must either have a <code>0x</code>
949 prefix or be exactly 16 hex digits long. May not be all-zero.
950 </column>
951
952 <column name="other_config" key="dp-desc">
953 Human readable description of datapath. It is a maximum 256
954 byte-long free-form string to describe the datapath for
955 debugging purposes, e.g. <code>switch3 in room 3120</code>.
956 </column>
957
958 <column name="other_config" key="disable-in-band"
959 type='{"type": "boolean"}'>
960 If set to <code>true</code>, disable in-band control on the bridge
961 regardless of controller and manager settings.
962 </column>
963
964 <column name="other_config" key="in-band-queue"
965 type='{"type": "integer", "minInteger": 0, "maxInteger": 4294967295}'>
966 A queue ID as a nonnegative integer. This sets the OpenFlow queue ID
967 that will be used by flows set up by in-band control on this bridge.
968 If unset, or if the port used by an in-band control flow does not have
969 QoS configured, or if the port does not have a queue with the specified
970 ID, the default queue is used instead.
971 </column>
972
973 <column name="protocols">
974 <p>
975 List of OpenFlow protocols that may be used when negotiating
976 a connection with a controller. OpenFlow 1.0, 1.1, 1.2, 1.3, and
977 1.4 are enabled by default if this column is empty.
978 </p>
979
980 <p>
981 OpenFlow 1.5 and 1.6 are not enabled by default because their
982 implementations are missing features. In addition, the OpenFlow 1.6
983 specification is still under development and thus subject to change.
984 </p>
985 </column>
986 </group>
987
988 <group title="Spanning Tree Configuration">
989 <p>
990 The IEEE 802.1D Spanning Tree Protocol (STP) is a network protocol
991 that ensures loop-free topologies. It allows redundant links to
992 be included in the network to provide automatic backup paths if
993 the active links fails.
994 </p>
995
996 <p>
997 These settings configure the slower-to-converge but still widely
998 supported version of Spanning Tree Protocol, sometimes known as
999 802.1D-1998. Open vSwitch also supports the newer Rapid Spanning Tree
1000 Protocol (RSTP), documented later in the section titled <code>Rapid
1001 Spanning Tree Configuration</code>.
1002 </p>
1003
1004 <group title="STP Configuration">
1005 <column name="stp_enable" type='{"type": "boolean"}'>
1006 <p>
1007 Enable spanning tree on the bridge. By default, STP is disabled
1008 on bridges. Bond, internal, and mirror ports are not supported
1009 and will not participate in the spanning tree.
1010 </p>
1011
1012 <p>
1013 STP and RSTP are mutually exclusive. If both are enabled, RSTP
1014 will be used.
1015 </p>
1016 </column>
1017
1018 <column name="other_config" key="stp-system-id">
1019 The bridge's STP identifier (the lower 48 bits of the bridge-id)
1020 in the form
1021 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>.
1022 By default, the identifier is the MAC address of the bridge.
1023 </column>
1024
1025 <column name="other_config" key="stp-priority"
1026 type='{"type": "integer", "minInteger": 0, "maxInteger": 65535}'>
1027 The bridge's relative priority value for determining the root
1028 bridge (the upper 16 bits of the bridge-id). A bridge with the
1029 lowest bridge-id is elected the root. By default, the priority
1030 is 0x8000.
1031 </column>
1032
1033 <column name="other_config" key="stp-hello-time"
1034 type='{"type": "integer", "minInteger": 1, "maxInteger": 10}'>
1035 The interval between transmissions of hello messages by
1036 designated ports, in seconds. By default the hello interval is
1037 2 seconds.
1038 </column>
1039
1040 <column name="other_config" key="stp-max-age"
1041 type='{"type": "integer", "minInteger": 6, "maxInteger": 40}'>
1042 The maximum age of the information transmitted by the bridge
1043 when it is the root bridge, in seconds. By default, the maximum
1044 age is 20 seconds.
1045 </column>
1046
1047 <column name="other_config" key="stp-forward-delay"
1048 type='{"type": "integer", "minInteger": 4, "maxInteger": 30}'>
1049 The delay to wait between transitioning root and designated
1050 ports to <code>forwarding</code>, in seconds. By default, the
1051 forwarding delay is 15 seconds.
1052 </column>
1053
1054 <column name="other_config" key="mcast-snooping-aging-time"
1055 type='{"type": "integer", "minInteger": 1}'>
1056 <p>
1057 The maximum number of seconds to retain a multicast snooping entry for
1058 which no packets have been seen. The default is currently 300
1059 seconds (5 minutes). The value, if specified, is forced into a
1060 reasonable range, currently 15 to 3600 seconds.
1061 </p>
1062 </column>
1063
1064 <column name="other_config" key="mcast-snooping-table-size"
1065 type='{"type": "integer", "minInteger": 1}'>
1066 <p>
1067 The maximum number of multicast snooping addresses to learn. The
1068 default is currently 2048. The value, if specified, is forced into
1069 a reasonable range, currently 10 to 1,000,000.
1070 </p>
1071 </column>
1072 <column name="other_config" key="mcast-snooping-disable-flood-unregistered"
1073 type='{"type": "boolean"}'>
1074 <p>
1075 If set to <code>false</code>, unregistered multicast packets are forwarded
1076 to all ports.
1077 If set to <code>true</code>, unregistered multicast packets are forwarded
1078 to ports connected to multicast routers.
1079 </p>
1080 </column>
1081 </group>
1082
1083 <group title="STP Status">
1084 <p>
1085 These key-value pairs report the status of 802.1D-1998. They are
1086 present only if STP is enabled (via the <ref column="stp_enable"/>
1087 column).
1088 </p>
1089 <column name="status" key="stp_bridge_id">
1090 The bridge ID used in spanning tree advertisements, in the form
1091 <var>xxxx</var>.<var>yyyyyyyyyyyy</var> where the <var>x</var>s are
1092 the STP priority, the <var>y</var>s are the STP system ID, and each
1093 <var>x</var> and <var>y</var> is a hex digit.
1094 </column>
1095 <column name="status" key="stp_designated_root">
1096 The designated root for this spanning tree, in the same form as <ref
1097 column="status" key="stp_bridge_id"/>. If this bridge is the root,
1098 this will have the same value as <ref column="status"
1099 key="stp_bridge_id"/>, otherwise it will differ.
1100 </column>
1101 <column name="status" key="stp_root_path_cost">
1102 The path cost of reaching the designated bridge. A lower number is
1103 better. The value is 0 if this bridge is the root, otherwise it is
1104 higher.
1105 </column>
1106 </group>
1107 </group>
1108
1109 <group title="Rapid Spanning Tree">
1110 <p>
1111 Rapid Spanning Tree Protocol (RSTP), like STP, is a network protocol
1112 that ensures loop-free topologies. RSTP superseded STP with the
1113 publication of 802.1D-2004. Compared to STP, RSTP converges more
1114 quickly and recovers more quickly from failures.
1115 </p>
1116
1117 <group title="RSTP Configuration">
1118 <column name="rstp_enable" type='{"type": "boolean"}'>
1119 <p>
1120 Enable Rapid Spanning Tree on the bridge. By default, RSTP is disabled
1121 on bridges. Bond, internal, and mirror ports are not supported
1122 and will not participate in the spanning tree.
1123 </p>
1124
1125 <p>
1126 STP and RSTP are mutually exclusive. If both are enabled, RSTP
1127 will be used.
1128 </p>
1129 </column>
1130
1131 <column name="other_config" key="rstp-address">
1132 The bridge's RSTP address (the lower 48 bits of the bridge-id)
1133 in the form
1134 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>.
1135 By default, the address is the MAC address of the bridge.
1136 </column>
1137
1138 <column name="other_config" key="rstp-priority"
1139 type='{"type": "integer", "minInteger": 0, "maxInteger": 61440}'>
1140 The bridge's relative priority value for determining the root
1141 bridge (the upper 16 bits of the bridge-id). A bridge with the
1142 lowest bridge-id is elected the root. By default, the priority
1143 is 0x8000 (32768). This value needs to be a multiple of 4096,
1144 otherwise it's rounded to the nearest inferior one.
1145 </column>
1146
1147 <column name="other_config" key="rstp-ageing-time"
1148 type='{"type": "integer", "minInteger": 10, "maxInteger": 1000000}'>
1149 The Ageing Time parameter for the Bridge. The default value
1150 is 300 seconds.
1151 </column>
1152
1153 <column name="other_config" key="rstp-force-protocol-version"
1154 type='{"type": "integer"}'>
1155 The Force Protocol Version parameter for the Bridge. This
1156 can take the value 0 (STP Compatibility mode) or 2
1157 (the default, normal operation).
1158 </column>
1159
1160 <column name="other_config" key="rstp-max-age"
1161 type='{"type": "integer", "minInteger": 6, "maxInteger": 40}'>
1162 The maximum age of the information transmitted by the Bridge
1163 when it is the Root Bridge. The default value is 20.
1164 </column>
1165
1166 <column name="other_config" key="rstp-forward-delay"
1167 type='{"type": "integer", "minInteger": 4, "maxInteger": 30}'>
1168 The delay used by STP Bridges to transition Root and Designated
1169 Ports to Forwarding. The default value is 15.
1170 </column>
1171
1172 <column name="other_config" key="rstp-transmit-hold-count"
1173 type='{"type": "integer", "minInteger": 1, "maxInteger": 10}'>
1174 The Transmit Hold Count used by the Port Transmit state machine
1175 to limit transmission rate. The default value is 6.
1176 </column>
1177 </group>
1178
1179 <group title="RSTP Status">
1180 <p>
1181 These key-value pairs report the status of 802.1D-2004. They are
1182 present only if RSTP is enabled (via the <ref column="rstp_enable"/>
1183 column).
1184 </p>
1185 <column name="rstp_status" key="rstp_bridge_id">
1186 The bridge ID used in rapid spanning tree advertisements, in the form
1187 <var>x</var>.<var>yyy</var>.<var>zzzzzzzzzzzz</var> where
1188 <var>x</var> is the RSTP priority, the <var>y</var>s are a locally
1189 assigned system ID extension, the <var>z</var>s are the STP system
1190 ID, and each <var>x</var>, <var>y</var>, or <var>z</var> is a hex
1191 digit.
1192 </column>
1193 <column name="rstp_status" key="rstp_root_id">
1194 The root of this spanning tree, in the same form as <ref
1195 column="rstp_status" key="rstp_bridge_id"/>. If this bridge is the
1196 root, this will have the same value as <ref column="rstp_status"
1197 key="rstp_bridge_id"/>, otherwise it will differ.
1198 </column>
1199 <column name="rstp_status" key="rstp_root_path_cost"
1200 type='{"type": "integer", "minInteger": 0}'>
1201 The path cost of reaching the root. A lower number is better. The
1202 value is 0 if this bridge is the root, otherwise it is higher.
1203 </column>
1204 <column name="rstp_status" key="rstp_designated_id">
1205 The RSTP designated ID, in the same form as <ref column="rstp_status"
1206 key="rstp_bridge_id"/>.
1207 </column>
1208 <column name="rstp_status" key="rstp_designated_port_id">
1209 The RSTP designated port ID, as a 4-digit hex number.
1210 </column>
1211 <column name="rstp_status" key="rstp_bridge_port_id">
1212 The RSTP bridge port ID, as a 4-digit hex number.
1213 </column>
1214 </group>
1215 </group>
1216
1217 <group title="Multicast Snooping Configuration">
1218 Multicast snooping (RFC 4541) monitors the Internet Group Management
1219 Protocol (IGMP) and Multicast Listener Discovery traffic between hosts
1220 and multicast routers. The switch uses what IGMP and MLD snooping
1221 learns to forward multicast traffic only to interfaces that are connected
1222 to interested receivers. Currently it supports IGMPv1, IGMPv2, IGMPv3,
1223 MLDv1 and MLDv2 protocols.
1224
1225 <column name="mcast_snooping_enable">
1226 Enable multicast snooping on the bridge. For now, the default
1227 is disabled.
1228 </column>
1229 </group>
1230
1231 <group title="Other Features">
1232 <column name="datapath_type">
1233 Name of datapath provider. The kernel datapath has type
1234 <code>system</code>. The userspace datapath has type
1235 <code>netdev</code>. A manager may refer to the <ref
1236 table="Open_vSwitch" column="datapath_types"/> column of the <ref
1237 table="Open_vSwitch"/> table for a list of the types accepted by this
1238 Open vSwitch instance.
1239 </column>
1240
1241 <column name="external_ids" key="bridge-id">
1242 A unique identifier of the bridge. On Citrix XenServer this will
1243 commonly be the same as
1244 <ref column="external_ids" key="xs-network-uuids"/>.
1245 </column>
1246
1247 <column name="external_ids" key="xs-network-uuids">
1248 Semicolon-delimited set of universally unique identifier(s) for the
1249 network with which this bridge is associated on a Citrix XenServer
1250 host. The network identifiers are RFC 4122 UUIDs as displayed by,
1251 e.g., <code>xe network-list</code>.
1252 </column>
1253
1254 <column name="other_config" key="hwaddr">
1255 An Ethernet address in the form
1256 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>
1257 to set the hardware address of the local port and influence the
1258 datapath ID.
1259 </column>
1260
1261 <column name="other_config" key="forward-bpdu"
1262 type='{"type": "boolean"}'>
1263
1264 <p>
1265 Controls forwarding of BPDUs and other network control frames when
1266 NORMAL action is invoked. When this option is <code>false</code> or
1267 unset, frames with reserved Ethernet addresses (see table below) will
1268 not be forwarded. When this option is <code>true</code>, such frames
1269 will not be treated specially.
1270 </p>
1271
1272 <p>
1273 The above general rule has the following exceptions:
1274 </p>
1275
1276 <ul>
1277 <li>
1278 If STP is enabled on the bridge (see the <ref column="stp_enable"
1279 table="Bridge"/> column in the <ref table="Bridge"/> table), the
1280 bridge processes all received STP packets and never passes them to
1281 OpenFlow or forwards them. This is true even if STP is disabled on
1282 an individual port.
1283 </li>
1284
1285 <li>
1286 If LLDP is enabled on an interface (see the <ref column="lldp"
1287 table="Interface"/> column in the <ref table="Interface"/> table),
1288 the interface processes received LLDP packets and never passes them
1289 to OpenFlow or forwards them.
1290 </li>
1291 </ul>
1292
1293 <p>
1294 Set this option to <code>true</code> if the Open vSwitch bridge
1295 connects different Ethernet networks and is not configured to
1296 participate in STP.
1297 </p>
1298
1299 <p>
1300 This option affects packets with the following destination MAC
1301 addresses:
1302 </p>
1303
1304 <dl>
1305 <dt><code>01:80:c2:00:00:00</code></dt>
1306 <dd>IEEE 802.1D Spanning Tree Protocol (STP).</dd>
1307
1308 <dt><code>01:80:c2:00:00:01</code></dt>
1309 <dd>IEEE Pause frame.</dd>
1310
1311 <dt><code>01:80:c2:00:00:0<var>x</var></code></dt>
1312 <dd>Other reserved protocols.</dd>
1313
1314 <dt><code>00:e0:2b:00:00:00</code></dt>
1315 <dd>Extreme Discovery Protocol (EDP).</dd>
1316
1317 <dt>
1318 <code>00:e0:2b:00:00:04</code> and <code>00:e0:2b:00:00:06</code>
1319 </dt>
1320 <dd>Ethernet Automatic Protection Switching (EAPS).</dd>
1321
1322 <dt><code>01:00:0c:cc:cc:cc</code></dt>
1323 <dd>
1324 Cisco Discovery Protocol (CDP), VLAN Trunking Protocol (VTP),
1325 Dynamic Trunking Protocol (DTP), Port Aggregation Protocol (PAgP),
1326 and others.
1327 </dd>
1328
1329 <dt><code>01:00:0c:cc:cc:cd</code></dt>
1330 <dd>Cisco Shared Spanning Tree Protocol PVSTP+.</dd>
1331
1332 <dt><code>01:00:0c:cd:cd:cd</code></dt>
1333 <dd>Cisco STP Uplink Fast.</dd>
1334
1335 <dt><code>01:00:0c:00:00:00</code></dt>
1336 <dd>Cisco Inter Switch Link.</dd>
1337
1338 <dt><code>01:00:0c:cc:cc:c<var>x</var></code></dt>
1339 <dd>Cisco CFM.</dd>
1340 </dl>
1341 </column>
1342
1343 <column name="other_config" key="mac-aging-time"
1344 type='{"type": "integer", "minInteger": 1}'>
1345 <p>
1346 The maximum number of seconds to retain a MAC learning entry for
1347 which no packets have been seen. The default is currently 300
1348 seconds (5 minutes). The value, if specified, is forced into a
1349 reasonable range, currently 15 to 3600 seconds.
1350 </p>
1351
1352 <p>
1353 A short MAC aging time allows a network to more quickly detect that a
1354 host is no longer connected to a switch port. However, it also makes
1355 it more likely that packets will be flooded unnecessarily, when they
1356 are addressed to a connected host that rarely transmits packets. To
1357 reduce the incidence of unnecessary flooding, use a MAC aging time
1358 longer than the maximum interval at which a host will ordinarily
1359 transmit packets.
1360 </p>
1361 </column>
1362
1363 <column name="other_config" key="mac-table-size"
1364 type='{"type": "integer", "minInteger": 1}'>
1365 <p>
1366 The maximum number of MAC addresses to learn. The default is
1367 currently 2048. The value, if specified, is forced into a reasonable
1368 range, currently 10 to 1,000,000.
1369 </p>
1370 </column>
1371 </group>
1372
1373 <group title="Common Columns">
1374 The overall purpose of these columns is described under <code>Common
1375 Columns</code> at the beginning of this document.
1376
1377 <column name="other_config"/>
1378 <column name="external_ids"/>
1379 </group>
1380 </table>
1381
1382 <table name="Port" table="Port or bond configuration.">
1383 <p>A port within a <ref table="Bridge"/>.</p>
1384 <p>Most commonly, a port has exactly one ``interface,'' pointed to by its
1385 <ref column="interfaces"/> column. Such a port logically
1386 corresponds to a port on a physical Ethernet switch. A port
1387 with more than one interface is a ``bonded port'' (see
1388 <ref group="Bonding Configuration"/>).</p>
1389 <p>Some properties that one might think as belonging to a port are actually
1390 part of the port's <ref table="Interface"/> members.</p>
1391
1392 <column name="name">
1393 Port name. For a non-bonded port, this should be the same as its
1394 interface's name. Port names must otherwise be unique among the names of
1395 ports, interfaces, and bridges on a host. Because port and interfaces
1396 names are usually the same, the restrictions on the <ref
1397 table="Interface" column="name"/> column in the <ref table="Interface"/>
1398 table, particularly on length, also apply to port names. Refer to the
1399 documentation for <ref table="Interface"/> names for details.
1400 </column>
1401
1402 <column name="interfaces">
1403 The port's interfaces. If there is more than one, this is a
1404 bonded Port.
1405 </column>
1406
1407 <group title="VLAN Configuration">
1408 <p>
1409 In short, a VLAN (short for ``virtual LAN'') is a way to partition a
1410 single switch into multiple switches. VLANs can be confusing, so for
1411 an introduction, please refer to the question ``What's a VLAN?'' in the
1412 Open vSwitch FAQ.
1413 </p>
1414
1415 <p>
1416 A VLAN is sometimes encoded into a packet using a 802.1Q or 802.1ad
1417 VLAN header, but every packet is part of some VLAN whether or not it is
1418 encoded in the packet. (A packet that appears to have no VLAN is part
1419 of VLAN 0, by default.) As a result, it's useful to think of a VLAN as
1420 a metadata property of a packet, separate from how the VLAN is encoded.
1421 For a given port, this column determines how the encoding of a packet
1422 that ingresses or egresses the port maps to the packet's VLAN. When a
1423 packet enters the switch, its VLAN is determined based on its setting
1424 in this column and its VLAN headers, if any, and then, conceptually,
1425 the VLAN headers are then stripped off. Conversely, when a packet
1426 exits the switch, its VLAN and the settings in this column determine
1427 what VLAN headers, if any, are pushed onto the packet before it
1428 egresses the port.
1429 </p>
1430
1431 <p>
1432 The VLAN configuration in this column affects Open vSwitch only when it
1433 is doing ``normal switching.'' It does not affect flows set up by an
1434 OpenFlow controller, outside of the OpenFlow ``normal action.''
1435 </p>
1436
1437 <p>
1438 Bridge ports support the following types of VLAN configuration:
1439 </p>
1440
1441 <dl>
1442 <dt>trunk</dt>
1443 <dd>
1444 <p>
1445 A trunk port carries packets on one or more specified VLANs
1446 specified in the <ref column="trunks"/> column (often, on every
1447 VLAN). A packet that ingresses on a trunk port is in the VLAN
1448 specified in its 802.1Q header, or VLAN 0 if the packet has no
1449 802.1Q header. A packet that egresses through a trunk port will
1450 have an 802.1Q header if it has a nonzero VLAN ID.
1451 </p>
1452
1453 <p>
1454 Any packet that ingresses on a trunk port tagged with a VLAN that
1455 the port does not trunk is dropped.
1456 </p>
1457 </dd>
1458
1459 <dt>access</dt>
1460 <dd>
1461 <p>
1462 An access port carries packets on exactly one VLAN specified in the
1463 <ref column="tag"/> column. Packets egressing on an access port
1464 have no 802.1Q header.
1465 </p>
1466
1467 <p>
1468 Any packet with an 802.1Q header with a nonzero VLAN ID that
1469 ingresses on an access port is dropped, regardless of whether the
1470 VLAN ID in the header is the access port's VLAN ID.
1471 </p>
1472 </dd>
1473
1474 <dt>native-tagged</dt>
1475 <dd>
1476 A native-tagged port resembles a trunk port, with the exception that
1477 a packet without an 802.1Q header that ingresses on a native-tagged
1478 port is in the ``native VLAN'' (specified in the <ref column="tag"/>
1479 column).
1480 </dd>
1481
1482 <dt>native-untagged</dt>
1483 <dd>
1484 A native-untagged port resembles a native-tagged port, with the
1485 exception that a packet that egresses on a native-untagged port in
1486 the native VLAN will not have an 802.1Q header.
1487 </dd>
1488
1489 <dt>dot1q-tunnel</dt>
1490 <dd>
1491 <p>
1492 A dot1q-tunnel port is somewhat like an access port. Like an
1493 access port, it carries packets on the single VLAN specified in the
1494 <ref column="tag"/> column and this VLAN, called the service VLAN,
1495 does not appear in an 802.1Q header for packets that ingress or
1496 egress on the port. The main difference lies in the behavior when
1497 packets that include a 802.1Q header ingress on the port. Whereas
1498 an access port drops such packets, a dot1q-tunnel port treats these
1499 as double-tagged with the outer service VLAN <ref column="tag"/>
1500 and the inner customer VLAN taken from the 802.1Q header.
1501 Correspondingly, to egress on the port, a packet outer VLAN (or
1502 only VLAN) must be <ref column="tag"/>, which is removed before
1503 egress, which exposes the inner (customer) VLAN if one is present.
1504 </p>
1505
1506 <p>
1507 If <ref column="cvlans"/> is set, only allows packets in the
1508 specified customer VLANs.
1509 </p>
1510 </dd>
1511 </dl>
1512 <p>
1513 A packet will only egress through bridge ports that carry the VLAN of
1514 the packet, as described by the rules above.
1515 </p>
1516
1517 <column name="vlan_mode">
1518 <p>
1519 The VLAN mode of the port, as described above. When this column is
1520 empty, a default mode is selected as follows:
1521 </p>
1522 <ul>
1523 <li>
1524 If <ref column="tag"/> contains a value, the port is an access
1525 port. The <ref column="trunks"/> column should be empty.
1526 </li>
1527 <li>
1528 Otherwise, the port is a trunk port. The <ref column="trunks"/>
1529 column value is honored if it is present.
1530 </li>
1531 </ul>
1532 </column>
1533
1534 <column name="tag">
1535 <p>
1536 For an access port, the port's implicitly tagged VLAN. For a
1537 native-tagged or native-untagged port, the port's native VLAN. Must
1538 be empty if this is a trunk port.
1539 </p>
1540 </column>
1541
1542 <column name="trunks">
1543 <p>
1544 For a trunk, native-tagged, or native-untagged port, the 802.1Q VLAN
1545 or VLANs that this port trunks; if it is empty, then the port trunks
1546 all VLANs. Must be empty if this is an access port.
1547 </p>
1548 <p>
1549 A native-tagged or native-untagged port always trunks its native
1550 VLAN, regardless of whether <ref column="trunks"/> includes that
1551 VLAN.
1552 </p>
1553 </column>
1554
1555 <column name="cvlans">
1556 <p>
1557 For a dot1q-tunnel port, the customer VLANs that this port includes.
1558 If this is empty, the port includes all customer VLANs.
1559 </p>
1560 <p>
1561 For other kinds of ports, this setting is ignored.
1562 </p>
1563 </column>
1564
1565 <column name="other_config" key="qinq-ethtype"
1566 type='{"type": "string", "enum": ["set", ["802.1ad", "802.1q"]]}'>
1567 <p>
1568 For a dot1q-tunnel port, this is the TPID for the service tag, that
1569 is, for the 802.1Q header that contains the service VLAN ID. Because
1570 packets that actually ingress and egress a dot1q-tunnel port do not
1571 include an 802.1Q header for the service VLAN, this does not affect
1572 packets on the dot1q-tunnel port itself. Rather, it determines the
1573 service VLAN for a packet that ingresses on a dot1q-tunnel port and
1574 egresses on a trunk port.
1575 </p>
1576 <p>
1577 The value <code>802.1ad</code> specifies TPID 0x88a8, which is also
1578 the default if the setting is omitted. The value <code>802.1q</code>
1579 specifies TPID 0x8100.
1580 </p>
1581 <p>
1582 For other kinds of ports, this setting is ignored.
1583 </p>
1584 </column>
1585
1586 <column name="other_config" key="priority-tags"
1587 type='{"type": "boolean"}'>
1588 <p>
1589 An 802.1Q header contains two important pieces of information: a VLAN
1590 ID and a priority. A frame with a zero VLAN ID, called a
1591 ``priority-tagged'' frame, is supposed to be treated the same way as
1592 a frame without an 802.1Q header at all (except for the priority).
1593 </p>
1594
1595 <p>
1596 However, some network elements ignore any frame that has 802.1Q
1597 header at all, even when the VLAN ID is zero. Therefore, by default
1598 Open vSwitch does not output priority-tagged frames, instead omitting
1599 the 802.1Q header entirely if the VLAN ID is zero. Set this key to
1600 <code>true</code> to enable priority-tagged frames on a port.
1601 </p>
1602
1603 <p>
1604 Regardless of this setting, Open vSwitch omits the 802.1Q header on
1605 output if both the VLAN ID and priority would be zero.
1606 </p>
1607
1608 <p>
1609 All frames output to native-tagged ports have a nonzero VLAN ID, so
1610 this setting is not meaningful on native-tagged ports.
1611 </p>
1612 </column>
1613 </group>
1614
1615 <group title="Bonding Configuration">
1616 <p>A port that has more than one interface is a ``bonded port.'' Bonding
1617 allows for load balancing and fail-over.</p>
1618
1619 <p>
1620 The following types of bonding will work with any kind of upstream
1621 switch. On the upstream switch, do not configure the interfaces as a
1622 bond:
1623 </p>
1624
1625 <dl>
1626 <dt><code>balance-slb</code></dt>
1627 <dd>
1628 Balances flows among slaves based on source MAC address and output
1629 VLAN, with periodic rebalancing as traffic patterns change.
1630 </dd>
1631
1632 <dt><code>active-backup</code></dt>
1633 <dd>
1634 Assigns all flows to one slave, failing over to a backup slave when
1635 the active slave is disabled. This is the only bonding mode in which
1636 interfaces may be plugged into different upstream switches.
1637 </dd>
1638 </dl>
1639
1640 <p>
1641 The following modes require the upstream switch to support 802.3ad with
1642 successful LACP negotiation. If LACP negotiation fails and
1643 other-config:lacp-fallback-ab is true, then <code>active-backup</code>
1644 mode is used:
1645 </p>
1646
1647 <dl>
1648 <dt><code>balance-tcp</code></dt>
1649 <dd>
1650 Balances flows among slaves based on L3 and L4 protocol information
1651 such as IP addresses and TCP/UDP ports.
1652 </dd>
1653 </dl>
1654
1655 <p>These columns apply only to bonded ports. Their values are
1656 otherwise ignored.</p>
1657
1658 <column name="bond_mode">
1659 <p>The type of bonding used for a bonded port. Defaults to
1660 <code>active-backup</code> if unset.
1661 </p>
1662 </column>
1663
1664 <column name="other_config" key="bond-hash-basis"
1665 type='{"type": "integer"}'>
1666 An integer hashed along with flows when choosing output slaves in load
1667 balanced bonds. When changed, all flows will be assigned different
1668 hash values possibly causing slave selection decisions to change. Does
1669 not affect bonding modes which do not employ load balancing such as
1670 <code>active-backup</code>.
1671 </column>
1672
1673 <group title="Link Failure Detection">
1674 <p>
1675 An important part of link bonding is detecting that links are down so
1676 that they may be disabled. These settings determine how Open vSwitch
1677 detects link failure.
1678 </p>
1679
1680 <column name="other_config" key="bond-detect-mode"
1681 type='{"type": "string", "enum": ["set", ["carrier", "miimon"]]}'>
1682 The means used to detect link failures. Defaults to
1683 <code>carrier</code> which uses each interface's carrier to detect
1684 failures. When set to <code>miimon</code>, will check for failures
1685 by polling each interface's MII.
1686 </column>
1687
1688 <column name="other_config" key="bond-miimon-interval"
1689 type='{"type": "integer"}'>
1690 The interval, in milliseconds, between successive attempts to poll
1691 each interface's MII. Relevant only when <ref column="other_config"
1692 key="bond-detect-mode"/> is <code>miimon</code>.
1693 </column>
1694
1695 <column name="bond_updelay">
1696 <p>
1697 The number of milliseconds for which the link must stay up on an
1698 interface before the interface is considered to be up. Specify
1699 <code>0</code> to enable the interface immediately.
1700 </p>
1701
1702 <p>
1703 This setting is honored only when at least one bonded interface is
1704 already enabled. When no interfaces are enabled, then the first
1705 bond interface to come up is enabled immediately.
1706 </p>
1707 </column>
1708
1709 <column name="bond_downdelay">
1710 The number of milliseconds for which the link must stay down on an
1711 interface before the interface is considered to be down. Specify
1712 <code>0</code> to disable the interface immediately.
1713 </column>
1714 </group>
1715
1716 <group title="LACP Configuration">
1717 <p>
1718 LACP, the Link Aggregation Control Protocol, is an IEEE standard that
1719 allows switches to automatically detect that they are connected by
1720 multiple links and aggregate across those links. These settings
1721 control LACP behavior.
1722 </p>
1723
1724 <column name="lacp">
1725 Configures LACP on this port. LACP allows directly connected
1726 switches to negotiate which links may be bonded. LACP may be enabled
1727 on non-bonded ports for the benefit of any switches they may be
1728 connected to. <code>active</code> ports are allowed to initiate LACP
1729 negotiations. <code>passive</code> ports are allowed to participate
1730 in LACP negotiations initiated by a remote switch, but not allowed to
1731 initiate such negotiations themselves. If LACP is enabled on a port
1732 whose partner switch does not support LACP, the bond will be
1733 disabled, unless other-config:lacp-fallback-ab is set to true.
1734 Defaults to <code>off</code> if unset.
1735 </column>
1736
1737 <column name="other_config" key="lacp-system-id">
1738 The LACP system ID of this <ref table="Port"/>. The system ID of a
1739 LACP bond is used to identify itself to its partners. Must be a
1740 nonzero MAC address. Defaults to the bridge Ethernet address if
1741 unset.
1742 </column>
1743
1744 <column name="other_config" key="lacp-system-priority"
1745 type='{"type": "integer", "minInteger": 1, "maxInteger": 65535}'>
1746 The LACP system priority of this <ref table="Port"/>. In LACP
1747 negotiations, link status decisions are made by the system with the
1748 numerically lower priority.
1749 </column>
1750
1751 <column name="other_config" key="lacp-time"
1752 type='{"type": "string", "enum": ["set", ["fast", "slow"]]}'>
1753 <p>
1754 The LACP timing which should be used on this <ref table="Port"/>.
1755 By default <code>slow</code> is used. When configured to be
1756 <code>fast</code> LACP heartbeats are requested at a rate of once
1757 per second causing connectivity problems to be detected more
1758 quickly. In <code>slow</code> mode, heartbeats are requested at a
1759 rate of once every 30 seconds.
1760 </p>
1761 </column>
1762
1763 <column name="other_config" key="lacp-fallback-ab"
1764 type='{"type": "boolean"}'>
1765 <p>
1766 Determines the behavior of openvswitch bond in LACP mode. If
1767 the partner switch does not support LACP, setting this option
1768 to <code>true</code> allows openvswitch to fallback to
1769 active-backup. If the option is set to <code>false</code>, the
1770 bond will be disabled. In both the cases, once the partner switch
1771 is configured to LACP mode, the bond will use LACP.
1772 </p>
1773 </column>
1774 </group>
1775
1776 <group title="Rebalancing Configuration">
1777 <p>
1778 These settings control behavior when a bond is in
1779 <code>balance-slb</code> or <code>balance-tcp</code> mode.
1780 </p>
1781
1782 <column name="other_config" key="bond-rebalance-interval"
1783 type='{"type": "integer", "minInteger": 0, "maxInteger": 10000}'>
1784 For a load balanced bonded port, the number of milliseconds between
1785 successive attempts to rebalance the bond, that is, to move flows
1786 from one interface on the bond to another in an attempt to keep usage
1787 of each interface roughly equal. If zero, load balancing is disabled
1788 on the bond (link failure still cause flows to move). If
1789 less than 1000ms, the rebalance interval will be 1000ms.
1790 </column>
1791 </group>
1792
1793 <column name="bond_fake_iface">
1794 For a bonded port, whether to create a fake internal interface with the
1795 name of the port. Use only for compatibility with legacy software that
1796 requires this.
1797 </column>
1798 </group>
1799
1800 <group title="Spanning Tree Protocol">
1801 <p>
1802 The configuration here is only meaningful, and the status is only
1803 populated, when 802.1D-1998 Spanning Tree Protocol is enabled on the
1804 port's <ref column="Bridge"/> with its <ref column="stp_enable"/>
1805 column.
1806 </p>
1807
1808 <group title="STP Configuration">
1809 <column name="other_config" key="stp-enable"
1810 type='{"type": "boolean"}'>
1811 When STP is enabled on a bridge, it is enabled by default on all of
1812 the bridge's ports except bond, internal, and mirror ports (which do
1813 not work with STP). If this column's value is <code>false</code>,
1814 STP is disabled on the port.
1815 </column>
1816
1817 <column name="other_config" key="stp-port-num"
1818 type='{"type": "integer", "minInteger": 1, "maxInteger": 255}'>
1819 The port number used for the lower 8 bits of the port-id. By
1820 default, the numbers will be assigned automatically. If any
1821 port's number is manually configured on a bridge, then they
1822 must all be.
1823 </column>
1824
1825 <column name="other_config" key="stp-port-priority"
1826 type='{"type": "integer", "minInteger": 0, "maxInteger": 255}'>
1827 The port's relative priority value for determining the root
1828 port (the upper 8 bits of the port-id). A port with a lower
1829 port-id will be chosen as the root port. By default, the
1830 priority is 0x80.
1831 </column>
1832
1833 <column name="other_config" key="stp-path-cost"
1834 type='{"type": "integer", "minInteger": 0, "maxInteger": 65535}'>
1835 Spanning tree path cost for the port. A lower number indicates
1836 a faster link. By default, the cost is based on the maximum
1837 speed of the link.
1838 </column>
1839 </group>
1840
1841 <group title="STP Status">
1842 <column name="status" key="stp_port_id">
1843 The port ID used in spanning tree advertisements for this port, as 4
1844 hex digits. Configuring the port ID is described in the
1845 <code>stp-port-num</code> and <code>stp-port-priority</code> keys of
1846 the <code>other_config</code> section earlier.
1847 </column>
1848 <column name="status" key="stp_state"
1849 type='{"type": "string", "enum": ["set",
1850 ["disabled", "listening", "learning",
1851 "forwarding", "blocking"]]}'>
1852 STP state of the port.
1853 </column>
1854 <column name="status" key="stp_sec_in_state"
1855 type='{"type": "integer", "minInteger": 0}'>
1856 The amount of time this port has been in the current STP state, in
1857 seconds.
1858 </column>
1859 <column name="status" key="stp_role"
1860 type='{"type": "string", "enum": ["set",
1861 ["root", "designated", "alternate"]]}'>
1862 STP role of the port.
1863 </column>
1864 </group>
1865 </group>
1866
1867 <group title="Rapid Spanning Tree Protocol">
1868 <p>
1869 The configuration here is only meaningful, and the status and
1870 statistics are only populated, when 802.1D-1998 Spanning Tree Protocol
1871 is enabled on the port's <ref column="Bridge"/> with its <ref
1872 column="stp_enable"/> column.
1873 </p>
1874
1875 <group title="RSTP Configuration">
1876 <column name="other_config" key="rstp-enable"
1877 type='{"type": "boolean"}'>
1878 When RSTP is enabled on a bridge, it is enabled by default on all of
1879 the bridge's ports except bond, internal, and mirror ports (which do
1880 not work with RSTP). If this column's value is <code>false</code>,
1881 RSTP is disabled on the port.
1882 </column>
1883
1884 <column name="other_config" key="rstp-port-priority"
1885 type='{"type": "integer", "minInteger": 0, "maxInteger": 240}'>
1886 The port's relative priority value for determining the root port, in
1887 multiples of 16. By default, the port priority is 0x80 (128). Any
1888 value in the lower 4 bits is rounded off. The significant upper 4
1889 bits become the upper 4 bits of the port-id. A port with the lowest
1890 port-id is elected as the root.
1891 </column>
1892
1893 <column name="other_config" key="rstp-port-num"
1894 type='{"type": "integer", "minInteger": 1, "maxInteger": 4095}'>
1895 The local RSTP port number, used as the lower 12 bits of the port-id.
1896 By default the port numbers are assigned automatically, and typically
1897 may not correspond to the OpenFlow port numbers. A port with the
1898 lowest port-id is elected as the root.
1899 </column>
1900
1901 <column name="other_config" key="rstp-port-path-cost"
1902 type='{"type": "integer"}'>
1903 The port path cost. The Port's contribution, when it is
1904 the Root Port, to the Root Path Cost for the Bridge. By default the
1905 cost is automatically calculated from the port's speed.
1906 </column>
1907
1908 <column name="other_config" key="rstp-port-admin-edge"
1909 type='{"type": "boolean"}'>
1910 The admin edge port parameter for the Port. Default is
1911 <code>false</code>.
1912 </column>
1913
1914 <column name="other_config" key="rstp-port-auto-edge"
1915 type='{"type": "boolean"}'>
1916 The auto edge port parameter for the Port. Default is
1917 <code>true</code>.
1918 </column>
1919
1920 <column name="other_config" key="rstp-port-mcheck"
1921 type='{"type": "boolean"}'>
1922 <p>
1923 The mcheck port parameter for the Port. Default is
1924 <code>false</code>. May be set to force the Port Protocol
1925 Migration state machine to transmit RST BPDUs for a
1926 MigrateTime period, to test whether all STP Bridges on the
1927 attached LAN have been removed and the Port can continue to
1928 transmit RSTP BPDUs. Setting mcheck has no effect if the
1929 Bridge is operating in STP Compatibility mode.
1930 </p>
1931 <p>
1932 Changing the value from <code>true</code> to
1933 <code>false</code> has no effect, but needs to be done if
1934 this behavior is to be triggered again by subsequently
1935 changing the value from <code>false</code> to
1936 <code>true</code>.
1937 </p>
1938 </column>
1939 </group>
1940
1941 <group title="RSTP Status">
1942 <column name="rstp_status" key="rstp_port_id">
1943 The port ID used in spanning tree advertisements for this port, as 4
1944 hex digits. Configuring the port ID is described in the
1945 <code>rstp-port-num</code> and <code>rstp-port-priority</code> keys
1946 of the <code>other_config</code> section earlier.
1947 </column>
1948 <column name="rstp_status" key="rstp_port_role"
1949 type='{"type": "string", "enum": ["set",
1950 ["Root", "Designated", "Alternate", "Backup", "Disabled"]]}'>
1951 RSTP role of the port.
1952 </column>
1953 <column name="rstp_status" key="rstp_port_state"
1954 type='{"type": "string", "enum": ["set",
1955 ["Disabled", "Learning", "Forwarding", "Discarding"]]}'>
1956 RSTP state of the port.
1957 </column>
1958 <column name="rstp_status" key="rstp_designated_bridge_id">
1959 The port's RSTP designated bridge ID, in the same form as <ref
1960 column="rstp_status" key="rstp_bridge_id"/> in the <ref
1961 table="Bridge"/> table.
1962 </column>
1963 <column name="rstp_status" key="rstp_designated_port_id">
1964 The port's RSTP designated port ID, as 4 hex digits.
1965 </column>
1966 <column name="rstp_status" key="rstp_designated_path_cost"
1967 type='{"type": "integer"}'>
1968 The port's RSTP designated path cost. Lower is better.
1969 </column>
1970 </group>
1971
1972 <group title="RSTP Statistics">
1973 <column name="rstp_statistics" key="rstp_tx_count">
1974 Number of RSTP BPDUs transmitted through this port.
1975 </column>
1976 <column name="rstp_statistics" key="rstp_rx_count">
1977 Number of valid RSTP BPDUs received by this port.
1978 </column>
1979 <column name="rstp_statistics" key="rstp_error_count">
1980 Number of invalid RSTP BPDUs received by this port.
1981 </column>
1982 <column name="rstp_statistics" key="rstp_uptime">
1983 The duration covered by the other RSTP statistics, in seconds.
1984 </column>
1985 </group>
1986 </group>
1987
1988 <group title="Multicast Snooping">
1989 <column name="other_config" key="mcast-snooping-flood"
1990 type='{"type": "boolean"}'>
1991 <p>
1992 If set to <code>true</code>, multicast packets (except Reports) are
1993 unconditionally forwarded to the specific port.
1994 </p>
1995 </column>
1996 <column name="other_config" key="mcast-snooping-flood-reports"
1997 type='{"type": "boolean"}'>
1998 <p>
1999 If set to <code>true</code>, multicast Reports are unconditionally
2000 forwarded to the specific port.
2001 </p>
2002 </column>
2003 </group>
2004
2005 <group title="Other Features">
2006 <column name="qos">
2007 Quality of Service configuration for this port.
2008 </column>
2009
2010 <column name="mac">
2011 The MAC address to use for this port for the purpose of choosing the
2012 bridge's MAC address. This column does not necessarily reflect the
2013 port's actual MAC address, nor will setting it change the port's actual
2014 MAC address.
2015 </column>
2016
2017 <column name="fake_bridge">
2018 Does this port represent a sub-bridge for its tagged VLAN within the
2019 Bridge? See ovs-vsctl(8) for more information.
2020 </column>
2021
2022 <column name="protected" type='{"type": "boolean"}'>
2023 The protected ports feature allows certain ports to be designated as
2024 protected. Traffic between protected ports is blocked. Protected
2025 ports can send traffic to unprotected ports. Unprotected ports can
2026 send traffic to any port.
2027 Default is false.
2028 </column>
2029
2030 <column name="external_ids" key="fake-bridge-id-*">
2031 External IDs for a fake bridge (see the <ref column="fake_bridge"/>
2032 column) are defined by prefixing a <ref table="Bridge"/> <ref
2033 table="Bridge" column="external_ids"/> key with
2034 <code>fake-bridge-</code>,
2035 e.g. <code>fake-bridge-xs-network-uuids</code>.
2036 </column>
2037
2038 <column name="other_config" key="transient"
2039 type='{"type": "boolean"}'>
2040 <p>
2041 If set to <code>true</code>, the port will be removed when
2042 <code>ovs-ctl start --delete-transient-ports</code> is used.
2043 </p>
2044 </column>
2045 </group>
2046
2047 <column name="bond_active_slave">
2048 For a bonded port, record the mac address of the current active slave.
2049 </column>
2050
2051 <group title="Port Statistics">
2052 <p>
2053 Key-value pairs that report port statistics. The update period
2054 is controlled by <ref column="other_config"
2055 key="stats-update-interval"/> in the <code>Open_vSwitch</code> table.
2056 </p>
2057 <group title="Statistics: STP transmit and receive counters">
2058 <column name="statistics" key="stp_tx_count">
2059 Number of STP BPDUs sent on this port by the spanning
2060 tree library.
2061 </column>
2062 <column name="statistics" key="stp_rx_count">
2063 Number of STP BPDUs received on this port and accepted by the
2064 spanning tree library.
2065 </column>
2066 <column name="statistics" key="stp_error_count">
2067 Number of bad STP BPDUs received on this port. Bad BPDUs
2068 include runt packets and those with an unexpected protocol ID.
2069 </column>
2070 </group>
2071 </group>
2072
2073 <group title="Common Columns">
2074 The overall purpose of these columns is described under <code>Common
2075 Columns</code> at the beginning of this document.
2076
2077 <column name="other_config"/>
2078 <column name="external_ids"/>
2079 </group>
2080 </table>
2081
2082 <table name="Interface" title="One physical network device in a Port.">
2083 An interface within a <ref table="Port"/>.
2084
2085 <group title="Core Features">
2086 <column name="name">
2087 <p>
2088 Interface name. Should be alphanumeric. For non-bonded port, this
2089 should be the same as the port name. It must otherwise be unique
2090 among the names of ports, interfaces, and bridges on a host.
2091 </p>
2092
2093 <p>
2094 The maximum length of an interface name depends on the underlying
2095 datapath:
2096 </p>
2097
2098 <ul>
2099 <li>
2100 The names of interfaces implemented as Linux and BSD network
2101 devices, including interfaces with type <code>internal</code>,
2102 <code>tap</code>, or <code>system</code> plus the different types
2103 of tunnel ports, are limited to 15 bytes. Windows limits these
2104 names to 255 bytes.
2105 </li>
2106
2107 <li>
2108 The names of patch ports are not used in the underlying datapath,
2109 so operating system restrictions do not apply. Thus, they may have
2110 arbitrary length.
2111 </li>
2112 </ul>
2113
2114 <p>
2115 Regardless of other restrictions, OpenFlow only supports 15-byte
2116 names, which means that <code>ovs-ofctl</code> and OpenFlow
2117 controllers will show names truncated to 15 bytes.
2118 </p>
2119 </column>
2120
2121 <column name="ifindex">
2122 A positive interface index as defined for SNMP MIB-II in RFCs 1213 and
2123 2863, if the interface has one, otherwise 0. The ifindex is useful for
2124 seamless integration with protocols such as SNMP and sFlow.
2125 </column>
2126
2127 <column name="mac_in_use">
2128 The MAC address in use by this interface.
2129 </column>
2130
2131 <column name="mac">
2132 <p>Ethernet address to set for this interface. If unset then the
2133 default MAC address is used:</p>
2134 <ul>
2135 <li>For the local interface, the default is the lowest-numbered MAC
2136 address among the other bridge ports, either the value of the
2137 <ref table="Port" column="mac"/> in its <ref table="Port"/> record,
2138 if set, or its actual MAC (for bonded ports, the MAC of its slave
2139 whose name is first in alphabetical order). Internal ports and
2140 bridge ports that are used as port mirroring destinations (see the
2141 <ref table="Mirror"/> table) are ignored.</li>
2142 <li>For other internal interfaces, the default MAC is randomly
2143 generated.</li>
2144 <li>External interfaces typically have a MAC address associated with
2145 their hardware.</li>
2146 </ul>
2147 <p>Some interfaces may not have a software-controllable MAC
2148 address. This option only affects internal ports. For other type ports,
2149 you can change the MAC address outside Open vSwitch, using ip command.</p>
2150 </column>
2151
2152 <column name="error">
2153 If the configuration of the port failed, as indicated by -1 in <ref
2154 column="ofport"/>, Open vSwitch sets this column to an error
2155 description in human readable form. Otherwise, Open vSwitch clears
2156 this column.
2157 </column>
2158
2159 <group title="OpenFlow Port Number">
2160 <p>
2161 When a client adds a new interface, Open vSwitch chooses an OpenFlow
2162 port number for the new port. If the client that adds the port fills
2163 in <ref column="ofport_request"/>, then Open vSwitch tries to use its
2164 value as the OpenFlow port number. Otherwise, or if the requested
2165 port number is already in use or cannot be used for another reason,
2166 Open vSwitch automatically assigns a free port number. Regardless of
2167 how the port number was obtained, Open vSwitch then reports in <ref
2168 column="ofport"/> the port number actually assigned.
2169 </p>
2170
2171 <p>
2172 Open vSwitch limits the port numbers that it automatically assigns to
2173 the range 1 through 32,767, inclusive. Controllers therefore have
2174 free use of ports 32,768 and up.
2175 </p>
2176
2177 <column name="ofport">
2178 <p>
2179 OpenFlow port number for this interface. Open vSwitch sets this
2180 column's value, so other clients should treat it as read-only.
2181 </p>
2182 <p>
2183 The OpenFlow ``local'' port (<code>OFPP_LOCAL</code>) is 65,534.
2184 The other valid port numbers are in the range 1 to 65,279,
2185 inclusive. Value -1 indicates an error adding the interface.
2186 </p>
2187 </column>
2188
2189 <column name="ofport_request"
2190 type='{"type": "integer", "minInteger": 1, "maxInteger": 65279}'>
2191 <p>
2192 Requested OpenFlow port number for this interface.
2193 </p>
2194
2195 <p>
2196 A client should ideally set this column's value in the same
2197 database transaction that it uses to create the interface. Open
2198 vSwitch version 2.1 and later will honor a later request for a
2199 specific port number, althuogh it might confuse some controllers:
2200 OpenFlow does not have a way to announce a port number change, so
2201 Open vSwitch represents it over OpenFlow as a port deletion
2202 followed immediately by a port addition.
2203 </p>
2204
2205 <p>
2206 If <ref column="ofport_request"/> is set or changed to some other
2207 port's automatically assigned port number, Open vSwitch chooses a
2208 new port number for the latter port.
2209 </p>
2210 </column>
2211 </group>
2212 </group>
2213
2214 <group title="System-Specific Details">
2215 <column name="type">
2216 <p>
2217 The interface type. The types supported by a particular instance of
2218 Open vSwitch are listed in the <ref table="Open_vSwitch"
2219 column="iface_types"/> column in the <ref table="Open_vSwitch"/>
2220 table. The following types are defined:
2221 </p>
2222
2223 <dl>
2224 <dt><code>system</code></dt>
2225 <dd>An ordinary network device, e.g. <code>eth0</code> on Linux.
2226 Sometimes referred to as ``external interfaces'' since they are
2227 generally connected to hardware external to that on which the Open
2228 vSwitch is running. The empty string is a synonym for
2229 <code>system</code>.</dd>
2230
2231 <dt><code>internal</code></dt>
2232 <dd>A simulated network device that sends and receives traffic. An
2233 internal interface whose <ref column="name"/> is the same as its
2234 bridge's <ref table="Open_vSwitch" column="name"/> is called the
2235 ``local interface.'' It does not make sense to bond an internal
2236 interface, so the terms ``port'' and ``interface'' are often used
2237 imprecisely for internal interfaces.</dd>
2238
2239 <dt><code>tap</code></dt>
2240 <dd>
2241 <p>
2242 A TUN/TAP device managed by Open vSwitch.
2243 </p>
2244 <p>
2245 Open vSwitch checks the interface state before send packets
2246 to the device. When it is <code>down</code>, the packets are
2247 dropped and the tx_dropped statistic is updated accordingly.
2248 Older versions of Open vSwitch did not check the interface state
2249 and then the tx_packets was incremented along with tx_dropped.
2250 </p>
2251 </dd>
2252
2253 <dt><code>geneve</code></dt>
2254 <dd>
2255 An Ethernet over Geneve (<code>http://tools.ietf.org/html/draft-ietf-nvo3-geneve</code>)
2256 IPv4/IPv6 tunnel.
2257
2258 A description of how to match and set Geneve options can be found
2259 in the <code>ovs-ofctl</code> manual page.
2260 </dd>
2261
2262 <dt><code>gre</code></dt>
2263 <dd>
2264 Generic Routing Encapsulation (GRE) over IPv4/IPv6 tunnel,
2265 configurable to encapsulate layer 2 or layer 3 traffic.
2266 </dd>
2267
2268 <dt><code>vxlan</code></dt>
2269 <dd>
2270 <p>
2271 An Ethernet tunnel over the UDP-based VXLAN protocol described in
2272 RFC 7348.
2273 </p>
2274 <p>
2275 Open vSwitch uses IANA-assigned UDP destination port 4789. The
2276 source port used for VXLAN traffic varies on a per-flow basis
2277 and is in the ephemeral port range.
2278 </p>
2279 </dd>
2280
2281 <dt><code>lisp</code></dt>
2282 <dd>
2283 <p>
2284 A layer 3 tunnel over the experimental, UDP-based Locator/ID
2285 Separation Protocol (RFC 6830).
2286 </p>
2287 <p>
2288 Only IPv4 and IPv6 packets are supported by the protocol, and
2289 they are sent and received without an Ethernet header. Traffic
2290 to/from LISP ports is expected to be configured explicitly, and
2291 the ports are not intended to participate in learning based
2292 switching. As such, they are always excluded from packet
2293 flooding.
2294 </p>
2295 </dd>
2296
2297 <dt><code>stt</code></dt>
2298 <dd>
2299 The Stateless TCP Tunnel (STT) is particularly useful when tunnel
2300 endpoints are in end-systems, as it utilizes the capabilities of
2301 standard network interface cards to improve performance. STT utilizes
2302 a TCP-like header inside the IP header. It is stateless, i.e., there is
2303 no TCP connection state of any kind associated with the tunnel. The
2304 TCP-like header is used to leverage the capabilities of existing
2305 network interface cards, but should not be interpreted as implying
2306 any sort of connection state between endpoints.
2307 Since the STT protocol does not engage in the usual TCP 3-way handshake,
2308 so it will have difficulty traversing stateful firewalls.
2309 The protocol is documented at
2310 https://tools.ietf.org/html/draft-davie-stt
2311
2312 All traffic uses a default destination port of 7471.
2313 </dd>
2314
2315 <dt><code>patch</code></dt>
2316 <dd>
2317 A pair of virtual devices that act as a patch cable.
2318 </dd>
2319 </dl>
2320 </column>
2321 </group>
2322
2323 <group title="Tunnel Options">
2324 <p>
2325 These options apply to interfaces with <ref column="type"/> of
2326 <code>geneve</code>, <code>gre</code>, <code>vxlan</code>,
2327 <code>lisp</code> and <code>stt</code>.
2328 </p>
2329
2330 <p>
2331 Each tunnel must be uniquely identified by the combination of <ref
2332 column="type"/>, <ref column="options" key="remote_ip"/>, <ref
2333 column="options" key="local_ip"/>, and <ref column="options"
2334 key="in_key"/>. If two ports are defined that are the same except one
2335 has an optional identifier and the other does not, the more specific
2336 one is matched first. <ref column="options" key="in_key"/> is
2337 considered more specific than <ref column="options" key="local_ip"/> if
2338 a port defines one and another port defines the other.
2339 </p>
2340
2341 <column name="options" key="remote_ip">
2342 <p>Required. The remote tunnel endpoint, one of:</p>
2343
2344 <ul>
2345 <li>
2346 An IPv4 or IPv6 address (not a DNS name), e.g. <code>192.168.0.123</code>.
2347 Only unicast endpoints are supported.
2348 </li>
2349 <li>
2350 The word <code>flow</code>. The tunnel accepts packets from any
2351 remote tunnel endpoint. To process only packets from a specific
2352 remote tunnel endpoint, the flow entries may match on the
2353 <code>tun_src</code> or <code>tun_ipv6_src</code>field. When
2354 sending packets to a <code>remote_ip=flow</code> tunnel, the flow
2355 actions must explicitly set the <code>tun_dst</code> or
2356 <code>tun_ipv6_dst</code> field to the IP address of the desired
2357 remote tunnel endpoint, e.g. with a <code>set_field</code> action.
2358 </li>
2359 </ul>
2360
2361 <p>
2362 The remote tunnel endpoint for any packet received from a tunnel
2363 is available in the <code>tun_src</code> field for matching in the
2364 flow table.
2365 </p>
2366 </column>
2367
2368 <column name="options" key="local_ip">
2369 <p>
2370 Optional. The tunnel destination IP that received packets must
2371 match. Default is to match all addresses. If specified, may be one
2372 of:
2373 </p>
2374
2375 <ul>
2376 <li>
2377 An IPv4/IPv6 address (not a DNS name), e.g. <code>192.168.12.3</code>.
2378 </li>
2379 <li>
2380 The word <code>flow</code>. The tunnel accepts packets sent to any
2381 of the local IP addresses of the system running OVS. To process
2382 only packets sent to a specific IP address, the flow entries may
2383 match on the <code>tun_dst</code> or <code>tun_ipv6_dst</code> field.
2384 When sending packets to a <code>local_ip=flow</code> tunnel, the flow
2385 actions may explicitly set the <code>tun_src</code> or <code>tun_ipv6_src</code>
2386 field to the desired IP address, e.g. with a <code>set_field</code> action.
2387 However, while routing the tunneled packet out, the local system may
2388 override the specified address with the local IP address configured for the
2389 outgoing system interface.
2390
2391 <p>
2392 This option is valid only for tunnels also configured with the
2393 <code>remote_ip=flow</code> option.
2394 </p>
2395 </li>
2396 </ul>
2397
2398 <p>
2399 The tunnel destination IP address for any packet received from a
2400 tunnel is available in the <code>tun_dst</code> or <code>tun_ipv6_dst</code>
2401 field for matching in the flow table.
2402 </p>
2403 </column>
2404
2405 <column name="options" key="in_key">
2406 <p>Optional. The key that received packets must contain, one of:</p>
2407
2408 <ul>
2409 <li>
2410 <code>0</code>. The tunnel receives packets with no key or with a
2411 key of 0. This is equivalent to specifying no <ref column="options"
2412 key="in_key"/> at all.
2413 </li>
2414 <li>
2415 A positive 24-bit (for Geneve, VXLAN, and LISP), 32-bit (for GRE)
2416 or 64-bit (for STT) number. The tunnel receives only
2417 packets with the specified key.
2418 </li>
2419 <li>
2420 The word <code>flow</code>. The tunnel accepts packets with any
2421 key. The key will be placed in the <code>tun_id</code> field for
2422 matching in the flow table. The <code>ovs-ofctl</code> manual page
2423 contains additional information about matching fields in OpenFlow
2424 flows.
2425 </li>
2426 </ul>
2427
2428 <p>
2429 </p>
2430 </column>
2431
2432 <column name="options" key="out_key">
2433 <p>Optional. The key to be set on outgoing packets, one of:</p>
2434
2435 <ul>
2436 <li>
2437 <code>0</code>. Packets sent through the tunnel will have no key.
2438 This is equivalent to specifying no <ref column="options"
2439 key="out_key"/> at all.
2440 </li>
2441 <li>
2442 A positive 24-bit (for Geneve, VXLAN and LISP), 32-bit (for GRE) or
2443 64-bit (for STT) number. Packets sent through the tunnel
2444 will have the specified key.
2445 </li>
2446 <li>
2447 The word <code>flow</code>. Packets sent through the tunnel will
2448 have the key set using the <code>set_tunnel</code> Nicira OpenFlow
2449 vendor extension (0 is used in the absence of an action). The
2450 <code>ovs-ofctl</code> manual page contains additional information
2451 about the Nicira OpenFlow vendor extensions.
2452 </li>
2453 </ul>
2454 </column>
2455
2456 <column name="options" key="dst_port">
2457 Optional. The tunnel transport layer destination port, for UDP and TCP
2458 based tunnel protocols (Geneve, VXLAN, LISP, and STT).
2459 </column>
2460
2461 <column name="options" key="key">
2462 Optional. Shorthand to set <code>in_key</code> and
2463 <code>out_key</code> at the same time.
2464 </column>
2465
2466 <column name="options" key="tos">
2467 Optional. The value of the ToS bits to be set on the encapsulating
2468 packet. ToS is interpreted as DSCP and ECN bits, ECN part must be
2469 zero. It may also be the word <code>inherit</code>, in which case
2470 the ToS will be copied from the inner packet if it is IPv4 or IPv6
2471 (otherwise it will be 0). The ECN fields are always inherited.
2472 Default is 0.
2473 </column>
2474
2475 <column name="options" key="ttl">
2476 Optional. The TTL to be set on the encapsulating packet. It may also
2477 be the word <code>inherit</code>, in which case the TTL will be copied
2478 from the inner packet if it is IPv4 or IPv6 (otherwise it will be the
2479 system default, typically 64). Default is the system default TTL.
2480 </column>
2481
2482 <column name="options" key="df_default"
2483 type='{"type": "boolean"}'>
2484 Optional. If enabled, the Don't Fragment bit will be set on tunnel
2485 outer headers to allow path MTU discovery. Default is enabled; set
2486 to <code>false</code> to disable.
2487 </column>
2488
2489 <column name="options" key="egress_pkt_mark">
2490 Optional. The pkt_mark to be set on the encapsulating packet. This
2491 option sets packet mark for the tunnel endpoint for all tunnel packets
2492 including tunnel monitoring.
2493 </column>
2494
2495 <group title="Tunnel Options: lisp only">
2496 <column name="options" key="packet_type"
2497 type='{"type": "string", "enum": ["set",
2498 ["legacy_l3", "ptap"]]}'>
2499 <p>
2500 A LISP tunnel sends and receives only IPv4 and IPv6 packets. This
2501 option controls what how the tunnel represents the packets that it
2502 sends and receives:
2503 </p>
2504
2505 <ul>
2506 <li>
2507 By default, or if this option is <code>legacy_l3</code>, the
2508 tunnel represents packets as Ethernet frames for compatibility
2509 with legacy OpenFlow controllers that expect this behavior.
2510 </li>
2511 <li>
2512 If this option is <code>ptap</code>, the tunnel represents
2513 packets using the <code>packet_type</code> mechanism introduced
2514 in OpenFlow 1.5.
2515 </li>
2516 </ul>
2517 </column>
2518 </group>
2519
2520 <group title="Tunnel Options: vxlan only">
2521
2522 <column name="options" key="exts">
2523 <p>Optional. Comma separated list of optional VXLAN extensions to
2524 enable. The following extensions are supported:</p>
2525
2526 <ul>
2527 <li>
2528 <code>gbp</code>: VXLAN-GBP allows to transport the group policy
2529 context of a packet across the VXLAN tunnel to other network
2530 peers. See the description of <code>tun_gbp_id</code> and
2531 <code>tun_gbp_flags</code> in <code>ovs-fields</code>(7) for
2532 additional information.
2533 (<code>https://tools.ietf.org/html/draft-smith-vxlan-group-policy</code>)
2534 </li>
2535 <li>
2536 <code>gpe</code>: Support for Generic Protocol Encapsulation in
2537 accordance with IETF draft
2538 <code>https://tools.ietf.org/html/draft-ietf-nvo3-vxlan-gpe</code>.
2539 Without this option, a VXLAN packet always encapsulates an
2540 Ethernet frame. With this option, an VXLAN packet may also
2541 encapsulate an IPv4, IPv6, NSH, or MPLS packet.
2542 </li>
2543 </ul>
2544 </column>
2545
2546 <column name="options" key="packet_type"
2547 type='{"type": "string", "enum": ["set",
2548 ["legacy_l2", "legacy_l3", "ptap"]]}'>
2549 <p>
2550 This option controls what types of packets the tunnel sends and
2551 receives and how it represents them:
2552 </p>
2553
2554 <ul>
2555 <li>
2556 By default, or if this option is <code>legacy_l2</code>, the
2557 tunnel sends and receives only Ethernet frames.
2558 </li>
2559 <li>
2560 If this option is <code>legacy_l3</code>, the tunnel sends and
2561 receives only non-Ethernet (L3) packet, but the packets are
2562 represented as Ethernet frames for compatibility with legacy
2563 OpenFlow controllers that expect this behavior. This requires
2564 enabling <code>gpe</code> in <ref column="options" key="exts"/>.
2565 </li>
2566 <li>
2567 If this option is <code>ptap</code>, Open vSwitch represents
2568 packets in the tunnel using the <code>packet_type</code>
2569 mechanism introduced in OpenFlow 1.5. This mechanism supports
2570 any kind of packet, but actually sending and receiving
2571 non-Ethernet packets requires additionally enabling
2572 <code>gpe</code> in <ref column="options" key="exts"/>.
2573 </li>
2574 </ul>
2575 </column>
2576 </group>
2577
2578 <group title="Tunnel Options: gre only">
2579 <p>
2580 <code>gre</code> interfaces support these options.
2581 </p>
2582
2583 <column name="options" key="packet_type"
2584 type='{"type": "string", "enum": ["set",
2585 ["legacy_l2", "legacy_l3", "ptap"]]}'>
2586 <p>
2587 This option controls what types of packets the tunnel sends and
2588 receives and how it represents them:
2589 </p>
2590
2591 <ul>
2592 <li>
2593 By default, or if this option is <code>legacy_l2</code>, the
2594 tunnel sends and receives only Ethernet frames.
2595 </li>
2596 <li>
2597 If this option is <code>legacy_l3</code>, the tunnel sends and
2598 receives only non-Ethernet (L3) packet, but the packets are
2599 represented as Ethernet frames for compatibility with legacy
2600 OpenFlow controllers that expect this behavior.
2601 </li>
2602 <li>
2603 If this option is <code>ptap</code>, the tunnel sends and
2604 receives any kind of packet. Open vSwitch represents packets in
2605 the tunnel using the <code>packet_type</code> mechanism
2606 introduced in OpenFlow 1.5.
2607 </li>
2608 </ul>
2609 </column>
2610 <column name="options" key="seq" type='{"type": "boolean"}'>
2611 <p>
2612 Optional. A 4-byte sequence number field for GRE tunnel only.
2613 Default is disabled, set to <code>true</code> to enable.
2614 Sequence number is incremented by one on each outgoing packet.
2615 </p>
2616 </column>
2617 </group>
2618
2619 <group title="Tunnel Options: gre, geneve, and vxlan">
2620 <p>
2621 <code>gre</code>, <code>geneve</code>, and
2622 <code>vxlan</code> interfaces support these options.
2623 </p>
2624
2625 <column name="options" key="csum" type='{"type": "boolean"}'>
2626 <p>
2627 Optional. Compute encapsulation header (either GRE or UDP)
2628 checksums on outgoing packets. Default is disabled, set to
2629 <code>true</code> to enable. Checksums present on incoming
2630 packets will be validated regardless of this setting.
2631 </p>
2632
2633 <p>
2634 When using the upstream Linux kernel module, computation of
2635 checksums for <code>geneve</code> and <code>vxlan</code> requires
2636 Linux kernel version 4.0 or higher. <code>gre</code> supports
2637 checksums for all versions of Open vSwitch that support GRE.
2638 The out of tree kernel module distributed as part of OVS
2639 can compute all tunnel checksums on any kernel version that it
2640 is compatible with.
2641 </p>
2642
2643 </column>
2644 </group>
2645 </group>
2646
2647 <group title="Tunnel Options: erspan only">
2648 <p>
2649 Only <code>erspan</code> interfaces support these options.
2650 </p>
2651 <column name="options" key="erspan_idx">
2652 <p>
2653 20 bit index/port number associated with the ERSPAN traffic's
2654 source port and direction (ingress/egress). This field is
2655 platform dependent.
2656 </p>
2657 </column>
2658
2659 <column name="options" key="erspan_ver">
2660 <p>
2661 ERSPAN version: 1 for version 1 (type II)
2662 or 2 for version 2 (type III).
2663 </p>
2664 </column>
2665
2666 <column name="options" key="erspan_dir">
2667 <p>
2668 Specifies the ERSPAN v2 mirrored traffic's direction.
2669 1 for egress traffic, and 0 for ingress traffic.
2670 </p>
2671 </column>
2672
2673 <column name="options" key="erspan_hwid">
2674 <p>
2675 ERSPAN hardware ID is a 6-bit unique identifier of an
2676 ERSPAN v2 engine within a system.
2677 </p>
2678 </column>
2679 </group>
2680
2681 <group title="Patch Options">
2682 <p>
2683 These options apply only to <dfn>patch ports</dfn>, that is, interfaces
2684 whose <ref column="type"/> column is <code>patch</code>. Patch ports
2685 are mainly a way to connect otherwise independent bridges to one
2686 another, similar to how one might plug an Ethernet cable (a ``patch
2687 cable'') into two physical switches to connect those switches. The
2688 effect of plugging a patch port into two switches is conceptually
2689 similar to that of plugging the two ends of a Linux <code>veth</code>
2690 device into those switches, but the implementation of patch ports makes
2691 them much more efficient.
2692 </p>
2693
2694 <p>
2695 Patch ports may connect two different bridges (the usual case) or the
2696 same bridge. In the latter case, take special care to avoid loops,
2697 e.g. by programming appropriate flows with OpenFlow. Patch ports do
2698 not work if its ends are attached to bridges on different datapaths,
2699 e.g. to connect bridges in <code>system</code> and <code>netdev</code>
2700 datapaths.
2701 </p>
2702
2703 <p>
2704 The following command creates and connects patch ports <code>p0</code>
2705 and <code>p1</code> and adds them to bridges <code>br0</code> and
2706 <code>br1</code>, respectively:
2707 </p>
2708
2709 <pre>
2710 ovs-vsctl add-port br0 p0 -- set Interface p0 type=patch options:peer=p1 \
2711 -- add-port br1 p1 -- set Interface p1 type=patch options:peer=p0
2712 </pre>
2713
2714 <column name="options" key="peer">
2715 The <ref column="name"/> of the <ref table="Interface"/> for the other
2716 side of the patch. The named <ref table="Interface"/>'s own
2717 <code>peer</code> option must specify this <ref table="Interface"/>'s
2718 name. That is, the two patch interfaces must have reversed <ref
2719 column="name"/> and <code>peer</code> values.
2720 </column>
2721 </group>
2722
2723 <group title="PMD (Poll Mode Driver) Options">
2724 <p>
2725 Only PMD netdevs support these options.
2726 </p>
2727
2728 <column name="options" key="n_rxq"
2729 type='{"type": "integer", "minInteger": 1}'>
2730 <p>
2731 Specifies the maximum number of rx queues to be created for PMD
2732 netdev. If not specified or specified to 0, one rx queue will
2733 be created by default.
2734 Not supported by DPDK vHost interfaces.
2735 </p>
2736 </column>
2737
2738 <column name="options" key="dpdk-devargs"
2739 type='{"type": "string"}'>
2740 <p>
2741 Specifies the PCI address associated with the port for physical
2742 devices, or the virtual driver to be used for the port when a virtual
2743 PMD is intended to be used. For the latter, the argument string
2744 typically takes the form of
2745 <code>eth_<var>driver_name</var><var>x</var></code>, where
2746 <var>driver_name</var> is a valid virtual DPDK PMD driver name and
2747 <var>x</var> is a unique identifier of your choice for the given
2748 port. Only supported by the dpdk port type.
2749 </p>
2750 </column>
2751
2752 <column name="other_config" key="pmd-rxq-affinity">
2753 <p>Specifies mapping of RX queues of this interface to CPU cores.</p>
2754 <p>Value should be set in the following form:</p>
2755 <p>
2756 <code>other_config:pmd-rxq-affinity=&lt;rxq-affinity-list&gt;</code>
2757 </p>
2758 <p>where</p>
2759 <p>
2760 <ul>
2761 <li>
2762 &lt;rxq-affinity-list&gt; ::= NULL | &lt;non-empty-list&gt;
2763 </li>
2764 <li>
2765 &lt;non-empty-list&gt; ::= &lt;affinity-pair&gt; |
2766 &lt;affinity-pair&gt; , &lt;non-empty-list&gt;
2767 </li>
2768 <li>
2769 &lt;affinity-pair&gt; ::= &lt;queue-id&gt; : &lt;core-id&gt;
2770 </li>
2771 </ul>
2772 </p>
2773 </column>
2774
2775 <column name="options" key="vhost-server-path"
2776 type='{"type": "string"}'>
2777 <p>
2778 The value specifies the path to the socket associated with a vHost
2779 User client mode device that has been or will be created by QEMU.
2780 Only supported by dpdkvhostuserclient interfaces.
2781 </p>
2782 </column>
2783
2784 <column name="options" key="dq-zero-copy"
2785 type='{"type": "boolean"}'>
2786 <p>
2787 The value specifies whether or not to enable dequeue zero copy on
2788 the given interface.
2789 Must be set before vhost-server-path is specified.
2790 Only supported by dpdkvhostuserclient interfaces.
2791 The feature is considered experimental.
2792 </p>
2793 </column>
2794
2795 <column name="options" key="n_rxq_desc"
2796 type='{"type": "integer", "minInteger": 1, "maxInteger": 4096}'>
2797 <p>
2798 Specifies the rx queue size (number rx descriptors) for dpdk ports.
2799 The value must be a power of 2, less than 4096 and supported
2800 by the hardware of the device being configured.
2801 If not specified or an incorrect value is specified, 2048 rx
2802 descriptors will be used by default.
2803 </p>
2804 </column>
2805
2806 <column name="options" key="n_txq_desc"
2807 type='{"type": "integer", "minInteger": 1, "maxInteger": 4096}'>
2808 <p>
2809 Specifies the tx queue size (number tx descriptors) for dpdk ports.
2810 The value must be a power of 2, less than 4096 and supported
2811 by the hardware of the device being configured.
2812 If not specified or an incorrect value is specified, 2048 tx
2813 descriptors will be used by default.
2814 </p>
2815 </column>
2816 </group>
2817
2818 <group title="MTU">
2819 <p>
2820 The MTU (maximum transmission unit) is the largest amount of data
2821 that can fit into a single Ethernet frame. The standard Ethernet
2822 MTU is 1500 bytes. Some physical media and many kinds of virtual
2823 interfaces can be configured with higher MTUs.
2824 </p>
2825
2826 <p>
2827 A client may change an interface MTU by filling in
2828 <ref column="mtu_request"/>. Open vSwitch then reports in
2829 <ref column="mtu"/> the currently configured value.
2830 </p>
2831
2832 <column name="mtu">
2833 <p>
2834 The currently configured MTU for the interface.
2835 </p>
2836
2837 <p>
2838 This column will be empty for an interface that does not
2839 have an MTU as, for example, some kinds of tunnels do not.
2840 </p>
2841
2842 <p>
2843 Open vSwitch sets this column's value, so other clients should treat
2844 it as read-only.
2845 </p>
2846 </column>
2847
2848 <column name="mtu_request"
2849 type='{"type": "integer", "minInteger": 1}'>
2850 <p>
2851 Requested MTU (Maximum Transmission Unit) for the interface. A client
2852 can fill this column to change the MTU of an interface.
2853 </p>
2854
2855 <p>
2856 RFC 791 requires every internet module to be able to forward a
2857 datagram of 68 octets without further fragmentation. The maximum
2858 size of an IP packet is 65535 bytes.
2859 </p>
2860
2861 <p>
2862 If this is not set and if the interface has <code>internal</code>
2863 type, Open vSwitch will change the MTU to match the minimum of the
2864 other interfaces in the bridge.
2865 </p>
2866 </column>
2867
2868 </group>
2869
2870 <group title="Interface Status">
2871 <p>
2872 Status information about interfaces attached to bridges, updated every
2873 5 seconds. Not all interfaces have all of these properties; virtual
2874 interfaces don't have a link speed, for example. Non-applicable
2875 columns will have empty values.
2876 </p>
2877 <column name="admin_state">
2878 <p>
2879 The administrative state of the physical network link.
2880 </p>
2881 </column>
2882
2883 <column name="link_state">
2884 <p>
2885 The observed state of the physical network link. This is ordinarily
2886 the link's carrier status. If the interface's <ref table="Port"/> is
2887 a bond configured for miimon monitoring, it is instead the network
2888 link's miimon status.
2889 </p>
2890 </column>
2891
2892 <column name="link_resets">
2893 <p>
2894 The number of times Open vSwitch has observed the
2895 <ref column="link_state"/> of this <ref table="Interface"/> change.
2896 </p>
2897 </column>
2898
2899 <column name="link_speed">
2900 <p>
2901 The negotiated speed of the physical network link.
2902 Valid values are positive integers greater than 0.
2903 </p>
2904 </column>
2905
2906 <column name="duplex">
2907 <p>
2908 The duplex mode of the physical network link.
2909 </p>
2910 </column>
2911
2912 <column name="lacp_current">
2913 Boolean value indicating LACP status for this interface. If true, this
2914 interface has current LACP information about its LACP partner. This
2915 information may be used to monitor the health of interfaces in a LACP
2916 enabled port. This column will be empty if LACP is not enabled.
2917 </column>
2918
2919 <column name="status">
2920 Key-value pairs that report port status. Supported status values are
2921 <ref column="type"/>-dependent; some interfaces may not have a valid
2922 <ref column="status" key="driver_name"/>, for example.
2923 </column>
2924
2925 <column name="status" key="driver_name">
2926 The name of the device driver controlling the network adapter.
2927 </column>
2928
2929 <column name="status" key="driver_version">
2930 The version string of the device driver controlling the network
2931 adapter.
2932 </column>
2933
2934 <column name="status" key="firmware_version">
2935 The version string of the network adapter's firmware, if available.
2936 </column>
2937
2938 <column name="status" key="source_ip">
2939 The source IP address used for an IPv4/IPv6 tunnel end-point, such as
2940 <code>gre</code>.
2941 </column>
2942
2943 <column name="status" key="tunnel_egress_iface">
2944 Egress interface for tunnels. Currently only relevant for tunnels
2945 on Linux systems, this column will show the name of the interface
2946 which is responsible for routing traffic destined for the configured
2947 <ref column="options" key="remote_ip"/>. This could be an internal
2948 interface such as a bridge port.
2949 </column>
2950
2951 <column name="status" key="tunnel_egress_iface_carrier"
2952 type='{"type": "string", "enum": ["set", ["down", "up"]]}'>
2953 Whether carrier is detected on <ref column="status"
2954 key="tunnel_egress_iface"/>.
2955 </column>
2956
2957 <group title="dpdk">
2958 <p>
2959 DPDK specific interface status options.
2960 </p>
2961
2962 <column name="status" key="port_no">
2963 DPDK port ID.
2964 </column>
2965
2966 <column name="status" key="numa_id">
2967 NUMA socket ID to which an Ethernet device is connected.
2968 </column>
2969
2970 <column name="status" key="min_rx_bufsize">
2971 Minimum size of RX buffer.
2972 </column>
2973
2974 <column name="status" key="max_rx_pktlen">
2975 Maximum configurable length of RX pkt.
2976 </column>
2977
2978 <column name="status" key="max_rx_queues">
2979 Maximum number of RX queues.
2980 </column>
2981
2982 <column name="status" key="max_tx_queues">
2983 Maximum number of TX queues.
2984 </column>
2985
2986 <column name="status" key="max_mac_addrs">
2987 Maximum number of MAC addresses.
2988 </column>
2989
2990 <column name="status" key="max_hash_mac_addrs">
2991 Maximum number of hash MAC addresses for MTA and UTA.
2992 </column>
2993
2994 <column name="status" key="max_vfs">
2995 Maximum number of hash MAC addresses for MTA and UTA.
2996 Maximum number of VFs.
2997 </column>
2998
2999 <column name="status" key="max_vmdq_pools">
3000 Maximum number of VMDq pools.
3001 </column>
3002
3003 <column name="status" key="if_type">
3004 Interface type ID according to IANA ifTYPE MIB definitions.
3005 </column>
3006
3007 <column name="status" key="if_descr">
3008 Interface description string.
3009 </column>
3010
3011 <column name="status" key="pci-vendor_id">
3012 Vendor ID of PCI device.
3013 </column>
3014
3015 <column name="status" key="pci-device_id">
3016 Device ID of PCI device.
3017 </column>
3018
3019 </group>
3020 </group>
3021
3022 <group title="Statistics">
3023 <p>
3024 Key-value pairs that report interface statistics. The current
3025 implementation updates these counters periodically. The update period
3026 is controlled by <ref column="other_config"
3027 key="stats-update-interval"/> in the <code>Open_vSwitch</code> table.
3028 Future implementations may update them when an interface is created,
3029 when they are queried (e.g. using an OVSDB <code>select</code>
3030 operation), and just before an interface is deleted due to virtual
3031 interface hot-unplug or VM shutdown, and perhaps at other times, but
3032 not on any regular periodic basis.
3033 </p>
3034 <p>
3035 These are the same statistics reported by OpenFlow in its <code>struct
3036 ofp_port_stats</code> structure. If an interface does not support a
3037 given statistic, then that pair is omitted.
3038 </p>
3039 <group title="Statistics: Successful transmit and receive counters">
3040 <column name="statistics" key="rx_packets">
3041 Number of received packets.
3042 </column>
3043 <column name="statistics" key="rx_bytes">
3044 Number of received bytes.
3045 </column>
3046 <column name="statistics" key="tx_packets">
3047 Number of transmitted packets.
3048 </column>
3049 <column name="statistics" key="tx_bytes">
3050 Number of transmitted bytes.
3051 </column>
3052 </group>
3053 <group title="Statistics: Receive errors">
3054 <column name="statistics" key="rx_dropped">
3055 Number of packets dropped by RX.
3056 </column>
3057 <column name="statistics" key="rx_frame_err">
3058 Number of frame alignment errors.
3059 </column>
3060 <column name="statistics" key="rx_over_err">
3061 Number of packets with RX overrun.
3062 </column>
3063 <column name="statistics" key="rx_crc_err">
3064 Number of CRC errors.
3065 </column>
3066 <column name="statistics" key="rx_errors">
3067 Total number of receive errors, greater than or equal to the sum of
3068 the above.
3069 </column>
3070 </group>
3071 <group title="Statistics: Transmit errors">
3072 <column name="statistics" key="tx_dropped">
3073 Number of packets dropped by TX.
3074 </column>
3075 <column name="statistics" key="collisions">
3076 Number of collisions.
3077 </column>
3078 <column name="statistics" key="tx_errors">
3079 Total number of transmit errors, greater than or equal to the sum of
3080 the above.
3081 </column>
3082 </group>
3083 </group>
3084
3085 <group title="Ingress Policing">
3086 <p>
3087 These settings control ingress policing for packets received on this
3088 interface. On a physical interface, this limits the rate at which
3089 traffic is allowed into the system from the outside; on a virtual
3090 interface (one connected to a virtual machine), this limits the rate at
3091 which the VM is able to transmit.
3092 </p>
3093 <p>
3094 Policing is a simple form of quality-of-service that simply drops
3095 packets received in excess of the configured rate. Due to its
3096 simplicity, policing is usually less accurate and less effective than
3097 egress QoS (which is configured using the <ref table="QoS"/> and <ref
3098 table="Queue"/> tables).
3099 </p>
3100 <p>
3101 Policing is currently implemented on Linux and OVS with DPDK. Both
3102 implementations use a simple ``token bucket'' approach:
3103 </p>
3104 <ul>
3105 <li>
3106 The size of the bucket corresponds to <ref
3107 column="ingress_policing_burst"/>. Initially the bucket is full.
3108 </li>
3109 <li>
3110 Whenever a packet is received, its size (converted to tokens) is
3111 compared to the number of tokens currently in the bucket. If the
3112 required number of tokens are available, they are removed and the
3113 packet is forwarded. Otherwise, the packet is dropped.
3114 </li>
3115 <li>
3116 Whenever it is not full, the bucket is refilled with tokens at the
3117 rate specified by <ref column="ingress_policing_rate"/>.
3118 </li>
3119 </ul>
3120 <p>
3121 Policing interacts badly with some network protocols, and especially
3122 with fragmented IP packets. Suppose that there is enough network
3123 activity to keep the bucket nearly empty all the time. Then this token
3124 bucket algorithm will forward a single packet every so often, with the
3125 period depending on packet size and on the configured rate. All of the
3126 fragments of an IP packets are normally transmitted back-to-back, as a
3127 group. In such a situation, therefore, only one of these fragments
3128 will be forwarded and the rest will be dropped. IP does not provide
3129 any way for the intended recipient to ask for only the remaining
3130 fragments. In such a case there are two likely possibilities for what
3131 will happen next: either all of the fragments will eventually be
3132 retransmitted (as TCP will do), in which case the same problem will
3133 recur, or the sender will not realize that its packet has been dropped
3134 and data will simply be lost (as some UDP-based protocols will do).
3135 Either way, it is possible that no forward progress will ever occur.
3136 </p>
3137 <column name="ingress_policing_rate">
3138 <p>
3139 Maximum rate for data received on this interface, in kbps. Data
3140 received faster than this rate is dropped. Set to <code>0</code>
3141 (the default) to disable policing.
3142 </p>
3143 </column>
3144
3145 <column name="ingress_policing_burst">
3146 <p>Maximum burst size for data received on this interface, in kb. The
3147 default burst size if set to <code>0</code> is 8000 kbit. This value
3148 has no effect if <ref column="ingress_policing_rate"/>
3149 is <code>0</code>.</p>
3150 <p>
3151 Specifying a larger burst size lets the algorithm be more forgiving,
3152 which is important for protocols like TCP that react severely to
3153 dropped packets. The burst size should be at least the size of the
3154 interface's MTU. Specifying a value that is numerically at least as
3155 large as 80% of <ref column="ingress_policing_rate"/> helps TCP come
3156 closer to achieving the full rate.
3157 </p>
3158 </column>
3159 </group>
3160
3161 <group title="Bidirectional Forwarding Detection (BFD)">
3162 <p>
3163 BFD, defined in RFC 5880 and RFC 5881, allows point-to-point
3164 detection of connectivity failures by occasional transmission of
3165 BFD control messages. Open vSwitch implements BFD to serve
3166 as a more popular and standards compliant alternative to CFM.
3167 </p>
3168
3169 <p>
3170 BFD operates by regularly transmitting BFD control messages at a rate
3171 negotiated independently in each direction. Each endpoint specifies
3172 the rate at which it expects to receive control messages, and the rate
3173 at which it is willing to transmit them. By default, Open vSwitch uses
3174 a detection multiplier of three, meaning that an endpoint signals a
3175 connectivity fault if three consecutive BFD control messages fail to
3176 arrive. In the case of a unidirectional connectivity issue, the system
3177 not receiving BFD control messages signals the problem to its peer in
3178 the messages it transmits.
3179 </p>
3180
3181 <p>
3182 The Open vSwitch implementation of BFD aims to comply faithfully
3183 with RFC 5880 requirements. Open vSwitch does not implement the
3184 optional Authentication or ``Echo Mode'' features.
3185 </p>
3186
3187 <group title="BFD Configuration">
3188 <p>
3189 A controller sets up key-value pairs in the <ref column="bfd"/>
3190 column to enable and configure BFD.
3191 </p>
3192
3193 <column name="bfd" key="enable" type='{"type": "boolean"}'>
3194 True to enable BFD on this <ref table="Interface"/>. If not
3195 specified, BFD will not be enabled by default.
3196 </column>
3197
3198 <column name="bfd" key="min_rx"
3199 type='{"type": "integer", "minInteger": 1}'>
3200 The shortest interval, in milliseconds, at which this BFD session
3201 offers to receive BFD control messages. The remote endpoint may
3202 choose to send messages at a slower rate. Defaults to
3203 <code>1000</code>.
3204 </column>
3205
3206 <column name="bfd" key="min_tx"
3207 type='{"type": "integer", "minInteger": 1}'>
3208 The shortest interval, in milliseconds, at which this BFD session is
3209 willing to transmit BFD control messages. Messages will actually be
3210 transmitted at a slower rate if the remote endpoint is not willing to
3211 receive as quickly as specified. Defaults to <code>100</code>.
3212 </column>
3213
3214 <column name="bfd" key="decay_min_rx" type='{"type": "integer"}'>
3215 An alternate receive interval, in milliseconds, that must be greater
3216 than or equal to <ref column="bfd" key="min_rx"/>. The
3217 implementation switches from <ref column="bfd" key="min_rx"/> to <ref
3218 column="bfd" key="decay_min_rx"/> when there is no obvious incoming
3219 data traffic at the interface, to reduce the CPU and bandwidth cost
3220 of monitoring an idle interface. This feature may be disabled by
3221 setting a value of 0. This feature is reset whenever <ref
3222 column="bfd" key="decay_min_rx"/> or <ref column="bfd" key="min_rx"/>
3223 changes.
3224 </column>
3225
3226 <column name="bfd" key="forwarding_if_rx" type='{"type": "boolean"}'>
3227 When <code>true</code>, traffic received on the
3228 <ref table="Interface"/> is used to indicate the capability of packet
3229 I/O. BFD control packets are still transmitted and received. At
3230 least one BFD control packet must be received every 100 * <ref
3231 column="bfd" key="min_rx"/> amount of time. Otherwise, even if
3232 traffic are received, the <ref column="bfd" key="forwarding"/>
3233 will be <code>false</code>.
3234 </column>
3235
3236 <column name="bfd" key="cpath_down" type='{"type": "boolean"}'>
3237 Set to true to notify the remote endpoint that traffic should not be
3238 forwarded to this system for some reason other than a connectivty
3239 failure on the interface being monitored. The typical underlying
3240 reason is ``concatenated path down,'' that is, that connectivity
3241 beyond the local system is down. Defaults to false.
3242 </column>
3243
3244 <column name="bfd" key="check_tnl_key" type='{"type": "boolean"}'>
3245 Set to true to make BFD accept only control messages with a tunnel
3246 key of zero. By default, BFD accepts control messages with any
3247 tunnel key.
3248 </column>
3249
3250 <column name="bfd" key="bfd_local_src_mac">
3251 Set to an Ethernet address in the form
3252 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>
3253 to set the MAC used as source for transmitted BFD packets. The
3254 default is the mac address of the BFD enabled interface.
3255 </column>
3256
3257 <column name="bfd" key="bfd_local_dst_mac">
3258 Set to an Ethernet address in the form
3259 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>
3260 to set the MAC used as destination for transmitted BFD packets. The
3261 default is <code>00:23:20:00:00:01</code>.
3262 </column>
3263
3264 <column name="bfd" key="bfd_remote_dst_mac">
3265 Set to an Ethernet address in the form
3266 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>
3267 to set the MAC used for checking the destination of received BFD packets.
3268 Packets with different destination MAC will not be considered as BFD packets.
3269 If not specified the destination MAC address of received BFD packets
3270 are not checked.
3271 </column>
3272
3273 <column name="bfd" key="bfd_src_ip">
3274 Set to an IPv4 address to set the IP address used as source for
3275 transmitted BFD packets. The default is <code>169.254.1.1</code>.
3276 </column>
3277
3278 <column name="bfd" key="bfd_dst_ip">
3279 Set to an IPv4 address to set the IP address used as destination
3280 for transmitted BFD packets. The default is <code>169.254.1.0</code>.
3281 </column>
3282
3283 <column name="bfd" key="oam">
3284 Some tunnel protocols (such as Geneve) include a bit in the header
3285 to indicate that the encapsulated packet is an OAM frame. By setting
3286 this to true, BFD packets will be marked as OAM if encapsulated in
3287 one of these tunnels.
3288 </column>
3289
3290 <column name="bfd" key="mult"
3291 type='{"type": "integer", "minInteger": 1, "maxInteger": 255}'>
3292 The BFD detection multiplier, which defaults to 3. An endpoint
3293 signals a connectivity fault if the given number of consecutive BFD
3294 control messages fail to arrive.
3295 </column>
3296 </group>
3297
3298 <group title="BFD Status">
3299 <p>
3300 The switch sets key-value pairs in the <ref column="bfd_status"/>
3301 column to report the status of BFD on this interface. When BFD is
3302 not enabled, with <ref column="bfd" key="enable"/>, the switch clears
3303 all key-value pairs from <ref column="bfd_status"/>.
3304 </p>
3305
3306 <column name="bfd_status" key="state"
3307 type='{"type": "string",
3308 "enum": ["set", ["admin_down", "down", "init", "up"]]}'>
3309 Reports the state of the BFD session. The BFD session is fully
3310 healthy and negotiated if <code>UP</code>.
3311 </column>
3312
3313 <column name="bfd_status" key="forwarding" type='{"type": "boolean"}'>
3314 Reports whether the BFD session believes this <ref
3315 table="Interface"/> may be used to forward traffic. Typically this
3316 means the local session is signaling <code>UP</code>, and the remote
3317 system isn't signaling a problem such as concatenated path down.
3318 </column>
3319
3320 <column name="bfd_status" key="diagnostic">
3321 A diagnostic code specifying the local system's reason for the
3322 last change in session state. The error messages are defined in
3323 section 4.1 of [RFC 5880].
3324 </column>
3325
3326 <column name="bfd_status" key="remote_state"
3327 type='{"type": "string",
3328 "enum": ["set", ["admin_down", "down", "init", "up"]]}'>
3329 Reports the state of the remote endpoint's BFD session.
3330 </column>
3331
3332 <column name="bfd_status" key="remote_diagnostic">
3333 A diagnostic code specifying the remote system's reason for the
3334 last change in session state. The error messages are defined in
3335 section 4.1 of [RFC 5880].
3336 </column>
3337
3338 <column name="bfd_status" key="flap_count"
3339 type='{"type": "integer", "minInteger": 0}'>
3340 Counts the number of <ref column="bfd_status" key="forwarding" />
3341 flaps since start. A flap is considered as a change of the
3342 <ref column="bfd_status" key="forwarding" /> value.
3343 </column>
3344 </group>
3345 </group>
3346
3347 <group title="Connectivity Fault Management">
3348 <p>
3349 802.1ag Connectivity Fault Management (CFM) allows a group of
3350 Maintenance Points (MPs) called a Maintenance Association (MA) to
3351 detect connectivity problems with each other. MPs within a MA should
3352 have complete and exclusive interconnectivity. This is verified by
3353 occasionally broadcasting Continuity Check Messages (CCMs) at a
3354 configurable transmission interval.
3355 </p>
3356
3357 <p>
3358 According to the 802.1ag specification, each Maintenance Point should
3359 be configured out-of-band with a list of Remote Maintenance Points it
3360 should have connectivity to. Open vSwitch differs from the
3361 specification in this area. It simply assumes the link is faulted if
3362 no Remote Maintenance Points are reachable, and considers it not
3363 faulted otherwise.
3364 </p>
3365
3366 <p>
3367 When operating over tunnels which have no <code>in_key</code>, or an
3368 <code>in_key</code> of <code>flow</code>. CFM will only accept CCMs
3369 with a tunnel key of zero.
3370 </p>
3371
3372 <column name="cfm_mpid">
3373 <p>
3374 A Maintenance Point ID (MPID) uniquely identifies each endpoint
3375 within a Maintenance Association. The MPID is used to identify this
3376 endpoint to other Maintenance Points in the MA. Each end of a link
3377 being monitored should have a different MPID. Must be configured to
3378 enable CFM on this <ref table="Interface"/>.
3379 </p>
3380 <p>
3381 According to the 802.1ag specification, MPIDs can only range between
3382 [1, 8191]. However, extended mode (see <ref column="other_config"
3383 key="cfm_extended"/>) supports eight byte MPIDs.
3384 </p>
3385 </column>
3386
3387 <column name="cfm_flap_count">
3388 Counts the number of cfm fault flapps since boot. A flap is
3389 considered to be a change of the <ref column="cfm_fault"/> value.
3390 </column>
3391
3392 <column name="cfm_fault">
3393 <p>
3394 Indicates a connectivity fault triggered by an inability to receive
3395 heartbeats from any remote endpoint. When a fault is triggered on
3396 <ref table="Interface"/>s participating in bonds, they will be
3397 disabled.
3398 </p>
3399 <p>
3400 Faults can be triggered for several reasons. Most importantly they
3401 are triggered when no CCMs are received for a period of 3.5 times the
3402 transmission interval. Faults are also triggered when any CCMs
3403 indicate that a Remote Maintenance Point is not receiving CCMs but
3404 able to send them. Finally, a fault is triggered if a CCM is
3405 received which indicates unexpected configuration. Notably, this
3406 case arises when a CCM is received which advertises the local MPID.
3407 </p>
3408 </column>
3409
3410 <column name="cfm_fault_status" key="recv">
3411 Indicates a CFM fault was triggered due to a lack of CCMs received on
3412 the <ref table="Interface"/>.
3413 </column>
3414
3415 <column name="cfm_fault_status" key="rdi">
3416 Indicates a CFM fault was triggered due to the reception of a CCM with
3417 the RDI bit flagged. Endpoints set the RDI bit in their CCMs when they
3418 are not receiving CCMs themselves. This typically indicates a
3419 unidirectional connectivity failure.
3420 </column>
3421
3422 <column name="cfm_fault_status" key="maid">
3423 Indicates a CFM fault was triggered due to the reception of a CCM with
3424 a MAID other than the one Open vSwitch uses. CFM broadcasts are tagged
3425 with an identification number in addition to the MPID called the MAID.
3426 Open vSwitch only supports receiving CCM broadcasts tagged with the
3427 MAID it uses internally.
3428 </column>
3429
3430 <column name="cfm_fault_status" key="loopback">
3431 Indicates a CFM fault was triggered due to the reception of a CCM
3432 advertising the same MPID configured in the <ref column="cfm_mpid"/>
3433 column of this <ref table="Interface"/>. This may indicate a loop in
3434 the network.
3435 </column>
3436
3437 <column name="cfm_fault_status" key="overflow">
3438 Indicates a CFM fault was triggered because the CFM module received
3439 CCMs from more remote endpoints than it can keep track of.
3440 </column>
3441
3442 <column name="cfm_fault_status" key="override">
3443 Indicates a CFM fault was manually triggered by an administrator using
3444 an <code>ovs-appctl</code> command.
3445 </column>
3446
3447 <column name="cfm_fault_status" key="interval">
3448 Indicates a CFM fault was triggered due to the reception of a CCM
3449 frame having an invalid interval.
3450 </column>
3451
3452 <column name="cfm_remote_opstate">
3453 <p>When in extended mode, indicates the operational state of the
3454 remote endpoint as either <code>up</code> or <code>down</code>. See
3455 <ref column="other_config" key="cfm_opstate"/>.
3456 </p>
3457 </column>
3458
3459 <column name="cfm_health">
3460 <p>
3461 Indicates the health of the interface as a percentage of CCM frames
3462 received over 21 <ref column="other_config" key="cfm_interval"/>s.
3463 The health of an interface is undefined if it is communicating with
3464 more than one <ref column="cfm_remote_mpids"/>. It reduces if
3465 healthy heartbeats are not received at the expected rate, and
3466 gradually improves as healthy heartbeats are received at the desired
3467 rate. Every 21 <ref column="other_config" key="cfm_interval"/>s, the
3468 health of the interface is refreshed.
3469 </p>
3470 <p>
3471 As mentioned above, the faults can be triggered for several reasons.
3472 The link health will deteriorate even if heartbeats are received but
3473 they are reported to be unhealthy. An unhealthy heartbeat in this
3474 context is a heartbeat for which either some fault is set or is out
3475 of sequence. The interface health can be 100 only on receiving
3476 healthy heartbeats at the desired rate.
3477 </p>
3478 </column>
3479
3480 <column name="cfm_remote_mpids">
3481 When CFM is properly configured, Open vSwitch will occasionally
3482 receive CCM broadcasts. These broadcasts contain the MPID of the
3483 sending Maintenance Point. The list of MPIDs from which this
3484 <ref table="Interface"/> is receiving broadcasts from is regularly
3485 collected and written to this column.
3486 </column>
3487
3488 <column name="other_config" key="cfm_interval"
3489 type='{"type": "integer"}'>
3490 <p>
3491 The interval, in milliseconds, between transmissions of CFM
3492 heartbeats. Three missed heartbeat receptions indicate a
3493 connectivity fault.
3494 </p>
3495
3496 <p>
3497 In standard operation only intervals of 3, 10, 100, 1,000, 10,000,
3498 60,000, or 600,000 ms are supported. Other values will be rounded
3499 down to the nearest value on the list. Extended mode (see <ref
3500 column="other_config" key="cfm_extended"/>) supports any interval up
3501 to 65,535 ms. In either mode, the default is 1000 ms.
3502 </p>
3503
3504 <p>We do not recommend using intervals less than 100 ms.</p>
3505 </column>
3506
3507 <column name="other_config" key="cfm_extended"
3508 type='{"type": "boolean"}'>
3509 When <code>true</code>, the CFM module operates in extended mode. This
3510 causes it to use a nonstandard destination address to avoid conflicting
3511 with compliant implementations which may be running concurrently on the
3512 network. Furthermore, extended mode increases the accuracy of the
3513 <code>cfm_interval</code> configuration parameter by breaking wire
3514 compatibility with 802.1ag compliant implementations. And extended
3515 mode allows eight byte MPIDs. Defaults to <code>false</code>.
3516 </column>
3517
3518 <column name="other_config" key="cfm_demand" type='{"type": "boolean"}'>
3519 <p>
3520 When <code>true</code>, and
3521 <ref column="other_config" key="cfm_extended"/> is true, the CFM
3522 module operates in demand mode. When in demand mode, traffic
3523 received on the <ref table="Interface"/> is used to indicate
3524 liveness. CCMs are still transmitted and received. At least one
3525 CCM must be received every 100 * <ref column="other_config"
3526 key="cfm_interval"/> amount of time. Otherwise, even if traffic
3527 are received, the CFM module will raise the connectivity fault.
3528 </p>
3529
3530 <p>
3531 Demand mode has a couple of caveats:
3532 <ul>
3533 <li>
3534 To ensure that ovs-vswitchd has enough time to pull statistics
3535 from the datapath, the fault detection interval is set to
3536 3.5 * MAX(<ref column="other_config" key="cfm_interval"/>, 500)
3537 ms.
3538 </li>
3539
3540 <li>
3541 To avoid ambiguity, demand mode disables itself when there are
3542 multiple remote maintenance points.
3543 </li>
3544
3545 <li>
3546 If the <ref table="Interface"/> is heavily congested, CCMs
3547 containing the <ref column="other_config" key="cfm_opstate"/>
3548 status may be dropped causing changes in the operational state to
3549 be delayed. Similarly, if CCMs containing the RDI bit are not
3550 received, unidirectional link failures may not be detected.
3551 </li>
3552 </ul>
3553 </p>
3554 </column>
3555
3556 <column name="other_config" key="cfm_opstate"
3557 type='{"type": "string", "enum": ["set", ["down", "up"]]}'>
3558 When <code>down</code>, the CFM module marks all CCMs it generates as
3559 operationally down without triggering a fault. This allows remote
3560 maintenance points to choose not to forward traffic to the
3561 <ref table="Interface"/> on which this CFM module is running.
3562 Currently, in Open vSwitch, the opdown bit of CCMs affects
3563 <ref table="Interface"/>s participating in bonds, and the bundle
3564 OpenFlow action. This setting is ignored when CFM is not in extended
3565 mode. Defaults to <code>up</code>.
3566 </column>
3567
3568 <column name="other_config" key="cfm_ccm_vlan"
3569 type='{"type": "integer", "minInteger": 1, "maxInteger": 4095}'>
3570 When set, the CFM module will apply a VLAN tag to all CCMs it generates
3571 with the given value. May be the string <code>random</code> in which
3572 case each CCM will be tagged with a different randomly generated VLAN.
3573 </column>
3574
3575 <column name="other_config" key="cfm_ccm_pcp"
3576 type='{"type": "integer", "minInteger": 1, "maxInteger": 7}'>
3577 When set, the CFM module will apply a VLAN tag to all CCMs it generates
3578 with the given PCP value, the VLAN ID of the tag is governed by the
3579 value of <ref column="other_config" key="cfm_ccm_vlan"/>. If
3580 <ref column="other_config" key="cfm_ccm_vlan"/> is unset, a VLAN ID of
3581 zero is used.
3582 </column>
3583
3584 </group>
3585
3586 <group title="Bonding Configuration">
3587 <column name="other_config" key="lacp-port-id"
3588 type='{"type": "integer", "minInteger": 1, "maxInteger": 65535}'>
3589 The LACP port ID of this <ref table="Interface"/>. Port IDs are
3590 used in LACP negotiations to identify individual ports
3591 participating in a bond.
3592 </column>
3593
3594 <column name="other_config" key="lacp-port-priority"
3595 type='{"type": "integer", "minInteger": 1, "maxInteger": 65535}'>
3596 The LACP port priority of this <ref table="Interface"/>. In LACP
3597 negotiations <ref table="Interface"/>s with numerically lower
3598 priorities are preferred for aggregation.
3599 </column>
3600
3601 <column name="other_config" key="lacp-aggregation-key"
3602 type='{"type": "integer", "minInteger": 1, "maxInteger": 65535}'>
3603 The LACP aggregation key of this <ref table="Interface"/>. <ref
3604 table="Interface"/>s with different aggregation keys may not be active
3605 within a given <ref table="Port"/> at the same time.
3606 </column>
3607 </group>
3608
3609 <group title="Virtual Machine Identifiers">
3610 <p>
3611 These key-value pairs specifically apply to an interface that
3612 represents a virtual Ethernet interface connected to a virtual
3613 machine. These key-value pairs should not be present for other types
3614 of interfaces. Keys whose names end in <code>-uuid</code> have
3615 values that uniquely identify the entity in question. For a Citrix
3616 XenServer hypervisor, these values are UUIDs in RFC 4122 format.
3617 Other hypervisors may use other formats.
3618 </p>
3619
3620 <column name="external_ids" key="attached-mac">
3621 The MAC address programmed into the ``virtual hardware'' for this
3622 interface, in the form
3623 <var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>.
3624 For Citrix XenServer, this is the value of the <code>MAC</code> field
3625 in the VIF record for this interface.
3626 </column>
3627
3628 <column name="external_ids" key="iface-id">
3629 A system-unique identifier for the interface. On XenServer, this will
3630 commonly be the same as <ref column="external_ids" key="xs-vif-uuid"/>.
3631 </column>
3632
3633 <column name="external_ids" key="iface-status"
3634 type='{"type": "string",
3635 "enum": ["set", ["active", "inactive"]]}'>
3636 <p>
3637 Hypervisors may sometimes have more than one interface associated
3638 with a given <ref column="external_ids" key="iface-id"/>, only one of
3639 which is actually in use at a given time. For example, in some
3640 circumstances XenServer has both a ``tap'' and a ``vif'' interface
3641 for a single <ref column="external_ids" key="iface-id"/>, but only
3642 uses one of them at a time. A hypervisor that behaves this way must
3643 mark the currently in use interface <code>active</code> and the
3644 others <code>inactive</code>. A hypervisor that never has more than
3645 one interface for a given <ref column="external_ids" key="iface-id"/>
3646 may mark that interface <code>active</code> or omit <ref
3647 column="external_ids" key="iface-status"/> entirely.
3648 </p>
3649
3650 <p>
3651 During VM migration, a given <ref column="external_ids"
3652 key="iface-id"/> might transiently be marked <code>active</code> on
3653 two different hypervisors. That is, <code>active</code> means that
3654 this <ref column="external_ids" key="iface-id"/> is the active
3655 instance within a single hypervisor, not in a broader scope.
3656 There is one exception: some hypervisors support ``migration'' from a
3657 given hypervisor to itself (most often for test purposes). During
3658 such a ``migration,'' two instances of a single <ref
3659 column="external_ids" key="iface-id"/> might both be briefly marked
3660 <code>active</code> on a single hypervisor.
3661 </p>
3662 </column>
3663
3664 <column name="external_ids" key="xs-vif-uuid">
3665 The virtual interface associated with this interface.
3666 </column>
3667
3668 <column name="external_ids" key="xs-network-uuid">
3669 The virtual network to which this interface is attached.
3670 </column>
3671
3672 <column name="external_ids" key="vm-id">
3673 The VM to which this interface belongs. On XenServer, this will be the
3674 same as <ref column="external_ids" key="xs-vm-uuid"/>.
3675 </column>
3676
3677 <column name="external_ids" key="xs-vm-uuid">
3678 The VM to which this interface belongs.
3679 </column>
3680 </group>
3681
3682 <group title="Auto Attach Configuration">
3683 <p>
3684 Auto Attach configuration for a particular interface.
3685 </p>
3686
3687 <column name="lldp" key="enable" type='{"type": "boolean"}'>
3688 True to enable LLDP on this <ref table="Interface"/>. If not
3689 specified, LLDP will be disabled by default.
3690 </column>
3691 </group>
3692
3693 <group title="Flow control Configuration">
3694 <p>
3695 Ethernet flow control defined in IEEE 802.1Qbb provides link level flow
3696 control using MAC pause frames. Implemented only for interfaces with
3697 type <code>dpdk</code>.
3698 </p>
3699
3700 <column name="options" key="rx-flow-ctrl" type='{"type": "boolean"}'>
3701 Set to <code>true</code> to enable Rx flow control on physical ports.
3702 By default, Rx flow control is disabled.
3703 </column>
3704
3705 <column name="options" key="tx-flow-ctrl" type='{"type": "boolean"}'>
3706 Set to <code>true</code> to enable Tx flow control on physical ports.
3707 By default, Tx flow control is disabled.
3708 </column>
3709
3710 <column name="options" key="flow-ctrl-autoneg"
3711 type='{"type": "boolean"}'>
3712 Set to <code>true</code> to enable flow control auto negotiation on
3713 physical ports. By default, auto-neg is disabled.
3714 </column>
3715 </group>
3716
3717 <group title="Link State Change detection mode">
3718 <column name="options" key="dpdk-lsc-interrupt"
3719 type='{"type": "boolean"}'>
3720 <p>
3721 Set this value to <code>true</code> to configure interrupt mode for
3722 Link State Change (LSC) detection instead of poll mode for the DPDK
3723 interface.
3724 </p>
3725 <p>
3726 If this value is not set, poll mode is configured.
3727 </p>
3728 <p>
3729 This parameter has an effect only on netdev dpdk interfaces.
3730 </p>
3731 </column>
3732 </group>
3733
3734 <group title="Common Columns">
3735 The overall purpose of these columns is described under <code>Common
3736 Columns</code> at the beginning of this document.
3737
3738 <column name="other_config"/>
3739 <column name="external_ids"/>
3740 </group>
3741 </table>
3742
3743 <table name="Flow_Table" title="OpenFlow table configuration">
3744 <p>Configuration for a particular OpenFlow table.</p>
3745
3746 <column name="name">
3747 The table's name. Set this column to change the name that controllers
3748 will receive when they request table statistics, e.g. <code>ovs-ofctl
3749 dump-tables</code>. The name does not affect switch behavior.
3750 </column>
3751
3752 <group title="Eviction Policy">
3753 <p>
3754 Open vSwitch supports limiting the number of flows that may be
3755 installed in a flow table, via the <ref column="flow_limit"/> column.
3756 When adding a flow would exceed this limit, by default Open vSwitch
3757 reports an error, but there are two ways to configure Open vSwitch to
3758 instead delete (``evict'') a flow to make room for the new one:
3759 </p>
3760
3761 <ul>
3762 <li>
3763 Set the <ref column="overflow_policy"/> column to <code>evict</code>.
3764 </li>
3765
3766 <li>
3767 Send an OpenFlow 1.4+ ``table mod request'' to enable eviction for
3768 the flow table (e.g. <code>ovs-ofctl -O OpenFlow14 mod-table br0 0
3769 evict</code> to enable eviction on flow table 0 of bridge
3770 <code>br0</code>).
3771 </li>
3772 </ul>
3773
3774 <p>
3775 When a flow must be evicted due to overflow, the flow to evict is
3776 chosen through an approximation of the following algorithm. This
3777 algorithm is used regardless of how eviction was enabled:
3778 </p>
3779
3780 <ol>
3781 <li>
3782 Divide the flows in the table into groups based on the values of the
3783 fields or subfields specified in the <ref column="groups"/> column,
3784 so that all of the flows in a given group have the same values for
3785 those fields. If a flow does not specify a given field, that field's
3786 value is treated as 0. If <ref column="groups"/> is empty, then all
3787 of the flows in the flow table are treated as a single group.
3788 </li>
3789
3790 <li>
3791 Consider the flows in the largest group, that is, the group that
3792 contains the greatest number of flows. If two or more groups all
3793 have the same largest number of flows, consider the flows in all of
3794 those groups.
3795 </li>
3796
3797 <li>
3798 If the flows under consideration have different importance values,
3799 eliminate from consideration any flows except those with the lowest
3800 importance. (``Importance,'' a 16-bit integer value attached to each
3801 flow, was introduced in OpenFlow 1.4. Flows inserted with older
3802 versions of OpenFlow always have an importance of 0.)
3803 </li>
3804
3805 <li>
3806 Among the flows under consideration, choose the flow that expires
3807 soonest for eviction.
3808 </li>
3809 </ol>
3810
3811 <p>
3812 The eviction process only considers flows that have an idle timeout
3813 or a hard timeout. That is, eviction never deletes permanent flows.
3814 (Permanent flows do count against <ref column="flow_limit"/>.)
3815 </p>
3816
3817 <column name="flow_limit">
3818 If set, limits the number of flows that may be added to the table.
3819 Open vSwitch may limit the number of flows in a table for other
3820 reasons, e.g. due to hardware limitations or for resource availability
3821 or performance reasons.
3822 </column>
3823
3824 <column name="overflow_policy">
3825 <p>
3826 Controls the switch's behavior when an OpenFlow flow table
3827 modification request would add flows in excess of <ref
3828 column="flow_limit"/>. The supported values are:
3829 </p>
3830
3831 <dl>
3832 <dt><code>refuse</code></dt>
3833 <dd>
3834 Refuse to add the flow or flows. This is also the default policy
3835 when <ref column="overflow_policy"/> is unset.
3836 </dd>
3837
3838 <dt><code>evict</code></dt>
3839 <dd>
3840 Delete a flow chosen according to the algorithm described above.
3841 </dd>
3842 </dl>
3843 </column>
3844
3845 <column name="groups">
3846 <p>
3847 When <ref column="overflow_policy"/> is <code>evict</code>, this
3848 controls how flows are chosen for eviction when the flow table would
3849 otherwise exceed <ref column="flow_limit"/> flows. Its value is a
3850 set of NXM fields or sub-fields, each of which takes one of the forms
3851 <code><var>field</var>[]</code> or
3852 <code><var>field</var>[<var>start</var>..<var>end</var>]</code>,
3853 e.g. <code>NXM_OF_IN_PORT[]</code>. Please see
3854 <code>meta-flow.h</code> for a complete list of NXM field names.
3855 </p>
3856
3857 <p>
3858 Open vSwitch ignores any invalid or unknown field specifications.
3859 </p>
3860
3861 <p>
3862 When eviction is not enabled, via <ref column="overflow_policy"/> or
3863 an OpenFlow 1.4+ ``table mod,'' this column has no effect.
3864 </p>
3865 </column>
3866 </group>
3867
3868 <group title="Classifier Optimization">
3869 <column name="prefixes">
3870 <p>
3871 This string set specifies which fields should be used for
3872 address prefix tracking. Prefix tracking allows the
3873 classifier to skip rules with longer than necessary prefixes,
3874 resulting in better wildcarding for datapath flows.
3875 </p>
3876 <p>
3877 Prefix tracking may be beneficial when a flow table contains
3878 matches on IP address fields with different prefix lengths.
3879 For example, when a flow table contains IP address matches on
3880 both full addresses and proper prefixes, the full address
3881 matches will typically cause the datapath flow to un-wildcard
3882 the whole address field (depending on flow entry priorities).
3883 In this case each packet with a different address gets handed
3884 to the userspace for flow processing and generates its own
3885 datapath flow. With prefix tracking enabled for the address
3886 field in question packets with addresses matching shorter
3887 prefixes would generate datapath flows where the irrelevant
3888 address bits are wildcarded, allowing the same datapath flow
3889 to handle all the packets within the prefix in question. In
3890 this case many userspace upcalls can be avoided and the
3891 overall performance can be better.
3892 </p>
3893 <p>
3894 This is a performance optimization only, so packets will
3895 receive the same treatment with or without prefix tracking.
3896 </p>
3897 <p>
3898 The supported fields are: <code>tun_id</code>,
3899 <code>tun_src</code>, <code>tun_dst</code>,
3900 <code>tun_ipv6_src</code>, <code>tun_ipv6_dst</code>,
3901 <code>nw_src</code>, <code>nw_dst</code> (or aliases
3902 <code>ip_src</code> and <code>ip_dst</code>),
3903 <code>ipv6_src</code>, and <code>ipv6_dst</code>. (Using this
3904 feature for <code>tun_id</code> would only make sense if the
3905 tunnel IDs have prefix structure similar to IP addresses.)
3906 </p>
3907
3908 <p>
3909 By default, the <code>prefixes=ip_dst,ip_src</code> are used
3910 on each flow table. This instructs the flow classifier to
3911 track the IP destination and source addresses used by the
3912 rules in this specific flow table.
3913 </p>
3914
3915 <p>
3916 The keyword <code>none</code> is recognized as an explicit
3917 override of the default values, causing no prefix fields to be
3918 tracked.
3919 </p>
3920
3921 <p>
3922 To set the prefix fields, the flow table record needs to
3923 exist:
3924 </p>
3925
3926 <dl>
3927 <dt><code>ovs-vsctl set Bridge br0 flow_tables:0=@N1 -- --id=@N1 create Flow_Table name=table0</code></dt>
3928 <dd>
3929 Creates a flow table record for the OpenFlow table number 0.
3930 </dd>
3931
3932 <dt><code>ovs-vsctl set Flow_Table table0 prefixes=ip_dst,ip_src</code></dt>
3933 <dd>
3934 Enables prefix tracking for IP source and destination
3935 address fields.
3936 </dd>
3937 </dl>
3938
3939 <p>
3940 There is a maximum number of fields that can be enabled for any
3941 one flow table. Currently this limit is 3.
3942 </p>
3943 </column>
3944 </group>
3945
3946 <group title="Common Columns">
3947 The overall purpose of these columns is described under <code>Common
3948 Columns</code> at the beginning of this document.
3949
3950 <column name="external_ids"/>
3951 </group>
3952 </table>
3953
3954 <table name="QoS" title="Quality of Service configuration">
3955 <p>Quality of Service (QoS) configuration for each Port that
3956 references it.</p>
3957
3958 <column name="type">
3959 <p>The type of QoS to implement. The currently defined types are
3960 listed below:</p>
3961 <dl>
3962 <dt><code>linux-htb</code></dt>
3963 <dd>
3964 Linux ``hierarchy token bucket'' classifier. See tc-htb(8) (also at
3965 <code>http://linux.die.net/man/8/tc-htb</code>) and the HTB manual
3966 (<code>http://luxik.cdi.cz/~devik/qos/htb/manual/userg.htm</code>)
3967 for information on how this classifier works and how to configure it.
3968 </dd>
3969
3970 <dt><code>linux-hfsc</code></dt>
3971 <dd>
3972 Linux "Hierarchical Fair Service Curve" classifier.
3973 See <code>http://linux-ip.net/articles/hfsc.en/</code> for
3974 information on how this classifier works.
3975 </dd>
3976
3977 <dt><code>linux-sfq</code></dt>
3978 <dd>
3979 Linux ``Stochastic Fairness Queueing'' classifier. See
3980 <code>tc-sfq</code>(8) (also at
3981 <code>http://linux.die.net/man/8/tc-sfq</code>) for information on
3982 how this classifier works.
3983 </dd>
3984
3985 <dt><code>linux-codel</code></dt>
3986 <dd>
3987 Linux ``Controlled Delay'' classifier. See <code>tc-codel</code>(8)
3988 (also at
3989 <code>http://man7.org/linux/man-pages/man8/tc-codel.8.html</code>)
3990 for information on how this classifier works.
3991 </dd>
3992
3993 <dt><code>linux-fq_codel</code></dt>
3994 <dd>
3995 Linux ``Fair Queuing with Controlled Delay'' classifier. See
3996 <code>tc-fq_codel</code>(8) (also at
3997 <code>http://man7.org/linux/man-pages/man8/tc-fq_codel.8.html</code>)
3998 for information on how this classifier works.
3999 </dd>
4000
4001 <dt><code>linux-noop</code></dt>
4002 <dd>
4003 Linux ``No operation.'' By default, Open vSwitch manages quality of
4004 service on all of its configured ports. This can be helpful, but
4005 sometimes administrators prefer to use other software to manage QoS.
4006 This <ref column="type"/> prevents Open vSwitch from changing the QoS
4007 configuration for a port.
4008 </dd>
4009
4010 <dt><code>egress-policer</code></dt>
4011 <dd>
4012 A DPDK egress policer algorithm using the DPDK
4013 rte_meter library. The rte_meter library provides an implementation
4014 which allows the metering and policing of traffic. The implementation
4015 in OVS essentially creates a single token bucket used to police
4016 traffic. It should be noted that when the rte_meter is configured as
4017 part of QoS there will be a performance overhead as the rte_meter
4018 itself will consume CPU cycles in order to police traffic. These CPU
4019 cycles ordinarily are used for packet proccessing. As such the drop
4020 in performance will be noticed in terms of overall aggregate traffic
4021 throughput.
4022 </dd>
4023 </dl>
4024 </column>
4025
4026 <column name="queues">
4027 <p>A map from queue numbers to <ref table="Queue"/> records. The
4028 supported range of queue numbers depend on <ref column="type"/>. The
4029 queue numbers are the same as the <code>queue_id</code> used in
4030 OpenFlow in <code>struct ofp_action_enqueue</code> and other
4031 structures.</p>
4032
4033 <p>
4034 Queue 0 is the ``default queue.'' It is used by OpenFlow output
4035 actions when no specific queue has been set. When no configuration for
4036 queue 0 is present, it is automatically configured as if a <ref
4037 table="Queue"/> record with empty <ref table="Queue" column="dscp"/>
4038 and <ref table="Queue" column="other_config"/> columns had been
4039 specified.
4040 (Before version 1.6, Open vSwitch would leave queue 0 unconfigured in
4041 this case. With some queuing disciplines, this dropped all packets
4042 destined for the default queue.)
4043 </p>
4044 </column>
4045
4046 <group title="Configuration for linux-htb and linux-hfsc">
4047 <p>
4048 The <code>linux-htb</code> and <code>linux-hfsc</code> classes support
4049 the following key-value pair:
4050 </p>
4051
4052 <column name="other_config" key="max-rate" type='{"type": "integer"}'>
4053 Maximum rate shared by all queued traffic, in bit/s. Optional. If not
4054 specified, for physical interfaces, the default is the link rate. For
4055 other interfaces or if the link rate cannot be determined, the default
4056 is currently 100 Mbps.
4057 </column>
4058 </group>
4059
4060 <group title="Configuration for egress-policer QoS">
4061 <p>
4062 <ref table="QoS"/> <ref table="QoS" column="type"/>
4063 <code>egress-policer</code> provides egress policing for userspace
4064 port types with DPDK.
4065
4066 It has the following key-value pairs defined.
4067 </p>
4068
4069 <column name="other_config" key="cir" type='{"type": "integer"}'>
4070 The Committed Information Rate (CIR) is measured in bytes of IP
4071 packets per second, i.e. it includes the IP header, but not link
4072 specific (e.g. Ethernet) headers. This represents the bytes per second
4073 rate at which the token bucket will be updated. The cir value is
4074 calculated by (pps x packet data size). For example assuming a user
4075 wishes to limit a stream consisting of 64 byte packets to 1 million
4076 packets per second the CIR would be set to to to 46000000. This value
4077 can be broken into '1,000,000 x 46'. Where 1,000,000 is the policing
4078 rate for the number of packets per second and 46 represents the size
4079 of the packet data for a 64 byte ip packet.
4080 </column>
4081 <column name="other_config" key="cbs" type='{"type": "integer"}'>
4082 The Committed Burst Size (CBS) is measured in bytes and represents a
4083 token bucket. At a minimum this value should be be set to the expected
4084 largest size packet in the traffic stream. In practice larger values
4085 may be used to increase the size of the token bucket. If a packet can
4086 be transmitted then the cbs will be decremented by the number of
4087 bytes/tokens of the packet. If there are not enough tokens in the cbs
4088 bucket the packet will be dropped.
4089 </column>
4090 </group>
4091
4092 <group title="Configuration for linux-sfq">
4093 <p>
4094 The <code>linux-sfq</code> QoS supports the following key-value pairs:
4095 </p>
4096
4097 <column name="other_config" key="perturb" type='{"type": "integer"}'>
4098 Number of seconds between consecutive perturbations in hashing algorithm.
4099 Different flows can end up in the same hash bucket causing unfairness.
4100 Perturbation's goal is to remove possible unfairness.
4101 The default and recommended value is 10. Too low a value is discouraged
4102 because each perturbation can cause packet reordering.
4103 </column>
4104 <column name="other_config" key="quantum" type='{"type": "integer"}'>
4105 Number of bytes <code>linux-sfq</code> QoS can dequeue in one turn in
4106 round-robin from one flow. The default and recommended value is equal
4107 to interface's MTU.
4108 </column>
4109 </group>
4110
4111 <group title="Common Columns">
4112 The overall purpose of these columns is described under <code>Common
4113 Columns</code> at the beginning of this document.
4114
4115 <column name="other_config"/>
4116 <column name="external_ids"/>
4117 </group>
4118 </table>
4119
4120 <table name="Queue" title="QoS output queue.">
4121 <p>A configuration for a port output queue, used in configuring Quality of
4122 Service (QoS) features. May be referenced by <ref column="queues"
4123 table="QoS"/> column in <ref table="QoS"/> table.</p>
4124
4125 <column name="dscp">
4126 If set, Open vSwitch will mark all traffic egressing this
4127 <ref table="Queue"/> with the given DSCP bits. Traffic egressing the
4128 default <ref table="Queue"/> is only marked if it was explicitly selected
4129 as the <ref table="Queue"/> at the time the packet was output. If unset,
4130 the DSCP bits of traffic egressing this <ref table="Queue"/> will remain
4131 unchanged.
4132 </column>
4133
4134 <group title="Configuration for linux-htb QoS">
4135 <p>
4136 <ref table="QoS"/> <ref table="QoS" column="type"/>
4137 <code>linux-htb</code> may use <code>queue_id</code>s less than 61440.
4138 It has the following key-value pairs defined.
4139 </p>
4140
4141 <column name="other_config" key="min-rate"
4142 type='{"type": "integer", "minInteger": 1}'>
4143 Minimum guaranteed bandwidth, in bit/s.
4144 </column>
4145
4146 <column name="other_config" key="max-rate"
4147 type='{"type": "integer", "minInteger": 1}'>
4148 Maximum allowed bandwidth, in bit/s. Optional. If specified, the
4149 queue's rate will not be allowed to exceed the specified value, even
4150 if excess bandwidth is available. If unspecified, defaults to no
4151 limit.
4152 </column>
4153
4154 <column name="other_config" key="burst"
4155 type='{"type": "integer", "minInteger": 1}'>
4156 Burst size, in bits. This is the maximum amount of ``credits'' that a
4157 queue can accumulate while it is idle. Optional. Details of the
4158 <code>linux-htb</code> implementation require a minimum burst size, so
4159 a too-small <code>burst</code> will be silently ignored.
4160 </column>
4161
4162 <column name="other_config" key="priority"
4163 type='{"type": "integer", "minInteger": 0, "maxInteger": 4294967295}'>
4164 A queue with a smaller <code>priority</code> will receive all the
4165 excess bandwidth that it can use before a queue with a larger value
4166 receives any. Specific priority values are unimportant; only relative
4167 ordering matters. Defaults to 0 if unspecified.
4168 </column>
4169 </group>
4170
4171 <group title="Configuration for linux-hfsc QoS">
4172 <p>
4173 <ref table="QoS"/> <ref table="QoS" column="type"/>
4174 <code>linux-hfsc</code> may use <code>queue_id</code>s less than 61440.
4175 It has the following key-value pairs defined.
4176 </p>
4177
4178 <column name="other_config" key="min-rate"
4179 type='{"type": "integer", "minInteger": 1}'>
4180 Minimum guaranteed bandwidth, in bit/s.
4181 </column>
4182
4183 <column name="other_config" key="max-rate"
4184 type='{"type": "integer", "minInteger": 1}'>
4185 Maximum allowed bandwidth, in bit/s. Optional. If specified, the
4186 queue's rate will not be allowed to exceed the specified value, even if
4187 excess bandwidth is available. If unspecified, defaults to no
4188 limit.
4189 </column>
4190 </group>
4191
4192 <group title="Common Columns">
4193 The overall purpose of these columns is described under <code>Common
4194 Columns</code> at the beginning of this document.
4195
4196 <column name="other_config"/>
4197 <column name="external_ids"/>
4198 </group>
4199 </table>
4200
4201 <table name="Mirror" title="Port mirroring.">
4202 <p>A port mirror within a <ref table="Bridge"/>.</p>
4203 <p>A port mirror configures a bridge to send selected frames to special
4204 ``mirrored'' ports, in addition to their normal destinations. Mirroring
4205 traffic may also be referred to as SPAN or RSPAN, depending on how
4206 the mirrored traffic is sent.</p>
4207
4208 <p>
4209 When a packet enters an Open vSwitch bridge, it becomes eligible for
4210 mirroring based on its ingress port and VLAN. As the packet travels
4211 through the flow tables, each time it is output to a port, it becomes
4212 eligible for mirroring based on the egress port and VLAN. In Open
4213 vSwitch 2.5 and later, mirroring occurs just after a packet first becomes
4214 eligible, using the packet as it exists at that point; in Open vSwitch
4215 2.4 and earlier, mirroring occurs only after a packet has traversed all
4216 the flow tables, using the original packet as it entered the bridge.
4217 This makes a difference only when the flow table modifies the packet: in
4218 Open vSwitch 2.4, the modifications are never visible to mirrors, whereas
4219 in Open vSwitch 2.5 and later modifications made before the first output
4220 that makes it eligible for mirroring to a particular destination are
4221 visible.
4222 </p>
4223
4224 <p>
4225 A packet that enters an Open vSwitch bridge is mirrored to a particular
4226 destination only once, even if it is eligible for multiple reasons. For
4227 example, a packet would be mirrored to a particular <ref
4228 column="output_port"/> only once, even if it is selected for mirroring to
4229 that port by <ref column="select_dst_port"/> and <ref
4230 column="select_src_port"/> in the same or different <ref table="Mirror"/>
4231 records.
4232 </p>
4233
4234 <column name="name">
4235 Arbitrary identifier for the <ref table="Mirror"/>.
4236 </column>
4237
4238 <group title="Selecting Packets for Mirroring">
4239 <p>
4240 To be selected for mirroring, a given packet must enter or leave the
4241 bridge through a selected port and it must also be in one of the
4242 selected VLANs.
4243 </p>
4244
4245 <column name="select_all">
4246 If true, every packet arriving or departing on any port is
4247 selected for mirroring.
4248 </column>
4249
4250 <column name="select_dst_port">
4251 Ports on which departing packets are selected for mirroring.
4252 </column>
4253
4254 <column name="select_src_port">
4255 Ports on which arriving packets are selected for mirroring.
4256 </column>
4257
4258 <column name="select_vlan">
4259 VLANs on which packets are selected for mirroring. An empty set
4260 selects packets on all VLANs.
4261 </column>
4262 </group>
4263
4264 <group title="Mirroring Destination Configuration">
4265 <p>
4266 These columns are mutually exclusive. Exactly one of them must be
4267 nonempty.
4268 </p>
4269
4270 <column name="output_port">
4271 <p>Output port for selected packets, if nonempty.</p>
4272 <p>Specifying a port for mirror output reserves that port exclusively
4273 for mirroring. No frames other than those selected for mirroring
4274 via this column
4275 will be forwarded to the port, and any frames received on the port
4276 will be discarded.</p>
4277 <p>
4278 The output port may be any kind of port supported by Open vSwitch.
4279 It may be, for example, a physical port (sometimes called SPAN) or a
4280 GRE tunnel.
4281 </p>
4282 </column>
4283
4284 <column name="output_vlan">
4285 <p>Output VLAN for selected packets, if nonempty.</p>
4286 <p>The frames will be sent out all ports that trunk
4287 <ref column="output_vlan"/>, as well as any ports with implicit VLAN
4288 <ref column="output_vlan"/>. When a mirrored frame is sent out a
4289 trunk port, the frame's VLAN tag will be set to
4290 <ref column="output_vlan"/>, replacing any existing tag; when it is
4291 sent out an implicit VLAN port, the frame will not be tagged. This
4292 type of mirroring is sometimes called RSPAN.</p>
4293 <p>
4294 See the documentation for
4295 <ref column="other_config" key="forward-bpdu"/> in the
4296 <ref table="Interface"/> table for a list of destination MAC
4297 addresses which will not be mirrored to a VLAN to avoid confusing
4298 switches that interpret the protocols that they represent.
4299 </p>
4300 <p><em>Please note:</em> Mirroring to a VLAN can disrupt a network that
4301 contains unmanaged switches. Consider an unmanaged physical switch
4302 with two ports: port 1, connected to an end host, and port 2,
4303 connected to an Open vSwitch configured to mirror received packets
4304 into VLAN 123 on port 2. Suppose that the end host sends a packet on
4305 port 1 that the physical switch forwards to port 2. The Open vSwitch
4306 forwards this packet to its destination and then reflects it back on
4307 port 2 in VLAN 123. This reflected packet causes the unmanaged
4308 physical switch to replace the MAC learning table entry, which
4309 correctly pointed to port 1, with one that incorrectly points to port
4310 2. Afterward, the physical switch will direct packets destined for
4311 the end host to the Open vSwitch on port 2, instead of to the end
4312 host on port 1, disrupting connectivity. If mirroring to a VLAN is
4313 desired in this scenario, then the physical switch must be replaced
4314 by one that learns Ethernet addresses on a per-VLAN basis. In
4315 addition, learning should be disabled on the VLAN containing mirrored
4316 traffic. If this is not done then intermediate switches will learn
4317 the MAC address of each end host from the mirrored traffic. If
4318 packets being sent to that end host are also mirrored, then they will
4319 be dropped since the switch will attempt to send them out the input
4320 port. Disabling learning for the VLAN will cause the switch to
4321 correctly send the packet out all ports configured for that VLAN. If
4322 Open vSwitch is being used as an intermediate switch, learning can be
4323 disabled by adding the mirrored VLAN to <ref column="flood_vlans"/>
4324 in the appropriate <ref table="Bridge"/> table or tables.</p>
4325 <p>
4326 Mirroring to a GRE tunnel has fewer caveats than mirroring to a
4327 VLAN and should generally be preferred.
4328 </p>
4329 </column>
4330
4331 <column name="snaplen">
4332 <p>Maximum per-packet number of bytes to mirror.</p>
4333 <p>A mirrored packet with size larger than <ref column="snaplen"/>
4334 will be truncated in datapath to <ref column="snaplen"/> bytes
4335 before sending to the mirror output port. If omitted, packets
4336 are not truncated.
4337 </p>
4338 </column>
4339 </group>
4340
4341 <group title="Statistics: Mirror counters">
4342 <p>
4343 Key-value pairs that report mirror statistics. The update period
4344 is controlled by <ref column="other_config"
4345 key="stats-update-interval"/> in the <code>Open_vSwitch</code> table.
4346 </p>
4347 <column name="statistics" key="tx_packets">
4348 Number of packets transmitted through this mirror.
4349 </column>
4350 <column name="statistics" key="tx_bytes">
4351 Number of bytes transmitted through this mirror.
4352 </column>
4353 </group>
4354
4355 <group title="Common Columns">
4356 The overall purpose of these columns is described under <code>Common
4357 Columns</code> at the beginning of this document.
4358
4359 <column name="external_ids"/>
4360 </group>
4361 </table>
4362
4363 <table name="Controller" title="OpenFlow controller configuration.">
4364 <p>An OpenFlow controller.</p>
4365
4366 <p>
4367 Open vSwitch supports two kinds of OpenFlow controllers:
4368 </p>
4369
4370 <dl>
4371 <dt>Primary controllers</dt>
4372 <dd>
4373 <p>
4374 This is the kind of controller envisioned by the OpenFlow 1.0
4375 specification. Usually, a primary controller implements a network
4376 policy by taking charge of the switch's flow table.
4377 </p>
4378
4379 <p>
4380 Open vSwitch initiates and maintains persistent connections to
4381 primary controllers, retrying the connection each time it fails or
4382 drops. The <ref table="Bridge" column="fail_mode"/> column in the
4383 <ref table="Bridge"/> table applies to primary controllers.
4384 </p>
4385
4386 <p>
4387 Open vSwitch permits a bridge to have any number of primary
4388 controllers. When multiple controllers are configured, Open
4389 vSwitch connects to all of them simultaneously. Because
4390 OpenFlow 1.0 does not specify how multiple controllers
4391 coordinate in interacting with a single switch, more than
4392 one primary controller should be specified only if the
4393 controllers are themselves designed to coordinate with each
4394 other. (The Nicira-defined <code>NXT_ROLE</code> OpenFlow
4395 vendor extension may be useful for this.)
4396 </p>
4397 </dd>
4398 <dt>Service controllers</dt>
4399 <dd>
4400 <p>
4401 These kinds of OpenFlow controller connections are intended for
4402 occasional support and maintenance use, e.g. with
4403 <code>ovs-ofctl</code>. Usually a service controller connects only
4404 briefly to inspect or modify some of a switch's state.
4405 </p>
4406
4407 <p>
4408 Open vSwitch listens for incoming connections from service
4409 controllers. The service controllers initiate and, if necessary,
4410 maintain the connections from their end. The <ref table="Bridge"
4411 column="fail_mode"/> column in the <ref table="Bridge"/> table does
4412 not apply to service controllers.
4413 </p>
4414
4415 <p>
4416 Open vSwitch supports configuring any number of service controllers.
4417 </p>
4418 </dd>
4419 </dl>
4420
4421 <p>
4422 The <ref column="target"/> determines the type of controller.
4423 </p>
4424
4425 <group title="Core Features">
4426 <column name="target">
4427 <p>Connection method for controller.</p>
4428 <p>
4429 The following connection methods are currently supported for primary
4430 controllers:
4431 </p>
4432 <dl>
4433 <dt><code>ssl:<var>ip</var></code>[<code>:<var>port</var></code>]</dt>
4434 <dd>
4435 <p>The specified SSL <var>port</var> on the host at the
4436 given <var>ip</var>, which must be expressed as an IP
4437 address (not a DNS name). The <ref table="Open_vSwitch"
4438 column="ssl"/> column in the <ref table="Open_vSwitch"/>
4439 table must point to a valid SSL configuration when this form
4440 is used.</p>
4441 <p>If <var>port</var> is not specified, it defaults to 6653.</p>
4442 <p>SSL support is an optional feature that is not always built as
4443 part of Open vSwitch.</p>
4444 </dd>
4445 <dt><code>tcp:<var>ip</var></code>[<code>:<var>port</var></code>]</dt>
4446 <dd>
4447 <p>
4448 The specified TCP <var>port</var> on the host at the given
4449 <var>ip</var>, which must be expressed as an IP address (not a
4450 DNS name), where <var>ip</var> can be IPv4 or IPv6 address. If
4451 <var>ip</var> is an IPv6 address, wrap it in square brackets,
4452 e.g. <code>tcp:[::1]:6653</code>.
4453 </p>
4454 <p>
4455 If <var>port</var> is not specified, it defaults to 6653.
4456 </p>
4457 </dd>
4458 </dl>
4459 <p>
4460 The following connection methods are currently supported for service
4461 controllers:
4462 </p>
4463 <dl>
4464 <dt><code>pssl:</code>[<var>port</var>][<code>:<var>ip</var></code>]</dt>
4465 <dd>
4466 <p>
4467 Listens for SSL connections on the specified TCP <var>port</var>.
4468 If <var>ip</var>, which must be expressed as an IP address (not a
4469 DNS name), is specified, then connections are restricted to the
4470 specified local IP address (either IPv4 or IPv6). If
4471 <var>ip</var> is an IPv6 address, wrap it in square brackets,
4472 e.g. <code>pssl:6653:[::1]</code>.
4473 </p>
4474 <p>
4475 If <var>port</var> is not specified, it defaults to
4476 6653. If <var>ip</var> is not specified then it listens only on
4477 IPv4 (but not IPv6) addresses. The
4478 <ref table="Open_vSwitch" column="ssl"/>
4479 column in the <ref table="Open_vSwitch"/> table must point to a
4480 valid SSL configuration when this form is used.
4481 </p>
4482 <p>
4483 If <var>port</var> is not specified, it currently to 6653.
4484 </p>
4485 <p>
4486 SSL support is an optional feature that is not always built as
4487 part of Open vSwitch.
4488 </p>
4489 </dd>
4490 <dt><code>ptcp:</code>[<var>port</var>][<code>:<var>ip</var></code>]</dt>
4491 <dd>
4492 <p>
4493 Listens for connections on the specified TCP <var>port</var>. If
4494 <var>ip</var>, which must be expressed as an IP address (not a
4495 DNS name), is specified, then connections are restricted to the
4496 specified local IP address (either IPv4 or IPv6). If
4497 <var>ip</var> is an IPv6 address, wrap it in square brackets,
4498 e.g. <code>ptcp:6653:[::1]</code>. If <var>ip</var> is not
4499 specified then it listens only on IPv4 addresses.
4500 </p>
4501 <p>
4502 If <var>port</var> is not specified, it defaults to 6653.
4503 </p>
4504 </dd>
4505 </dl>
4506 <p>When multiple controllers are configured for a single bridge, the
4507 <ref column="target"/> values must be unique. Duplicate
4508 <ref column="target"/> values yield unspecified results.</p>
4509 </column>
4510
4511 <column name="connection_mode">
4512 <p>If it is specified, this setting must be one of the following
4513 strings that describes how Open vSwitch contacts this OpenFlow
4514 controller over the network:</p>
4515
4516 <dl>
4517 <dt><code>in-band</code></dt>
4518 <dd>In this mode, this controller's OpenFlow traffic travels over the
4519 bridge associated with the controller. With this setting, Open
4520 vSwitch allows traffic to and from the controller regardless of the
4521 contents of the OpenFlow flow table. (Otherwise, Open vSwitch
4522 would never be able to connect to the controller, because it did
4523 not have a flow to enable it.) This is the most common connection
4524 mode because it is not necessary to maintain two independent
4525 networks.</dd>
4526 <dt><code>out-of-band</code></dt>
4527 <dd>In this mode, OpenFlow traffic uses a control network separate
4528 from the bridge associated with this controller, that is, the
4529 bridge does not use any of its own network devices to communicate
4530 with the controller. The control network must be configured
4531 separately, before or after <code>ovs-vswitchd</code> is started.
4532 </dd>
4533 </dl>
4534
4535 <p>If not specified, the default is implementation-specific.</p>
4536 </column>
4537 </group>
4538
4539 <group title="Controller Failure Detection and Handling">
4540 <column name="max_backoff">
4541 Maximum number of milliseconds to wait between connection attempts.
4542 Default is implementation-specific.
4543 </column>
4544
4545 <column name="inactivity_probe">
4546 Maximum number of milliseconds of idle time on connection to
4547 controller before sending an inactivity probe message. If Open
4548 vSwitch does not communicate with the controller for the specified
4549 number of seconds, it will send a probe. If a response is not
4550 received for the same additional amount of time, Open vSwitch
4551 assumes the connection has been broken and attempts to reconnect.
4552 Default is implementation-specific. A value of 0 disables
4553 inactivity probes.
4554 </column>
4555 </group>
4556
4557 <group title="Asynchronous Messages">
4558 <p>
4559 OpenFlow switches send certain messages to controllers spontanenously,
4560 that is, not in response to any request from the controller. These
4561 messages are called ``asynchronous messages.'' These columns allow
4562 asynchronous messages to be limited or disabled to ensure the best use
4563 of network resources.
4564 </p>
4565
4566 <column name="enable_async_messages">
4567 The OpenFlow protocol enables asynchronous messages at time of
4568 connection establishment, which means that a controller can receive
4569 asynchronous messages, potentially many of them, even if it turns them
4570 off immediately after connecting. Set this column to
4571 <code>false</code> to change Open vSwitch behavior to disable, by
4572 default, all asynchronous messages. The controller can use the
4573 <code>NXT_SET_ASYNC_CONFIG</code> Nicira extension to OpenFlow to turn
4574 on any messages that it does want to receive, if any.
4575 </column>
4576
4577 <group title="Controller Rate Limiting">
4578 <p>
4579 A switch can forward packets to a controller over the OpenFlow
4580 protocol. Forwarding packets this way at too high a rate can
4581 overwhelm a controller, frustrate use of the OpenFlow connection for
4582 other purposes, increase the latency of flow setup, and use an
4583 unreasonable amount of bandwidth. Therefore, Open vSwitch supports
4584 limiting the rate of packet forwarding to a controller.
4585 </p>
4586
4587 <p>
4588 There are two main reasons in OpenFlow for a packet to be sent to a
4589 controller: either the packet ``misses'' in the flow table, that is,
4590 there is no matching flow, or a flow table action says to send the
4591 packet to the controller. Open vSwitch limits the rate of each kind
4592 of packet separately at the configured rate. Therefore, the actual
4593 rate that packets are sent to the controller can be up to twice the
4594 configured rate, when packets are sent for both reasons.
4595 </p>
4596
4597 <p>
4598 This feature is specific to forwarding packets over an OpenFlow
4599 connection. It is not general-purpose QoS. See the <ref
4600 table="QoS"/> table for quality of service configuration, and <ref
4601 column="ingress_policing_rate" table="Interface"/> in the <ref
4602 table="Interface"/> table for ingress policing configuration.
4603 </p>
4604
4605 <column name="controller_rate_limit">
4606 <p>
4607 The maximum rate at which the switch will forward packets to the
4608 OpenFlow controller, in packets per second. If no value is
4609 specified, rate limiting is disabled.
4610 </p>
4611 </column>
4612
4613 <column name="controller_burst_limit">
4614 <p>
4615 When a high rate triggers rate-limiting, Open vSwitch queues
4616 packets to the controller for each port and transmits them to the
4617 controller at the configured rate. This value limits the number of
4618 queued packets. Ports on a bridge share the packet queue fairly.
4619 </p>
4620
4621 <p>
4622 This value has no effect unless <ref
4623 column="controller_rate_limit"/> is configured. The current
4624 default when this value is not specified is one-quarter of <ref
4625 column="controller_rate_limit"/>, meaning that queuing can delay
4626 forwarding a packet to the controller by up to 250 ms.
4627 </p>
4628 </column>
4629
4630 <group title="Controller Rate Limiting Statistics">
4631 <p>
4632 These values report the effects of rate limiting. Their values are
4633 relative to establishment of the most recent OpenFlow connection,
4634 or since rate limiting was enabled, whichever happened more
4635 recently. Each consists of two values, one with <code>TYPE</code>
4636 replaced by <code>miss</code> for rate limiting flow table misses,
4637 and the other with <code>TYPE</code> replaced by
4638 <code>action</code> for rate limiting packets sent by OpenFlow
4639 actions.
4640 </p>
4641
4642 <p>
4643 These statistics are reported only when controller rate limiting is
4644 enabled.
4645 </p>
4646
4647 <column name="status" key="packet-in-TYPE-bypassed"
4648 type='{"type": "integer", "minInteger": 0}'>
4649 Number of packets sent directly to the controller, without queuing,
4650 because the rate did not exceed the configured maximum.
4651 </column>
4652
4653 <column name="status" key="packet-in-TYPE-queued"
4654 type='{"type": "integer", "minInteger": 0}'>
4655 Number of packets added to the queue to send later.
4656 </column>
4657
4658 <column name="status" key="packet-in-TYPE-dropped"
4659 type='{"type": "integer", "minInteger": 0}'>
4660 Number of packets added to the queue that were later dropped due to
4661 overflow. This value is less than or equal to <ref column="status"
4662 key="packet-in-TYPE-queued"/>.
4663 </column>
4664
4665 <column name="status" key="packet-in-TYPE-backlog"
4666 type='{"type": "integer", "minInteger": 0}'>
4667 Number of packets currently queued. The other statistics increase
4668 monotonically, but this one fluctuates between 0 and the <ref
4669 column="controller_burst_limit"/> as conditions change.
4670 </column>
4671 </group>
4672 </group>
4673 </group>
4674
4675 <group title="Additional In-Band Configuration">
4676 <p>These values are considered only in in-band control mode (see
4677 <ref column="connection_mode"/>).</p>
4678
4679 <p>When multiple controllers are configured on a single bridge, there
4680 should be only one set of unique values in these columns. If different
4681 values are set for these columns in different controllers, the effect
4682 is unspecified.</p>
4683
4684 <column name="local_ip">
4685 The IP address to configure on the local port,
4686 e.g. <code>192.168.0.123</code>. If this value is unset, then
4687 <ref column="local_netmask"/> and <ref column="local_gateway"/> are
4688 ignored.
4689 </column>
4690
4691 <column name="local_netmask">
4692 The IP netmask to configure on the local port,
4693 e.g. <code>255.255.255.0</code>. If <ref column="local_ip"/> is set
4694 but this value is unset, then the default is chosen based on whether
4695 the IP address is class A, B, or C.
4696 </column>
4697
4698 <column name="local_gateway">
4699 The IP address of the gateway to configure on the local port, as a
4700 string, e.g. <code>192.168.0.1</code>. Leave this column unset if
4701 this network has no gateway.
4702 </column>
4703 </group>
4704
4705 <group title="Controller Status">
4706 <column name="is_connected">
4707 <code>true</code> if currently connected to this controller,
4708 <code>false</code> otherwise.
4709 </column>
4710
4711 <column name="role"
4712 type='{"type": "string", "enum": ["set", ["other", "master", "slave"]]}'>
4713 <p>The level of authority this controller has on the associated
4714 bridge. Possible values are:</p>
4715 <dl>
4716 <dt><code>other</code></dt>
4717 <dd>Allows the controller access to all OpenFlow features.</dd>
4718 <dt><code>master</code></dt>
4719 <dd>Equivalent to <code>other</code>, except that there may be at
4720 most one master controller at a time. When a controller configures
4721 itself as <code>master</code>, any existing master is demoted to
4722 the <code>slave</code> role.</dd>
4723 <dt><code>slave</code></dt>
4724 <dd>Allows the controller read-only access to OpenFlow features.
4725 Attempts to modify the flow table will be rejected with an
4726 error. Slave controllers do not receive OFPT_PACKET_IN or
4727 OFPT_FLOW_REMOVED messages, but they do receive OFPT_PORT_STATUS
4728 messages.</dd>
4729 </dl>
4730 </column>
4731
4732 <column name="status" key="last_error">
4733 A human-readable description of the last error on the connection
4734 to the controller; i.e. <code>strerror(errno)</code>. This key
4735 will exist only if an error has occurred.
4736 </column>
4737
4738 <column name="status" key="state"
4739 type='{"type": "string", "enum": ["set", ["VOID", "BACKOFF", "CONNECTING", "ACTIVE", "IDLE"]]}'>
4740 <p>
4741 The state of the connection to the controller:
4742 </p>
4743 <dl>
4744 <dt><code>VOID</code></dt>
4745 <dd>Connection is disabled.</dd>
4746
4747 <dt><code>BACKOFF</code></dt>
4748 <dd>Attempting to reconnect at an increasing period.</dd>
4749
4750 <dt><code>CONNECTING</code></dt>
4751 <dd>Attempting to connect.</dd>
4752
4753 <dt><code>ACTIVE</code></dt>
4754 <dd>Connected, remote host responsive.</dd>
4755
4756 <dt><code>IDLE</code></dt>
4757 <dd>Connection is idle. Waiting for response to keep-alive.</dd>
4758 </dl>
4759 <p>
4760 These values may change in the future. They are provided only for
4761 human consumption.
4762 </p>
4763 </column>
4764
4765 <column name="status" key="sec_since_connect"
4766 type='{"type": "integer", "minInteger": 0}'>
4767 The amount of time since this controller last successfully connected to
4768 the switch (in seconds). Value is empty if controller has never
4769 successfully connected.
4770 </column>
4771
4772 <column name="status" key="sec_since_disconnect"
4773 type='{"type": "integer", "minInteger": 1}'>
4774 The amount of time since this controller last disconnected from
4775 the switch (in seconds). Value is empty if controller has never
4776 disconnected.
4777 </column>
4778 </group>
4779
4780 <group title="Connection Parameters">
4781 <p>
4782 Additional configuration for a connection between the controller
4783 and the Open vSwitch.
4784 </p>
4785
4786 <column name="other_config" key="dscp"
4787 type='{"type": "integer"}'>
4788 The Differentiated Service Code Point (DSCP) is specified using 6 bits
4789 in the Type of Service (TOS) field in the IP header. DSCP provides a
4790 mechanism to classify the network traffic and provide Quality of
4791 Service (QoS) on IP networks.
4792
4793 The DSCP value specified here is used when establishing the connection
4794 between the controller and the Open vSwitch. If no value is specified,
4795 a default value of 48 is chosen. Valid DSCP values must be in the
4796 range 0 to 63.
4797 </column>
4798 </group>
4799
4800
4801 <group title="Common Columns">
4802 The overall purpose of these columns is described under <code>Common
4803 Columns</code> at the beginning of this document.
4804
4805 <column name="external_ids"/>
4806 <column name="other_config"/>
4807 </group>
4808 </table>
4809
4810 <table name="Manager" title="OVSDB management connection.">
4811 <p>
4812 Configuration for a database connection to an Open vSwitch database
4813 (OVSDB) client.
4814 </p>
4815
4816 <p>
4817 This table primarily configures the Open vSwitch database
4818 (<code>ovsdb-server</code>), not the Open vSwitch switch
4819 (<code>ovs-vswitchd</code>). The switch does read the table to determine
4820 what connections should be treated as in-band.
4821 </p>
4822
4823 <p>
4824 The Open vSwitch database server can initiate and maintain active
4825 connections to remote clients. It can also listen for database
4826 connections.
4827 </p>
4828
4829 <group title="Core Features">
4830 <column name="target">
4831 <p>Connection method for managers.</p>
4832 <p>
4833 The following connection methods are currently supported:
4834 </p>
4835 <dl>
4836 <dt><code>ssl:<var>ip</var></code>[<code>:<var>port</var></code>]</dt>
4837 <dd>
4838 <p>
4839 The specified SSL <var>port</var> on the host at the given
4840 <var>ip</var>, which must be expressed as an IP address
4841 (not a DNS name). The <ref table="Open_vSwitch"
4842 column="ssl"/> column in the <ref table="Open_vSwitch"/>
4843 table must point to a valid SSL configuration when this
4844 form is used.
4845 </p>
4846 <p>
4847 If <var>port</var> is not specified, it defaults to 6640.
4848 </p>
4849 <p>
4850 SSL support is an optional feature that is not always
4851 built as part of Open vSwitch.
4852 </p>
4853 </dd>
4854
4855 <dt><code>tcp:<var>ip</var></code>[<code>:<var>port</var></code>]</dt>
4856 <dd>
4857 <p>
4858 The specified TCP <var>port</var> on the host at the given
4859 <var>ip</var>, which must be expressed as an IP address (not a
4860 DNS name), where <var>ip</var> can be IPv4 or IPv6 address. If
4861 <var>ip</var> is an IPv6 address, wrap it in square brackets,
4862 e.g. <code>tcp:[::1]:6640</code>.
4863 </p>
4864 <p>
4865 If <var>port</var> is not specified, it defaults to 6640.
4866 </p>
4867 </dd>
4868 <dt><code>pssl:</code>[<var>port</var>][<code>:<var>ip</var></code>]</dt>
4869 <dd>
4870 <p>
4871 Listens for SSL connections on the specified TCP <var>port</var>.
4872 Specify 0 for <var>port</var> to have the kernel automatically
4873 choose an available port. If <var>ip</var>, which must be
4874 expressed as an IP address (not a DNS name), is specified, then
4875 connections are restricted to the specified local IP address
4876 (either IPv4 or IPv6 address). If <var>ip</var> is an IPv6
4877 address, wrap in square brackets,
4878 e.g. <code>pssl:6640:[::1]</code>. If <var>ip</var> is not
4879 specified then it listens only on IPv4 (but not IPv6) addresses.
4880 The <ref table="Open_vSwitch" column="ssl"/> column in the <ref
4881 table="Open_vSwitch"/> table must point to a valid SSL
4882 configuration when this form is used.
4883 </p>
4884 <p>
4885 If <var>port</var> is not specified, it defaults to 6640.
4886 </p>
4887 <p>
4888 SSL support is an optional feature that is not always built as
4889 part of Open vSwitch.
4890 </p>
4891 </dd>
4892 <dt><code>ptcp:</code>[<var>port</var>][<code>:<var>ip</var></code>]</dt>
4893 <dd>
4894 <p>
4895 Listens for connections on the specified TCP <var>port</var>.
4896 Specify 0 for <var>port</var> to have the kernel automatically
4897 choose an available port. If <var>ip</var>, which must be
4898 expressed as an IP address (not a DNS name), is specified, then
4899 connections are restricted to the specified local IP address
4900 (either IPv4 or IPv6 address). If <var>ip</var> is an IPv6
4901 address, wrap it in square brackets,
4902 e.g. <code>ptcp:6640:[::1]</code>. If <var>ip</var> is not
4903 specified then it listens only on IPv4 addresses.
4904 </p>
4905 <p>
4906 If <var>port</var> is not specified, it defaults to 6640.
4907 </p>
4908 </dd>
4909 </dl>
4910 <p>When multiple managers are configured, the <ref column="target"/>
4911 values must be unique. Duplicate <ref column="target"/> values yield
4912 unspecified results.</p>
4913 </column>
4914
4915 <column name="connection_mode">
4916 <p>
4917 If it is specified, this setting must be one of the following strings
4918 that describes how Open vSwitch contacts this OVSDB client over the
4919 network:
4920 </p>
4921
4922 <dl>
4923 <dt><code>in-band</code></dt>
4924 <dd>
4925 In this mode, this connection's traffic travels over a bridge
4926 managed by Open vSwitch. With this setting, Open vSwitch allows
4927 traffic to and from the client regardless of the contents of the
4928 OpenFlow flow table. (Otherwise, Open vSwitch would never be able
4929 to connect to the client, because it did not have a flow to enable
4930 it.) This is the most common connection mode because it is not
4931 necessary to maintain two independent networks.
4932 </dd>
4933 <dt><code>out-of-band</code></dt>
4934 <dd>
4935 In this mode, the client's traffic uses a control network separate
4936 from that managed by Open vSwitch, that is, Open vSwitch does not
4937 use any of its own network devices to communicate with the client.
4938 The control network must be configured separately, before or after
4939 <code>ovs-vswitchd</code> is started.
4940 </dd>
4941 </dl>
4942
4943 <p>
4944 If not specified, the default is implementation-specific.
4945 </p>
4946 </column>
4947 </group>
4948
4949 <group title="Client Failure Detection and Handling">
4950 <column name="max_backoff">
4951 Maximum number of milliseconds to wait between connection attempts.
4952 Default is implementation-specific.
4953 </column>
4954
4955 <column name="inactivity_probe">
4956 Maximum number of milliseconds of idle time on connection to the client
4957 before sending an inactivity probe message. If Open vSwitch does not
4958 communicate with the client for the specified number of seconds, it
4959 will send a probe. If a response is not received for the same
4960 additional amount of time, Open vSwitch assumes the connection has been
4961 broken and attempts to reconnect. Default is implementation-specific.
4962 A value of 0 disables inactivity probes.
4963 </column>
4964 </group>
4965
4966 <group title="Status">
4967 <p>
4968 Key-value pair of <ref column="is_connected"/> is always updated.
4969 Other key-value pairs in the status columns may be updated depends
4970 on the <ref column="target"/> type.
4971 </p>
4972
4973 <p>
4974 When <ref column="target"/> specifies a connection method that
4975 listens for inbound connections (e.g. <code>ptcp:</code> or
4976 <code>punix:</code>), both <ref column="n_connections"/> and
4977 <ref column="is_connected"/> may also be updated while the
4978 remaining key-value pairs are omitted.
4979 </p>
4980
4981 <p>
4982 On the other hand, when <ref column="target"/> specifies an
4983 outbound connection, all key-value pairs may be updated, except
4984 the above-mentioned two key-value pairs associated with inbound
4985 connection targets. They are omitted.
4986 </p>
4987
4988 <column name="is_connected">
4989 <code>true</code> if currently connected to this manager,
4990 <code>false</code> otherwise.
4991 </column>
4992
4993 <column name="status" key="last_error">
4994 A human-readable description of the last error on the connection
4995 to the manager; i.e. <code>strerror(errno)</code>. This key
4996 will exist only if an error has occurred.
4997 </column>
4998
4999 <column name="status" key="state"
5000 type='{"type": "string", "enum": ["set", ["VOID", "BACKOFF", "CONNECTING", "ACTIVE", "IDLE"]]}'>
5001 <p>
5002 The state of the connection to the manager:
5003 </p>
5004 <dl>
5005 <dt><code>VOID</code></dt>
5006 <dd>Connection is disabled.</dd>
5007
5008 <dt><code>BACKOFF</code></dt>
5009 <dd>Attempting to reconnect at an increasing period.</dd>
5010
5011 <dt><code>CONNECTING</code></dt>
5012 <dd>Attempting to connect.</dd>
5013
5014 <dt><code>ACTIVE</code></dt>
5015 <dd>Connected, remote host responsive.</dd>
5016
5017 <dt><code>IDLE</code></dt>
5018 <dd>Connection is idle. Waiting for response to keep-alive.</dd>
5019 </dl>
5020 <p>
5021 These values may change in the future. They are provided only for
5022 human consumption.
5023 </p>
5024 </column>
5025
5026 <column name="status" key="sec_since_connect"
5027 type='{"type": "integer", "minInteger": 0}'>
5028 The amount of time since this manager last successfully connected
5029 to the database (in seconds). Value is empty if manager has never
5030 successfully connected.
5031 </column>
5032
5033 <column name="status" key="sec_since_disconnect"
5034 type='{"type": "integer", "minInteger": 0}'>
5035 The amount of time since this manager last disconnected from the
5036 database (in seconds). Value is empty if manager has never
5037 disconnected.
5038 </column>
5039
5040 <column name="status" key="locks_held">
5041 Space-separated list of the names of OVSDB locks that the connection
5042 holds. Omitted if the connection does not hold any locks.
5043 </column>
5044
5045 <column name="status" key="locks_waiting">
5046 Space-separated list of the names of OVSDB locks that the connection is
5047 currently waiting to acquire. Omitted if the connection is not waiting
5048 for any locks.
5049 </column>
5050
5051 <column name="status" key="locks_lost">
5052 Space-separated list of the names of OVSDB locks that the connection
5053 has had stolen by another OVSDB client. Omitted if no locks have been
5054 stolen from this connection.
5055 </column>
5056
5057 <column name="status" key="n_connections"
5058 type='{"type": "integer", "minInteger": 2}'>
5059 When <ref column="target"/> specifies a connection method that
5060 listens for inbound connections (e.g. <code>ptcp:</code> or
5061 <code>pssl:</code>) and more than one connection is actually active,
5062 the value is the number of active connections. Otherwise, this
5063 key-value pair is omitted.
5064 </column>
5065
5066 <column name="status" key="bound_port" type='{"type": "integer"}'>
5067 When <ref column="target"/> is <code>ptcp:</code> or
5068 <code>pssl:</code>, this is the TCP port on which the OVSDB server is
5069 listening. (This is particularly useful when <ref
5070 column="target"/> specifies a port of 0, allowing the kernel to
5071 choose any available port.)
5072 </column>
5073 </group>
5074
5075 <group title="Connection Parameters">
5076 <p>
5077 Additional configuration for a connection between the manager
5078 and the Open vSwitch Database.
5079 </p>
5080
5081 <column name="other_config" key="dscp"
5082 type='{"type": "integer"}'>
5083 The Differentiated Service Code Point (DSCP) is specified using 6 bits
5084 in the Type of Service (TOS) field in the IP header. DSCP provides a
5085 mechanism to classify the network traffic and provide Quality of
5086 Service (QoS) on IP networks.
5087
5088 The DSCP value specified here is used when establishing the connection
5089 between the manager and the Open vSwitch. If no value is specified, a
5090 default value of 48 is chosen. Valid DSCP values must be in the range
5091 0 to 63.
5092 </column>
5093 </group>
5094
5095 <group title="Common Columns">
5096 The overall purpose of these columns is described under <code>Common
5097 Columns</code> at the beginning of this document.
5098
5099 <column name="external_ids"/>
5100 <column name="other_config"/>
5101 </group>
5102 </table>
5103
5104 <table name="NetFlow">
5105 A NetFlow target. NetFlow is a protocol that exports a number of
5106 details about terminating IP flows, such as the principals involved
5107 and duration.
5108
5109 <column name="targets">
5110 NetFlow targets in the form
5111 <code><var>ip</var>:<var>port</var></code>. The <var>ip</var>
5112 must be specified numerically, not as a DNS name.
5113 </column>
5114
5115 <column name="engine_id">
5116 Engine ID to use in NetFlow messages. Defaults to datapath index
5117 if not specified.
5118 </column>
5119
5120 <column name="engine_type">
5121 Engine type to use in NetFlow messages. Defaults to datapath
5122 index if not specified.
5123 </column>
5124
5125 <column name="active_timeout">
5126 <p>
5127 The interval at which NetFlow records are sent for flows that
5128 are still active, in seconds. A value of <code>0</code>
5129 requests the default timeout (currently 600 seconds); a value
5130 of <code>-1</code> disables active timeouts.
5131 </p>
5132
5133 <p>
5134 The NetFlow passive timeout, for flows that become inactive,
5135 is not configurable. It will vary depending on the Open
5136 vSwitch version, the forms and contents of the OpenFlow flow
5137 tables, CPU and memory usage, and network activity. A typical
5138 passive timeout is about a second.
5139 </p>
5140 </column>
5141
5142 <column name="add_id_to_interface">
5143 <p>If this column's value is <code>false</code>, the ingress and egress
5144 interface fields of NetFlow flow records are derived from OpenFlow port
5145 numbers. When it is <code>true</code>, the 7 most significant bits of
5146 these fields will be replaced by the least significant 7 bits of the
5147 engine id. This is useful because many NetFlow collectors do not
5148 expect multiple switches to be sending messages from the same host, so
5149 they do not store the engine information which could be used to
5150 disambiguate the traffic.</p>
5151 <p>When this option is enabled, a maximum of 508 ports are supported.</p>
5152 </column>
5153
5154 <group title="Common Columns">
5155 The overall purpose of these columns is described under <code>Common
5156 Columns</code> at the beginning of this document.
5157
5158 <column name="external_ids"/>
5159 </group>
5160 </table>
5161
5162 <table name="SSL">
5163 SSL configuration for an Open_vSwitch.
5164
5165 <column name="private_key">
5166 Name of a PEM file containing the private key used as the switch's
5167 identity for SSL connections to the controller.
5168 </column>
5169
5170 <column name="certificate">
5171 Name of a PEM file containing a certificate, signed by the
5172 certificate authority (CA) used by the controller and manager,
5173 that certifies the switch's private key, identifying a trustworthy
5174 switch.
5175 </column>
5176
5177 <column name="ca_cert">
5178 Name of a PEM file containing the CA certificate used to verify
5179 that the switch is connected to a trustworthy controller.
5180 </column>
5181
5182 <column name="bootstrap_ca_cert">
5183 If set to <code>true</code>, then Open vSwitch will attempt to
5184 obtain the CA certificate from the controller on its first SSL
5185 connection and save it to the named PEM file. If it is successful,
5186 it will immediately drop the connection and reconnect, and from then
5187 on all SSL connections must be authenticated by a certificate signed
5188 by the CA certificate thus obtained. <em>This option exposes the
5189 SSL connection to a man-in-the-middle attack obtaining the initial
5190 CA certificate.</em> It may still be useful for bootstrapping.
5191 </column>
5192
5193 <group title="Common Columns">
5194 The overall purpose of these columns is described under <code>Common
5195 Columns</code> at the beginning of this document.
5196
5197 <column name="external_ids"/>
5198 </group>
5199 </table>
5200
5201 <table name="sFlow">
5202 <p>A set of sFlow(R) targets. sFlow is a protocol for remote
5203 monitoring of switches.</p>
5204
5205 <column name="agent">
5206 <p>
5207 Determines the agent address, that is, the IP address reported to
5208 collectors as the source of the sFlow data. It may be an IP address or
5209 the name of a network device. In the latter case, the network device's
5210 IP address is used,
5211 </p>
5212
5213 <p>
5214 If not specified, the agent device is figured from the first target
5215 address and the routing table. If the routing table does not contain a
5216 route to the target, the IP address defaults to the <ref
5217 table="Controller" column="local_ip"/> in the collector's <ref
5218 table="Controller"/>.
5219 </p>
5220
5221 <p>
5222 If an agent IP address cannot be determined, sFlow is disabled.
5223 </p>
5224 </column>
5225
5226 <column name="header">
5227 Number of bytes of a sampled packet to send to the collector.
5228 If not specified, the default is 128 bytes.
5229 </column>
5230
5231 <column name="polling">
5232 Polling rate in seconds to send port statistics to the collector.
5233 If not specified, defaults to 30 seconds.
5234 </column>
5235
5236 <column name="sampling">
5237 Rate at which packets should be sampled and sent to the collector.
5238 If not specified, defaults to 400, which means one out of 400
5239 packets, on average, will be sent to the collector.
5240 </column>
5241
5242 <column name="targets">
5243 sFlow targets in the form
5244 <code><var>ip</var>:<var>port</var></code>.
5245 </column>
5246
5247 <group title="Common Columns">
5248 The overall purpose of these columns is described under <code>Common
5249 Columns</code> at the beginning of this document.
5250
5251 <column name="external_ids"/>
5252 </group>
5253 </table>
5254
5255 <table name="IPFIX">
5256 <p>Configuration for sending packets to IPFIX collectors.</p>
5257
5258 <p>
5259 IPFIX is a protocol that exports a number of details about flows. The
5260 IPFIX implementation in Open vSwitch samples packets at a configurable
5261 rate, extracts flow information from those packets, optionally caches and
5262 aggregates the flow information, and sends the result to one or more
5263 collectors.
5264 </p>
5265
5266 <p>
5267 IPFIX in Open vSwitch can be configured two different ways:
5268 </p>
5269
5270 <ul>
5271 <li>
5272 With <em>per-bridge sampling</em>, Open vSwitch performs IPFIX sampling
5273 automatically on all packets that pass through a bridge. To configure
5274 per-bridge sampling, create an <ref table="IPFIX"/> record and point a
5275 <ref table="Bridge"/> table's <ref table="Bridge" column="ipfix"/>
5276 column to it. The <ref table="Flow_Sample_Collector_Set"/> table is
5277 not used for per-bridge sampling.
5278 </li>
5279
5280 <li>
5281 <p>
5282 With <em>flow-based sampling</em>, <code>sample</code> actions in the
5283 OpenFlow flow table drive IPFIX sampling. See
5284 <code>ovs-ofctl</code>(8) for a description of the
5285 <code>sample</code> action.
5286 </p>
5287
5288 <p>
5289 Flow-based sampling also requires database configuration: create a
5290 <ref table="IPFIX"/> record that describes the IPFIX configuration
5291 and a <ref table="Flow_Sample_Collector_Set"/> record that points to
5292 the <ref table="Bridge"/> whose flow table holds the
5293 <code>sample</code> actions and to <ref table="IPFIX"/> record. The
5294 <ref table="Bridge" column="ipfix"/> in the <ref table="Bridge"/>
5295 table is not used for flow-based sampling.
5296 </p>
5297 </li>
5298 </ul>
5299
5300 <column name="targets">
5301 IPFIX target collectors in the form
5302 <code><var>ip</var>:<var>port</var></code>.
5303 </column>
5304
5305 <column name="cache_active_timeout">
5306 The maximum period in seconds for which an IPFIX flow record is
5307 cached and aggregated before being sent. If not specified,
5308 defaults to 0. If 0, caching is disabled.
5309 </column>
5310
5311 <column name="cache_max_flows">
5312 The maximum number of IPFIX flow records that can be cached at a
5313 time. If not specified, defaults to 0. If 0, caching is
5314 disabled.
5315 </column>
5316
5317 <column name="other_config" key="enable-tunnel-sampling"
5318 type='{"type": "boolean"}'>
5319 <p>
5320 Set to <code>true</code> to enable sampling and reporting tunnel
5321 header 7-tuples in IPFIX flow records. Tunnel sampling is enabled
5322 by default.
5323 </p>
5324
5325 <p>
5326 The following enterprise entities report the sampled tunnel info:
5327 </p>
5328
5329 <dl>
5330 <dt>tunnelType:</dt>
5331 <dd>
5332 <p>ID: 891, and enterprise ID 6876 (VMware).</p>
5333 <p>type: unsigned 8-bit integer.</p>
5334 <p>data type semantics: identifier.</p>
5335 <p>description: Identifier of the layer 2 network overlay network
5336 encapsulation type: 0x01 VxLAN, 0x02 GRE, 0x03 LISP, 0x07 GENEVE.</p>
5337 </dd>
5338 <dt>tunnelKey:</dt>
5339 <dd>
5340 <p>ID: 892, and enterprise ID 6876 (VMware).</p>
5341 <p>type: variable-length octetarray.</p>
5342 <p>data type semantics: identifier.</p>
5343 <p>description: Key which is used for identifying an individual
5344 traffic flow within a VxLAN (24-bit VNI), GENEVE (24-bit VNI),
5345 GRE (32-bit key), or LISP (24-bit instance ID) tunnel. The
5346 key is encoded in this octetarray as a 3-, 4-, or 8-byte integer
5347 ID in network byte order.</p>
5348 </dd>
5349 <dt>tunnelSourceIPv4Address:</dt>
5350 <dd>
5351 <p>ID: 893, and enterprise ID 6876 (VMware).</p>
5352 <p>type: unsigned 32-bit integer.</p>
5353 <p>data type semantics: identifier.</p>
5354 <p>description: The IPv4 source address in the tunnel IP packet
5355 header.</p>
5356 </dd>
5357 <dt>tunnelDestinationIPv4Address:</dt>
5358 <dd>
5359 <p>ID: 894, and enterprise ID 6876 (VMware).</p>
5360 <p>type: unsigned 32-bit integer.</p>
5361 <p>data type semantics: identifier.</p>
5362 <p>description: The IPv4 destination address in the tunnel IP
5363 packet header.</p>
5364 </dd>
5365 <dt>tunnelProtocolIdentifier:</dt>
5366 <dd>
5367 <p>ID: 895, and enterprise ID 6876 (VMware).</p>
5368 <p>type: unsigned 8-bit integer.</p>
5369 <p>data type semantics: identifier.</p>
5370 <p>description: The value of the protocol number in the tunnel
5371 IP packet header. The protocol number identifies the tunnel IP
5372 packet payload type.</p>
5373 </dd>
5374 <dt>tunnelSourceTransportPort:</dt>
5375 <dd>
5376 <p>ID: 896, and enterprise ID 6876 (VMware).</p>
5377 <p>type: unsigned 16-bit integer.</p>
5378 <p>data type semantics: identifier.</p>
5379 <p>description: The source port identifier in the tunnel transport
5380 header. For the transport protocols UDP, TCP, and SCTP, this is
5381 the source port number given in the respective header.</p>
5382 </dd>
5383 <dt>tunnelDestinationTransportPort:</dt>
5384 <dd>
5385 <p>ID: 897, and enterprise ID 6876 (VMware).</p>
5386 <p>type: unsigned 16-bit integer.</p>
5387 <p>data type semantics: identifier.</p>
5388 <p>description: The destination port identifier in the tunnel
5389 transport header. For the transport protocols UDP, TCP, and SCTP,
5390 this is the destination port number given in the respective header.
5391 </p>
5392 </dd>
5393 </dl>
5394
5395 <p>
5396 Before Open vSwitch 2.5.90, <ref column="other_config"
5397 key="enable-tunnel-sampling"/> was only supported with per-bridge
5398 sampling, and ignored otherwise. Open vSwitch 2.5.90 and later support
5399 <ref column="other_config" key="enable-tunnel-sampling"/> for
5400 per-bridge and per-flow sampling.
5401 </p>
5402 </column>
5403
5404 <column name="other_config" key="virtual_obs_id"
5405 type='{"type": "string"}'>
5406 <p>
5407 A string that accompanies each IPFIX flow record. Its intended use is
5408 for the ``virtual observation ID,'' an identifier of a virtual
5409 observation point that is locally unique in a virtual network. It
5410 describes a location in the virtual network where IP packets can be
5411 observed. The maximum length is 254 bytes. If not specified, the
5412 field is omitted from the IPFIX flow record.
5413 </p>
5414
5415 <p>
5416 The following enterprise entity reports the specified virtual
5417 observation ID:
5418 </p>
5419
5420 <dl>
5421 <dt>virtualObsID:</dt>
5422 <dd>
5423 <p>ID: 898, and enterprise ID 6876 (VMware).</p>
5424 <p>type: variable-length string.</p>
5425 <p>data type semantics: identifier.</p>
5426 <p>description: A virtual observation domain ID that is locally
5427 unique in a virtual network.
5428 </p>
5429 </dd>
5430 </dl>
5431
5432 <p>
5433 This feature was introduced in Open vSwitch 2.5.90.
5434 </p>
5435 </column>
5436
5437 <group title="Per-Bridge Sampling">
5438 <p>
5439 These values affect only per-bridge sampling. See above for a
5440 description of the differences between per-bridge and flow-based
5441 sampling.
5442 </p>
5443
5444 <column name="sampling">
5445 The rate at which packets should be sampled and sent to each target
5446 collector. If not specified, defaults to 400, which means one out of
5447 400 packets, on average, will be sent to each target collector.
5448 </column>
5449
5450 <column name="obs_domain_id">
5451 The IPFIX Observation Domain ID sent in each IPFIX packet. If not
5452 specified, defaults to 0.
5453 </column>
5454
5455 <column name="obs_point_id">
5456 The IPFIX Observation Point ID sent in each IPFIX flow record. If not
5457 specified, defaults to 0.
5458 </column>
5459
5460 <column name="other_config" key="enable-input-sampling"
5461 type='{"type": "boolean"}'>
5462 By default, Open vSwitch samples and reports flows at bridge port input
5463 in IPFIX flow records. Set this column to <code>false</code> to
5464 disable input sampling.
5465 </column>
5466
5467 <column name="other_config" key="enable-output-sampling"
5468 type='{"type": "boolean"}'>
5469 By default, Open vSwitch samples and reports flows at bridge port
5470 output in IPFIX flow records. Set this column to <code>false</code> to
5471 disable output sampling.
5472 </column>
5473 </group>
5474
5475 <group title="Common Columns">
5476 The overall purpose of these columns is described under <code>Common
5477 Columns</code> at the beginning of this document.
5478
5479 <column name="external_ids"/>
5480 </group>
5481 </table>
5482
5483 <table name="Flow_Sample_Collector_Set">
5484 <p>
5485 A set of IPFIX collectors of packet samples generated by OpenFlow
5486 <code>sample</code> actions. This table is used only for IPFIX
5487 flow-based sampling, not for per-bridge sampling (see the <ref
5488 table="IPFIX"/> table for a description of the two forms).
5489 </p>
5490
5491 <column name="id">
5492 The ID of this collector set, unique among the bridge's
5493 collector sets, to be used as the <code>collector_set_id</code>
5494 in OpenFlow <code>sample</code> actions.
5495 </column>
5496
5497 <column name="bridge">
5498 The bridge into which OpenFlow <code>sample</code> actions can
5499 be added to send packet samples to this set of IPFIX collectors.
5500 </column>
5501
5502 <column name="ipfix">
5503 Configuration of the set of IPFIX collectors to send one flow
5504 record per sampled packet to.
5505 </column>
5506
5507 <group title="Common Columns">
5508 The overall purpose of these columns is described under <code>Common
5509 Columns</code> at the beginning of this document.
5510
5511 <column name="external_ids"/>
5512 </group>
5513 </table>
5514
5515 <table name="AutoAttach">
5516 <p>
5517 Auto Attach configuration within a bridge. The IETF Auto-Attach SPBM
5518 draft standard describes a compact method of using IEEE 802.1AB Link
5519 Layer Discovery Protocol (LLDP) together with a IEEE 802.1aq Shortest
5520 Path Bridging (SPB) network to automatically attach network devices
5521 to individual services in a SPB network. The intent here is to allow
5522 network applications and devices using OVS to be able to easily take
5523 advantage of features offered by industry standard SPB networks.
5524 </p>
5525
5526 <p>
5527 Auto Attach (AA) uses LLDP to communicate between a directly connected
5528 Auto Attach Client (AAC) and Auto Attach Server (AAS). The LLDP protocol
5529 is extended to add two new Type-Length-Value tuples (TLVs). The first
5530 new TLV supports the ongoing discovery of directly connected AA
5531 correspondents. Auto Attach operates by regularly transmitting AA
5532 discovery TLVs between the AA client and AA server. By exchanging these
5533 discovery messages, both the AAC and AAS learn the system name and
5534 system description of their peer. In the OVS context, OVS operates as
5535 the AA client and the AA server resides on a switch at the edge of the
5536 SPB network.
5537 </p>
5538
5539 <p>
5540 Once AA discovery has been completed the AAC then uses the second new TLV
5541 to deliver identifier mappings from the AAC to the AAS. A primary feature
5542 of Auto Attach is to facilitate the mapping of VLANs defined outside the
5543 SPB network onto service ids (ISIDs) defined within the SPM network. By
5544 doing so individual external VLANs can be mapped onto specific SPB
5545 network services. These VLAN id to ISID mappings can be configured and
5546 managed locally using new options added to the ovs-vsctl command.
5547 </p>
5548
5549 <p>
5550 The Auto Attach OVS feature does not provide a full implementation of
5551 the LLDP protocol. Support for the mandatory TLVs as defined by the LLDP
5552 standard and support for the AA TLV extensions is provided. LLDP
5553 protocol support in OVS can be enabled or disabled on a port by port
5554 basis. LLDP support is disabled by default.
5555 </p>
5556
5557 <column name="system_name">
5558 The system_name string is exported in LLDP messages. It should uniquely
5559 identify the bridge in the network.
5560 </column>
5561
5562 <column name="system_description">
5563 The system_description string is exported in LLDP messages. It should
5564 describe the type of software and hardware.
5565 </column>
5566
5567 <column name="mappings">
5568 A mapping from SPB network Individual Service Identifier (ISID) to VLAN
5569 id.
5570 </column>
5571 </table>
5572 </database>