]> git.proxmox.com Git - mirror_qemu.git/blob - xen-hvm.c
xen: drop XenXC and associated interface wrappers
[mirror_qemu.git] / xen-hvm.c
1 /*
2 * Copyright (C) 2010 Citrix Ltd.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 *
7 * Contributions after 2012-01-13 are licensed under the terms of the
8 * GNU GPL, version 2 or (at your option) any later version.
9 */
10
11 #include "qemu/osdep.h"
12 #include <sys/mman.h>
13
14 #include "hw/pci/pci.h"
15 #include "hw/i386/pc.h"
16 #include "hw/i386/apic-msidef.h"
17 #include "hw/xen/xen_common.h"
18 #include "hw/xen/xen_backend.h"
19 #include "qmp-commands.h"
20
21 #include "sysemu/char.h"
22 #include "qemu/error-report.h"
23 #include "qemu/range.h"
24 #include "sysemu/xen-mapcache.h"
25 #include "trace.h"
26 #include "exec/address-spaces.h"
27
28 #include <xen/hvm/ioreq.h>
29 #include <xen/hvm/params.h>
30 #include <xen/hvm/e820.h>
31
32 //#define DEBUG_XEN_HVM
33
34 #ifdef DEBUG_XEN_HVM
35 #define DPRINTF(fmt, ...) \
36 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF(fmt, ...) \
39 do { } while (0)
40 #endif
41
42 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi;
43 static MemoryRegion *framebuffer;
44 static bool xen_in_migration;
45
46 /* Compatibility with older version */
47
48 /* This allows QEMU to build on a system that has Xen 4.5 or earlier
49 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
50 * needs to be included before this block and hw/xen/xen_common.h needs to
51 * be included before xen/hvm/ioreq.h
52 */
53 #ifndef IOREQ_TYPE_VMWARE_PORT
54 #define IOREQ_TYPE_VMWARE_PORT 3
55 struct vmware_regs {
56 uint32_t esi;
57 uint32_t edi;
58 uint32_t ebx;
59 uint32_t ecx;
60 uint32_t edx;
61 };
62 typedef struct vmware_regs vmware_regs_t;
63
64 struct shared_vmport_iopage {
65 struct vmware_regs vcpu_vmport_regs[1];
66 };
67 typedef struct shared_vmport_iopage shared_vmport_iopage_t;
68 #endif
69
70 #if __XEN_LATEST_INTERFACE_VERSION__ < 0x0003020a
71 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
72 {
73 return shared_page->vcpu_iodata[i].vp_eport;
74 }
75 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
76 {
77 return &shared_page->vcpu_iodata[vcpu].vp_ioreq;
78 }
79 # define FMT_ioreq_size PRIx64
80 #else
81 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
82 {
83 return shared_page->vcpu_ioreq[i].vp_eport;
84 }
85 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
86 {
87 return &shared_page->vcpu_ioreq[vcpu];
88 }
89 # define FMT_ioreq_size "u"
90 #endif
91
92 #define BUFFER_IO_MAX_DELAY 100
93
94 typedef struct XenPhysmap {
95 hwaddr start_addr;
96 ram_addr_t size;
97 const char *name;
98 hwaddr phys_offset;
99
100 QLIST_ENTRY(XenPhysmap) list;
101 } XenPhysmap;
102
103 typedef struct XenIOState {
104 ioservid_t ioservid;
105 shared_iopage_t *shared_page;
106 shared_vmport_iopage_t *shared_vmport_page;
107 buffered_iopage_t *buffered_io_page;
108 QEMUTimer *buffered_io_timer;
109 CPUState **cpu_by_vcpu_id;
110 /* the evtchn port for polling the notification, */
111 evtchn_port_t *ioreq_local_port;
112 /* evtchn local port for buffered io */
113 evtchn_port_t bufioreq_local_port;
114 /* the evtchn fd for polling */
115 xenevtchn_handle *xce_handle;
116 /* which vcpu we are serving */
117 int send_vcpu;
118
119 struct xs_handle *xenstore;
120 MemoryListener memory_listener;
121 MemoryListener io_listener;
122 DeviceListener device_listener;
123 QLIST_HEAD(, XenPhysmap) physmap;
124 hwaddr free_phys_offset;
125 const XenPhysmap *log_for_dirtybit;
126
127 Notifier exit;
128 Notifier suspend;
129 Notifier wakeup;
130 } XenIOState;
131
132 /* Xen specific function for piix pci */
133
134 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
135 {
136 return irq_num + ((pci_dev->devfn >> 3) << 2);
137 }
138
139 void xen_piix3_set_irq(void *opaque, int irq_num, int level)
140 {
141 xc_hvm_set_pci_intx_level(xen_xc, xen_domid, 0, 0, irq_num >> 2,
142 irq_num & 3, level);
143 }
144
145 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len)
146 {
147 int i;
148
149 /* Scan for updates to PCI link routes (0x60-0x63). */
150 for (i = 0; i < len; i++) {
151 uint8_t v = (val >> (8 * i)) & 0xff;
152 if (v & 0x80) {
153 v = 0;
154 }
155 v &= 0xf;
156 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) {
157 xc_hvm_set_pci_link_route(xen_xc, xen_domid, address + i - 0x60, v);
158 }
159 }
160 }
161
162 int xen_is_pirq_msi(uint32_t msi_data)
163 {
164 /* If vector is 0, the msi is remapped into a pirq, passed as
165 * dest_id.
166 */
167 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0;
168 }
169
170 void xen_hvm_inject_msi(uint64_t addr, uint32_t data)
171 {
172 xc_hvm_inject_msi(xen_xc, xen_domid, addr, data);
173 }
174
175 static void xen_suspend_notifier(Notifier *notifier, void *data)
176 {
177 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
178 }
179
180 /* Xen Interrupt Controller */
181
182 static void xen_set_irq(void *opaque, int irq, int level)
183 {
184 xc_hvm_set_isa_irq_level(xen_xc, xen_domid, irq, level);
185 }
186
187 qemu_irq *xen_interrupt_controller_init(void)
188 {
189 return qemu_allocate_irqs(xen_set_irq, NULL, 16);
190 }
191
192 /* Memory Ops */
193
194 static void xen_ram_init(PCMachineState *pcms,
195 ram_addr_t ram_size, MemoryRegion **ram_memory_p)
196 {
197 MemoryRegion *sysmem = get_system_memory();
198 ram_addr_t block_len;
199 uint64_t user_lowmem = object_property_get_int(qdev_get_machine(),
200 PC_MACHINE_MAX_RAM_BELOW_4G,
201 &error_abort);
202
203 /* Handle the machine opt max-ram-below-4g. It is basically doing
204 * min(xen limit, user limit).
205 */
206 if (HVM_BELOW_4G_RAM_END <= user_lowmem) {
207 user_lowmem = HVM_BELOW_4G_RAM_END;
208 }
209
210 if (ram_size >= user_lowmem) {
211 pcms->above_4g_mem_size = ram_size - user_lowmem;
212 pcms->below_4g_mem_size = user_lowmem;
213 } else {
214 pcms->above_4g_mem_size = 0;
215 pcms->below_4g_mem_size = ram_size;
216 }
217 if (!pcms->above_4g_mem_size) {
218 block_len = ram_size;
219 } else {
220 /*
221 * Xen does not allocate the memory continuously, it keeps a
222 * hole of the size computed above or passed in.
223 */
224 block_len = (1ULL << 32) + pcms->above_4g_mem_size;
225 }
226 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
227 &error_fatal);
228 *ram_memory_p = &ram_memory;
229 vmstate_register_ram_global(&ram_memory);
230
231 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k",
232 &ram_memory, 0, 0xa0000);
233 memory_region_add_subregion(sysmem, 0, &ram_640k);
234 /* Skip of the VGA IO memory space, it will be registered later by the VGA
235 * emulated device.
236 *
237 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
238 * the Options ROM, so it is registered here as RAM.
239 */
240 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
241 &ram_memory, 0xc0000,
242 pcms->below_4g_mem_size - 0xc0000);
243 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
244 if (pcms->above_4g_mem_size > 0) {
245 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
246 &ram_memory, 0x100000000ULL,
247 pcms->above_4g_mem_size);
248 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
249 }
250 }
251
252 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr,
253 Error **errp)
254 {
255 unsigned long nr_pfn;
256 xen_pfn_t *pfn_list;
257 int i;
258
259 if (runstate_check(RUN_STATE_INMIGRATE)) {
260 /* RAM already populated in Xen */
261 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
262 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
263 __func__, size, ram_addr);
264 return;
265 }
266
267 if (mr == &ram_memory) {
268 return;
269 }
270
271 trace_xen_ram_alloc(ram_addr, size);
272
273 nr_pfn = size >> TARGET_PAGE_BITS;
274 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn);
275
276 for (i = 0; i < nr_pfn; i++) {
277 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
278 }
279
280 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
281 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT,
282 ram_addr);
283 }
284
285 g_free(pfn_list);
286 }
287
288 static XenPhysmap *get_physmapping(XenIOState *state,
289 hwaddr start_addr, ram_addr_t size)
290 {
291 XenPhysmap *physmap = NULL;
292
293 start_addr &= TARGET_PAGE_MASK;
294
295 QLIST_FOREACH(physmap, &state->physmap, list) {
296 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
297 return physmap;
298 }
299 }
300 return NULL;
301 }
302
303 static hwaddr xen_phys_offset_to_gaddr(hwaddr start_addr,
304 ram_addr_t size, void *opaque)
305 {
306 hwaddr addr = start_addr & TARGET_PAGE_MASK;
307 XenIOState *xen_io_state = opaque;
308 XenPhysmap *physmap = NULL;
309
310 QLIST_FOREACH(physmap, &xen_io_state->physmap, list) {
311 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) {
312 return physmap->start_addr;
313 }
314 }
315
316 return start_addr;
317 }
318
319 static int xen_add_to_physmap(XenIOState *state,
320 hwaddr start_addr,
321 ram_addr_t size,
322 MemoryRegion *mr,
323 hwaddr offset_within_region)
324 {
325 unsigned long i = 0;
326 int rc = 0;
327 XenPhysmap *physmap = NULL;
328 hwaddr pfn, start_gpfn;
329 hwaddr phys_offset = memory_region_get_ram_addr(mr);
330 char path[80], value[17];
331 const char *mr_name;
332
333 if (get_physmapping(state, start_addr, size)) {
334 return 0;
335 }
336 if (size <= 0) {
337 return -1;
338 }
339
340 /* Xen can only handle a single dirty log region for now and we want
341 * the linear framebuffer to be that region.
342 * Avoid tracking any regions that is not videoram and avoid tracking
343 * the legacy vga region. */
344 if (mr == framebuffer && start_addr > 0xbffff) {
345 goto go_physmap;
346 }
347 return -1;
348
349 go_physmap:
350 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
351 start_addr, start_addr + size);
352
353 pfn = phys_offset >> TARGET_PAGE_BITS;
354 start_gpfn = start_addr >> TARGET_PAGE_BITS;
355 for (i = 0; i < size >> TARGET_PAGE_BITS; i++) {
356 unsigned long idx = pfn + i;
357 xen_pfn_t gpfn = start_gpfn + i;
358
359 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
360 if (rc) {
361 DPRINTF("add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
362 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno);
363 return -rc;
364 }
365 }
366
367 mr_name = memory_region_name(mr);
368
369 physmap = g_malloc(sizeof (XenPhysmap));
370
371 physmap->start_addr = start_addr;
372 physmap->size = size;
373 physmap->name = mr_name;
374 physmap->phys_offset = phys_offset;
375
376 QLIST_INSERT_HEAD(&state->physmap, physmap, list);
377
378 xc_domain_pin_memory_cacheattr(xen_xc, xen_domid,
379 start_addr >> TARGET_PAGE_BITS,
380 (start_addr + size - 1) >> TARGET_PAGE_BITS,
381 XEN_DOMCTL_MEM_CACHEATTR_WB);
382
383 snprintf(path, sizeof(path),
384 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr",
385 xen_domid, (uint64_t)phys_offset);
386 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)start_addr);
387 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
388 return -1;
389 }
390 snprintf(path, sizeof(path),
391 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size",
392 xen_domid, (uint64_t)phys_offset);
393 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)size);
394 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
395 return -1;
396 }
397 if (mr_name) {
398 snprintf(path, sizeof(path),
399 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name",
400 xen_domid, (uint64_t)phys_offset);
401 if (!xs_write(state->xenstore, 0, path, mr_name, strlen(mr_name))) {
402 return -1;
403 }
404 }
405
406 return 0;
407 }
408
409 static int xen_remove_from_physmap(XenIOState *state,
410 hwaddr start_addr,
411 ram_addr_t size)
412 {
413 unsigned long i = 0;
414 int rc = 0;
415 XenPhysmap *physmap = NULL;
416 hwaddr phys_offset = 0;
417
418 physmap = get_physmapping(state, start_addr, size);
419 if (physmap == NULL) {
420 return -1;
421 }
422
423 phys_offset = physmap->phys_offset;
424 size = physmap->size;
425
426 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
427 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
428
429 size >>= TARGET_PAGE_BITS;
430 start_addr >>= TARGET_PAGE_BITS;
431 phys_offset >>= TARGET_PAGE_BITS;
432 for (i = 0; i < size; i++) {
433 xen_pfn_t idx = start_addr + i;
434 xen_pfn_t gpfn = phys_offset + i;
435
436 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
437 if (rc) {
438 fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
439 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno);
440 return -rc;
441 }
442 }
443
444 QLIST_REMOVE(physmap, list);
445 if (state->log_for_dirtybit == physmap) {
446 state->log_for_dirtybit = NULL;
447 }
448 g_free(physmap);
449
450 return 0;
451 }
452
453 static void xen_set_memory(struct MemoryListener *listener,
454 MemoryRegionSection *section,
455 bool add)
456 {
457 XenIOState *state = container_of(listener, XenIOState, memory_listener);
458 hwaddr start_addr = section->offset_within_address_space;
459 ram_addr_t size = int128_get64(section->size);
460 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA);
461 hvmmem_type_t mem_type;
462
463 if (section->mr == &ram_memory) {
464 return;
465 } else {
466 if (add) {
467 xen_map_memory_section(xen_xc, xen_domid, state->ioservid,
468 section);
469 } else {
470 xen_unmap_memory_section(xen_xc, xen_domid, state->ioservid,
471 section);
472 }
473 }
474
475 if (!memory_region_is_ram(section->mr)) {
476 return;
477 }
478
479 if (log_dirty != add) {
480 return;
481 }
482
483 trace_xen_client_set_memory(start_addr, size, log_dirty);
484
485 start_addr &= TARGET_PAGE_MASK;
486 size = TARGET_PAGE_ALIGN(size);
487
488 if (add) {
489 if (!memory_region_is_rom(section->mr)) {
490 xen_add_to_physmap(state, start_addr, size,
491 section->mr, section->offset_within_region);
492 } else {
493 mem_type = HVMMEM_ram_ro;
494 if (xc_hvm_set_mem_type(xen_xc, xen_domid, mem_type,
495 start_addr >> TARGET_PAGE_BITS,
496 size >> TARGET_PAGE_BITS)) {
497 DPRINTF("xc_hvm_set_mem_type error, addr: "TARGET_FMT_plx"\n",
498 start_addr);
499 }
500 }
501 } else {
502 if (xen_remove_from_physmap(state, start_addr, size) < 0) {
503 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
504 }
505 }
506 }
507
508 static void xen_region_add(MemoryListener *listener,
509 MemoryRegionSection *section)
510 {
511 memory_region_ref(section->mr);
512 xen_set_memory(listener, section, true);
513 }
514
515 static void xen_region_del(MemoryListener *listener,
516 MemoryRegionSection *section)
517 {
518 xen_set_memory(listener, section, false);
519 memory_region_unref(section->mr);
520 }
521
522 static void xen_io_add(MemoryListener *listener,
523 MemoryRegionSection *section)
524 {
525 XenIOState *state = container_of(listener, XenIOState, io_listener);
526
527 memory_region_ref(section->mr);
528
529 xen_map_io_section(xen_xc, xen_domid, state->ioservid, section);
530 }
531
532 static void xen_io_del(MemoryListener *listener,
533 MemoryRegionSection *section)
534 {
535 XenIOState *state = container_of(listener, XenIOState, io_listener);
536
537 xen_unmap_io_section(xen_xc, xen_domid, state->ioservid, section);
538
539 memory_region_unref(section->mr);
540 }
541
542 static void xen_device_realize(DeviceListener *listener,
543 DeviceState *dev)
544 {
545 XenIOState *state = container_of(listener, XenIOState, device_listener);
546
547 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
548 PCIDevice *pci_dev = PCI_DEVICE(dev);
549
550 xen_map_pcidev(xen_xc, xen_domid, state->ioservid, pci_dev);
551 }
552 }
553
554 static void xen_device_unrealize(DeviceListener *listener,
555 DeviceState *dev)
556 {
557 XenIOState *state = container_of(listener, XenIOState, device_listener);
558
559 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
560 PCIDevice *pci_dev = PCI_DEVICE(dev);
561
562 xen_unmap_pcidev(xen_xc, xen_domid, state->ioservid, pci_dev);
563 }
564 }
565
566 static void xen_sync_dirty_bitmap(XenIOState *state,
567 hwaddr start_addr,
568 ram_addr_t size)
569 {
570 hwaddr npages = size >> TARGET_PAGE_BITS;
571 const int width = sizeof(unsigned long) * 8;
572 unsigned long bitmap[(npages + width - 1) / width];
573 int rc, i, j;
574 const XenPhysmap *physmap = NULL;
575
576 physmap = get_physmapping(state, start_addr, size);
577 if (physmap == NULL) {
578 /* not handled */
579 return;
580 }
581
582 if (state->log_for_dirtybit == NULL) {
583 state->log_for_dirtybit = physmap;
584 } else if (state->log_for_dirtybit != physmap) {
585 /* Only one range for dirty bitmap can be tracked. */
586 return;
587 }
588
589 rc = xc_hvm_track_dirty_vram(xen_xc, xen_domid,
590 start_addr >> TARGET_PAGE_BITS, npages,
591 bitmap);
592 if (rc < 0) {
593 #ifndef ENODATA
594 #define ENODATA ENOENT
595 #endif
596 if (errno == ENODATA) {
597 memory_region_set_dirty(framebuffer, 0, size);
598 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
599 ", 0x" TARGET_FMT_plx "): %s\n",
600 start_addr, start_addr + size, strerror(errno));
601 }
602 return;
603 }
604
605 for (i = 0; i < ARRAY_SIZE(bitmap); i++) {
606 unsigned long map = bitmap[i];
607 while (map != 0) {
608 j = ctzl(map);
609 map &= ~(1ul << j);
610 memory_region_set_dirty(framebuffer,
611 (i * width + j) * TARGET_PAGE_SIZE,
612 TARGET_PAGE_SIZE);
613 };
614 }
615 }
616
617 static void xen_log_start(MemoryListener *listener,
618 MemoryRegionSection *section,
619 int old, int new)
620 {
621 XenIOState *state = container_of(listener, XenIOState, memory_listener);
622
623 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) {
624 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
625 int128_get64(section->size));
626 }
627 }
628
629 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section,
630 int old, int new)
631 {
632 XenIOState *state = container_of(listener, XenIOState, memory_listener);
633
634 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) {
635 state->log_for_dirtybit = NULL;
636 /* Disable dirty bit tracking */
637 xc_hvm_track_dirty_vram(xen_xc, xen_domid, 0, 0, NULL);
638 }
639 }
640
641 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section)
642 {
643 XenIOState *state = container_of(listener, XenIOState, memory_listener);
644
645 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
646 int128_get64(section->size));
647 }
648
649 static void xen_log_global_start(MemoryListener *listener)
650 {
651 if (xen_enabled()) {
652 xen_in_migration = true;
653 }
654 }
655
656 static void xen_log_global_stop(MemoryListener *listener)
657 {
658 xen_in_migration = false;
659 }
660
661 static MemoryListener xen_memory_listener = {
662 .region_add = xen_region_add,
663 .region_del = xen_region_del,
664 .log_start = xen_log_start,
665 .log_stop = xen_log_stop,
666 .log_sync = xen_log_sync,
667 .log_global_start = xen_log_global_start,
668 .log_global_stop = xen_log_global_stop,
669 .priority = 10,
670 };
671
672 static MemoryListener xen_io_listener = {
673 .region_add = xen_io_add,
674 .region_del = xen_io_del,
675 .priority = 10,
676 };
677
678 static DeviceListener xen_device_listener = {
679 .realize = xen_device_realize,
680 .unrealize = xen_device_unrealize,
681 };
682
683 /* get the ioreq packets from share mem */
684 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
685 {
686 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
687
688 if (req->state != STATE_IOREQ_READY) {
689 DPRINTF("I/O request not ready: "
690 "%x, ptr: %x, port: %"PRIx64", "
691 "data: %"PRIx64", count: %" FMT_ioreq_size ", size: %" FMT_ioreq_size "\n",
692 req->state, req->data_is_ptr, req->addr,
693 req->data, req->count, req->size);
694 return NULL;
695 }
696
697 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
698
699 req->state = STATE_IOREQ_INPROCESS;
700 return req;
701 }
702
703 /* use poll to get the port notification */
704 /* ioreq_vec--out,the */
705 /* retval--the number of ioreq packet */
706 static ioreq_t *cpu_get_ioreq(XenIOState *state)
707 {
708 int i;
709 evtchn_port_t port;
710
711 port = xenevtchn_pending(state->xce_handle);
712 if (port == state->bufioreq_local_port) {
713 timer_mod(state->buffered_io_timer,
714 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
715 return NULL;
716 }
717
718 if (port != -1) {
719 for (i = 0; i < max_cpus; i++) {
720 if (state->ioreq_local_port[i] == port) {
721 break;
722 }
723 }
724
725 if (i == max_cpus) {
726 hw_error("Fatal error while trying to get io event!\n");
727 }
728
729 /* unmask the wanted port again */
730 xenevtchn_unmask(state->xce_handle, port);
731
732 /* get the io packet from shared memory */
733 state->send_vcpu = i;
734 return cpu_get_ioreq_from_shared_memory(state, i);
735 }
736
737 /* read error or read nothing */
738 return NULL;
739 }
740
741 static uint32_t do_inp(pio_addr_t addr, unsigned long size)
742 {
743 switch (size) {
744 case 1:
745 return cpu_inb(addr);
746 case 2:
747 return cpu_inw(addr);
748 case 4:
749 return cpu_inl(addr);
750 default:
751 hw_error("inp: bad size: %04"FMT_pioaddr" %lx", addr, size);
752 }
753 }
754
755 static void do_outp(pio_addr_t addr,
756 unsigned long size, uint32_t val)
757 {
758 switch (size) {
759 case 1:
760 return cpu_outb(addr, val);
761 case 2:
762 return cpu_outw(addr, val);
763 case 4:
764 return cpu_outl(addr, val);
765 default:
766 hw_error("outp: bad size: %04"FMT_pioaddr" %lx", addr, size);
767 }
768 }
769
770 /*
771 * Helper functions which read/write an object from/to physical guest
772 * memory, as part of the implementation of an ioreq.
773 *
774 * Equivalent to
775 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
776 * val, req->size, 0/1)
777 * except without the integer overflow problems.
778 */
779 static void rw_phys_req_item(hwaddr addr,
780 ioreq_t *req, uint32_t i, void *val, int rw)
781 {
782 /* Do everything unsigned so overflow just results in a truncated result
783 * and accesses to undesired parts of guest memory, which is up
784 * to the guest */
785 hwaddr offset = (hwaddr)req->size * i;
786 if (req->df) {
787 addr -= offset;
788 } else {
789 addr += offset;
790 }
791 cpu_physical_memory_rw(addr, val, req->size, rw);
792 }
793
794 static inline void read_phys_req_item(hwaddr addr,
795 ioreq_t *req, uint32_t i, void *val)
796 {
797 rw_phys_req_item(addr, req, i, val, 0);
798 }
799 static inline void write_phys_req_item(hwaddr addr,
800 ioreq_t *req, uint32_t i, void *val)
801 {
802 rw_phys_req_item(addr, req, i, val, 1);
803 }
804
805
806 static void cpu_ioreq_pio(ioreq_t *req)
807 {
808 uint32_t i;
809
810 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr,
811 req->data, req->count, req->size);
812
813 if (req->dir == IOREQ_READ) {
814 if (!req->data_is_ptr) {
815 req->data = do_inp(req->addr, req->size);
816 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr,
817 req->size);
818 } else {
819 uint32_t tmp;
820
821 for (i = 0; i < req->count; i++) {
822 tmp = do_inp(req->addr, req->size);
823 write_phys_req_item(req->data, req, i, &tmp);
824 }
825 }
826 } else if (req->dir == IOREQ_WRITE) {
827 if (!req->data_is_ptr) {
828 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr,
829 req->size);
830 do_outp(req->addr, req->size, req->data);
831 } else {
832 for (i = 0; i < req->count; i++) {
833 uint32_t tmp = 0;
834
835 read_phys_req_item(req->data, req, i, &tmp);
836 do_outp(req->addr, req->size, tmp);
837 }
838 }
839 }
840 }
841
842 static void cpu_ioreq_move(ioreq_t *req)
843 {
844 uint32_t i;
845
846 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr,
847 req->data, req->count, req->size);
848
849 if (!req->data_is_ptr) {
850 if (req->dir == IOREQ_READ) {
851 for (i = 0; i < req->count; i++) {
852 read_phys_req_item(req->addr, req, i, &req->data);
853 }
854 } else if (req->dir == IOREQ_WRITE) {
855 for (i = 0; i < req->count; i++) {
856 write_phys_req_item(req->addr, req, i, &req->data);
857 }
858 }
859 } else {
860 uint64_t tmp;
861
862 if (req->dir == IOREQ_READ) {
863 for (i = 0; i < req->count; i++) {
864 read_phys_req_item(req->addr, req, i, &tmp);
865 write_phys_req_item(req->data, req, i, &tmp);
866 }
867 } else if (req->dir == IOREQ_WRITE) {
868 for (i = 0; i < req->count; i++) {
869 read_phys_req_item(req->data, req, i, &tmp);
870 write_phys_req_item(req->addr, req, i, &tmp);
871 }
872 }
873 }
874 }
875
876 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)
877 {
878 X86CPU *cpu;
879 CPUX86State *env;
880
881 cpu = X86_CPU(current_cpu);
882 env = &cpu->env;
883 env->regs[R_EAX] = req->data;
884 env->regs[R_EBX] = vmport_regs->ebx;
885 env->regs[R_ECX] = vmport_regs->ecx;
886 env->regs[R_EDX] = vmport_regs->edx;
887 env->regs[R_ESI] = vmport_regs->esi;
888 env->regs[R_EDI] = vmport_regs->edi;
889 }
890
891 static void regs_from_cpu(vmware_regs_t *vmport_regs)
892 {
893 X86CPU *cpu = X86_CPU(current_cpu);
894 CPUX86State *env = &cpu->env;
895
896 vmport_regs->ebx = env->regs[R_EBX];
897 vmport_regs->ecx = env->regs[R_ECX];
898 vmport_regs->edx = env->regs[R_EDX];
899 vmport_regs->esi = env->regs[R_ESI];
900 vmport_regs->edi = env->regs[R_EDI];
901 }
902
903 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req)
904 {
905 vmware_regs_t *vmport_regs;
906
907 assert(state->shared_vmport_page);
908 vmport_regs =
909 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu];
910 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs));
911
912 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu];
913 regs_to_cpu(vmport_regs, req);
914 cpu_ioreq_pio(req);
915 regs_from_cpu(vmport_regs);
916 current_cpu = NULL;
917 }
918
919 static void handle_ioreq(XenIOState *state, ioreq_t *req)
920 {
921 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr,
922 req->addr, req->data, req->count, req->size);
923
924 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
925 (req->size < sizeof (target_ulong))) {
926 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
927 }
928
929 if (req->dir == IOREQ_WRITE)
930 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr,
931 req->addr, req->data, req->count, req->size);
932
933 switch (req->type) {
934 case IOREQ_TYPE_PIO:
935 cpu_ioreq_pio(req);
936 break;
937 case IOREQ_TYPE_COPY:
938 cpu_ioreq_move(req);
939 break;
940 case IOREQ_TYPE_VMWARE_PORT:
941 handle_vmport_ioreq(state, req);
942 break;
943 case IOREQ_TYPE_TIMEOFFSET:
944 break;
945 case IOREQ_TYPE_INVALIDATE:
946 xen_invalidate_map_cache();
947 break;
948 case IOREQ_TYPE_PCI_CONFIG: {
949 uint32_t sbdf = req->addr >> 32;
950 uint32_t val;
951
952 /* Fake a write to port 0xCF8 so that
953 * the config space access will target the
954 * correct device model.
955 */
956 val = (1u << 31) |
957 ((req->addr & 0x0f00) << 16) |
958 ((sbdf & 0xffff) << 8) |
959 (req->addr & 0xfc);
960 do_outp(0xcf8, 4, val);
961
962 /* Now issue the config space access via
963 * port 0xCFC
964 */
965 req->addr = 0xcfc | (req->addr & 0x03);
966 cpu_ioreq_pio(req);
967 break;
968 }
969 default:
970 hw_error("Invalid ioreq type 0x%x\n", req->type);
971 }
972 if (req->dir == IOREQ_READ) {
973 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr,
974 req->addr, req->data, req->count, req->size);
975 }
976 }
977
978 static int handle_buffered_iopage(XenIOState *state)
979 {
980 buffered_iopage_t *buf_page = state->buffered_io_page;
981 buf_ioreq_t *buf_req = NULL;
982 ioreq_t req;
983 int qw;
984
985 if (!buf_page) {
986 return 0;
987 }
988
989 memset(&req, 0x00, sizeof(req));
990
991 for (;;) {
992 uint32_t rdptr = buf_page->read_pointer, wrptr;
993
994 xen_rmb();
995 wrptr = buf_page->write_pointer;
996 xen_rmb();
997 if (rdptr != buf_page->read_pointer) {
998 continue;
999 }
1000 if (rdptr == wrptr) {
1001 break;
1002 }
1003 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM];
1004 req.size = 1UL << buf_req->size;
1005 req.count = 1;
1006 req.addr = buf_req->addr;
1007 req.data = buf_req->data;
1008 req.state = STATE_IOREQ_READY;
1009 req.dir = buf_req->dir;
1010 req.df = 1;
1011 req.type = buf_req->type;
1012 req.data_is_ptr = 0;
1013 qw = (req.size == 8);
1014 if (qw) {
1015 buf_req = &buf_page->buf_ioreq[(rdptr + 1) %
1016 IOREQ_BUFFER_SLOT_NUM];
1017 req.data |= ((uint64_t)buf_req->data) << 32;
1018 }
1019
1020 handle_ioreq(state, &req);
1021
1022 atomic_add(&buf_page->read_pointer, qw + 1);
1023 }
1024
1025 return req.count;
1026 }
1027
1028 static void handle_buffered_io(void *opaque)
1029 {
1030 XenIOState *state = opaque;
1031
1032 if (handle_buffered_iopage(state)) {
1033 timer_mod(state->buffered_io_timer,
1034 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
1035 } else {
1036 timer_del(state->buffered_io_timer);
1037 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port);
1038 }
1039 }
1040
1041 static void cpu_handle_ioreq(void *opaque)
1042 {
1043 XenIOState *state = opaque;
1044 ioreq_t *req = cpu_get_ioreq(state);
1045
1046 handle_buffered_iopage(state);
1047 if (req) {
1048 handle_ioreq(state, req);
1049
1050 if (req->state != STATE_IOREQ_INPROCESS) {
1051 fprintf(stderr, "Badness in I/O request ... not in service?!: "
1052 "%x, ptr: %x, port: %"PRIx64", "
1053 "data: %"PRIx64", count: %" FMT_ioreq_size
1054 ", size: %" FMT_ioreq_size
1055 ", type: %"FMT_ioreq_size"\n",
1056 req->state, req->data_is_ptr, req->addr,
1057 req->data, req->count, req->size, req->type);
1058 destroy_hvm_domain(false);
1059 return;
1060 }
1061
1062 xen_wmb(); /* Update ioreq contents /then/ update state. */
1063
1064 /*
1065 * We do this before we send the response so that the tools
1066 * have the opportunity to pick up on the reset before the
1067 * guest resumes and does a hlt with interrupts disabled which
1068 * causes Xen to powerdown the domain.
1069 */
1070 if (runstate_is_running()) {
1071 if (qemu_shutdown_requested_get()) {
1072 destroy_hvm_domain(false);
1073 }
1074 if (qemu_reset_requested_get()) {
1075 qemu_system_reset(VMRESET_REPORT);
1076 destroy_hvm_domain(true);
1077 }
1078 }
1079
1080 req->state = STATE_IORESP_READY;
1081 xenevtchn_notify(state->xce_handle,
1082 state->ioreq_local_port[state->send_vcpu]);
1083 }
1084 }
1085
1086 static void xen_main_loop_prepare(XenIOState *state)
1087 {
1088 int evtchn_fd = -1;
1089
1090 if (state->xce_handle != NULL) {
1091 evtchn_fd = xenevtchn_fd(state->xce_handle);
1092 }
1093
1094 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
1095 state);
1096
1097 if (evtchn_fd != -1) {
1098 CPUState *cpu_state;
1099
1100 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
1101 CPU_FOREACH(cpu_state) {
1102 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
1103 __func__, cpu_state->cpu_index, cpu_state);
1104 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
1105 }
1106 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
1107 }
1108 }
1109
1110
1111 static void xen_hvm_change_state_handler(void *opaque, int running,
1112 RunState rstate)
1113 {
1114 XenIOState *state = opaque;
1115
1116 if (running) {
1117 xen_main_loop_prepare(state);
1118 }
1119
1120 xen_set_ioreq_server_state(xen_xc, xen_domid,
1121 state->ioservid,
1122 (rstate == RUN_STATE_RUNNING));
1123 }
1124
1125 static void xen_exit_notifier(Notifier *n, void *data)
1126 {
1127 XenIOState *state = container_of(n, XenIOState, exit);
1128
1129 xenevtchn_close(state->xce_handle);
1130 xs_daemon_close(state->xenstore);
1131 }
1132
1133 static void xen_read_physmap(XenIOState *state)
1134 {
1135 XenPhysmap *physmap = NULL;
1136 unsigned int len, num, i;
1137 char path[80], *value = NULL;
1138 char **entries = NULL;
1139
1140 snprintf(path, sizeof(path),
1141 "/local/domain/0/device-model/%d/physmap", xen_domid);
1142 entries = xs_directory(state->xenstore, 0, path, &num);
1143 if (entries == NULL)
1144 return;
1145
1146 for (i = 0; i < num; i++) {
1147 physmap = g_malloc(sizeof (XenPhysmap));
1148 physmap->phys_offset = strtoull(entries[i], NULL, 16);
1149 snprintf(path, sizeof(path),
1150 "/local/domain/0/device-model/%d/physmap/%s/start_addr",
1151 xen_domid, entries[i]);
1152 value = xs_read(state->xenstore, 0, path, &len);
1153 if (value == NULL) {
1154 g_free(physmap);
1155 continue;
1156 }
1157 physmap->start_addr = strtoull(value, NULL, 16);
1158 free(value);
1159
1160 snprintf(path, sizeof(path),
1161 "/local/domain/0/device-model/%d/physmap/%s/size",
1162 xen_domid, entries[i]);
1163 value = xs_read(state->xenstore, 0, path, &len);
1164 if (value == NULL) {
1165 g_free(physmap);
1166 continue;
1167 }
1168 physmap->size = strtoull(value, NULL, 16);
1169 free(value);
1170
1171 snprintf(path, sizeof(path),
1172 "/local/domain/0/device-model/%d/physmap/%s/name",
1173 xen_domid, entries[i]);
1174 physmap->name = xs_read(state->xenstore, 0, path, &len);
1175
1176 QLIST_INSERT_HEAD(&state->physmap, physmap, list);
1177 }
1178 free(entries);
1179 }
1180
1181 static void xen_wakeup_notifier(Notifier *notifier, void *data)
1182 {
1183 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0);
1184 }
1185
1186 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory)
1187 {
1188 int i, rc;
1189 xen_pfn_t ioreq_pfn;
1190 xen_pfn_t bufioreq_pfn;
1191 evtchn_port_t bufioreq_evtchn;
1192 XenIOState *state;
1193
1194 state = g_malloc0(sizeof (XenIOState));
1195
1196 state->xce_handle = xenevtchn_open(NULL, 0);
1197 if (state->xce_handle == NULL) {
1198 perror("xen: event channel open");
1199 goto err;
1200 }
1201
1202 state->xenstore = xs_daemon_open();
1203 if (state->xenstore == NULL) {
1204 perror("xen: xenstore open");
1205 goto err;
1206 }
1207
1208 rc = xen_create_ioreq_server(xen_xc, xen_domid, &state->ioservid);
1209 if (rc < 0) {
1210 perror("xen: ioreq server create");
1211 goto err;
1212 }
1213
1214 state->exit.notify = xen_exit_notifier;
1215 qemu_add_exit_notifier(&state->exit);
1216
1217 state->suspend.notify = xen_suspend_notifier;
1218 qemu_register_suspend_notifier(&state->suspend);
1219
1220 state->wakeup.notify = xen_wakeup_notifier;
1221 qemu_register_wakeup_notifier(&state->wakeup);
1222
1223 rc = xen_get_ioreq_server_info(xen_xc, xen_domid, state->ioservid,
1224 &ioreq_pfn, &bufioreq_pfn,
1225 &bufioreq_evtchn);
1226 if (rc < 0) {
1227 error_report("failed to get ioreq server info: error %d handle=%p",
1228 errno, xen_xc);
1229 goto err;
1230 }
1231
1232 DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
1233 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
1234 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
1235
1236 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid,
1237 PROT_READ|PROT_WRITE,
1238 1, &ioreq_pfn, NULL);
1239 if (state->shared_page == NULL) {
1240 error_report("map shared IO page returned error %d handle=%p",
1241 errno, xen_xc);
1242 goto err;
1243 }
1244
1245 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn);
1246 if (!rc) {
1247 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn);
1248 state->shared_vmport_page =
1249 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE,
1250 1, &ioreq_pfn, NULL);
1251 if (state->shared_vmport_page == NULL) {
1252 error_report("map shared vmport IO page returned error %d handle=%p",
1253 errno, xen_xc);
1254 goto err;
1255 }
1256 } else if (rc != -ENOSYS) {
1257 error_report("get vmport regs pfn returned error %d, rc=%d",
1258 errno, rc);
1259 goto err;
1260 }
1261
1262 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid,
1263 PROT_READ|PROT_WRITE,
1264 1, &bufioreq_pfn, NULL);
1265 if (state->buffered_io_page == NULL) {
1266 error_report("map buffered IO page returned error %d", errno);
1267 goto err;
1268 }
1269
1270 /* Note: cpus is empty at this point in init */
1271 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *));
1272
1273 rc = xen_set_ioreq_server_state(xen_xc, xen_domid, state->ioservid, true);
1274 if (rc < 0) {
1275 error_report("failed to enable ioreq server info: error %d handle=%p",
1276 errno, xen_xc);
1277 goto err;
1278 }
1279
1280 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t));
1281
1282 /* FIXME: how about if we overflow the page here? */
1283 for (i = 0; i < max_cpus; i++) {
1284 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1285 xen_vcpu_eport(state->shared_page, i));
1286 if (rc == -1) {
1287 error_report("shared evtchn %d bind error %d", i, errno);
1288 goto err;
1289 }
1290 state->ioreq_local_port[i] = rc;
1291 }
1292
1293 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1294 bufioreq_evtchn);
1295 if (rc == -1) {
1296 error_report("buffered evtchn bind error %d", errno);
1297 goto err;
1298 }
1299 state->bufioreq_local_port = rc;
1300
1301 /* Init RAM management */
1302 xen_map_cache_init(xen_phys_offset_to_gaddr, state);
1303 xen_ram_init(pcms, ram_size, ram_memory);
1304
1305 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
1306
1307 state->memory_listener = xen_memory_listener;
1308 QLIST_INIT(&state->physmap);
1309 memory_listener_register(&state->memory_listener, &address_space_memory);
1310 state->log_for_dirtybit = NULL;
1311
1312 state->io_listener = xen_io_listener;
1313 memory_listener_register(&state->io_listener, &address_space_io);
1314
1315 state->device_listener = xen_device_listener;
1316 device_listener_register(&state->device_listener);
1317
1318 /* Initialize backend core & drivers */
1319 if (xen_be_init() != 0) {
1320 error_report("xen backend core setup failed");
1321 goto err;
1322 }
1323 xen_be_register("console", &xen_console_ops);
1324 xen_be_register("vkbd", &xen_kbdmouse_ops);
1325 xen_be_register("qdisk", &xen_blkdev_ops);
1326 xen_read_physmap(state);
1327 return;
1328
1329 err:
1330 error_report("xen hardware virtual machine initialisation failed");
1331 exit(1);
1332 }
1333
1334 void destroy_hvm_domain(bool reboot)
1335 {
1336 xc_interface *xc_handle;
1337 int sts;
1338
1339 xc_handle = xc_interface_open(0, 0, 0);
1340 if (xc_handle == NULL) {
1341 fprintf(stderr, "Cannot acquire xenctrl handle\n");
1342 } else {
1343 sts = xc_domain_shutdown(xc_handle, xen_domid,
1344 reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff);
1345 if (sts != 0) {
1346 fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
1347 "sts %d, %s\n", reboot ? "reboot" : "poweroff",
1348 sts, strerror(errno));
1349 } else {
1350 fprintf(stderr, "Issued domain %d %s\n", xen_domid,
1351 reboot ? "reboot" : "poweroff");
1352 }
1353 xc_interface_close(xc_handle);
1354 }
1355 }
1356
1357 void xen_register_framebuffer(MemoryRegion *mr)
1358 {
1359 framebuffer = mr;
1360 }
1361
1362 void xen_shutdown_fatal_error(const char *fmt, ...)
1363 {
1364 va_list ap;
1365
1366 va_start(ap, fmt);
1367 vfprintf(stderr, fmt, ap);
1368 va_end(ap);
1369 fprintf(stderr, "Will destroy the domain.\n");
1370 /* destroy the domain */
1371 qemu_system_shutdown_request();
1372 }
1373
1374 void xen_modified_memory(ram_addr_t start, ram_addr_t length)
1375 {
1376 if (unlikely(xen_in_migration)) {
1377 int rc;
1378 ram_addr_t start_pfn, nb_pages;
1379
1380 if (length == 0) {
1381 length = TARGET_PAGE_SIZE;
1382 }
1383 start_pfn = start >> TARGET_PAGE_BITS;
1384 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS)
1385 - start_pfn;
1386 rc = xc_hvm_modified_memory(xen_xc, xen_domid, start_pfn, nb_pages);
1387 if (rc) {
1388 fprintf(stderr,
1389 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n",
1390 __func__, start, nb_pages, rc, strerror(-rc));
1391 }
1392 }
1393 }
1394
1395 void qmp_xen_set_global_dirty_log(bool enable, Error **errp)
1396 {
1397 if (enable) {
1398 memory_global_dirty_log_start();
1399 } else {
1400 memory_global_dirty_log_stop();
1401 }
1402 }