]> git.proxmox.com Git - mirror_qemu.git/blob - xen-hvm.c
xen-hvm: Add trace to ioreq
[mirror_qemu.git] / xen-hvm.c
1 /*
2 * Copyright (C) 2010 Citrix Ltd.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 *
7 * Contributions after 2012-01-13 are licensed under the terms of the
8 * GNU GPL, version 2 or (at your option) any later version.
9 */
10
11 #include <sys/mman.h>
12
13 #include "hw/pci/pci.h"
14 #include "hw/i386/pc.h"
15 #include "hw/xen/xen_common.h"
16 #include "hw/xen/xen_backend.h"
17 #include "qmp-commands.h"
18
19 #include "sysemu/char.h"
20 #include "qemu/range.h"
21 #include "sysemu/xen-mapcache.h"
22 #include "trace.h"
23 #include "exec/address-spaces.h"
24
25 #include <xen/hvm/ioreq.h>
26 #include <xen/hvm/params.h>
27 #include <xen/hvm/e820.h>
28
29 //#define DEBUG_XEN_HVM
30
31 #ifdef DEBUG_XEN_HVM
32 #define DPRINTF(fmt, ...) \
33 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
34 #else
35 #define DPRINTF(fmt, ...) \
36 do { } while (0)
37 #endif
38
39 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi;
40 static MemoryRegion *framebuffer;
41 static bool xen_in_migration;
42
43 /* Compatibility with older version */
44
45 /* This allows QEMU to build on a system that has Xen 4.5 or earlier
46 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
47 * needs to be included before this block and hw/xen/xen_common.h needs to
48 * be included before xen/hvm/ioreq.h
49 */
50 #ifndef IOREQ_TYPE_VMWARE_PORT
51 #define IOREQ_TYPE_VMWARE_PORT 3
52 struct vmware_regs {
53 uint32_t esi;
54 uint32_t edi;
55 uint32_t ebx;
56 uint32_t ecx;
57 uint32_t edx;
58 };
59 typedef struct vmware_regs vmware_regs_t;
60
61 struct shared_vmport_iopage {
62 struct vmware_regs vcpu_vmport_regs[1];
63 };
64 typedef struct shared_vmport_iopage shared_vmport_iopage_t;
65 #endif
66
67 #if __XEN_LATEST_INTERFACE_VERSION__ < 0x0003020a
68 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
69 {
70 return shared_page->vcpu_iodata[i].vp_eport;
71 }
72 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
73 {
74 return &shared_page->vcpu_iodata[vcpu].vp_ioreq;
75 }
76 # define FMT_ioreq_size PRIx64
77 #else
78 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
79 {
80 return shared_page->vcpu_ioreq[i].vp_eport;
81 }
82 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
83 {
84 return &shared_page->vcpu_ioreq[vcpu];
85 }
86 # define FMT_ioreq_size "u"
87 #endif
88
89 #define BUFFER_IO_MAX_DELAY 100
90
91 typedef struct XenPhysmap {
92 hwaddr start_addr;
93 ram_addr_t size;
94 const char *name;
95 hwaddr phys_offset;
96
97 QLIST_ENTRY(XenPhysmap) list;
98 } XenPhysmap;
99
100 typedef struct XenIOState {
101 ioservid_t ioservid;
102 shared_iopage_t *shared_page;
103 shared_vmport_iopage_t *shared_vmport_page;
104 buffered_iopage_t *buffered_io_page;
105 QEMUTimer *buffered_io_timer;
106 CPUState **cpu_by_vcpu_id;
107 /* the evtchn port for polling the notification, */
108 evtchn_port_t *ioreq_local_port;
109 /* evtchn local port for buffered io */
110 evtchn_port_t bufioreq_local_port;
111 /* the evtchn fd for polling */
112 XenEvtchn xce_handle;
113 /* which vcpu we are serving */
114 int send_vcpu;
115
116 struct xs_handle *xenstore;
117 MemoryListener memory_listener;
118 MemoryListener io_listener;
119 DeviceListener device_listener;
120 QLIST_HEAD(, XenPhysmap) physmap;
121 hwaddr free_phys_offset;
122 const XenPhysmap *log_for_dirtybit;
123
124 Notifier exit;
125 Notifier suspend;
126 Notifier wakeup;
127 } XenIOState;
128
129 /* Xen specific function for piix pci */
130
131 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
132 {
133 return irq_num + ((pci_dev->devfn >> 3) << 2);
134 }
135
136 void xen_piix3_set_irq(void *opaque, int irq_num, int level)
137 {
138 xc_hvm_set_pci_intx_level(xen_xc, xen_domid, 0, 0, irq_num >> 2,
139 irq_num & 3, level);
140 }
141
142 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len)
143 {
144 int i;
145
146 /* Scan for updates to PCI link routes (0x60-0x63). */
147 for (i = 0; i < len; i++) {
148 uint8_t v = (val >> (8 * i)) & 0xff;
149 if (v & 0x80) {
150 v = 0;
151 }
152 v &= 0xf;
153 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) {
154 xc_hvm_set_pci_link_route(xen_xc, xen_domid, address + i - 0x60, v);
155 }
156 }
157 }
158
159 void xen_hvm_inject_msi(uint64_t addr, uint32_t data)
160 {
161 xen_xc_hvm_inject_msi(xen_xc, xen_domid, addr, data);
162 }
163
164 static void xen_suspend_notifier(Notifier *notifier, void *data)
165 {
166 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
167 }
168
169 /* Xen Interrupt Controller */
170
171 static void xen_set_irq(void *opaque, int irq, int level)
172 {
173 xc_hvm_set_isa_irq_level(xen_xc, xen_domid, irq, level);
174 }
175
176 qemu_irq *xen_interrupt_controller_init(void)
177 {
178 return qemu_allocate_irqs(xen_set_irq, NULL, 16);
179 }
180
181 /* Memory Ops */
182
183 static void xen_ram_init(ram_addr_t *below_4g_mem_size,
184 ram_addr_t *above_4g_mem_size,
185 ram_addr_t ram_size, MemoryRegion **ram_memory_p)
186 {
187 MemoryRegion *sysmem = get_system_memory();
188 ram_addr_t block_len;
189 uint64_t user_lowmem = object_property_get_int(qdev_get_machine(),
190 PC_MACHINE_MAX_RAM_BELOW_4G,
191 &error_abort);
192
193 /* Handle the machine opt max-ram-below-4g. It is basically doing
194 * min(xen limit, user limit).
195 */
196 if (HVM_BELOW_4G_RAM_END <= user_lowmem) {
197 user_lowmem = HVM_BELOW_4G_RAM_END;
198 }
199
200 if (ram_size >= user_lowmem) {
201 *above_4g_mem_size = ram_size - user_lowmem;
202 *below_4g_mem_size = user_lowmem;
203 } else {
204 *above_4g_mem_size = 0;
205 *below_4g_mem_size = ram_size;
206 }
207 if (!*above_4g_mem_size) {
208 block_len = ram_size;
209 } else {
210 /*
211 * Xen does not allocate the memory continuously, it keeps a
212 * hole of the size computed above or passed in.
213 */
214 block_len = (1ULL << 32) + *above_4g_mem_size;
215 }
216 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
217 &error_abort);
218 *ram_memory_p = &ram_memory;
219 vmstate_register_ram_global(&ram_memory);
220
221 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k",
222 &ram_memory, 0, 0xa0000);
223 memory_region_add_subregion(sysmem, 0, &ram_640k);
224 /* Skip of the VGA IO memory space, it will be registered later by the VGA
225 * emulated device.
226 *
227 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
228 * the Options ROM, so it is registered here as RAM.
229 */
230 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
231 &ram_memory, 0xc0000,
232 *below_4g_mem_size - 0xc0000);
233 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
234 if (*above_4g_mem_size > 0) {
235 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
236 &ram_memory, 0x100000000ULL,
237 *above_4g_mem_size);
238 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
239 }
240 }
241
242 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr)
243 {
244 unsigned long nr_pfn;
245 xen_pfn_t *pfn_list;
246 int i;
247
248 if (runstate_check(RUN_STATE_INMIGRATE)) {
249 /* RAM already populated in Xen */
250 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
251 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
252 __func__, size, ram_addr);
253 return;
254 }
255
256 if (mr == &ram_memory) {
257 return;
258 }
259
260 trace_xen_ram_alloc(ram_addr, size);
261
262 nr_pfn = size >> TARGET_PAGE_BITS;
263 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn);
264
265 for (i = 0; i < nr_pfn; i++) {
266 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
267 }
268
269 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
270 hw_error("xen: failed to populate ram at " RAM_ADDR_FMT, ram_addr);
271 }
272
273 g_free(pfn_list);
274 }
275
276 static XenPhysmap *get_physmapping(XenIOState *state,
277 hwaddr start_addr, ram_addr_t size)
278 {
279 XenPhysmap *physmap = NULL;
280
281 start_addr &= TARGET_PAGE_MASK;
282
283 QLIST_FOREACH(physmap, &state->physmap, list) {
284 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
285 return physmap;
286 }
287 }
288 return NULL;
289 }
290
291 static hwaddr xen_phys_offset_to_gaddr(hwaddr start_addr,
292 ram_addr_t size, void *opaque)
293 {
294 hwaddr addr = start_addr & TARGET_PAGE_MASK;
295 XenIOState *xen_io_state = opaque;
296 XenPhysmap *physmap = NULL;
297
298 QLIST_FOREACH(physmap, &xen_io_state->physmap, list) {
299 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) {
300 return physmap->start_addr;
301 }
302 }
303
304 return start_addr;
305 }
306
307 #if CONFIG_XEN_CTRL_INTERFACE_VERSION >= 340
308 static int xen_add_to_physmap(XenIOState *state,
309 hwaddr start_addr,
310 ram_addr_t size,
311 MemoryRegion *mr,
312 hwaddr offset_within_region)
313 {
314 unsigned long i = 0;
315 int rc = 0;
316 XenPhysmap *physmap = NULL;
317 hwaddr pfn, start_gpfn;
318 hwaddr phys_offset = memory_region_get_ram_addr(mr);
319 char path[80], value[17];
320 const char *mr_name;
321
322 if (get_physmapping(state, start_addr, size)) {
323 return 0;
324 }
325 if (size <= 0) {
326 return -1;
327 }
328
329 /* Xen can only handle a single dirty log region for now and we want
330 * the linear framebuffer to be that region.
331 * Avoid tracking any regions that is not videoram and avoid tracking
332 * the legacy vga region. */
333 if (mr == framebuffer && start_addr > 0xbffff) {
334 goto go_physmap;
335 }
336 return -1;
337
338 go_physmap:
339 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
340 start_addr, start_addr + size);
341
342 pfn = phys_offset >> TARGET_PAGE_BITS;
343 start_gpfn = start_addr >> TARGET_PAGE_BITS;
344 for (i = 0; i < size >> TARGET_PAGE_BITS; i++) {
345 unsigned long idx = pfn + i;
346 xen_pfn_t gpfn = start_gpfn + i;
347
348 rc = xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
349 if (rc) {
350 DPRINTF("add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
351 PRI_xen_pfn" failed: %d\n", idx, gpfn, rc);
352 return -rc;
353 }
354 }
355
356 mr_name = memory_region_name(mr);
357
358 physmap = g_malloc(sizeof (XenPhysmap));
359
360 physmap->start_addr = start_addr;
361 physmap->size = size;
362 physmap->name = mr_name;
363 physmap->phys_offset = phys_offset;
364
365 QLIST_INSERT_HEAD(&state->physmap, physmap, list);
366
367 xc_domain_pin_memory_cacheattr(xen_xc, xen_domid,
368 start_addr >> TARGET_PAGE_BITS,
369 (start_addr + size - 1) >> TARGET_PAGE_BITS,
370 XEN_DOMCTL_MEM_CACHEATTR_WB);
371
372 snprintf(path, sizeof(path),
373 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr",
374 xen_domid, (uint64_t)phys_offset);
375 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)start_addr);
376 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
377 return -1;
378 }
379 snprintf(path, sizeof(path),
380 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size",
381 xen_domid, (uint64_t)phys_offset);
382 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)size);
383 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
384 return -1;
385 }
386 if (mr_name) {
387 snprintf(path, sizeof(path),
388 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name",
389 xen_domid, (uint64_t)phys_offset);
390 if (!xs_write(state->xenstore, 0, path, mr_name, strlen(mr_name))) {
391 return -1;
392 }
393 }
394
395 return 0;
396 }
397
398 static int xen_remove_from_physmap(XenIOState *state,
399 hwaddr start_addr,
400 ram_addr_t size)
401 {
402 unsigned long i = 0;
403 int rc = 0;
404 XenPhysmap *physmap = NULL;
405 hwaddr phys_offset = 0;
406
407 physmap = get_physmapping(state, start_addr, size);
408 if (physmap == NULL) {
409 return -1;
410 }
411
412 phys_offset = physmap->phys_offset;
413 size = physmap->size;
414
415 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
416 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
417
418 size >>= TARGET_PAGE_BITS;
419 start_addr >>= TARGET_PAGE_BITS;
420 phys_offset >>= TARGET_PAGE_BITS;
421 for (i = 0; i < size; i++) {
422 xen_pfn_t idx = start_addr + i;
423 xen_pfn_t gpfn = phys_offset + i;
424
425 rc = xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
426 if (rc) {
427 fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
428 PRI_xen_pfn" failed: %d\n", idx, gpfn, rc);
429 return -rc;
430 }
431 }
432
433 QLIST_REMOVE(physmap, list);
434 if (state->log_for_dirtybit == physmap) {
435 state->log_for_dirtybit = NULL;
436 }
437 g_free(physmap);
438
439 return 0;
440 }
441
442 #else
443 static int xen_add_to_physmap(XenIOState *state,
444 hwaddr start_addr,
445 ram_addr_t size,
446 MemoryRegion *mr,
447 hwaddr offset_within_region)
448 {
449 return -ENOSYS;
450 }
451
452 static int xen_remove_from_physmap(XenIOState *state,
453 hwaddr start_addr,
454 ram_addr_t size)
455 {
456 return -ENOSYS;
457 }
458 #endif
459
460 static void xen_set_memory(struct MemoryListener *listener,
461 MemoryRegionSection *section,
462 bool add)
463 {
464 XenIOState *state = container_of(listener, XenIOState, memory_listener);
465 hwaddr start_addr = section->offset_within_address_space;
466 ram_addr_t size = int128_get64(section->size);
467 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA);
468 hvmmem_type_t mem_type;
469
470 if (section->mr == &ram_memory) {
471 return;
472 } else {
473 if (add) {
474 xen_map_memory_section(xen_xc, xen_domid, state->ioservid,
475 section);
476 } else {
477 xen_unmap_memory_section(xen_xc, xen_domid, state->ioservid,
478 section);
479 }
480 }
481
482 if (!memory_region_is_ram(section->mr)) {
483 return;
484 }
485
486 if (log_dirty != add) {
487 return;
488 }
489
490 trace_xen_client_set_memory(start_addr, size, log_dirty);
491
492 start_addr &= TARGET_PAGE_MASK;
493 size = TARGET_PAGE_ALIGN(size);
494
495 if (add) {
496 if (!memory_region_is_rom(section->mr)) {
497 xen_add_to_physmap(state, start_addr, size,
498 section->mr, section->offset_within_region);
499 } else {
500 mem_type = HVMMEM_ram_ro;
501 if (xc_hvm_set_mem_type(xen_xc, xen_domid, mem_type,
502 start_addr >> TARGET_PAGE_BITS,
503 size >> TARGET_PAGE_BITS)) {
504 DPRINTF("xc_hvm_set_mem_type error, addr: "TARGET_FMT_plx"\n",
505 start_addr);
506 }
507 }
508 } else {
509 if (xen_remove_from_physmap(state, start_addr, size) < 0) {
510 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
511 }
512 }
513 }
514
515 static void xen_region_add(MemoryListener *listener,
516 MemoryRegionSection *section)
517 {
518 memory_region_ref(section->mr);
519 xen_set_memory(listener, section, true);
520 }
521
522 static void xen_region_del(MemoryListener *listener,
523 MemoryRegionSection *section)
524 {
525 xen_set_memory(listener, section, false);
526 memory_region_unref(section->mr);
527 }
528
529 static void xen_io_add(MemoryListener *listener,
530 MemoryRegionSection *section)
531 {
532 XenIOState *state = container_of(listener, XenIOState, io_listener);
533
534 memory_region_ref(section->mr);
535
536 xen_map_io_section(xen_xc, xen_domid, state->ioservid, section);
537 }
538
539 static void xen_io_del(MemoryListener *listener,
540 MemoryRegionSection *section)
541 {
542 XenIOState *state = container_of(listener, XenIOState, io_listener);
543
544 xen_unmap_io_section(xen_xc, xen_domid, state->ioservid, section);
545
546 memory_region_unref(section->mr);
547 }
548
549 static void xen_device_realize(DeviceListener *listener,
550 DeviceState *dev)
551 {
552 XenIOState *state = container_of(listener, XenIOState, device_listener);
553
554 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
555 PCIDevice *pci_dev = PCI_DEVICE(dev);
556
557 xen_map_pcidev(xen_xc, xen_domid, state->ioservid, pci_dev);
558 }
559 }
560
561 static void xen_device_unrealize(DeviceListener *listener,
562 DeviceState *dev)
563 {
564 XenIOState *state = container_of(listener, XenIOState, device_listener);
565
566 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
567 PCIDevice *pci_dev = PCI_DEVICE(dev);
568
569 xen_unmap_pcidev(xen_xc, xen_domid, state->ioservid, pci_dev);
570 }
571 }
572
573 static void xen_sync_dirty_bitmap(XenIOState *state,
574 hwaddr start_addr,
575 ram_addr_t size)
576 {
577 hwaddr npages = size >> TARGET_PAGE_BITS;
578 const int width = sizeof(unsigned long) * 8;
579 unsigned long bitmap[(npages + width - 1) / width];
580 int rc, i, j;
581 const XenPhysmap *physmap = NULL;
582
583 physmap = get_physmapping(state, start_addr, size);
584 if (physmap == NULL) {
585 /* not handled */
586 return;
587 }
588
589 if (state->log_for_dirtybit == NULL) {
590 state->log_for_dirtybit = physmap;
591 } else if (state->log_for_dirtybit != physmap) {
592 /* Only one range for dirty bitmap can be tracked. */
593 return;
594 }
595
596 rc = xc_hvm_track_dirty_vram(xen_xc, xen_domid,
597 start_addr >> TARGET_PAGE_BITS, npages,
598 bitmap);
599 if (rc < 0) {
600 #ifndef ENODATA
601 #define ENODATA ENOENT
602 #endif
603 if (errno == ENODATA) {
604 memory_region_set_dirty(framebuffer, 0, size);
605 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
606 ", 0x" TARGET_FMT_plx "): %s\n",
607 start_addr, start_addr + size, strerror(errno));
608 }
609 return;
610 }
611
612 for (i = 0; i < ARRAY_SIZE(bitmap); i++) {
613 unsigned long map = bitmap[i];
614 while (map != 0) {
615 j = ctzl(map);
616 map &= ~(1ul << j);
617 memory_region_set_dirty(framebuffer,
618 (i * width + j) * TARGET_PAGE_SIZE,
619 TARGET_PAGE_SIZE);
620 };
621 }
622 }
623
624 static void xen_log_start(MemoryListener *listener,
625 MemoryRegionSection *section,
626 int old, int new)
627 {
628 XenIOState *state = container_of(listener, XenIOState, memory_listener);
629
630 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) {
631 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
632 int128_get64(section->size));
633 }
634 }
635
636 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section,
637 int old, int new)
638 {
639 XenIOState *state = container_of(listener, XenIOState, memory_listener);
640
641 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) {
642 state->log_for_dirtybit = NULL;
643 /* Disable dirty bit tracking */
644 xc_hvm_track_dirty_vram(xen_xc, xen_domid, 0, 0, NULL);
645 }
646 }
647
648 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section)
649 {
650 XenIOState *state = container_of(listener, XenIOState, memory_listener);
651
652 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
653 int128_get64(section->size));
654 }
655
656 static void xen_log_global_start(MemoryListener *listener)
657 {
658 if (xen_enabled()) {
659 xen_in_migration = true;
660 }
661 }
662
663 static void xen_log_global_stop(MemoryListener *listener)
664 {
665 xen_in_migration = false;
666 }
667
668 static MemoryListener xen_memory_listener = {
669 .region_add = xen_region_add,
670 .region_del = xen_region_del,
671 .log_start = xen_log_start,
672 .log_stop = xen_log_stop,
673 .log_sync = xen_log_sync,
674 .log_global_start = xen_log_global_start,
675 .log_global_stop = xen_log_global_stop,
676 .priority = 10,
677 };
678
679 static MemoryListener xen_io_listener = {
680 .region_add = xen_io_add,
681 .region_del = xen_io_del,
682 .priority = 10,
683 };
684
685 static DeviceListener xen_device_listener = {
686 .realize = xen_device_realize,
687 .unrealize = xen_device_unrealize,
688 };
689
690 /* get the ioreq packets from share mem */
691 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
692 {
693 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
694
695 if (req->state != STATE_IOREQ_READY) {
696 DPRINTF("I/O request not ready: "
697 "%x, ptr: %x, port: %"PRIx64", "
698 "data: %"PRIx64", count: %" FMT_ioreq_size ", size: %" FMT_ioreq_size "\n",
699 req->state, req->data_is_ptr, req->addr,
700 req->data, req->count, req->size);
701 return NULL;
702 }
703
704 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
705
706 req->state = STATE_IOREQ_INPROCESS;
707 return req;
708 }
709
710 /* use poll to get the port notification */
711 /* ioreq_vec--out,the */
712 /* retval--the number of ioreq packet */
713 static ioreq_t *cpu_get_ioreq(XenIOState *state)
714 {
715 int i;
716 evtchn_port_t port;
717
718 port = xc_evtchn_pending(state->xce_handle);
719 if (port == state->bufioreq_local_port) {
720 timer_mod(state->buffered_io_timer,
721 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
722 return NULL;
723 }
724
725 if (port != -1) {
726 for (i = 0; i < max_cpus; i++) {
727 if (state->ioreq_local_port[i] == port) {
728 break;
729 }
730 }
731
732 if (i == max_cpus) {
733 hw_error("Fatal error while trying to get io event!\n");
734 }
735
736 /* unmask the wanted port again */
737 xc_evtchn_unmask(state->xce_handle, port);
738
739 /* get the io packet from shared memory */
740 state->send_vcpu = i;
741 return cpu_get_ioreq_from_shared_memory(state, i);
742 }
743
744 /* read error or read nothing */
745 return NULL;
746 }
747
748 static uint32_t do_inp(pio_addr_t addr, unsigned long size)
749 {
750 switch (size) {
751 case 1:
752 return cpu_inb(addr);
753 case 2:
754 return cpu_inw(addr);
755 case 4:
756 return cpu_inl(addr);
757 default:
758 hw_error("inp: bad size: %04"FMT_pioaddr" %lx", addr, size);
759 }
760 }
761
762 static void do_outp(pio_addr_t addr,
763 unsigned long size, uint32_t val)
764 {
765 switch (size) {
766 case 1:
767 return cpu_outb(addr, val);
768 case 2:
769 return cpu_outw(addr, val);
770 case 4:
771 return cpu_outl(addr, val);
772 default:
773 hw_error("outp: bad size: %04"FMT_pioaddr" %lx", addr, size);
774 }
775 }
776
777 /*
778 * Helper functions which read/write an object from/to physical guest
779 * memory, as part of the implementation of an ioreq.
780 *
781 * Equivalent to
782 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
783 * val, req->size, 0/1)
784 * except without the integer overflow problems.
785 */
786 static void rw_phys_req_item(hwaddr addr,
787 ioreq_t *req, uint32_t i, void *val, int rw)
788 {
789 /* Do everything unsigned so overflow just results in a truncated result
790 * and accesses to undesired parts of guest memory, which is up
791 * to the guest */
792 hwaddr offset = (hwaddr)req->size * i;
793 if (req->df) {
794 addr -= offset;
795 } else {
796 addr += offset;
797 }
798 cpu_physical_memory_rw(addr, val, req->size, rw);
799 }
800
801 static inline void read_phys_req_item(hwaddr addr,
802 ioreq_t *req, uint32_t i, void *val)
803 {
804 rw_phys_req_item(addr, req, i, val, 0);
805 }
806 static inline void write_phys_req_item(hwaddr addr,
807 ioreq_t *req, uint32_t i, void *val)
808 {
809 rw_phys_req_item(addr, req, i, val, 1);
810 }
811
812
813 static void cpu_ioreq_pio(ioreq_t *req)
814 {
815 uint32_t i;
816
817 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr,
818 req->data, req->count, req->size);
819
820 if (req->dir == IOREQ_READ) {
821 if (!req->data_is_ptr) {
822 req->data = do_inp(req->addr, req->size);
823 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr,
824 req->size);
825 } else {
826 uint32_t tmp;
827
828 for (i = 0; i < req->count; i++) {
829 tmp = do_inp(req->addr, req->size);
830 write_phys_req_item(req->data, req, i, &tmp);
831 }
832 }
833 } else if (req->dir == IOREQ_WRITE) {
834 if (!req->data_is_ptr) {
835 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr,
836 req->size);
837 do_outp(req->addr, req->size, req->data);
838 } else {
839 for (i = 0; i < req->count; i++) {
840 uint32_t tmp = 0;
841
842 read_phys_req_item(req->data, req, i, &tmp);
843 do_outp(req->addr, req->size, tmp);
844 }
845 }
846 }
847 }
848
849 static void cpu_ioreq_move(ioreq_t *req)
850 {
851 uint32_t i;
852
853 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr,
854 req->data, req->count, req->size);
855
856 if (!req->data_is_ptr) {
857 if (req->dir == IOREQ_READ) {
858 for (i = 0; i < req->count; i++) {
859 read_phys_req_item(req->addr, req, i, &req->data);
860 }
861 } else if (req->dir == IOREQ_WRITE) {
862 for (i = 0; i < req->count; i++) {
863 write_phys_req_item(req->addr, req, i, &req->data);
864 }
865 }
866 } else {
867 uint64_t tmp;
868
869 if (req->dir == IOREQ_READ) {
870 for (i = 0; i < req->count; i++) {
871 read_phys_req_item(req->addr, req, i, &tmp);
872 write_phys_req_item(req->data, req, i, &tmp);
873 }
874 } else if (req->dir == IOREQ_WRITE) {
875 for (i = 0; i < req->count; i++) {
876 read_phys_req_item(req->data, req, i, &tmp);
877 write_phys_req_item(req->addr, req, i, &tmp);
878 }
879 }
880 }
881 }
882
883 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)
884 {
885 X86CPU *cpu;
886 CPUX86State *env;
887
888 cpu = X86_CPU(current_cpu);
889 env = &cpu->env;
890 env->regs[R_EAX] = req->data;
891 env->regs[R_EBX] = vmport_regs->ebx;
892 env->regs[R_ECX] = vmport_regs->ecx;
893 env->regs[R_EDX] = vmport_regs->edx;
894 env->regs[R_ESI] = vmport_regs->esi;
895 env->regs[R_EDI] = vmport_regs->edi;
896 }
897
898 static void regs_from_cpu(vmware_regs_t *vmport_regs)
899 {
900 X86CPU *cpu = X86_CPU(current_cpu);
901 CPUX86State *env = &cpu->env;
902
903 vmport_regs->ebx = env->regs[R_EBX];
904 vmport_regs->ecx = env->regs[R_ECX];
905 vmport_regs->edx = env->regs[R_EDX];
906 vmport_regs->esi = env->regs[R_ESI];
907 vmport_regs->edi = env->regs[R_EDI];
908 }
909
910 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req)
911 {
912 vmware_regs_t *vmport_regs;
913
914 assert(state->shared_vmport_page);
915 vmport_regs =
916 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu];
917 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs));
918
919 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu];
920 regs_to_cpu(vmport_regs, req);
921 cpu_ioreq_pio(req);
922 regs_from_cpu(vmport_regs);
923 current_cpu = NULL;
924 }
925
926 static void handle_ioreq(XenIOState *state, ioreq_t *req)
927 {
928 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr,
929 req->addr, req->data, req->count, req->size);
930
931 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
932 (req->size < sizeof (target_ulong))) {
933 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
934 }
935
936 if (req->dir == IOREQ_WRITE)
937 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr,
938 req->addr, req->data, req->count, req->size);
939
940 switch (req->type) {
941 case IOREQ_TYPE_PIO:
942 cpu_ioreq_pio(req);
943 break;
944 case IOREQ_TYPE_COPY:
945 cpu_ioreq_move(req);
946 break;
947 case IOREQ_TYPE_VMWARE_PORT:
948 handle_vmport_ioreq(state, req);
949 break;
950 case IOREQ_TYPE_TIMEOFFSET:
951 break;
952 case IOREQ_TYPE_INVALIDATE:
953 xen_invalidate_map_cache();
954 break;
955 case IOREQ_TYPE_PCI_CONFIG: {
956 uint32_t sbdf = req->addr >> 32;
957 uint32_t val;
958
959 /* Fake a write to port 0xCF8 so that
960 * the config space access will target the
961 * correct device model.
962 */
963 val = (1u << 31) |
964 ((req->addr & 0x0f00) << 16) |
965 ((sbdf & 0xffff) << 8) |
966 (req->addr & 0xfc);
967 do_outp(0xcf8, 4, val);
968
969 /* Now issue the config space access via
970 * port 0xCFC
971 */
972 req->addr = 0xcfc | (req->addr & 0x03);
973 cpu_ioreq_pio(req);
974 break;
975 }
976 default:
977 hw_error("Invalid ioreq type 0x%x\n", req->type);
978 }
979 if (req->dir == IOREQ_READ) {
980 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr,
981 req->addr, req->data, req->count, req->size);
982 }
983 }
984
985 static int handle_buffered_iopage(XenIOState *state)
986 {
987 buf_ioreq_t *buf_req = NULL;
988 ioreq_t req;
989 int qw;
990
991 if (!state->buffered_io_page) {
992 return 0;
993 }
994
995 memset(&req, 0x00, sizeof(req));
996
997 while (state->buffered_io_page->read_pointer != state->buffered_io_page->write_pointer) {
998 buf_req = &state->buffered_io_page->buf_ioreq[
999 state->buffered_io_page->read_pointer % IOREQ_BUFFER_SLOT_NUM];
1000 req.size = 1UL << buf_req->size;
1001 req.count = 1;
1002 req.addr = buf_req->addr;
1003 req.data = buf_req->data;
1004 req.state = STATE_IOREQ_READY;
1005 req.dir = buf_req->dir;
1006 req.df = 1;
1007 req.type = buf_req->type;
1008 req.data_is_ptr = 0;
1009 qw = (req.size == 8);
1010 if (qw) {
1011 buf_req = &state->buffered_io_page->buf_ioreq[
1012 (state->buffered_io_page->read_pointer + 1) % IOREQ_BUFFER_SLOT_NUM];
1013 req.data |= ((uint64_t)buf_req->data) << 32;
1014 }
1015
1016 handle_ioreq(state, &req);
1017
1018 xen_mb();
1019 state->buffered_io_page->read_pointer += qw ? 2 : 1;
1020 }
1021
1022 return req.count;
1023 }
1024
1025 static void handle_buffered_io(void *opaque)
1026 {
1027 XenIOState *state = opaque;
1028
1029 if (handle_buffered_iopage(state)) {
1030 timer_mod(state->buffered_io_timer,
1031 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
1032 } else {
1033 timer_del(state->buffered_io_timer);
1034 xc_evtchn_unmask(state->xce_handle, state->bufioreq_local_port);
1035 }
1036 }
1037
1038 static void cpu_handle_ioreq(void *opaque)
1039 {
1040 XenIOState *state = opaque;
1041 ioreq_t *req = cpu_get_ioreq(state);
1042
1043 handle_buffered_iopage(state);
1044 if (req) {
1045 handle_ioreq(state, req);
1046
1047 if (req->state != STATE_IOREQ_INPROCESS) {
1048 fprintf(stderr, "Badness in I/O request ... not in service?!: "
1049 "%x, ptr: %x, port: %"PRIx64", "
1050 "data: %"PRIx64", count: %" FMT_ioreq_size
1051 ", size: %" FMT_ioreq_size
1052 ", type: %"FMT_ioreq_size"\n",
1053 req->state, req->data_is_ptr, req->addr,
1054 req->data, req->count, req->size, req->type);
1055 destroy_hvm_domain(false);
1056 return;
1057 }
1058
1059 xen_wmb(); /* Update ioreq contents /then/ update state. */
1060
1061 /*
1062 * We do this before we send the response so that the tools
1063 * have the opportunity to pick up on the reset before the
1064 * guest resumes and does a hlt with interrupts disabled which
1065 * causes Xen to powerdown the domain.
1066 */
1067 if (runstate_is_running()) {
1068 if (qemu_shutdown_requested_get()) {
1069 destroy_hvm_domain(false);
1070 }
1071 if (qemu_reset_requested_get()) {
1072 qemu_system_reset(VMRESET_REPORT);
1073 destroy_hvm_domain(true);
1074 }
1075 }
1076
1077 req->state = STATE_IORESP_READY;
1078 xc_evtchn_notify(state->xce_handle, state->ioreq_local_port[state->send_vcpu]);
1079 }
1080 }
1081
1082 static void xen_main_loop_prepare(XenIOState *state)
1083 {
1084 int evtchn_fd = -1;
1085
1086 if (state->xce_handle != XC_HANDLER_INITIAL_VALUE) {
1087 evtchn_fd = xc_evtchn_fd(state->xce_handle);
1088 }
1089
1090 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
1091 state);
1092
1093 if (evtchn_fd != -1) {
1094 CPUState *cpu_state;
1095
1096 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
1097 CPU_FOREACH(cpu_state) {
1098 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
1099 __func__, cpu_state->cpu_index, cpu_state);
1100 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
1101 }
1102 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
1103 }
1104 }
1105
1106
1107 static void xen_hvm_change_state_handler(void *opaque, int running,
1108 RunState rstate)
1109 {
1110 XenIOState *state = opaque;
1111
1112 if (running) {
1113 xen_main_loop_prepare(state);
1114 }
1115
1116 xen_set_ioreq_server_state(xen_xc, xen_domid,
1117 state->ioservid,
1118 (rstate == RUN_STATE_RUNNING));
1119 }
1120
1121 static void xen_exit_notifier(Notifier *n, void *data)
1122 {
1123 XenIOState *state = container_of(n, XenIOState, exit);
1124
1125 xc_evtchn_close(state->xce_handle);
1126 xs_daemon_close(state->xenstore);
1127 }
1128
1129 static void xen_read_physmap(XenIOState *state)
1130 {
1131 XenPhysmap *physmap = NULL;
1132 unsigned int len, num, i;
1133 char path[80], *value = NULL;
1134 char **entries = NULL;
1135
1136 snprintf(path, sizeof(path),
1137 "/local/domain/0/device-model/%d/physmap", xen_domid);
1138 entries = xs_directory(state->xenstore, 0, path, &num);
1139 if (entries == NULL)
1140 return;
1141
1142 for (i = 0; i < num; i++) {
1143 physmap = g_malloc(sizeof (XenPhysmap));
1144 physmap->phys_offset = strtoull(entries[i], NULL, 16);
1145 snprintf(path, sizeof(path),
1146 "/local/domain/0/device-model/%d/physmap/%s/start_addr",
1147 xen_domid, entries[i]);
1148 value = xs_read(state->xenstore, 0, path, &len);
1149 if (value == NULL) {
1150 g_free(physmap);
1151 continue;
1152 }
1153 physmap->start_addr = strtoull(value, NULL, 16);
1154 free(value);
1155
1156 snprintf(path, sizeof(path),
1157 "/local/domain/0/device-model/%d/physmap/%s/size",
1158 xen_domid, entries[i]);
1159 value = xs_read(state->xenstore, 0, path, &len);
1160 if (value == NULL) {
1161 g_free(physmap);
1162 continue;
1163 }
1164 physmap->size = strtoull(value, NULL, 16);
1165 free(value);
1166
1167 snprintf(path, sizeof(path),
1168 "/local/domain/0/device-model/%d/physmap/%s/name",
1169 xen_domid, entries[i]);
1170 physmap->name = xs_read(state->xenstore, 0, path, &len);
1171
1172 QLIST_INSERT_HEAD(&state->physmap, physmap, list);
1173 }
1174 free(entries);
1175 }
1176
1177 static void xen_wakeup_notifier(Notifier *notifier, void *data)
1178 {
1179 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0);
1180 }
1181
1182 /* return 0 means OK, or -1 means critical issue -- will exit(1) */
1183 int xen_hvm_init(ram_addr_t *below_4g_mem_size, ram_addr_t *above_4g_mem_size,
1184 MemoryRegion **ram_memory)
1185 {
1186 int i, rc;
1187 xen_pfn_t ioreq_pfn;
1188 xen_pfn_t bufioreq_pfn;
1189 evtchn_port_t bufioreq_evtchn;
1190 XenIOState *state;
1191
1192 state = g_malloc0(sizeof (XenIOState));
1193
1194 state->xce_handle = xen_xc_evtchn_open(NULL, 0);
1195 if (state->xce_handle == XC_HANDLER_INITIAL_VALUE) {
1196 perror("xen: event channel open");
1197 return -1;
1198 }
1199
1200 state->xenstore = xs_daemon_open();
1201 if (state->xenstore == NULL) {
1202 perror("xen: xenstore open");
1203 return -1;
1204 }
1205
1206 rc = xen_create_ioreq_server(xen_xc, xen_domid, &state->ioservid);
1207 if (rc < 0) {
1208 perror("xen: ioreq server create");
1209 return -1;
1210 }
1211
1212 state->exit.notify = xen_exit_notifier;
1213 qemu_add_exit_notifier(&state->exit);
1214
1215 state->suspend.notify = xen_suspend_notifier;
1216 qemu_register_suspend_notifier(&state->suspend);
1217
1218 state->wakeup.notify = xen_wakeup_notifier;
1219 qemu_register_wakeup_notifier(&state->wakeup);
1220
1221 rc = xen_get_ioreq_server_info(xen_xc, xen_domid, state->ioservid,
1222 &ioreq_pfn, &bufioreq_pfn,
1223 &bufioreq_evtchn);
1224 if (rc < 0) {
1225 hw_error("failed to get ioreq server info: error %d handle=" XC_INTERFACE_FMT,
1226 errno, xen_xc);
1227 }
1228
1229 DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
1230 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
1231 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
1232
1233 state->shared_page = xc_map_foreign_range(xen_xc, xen_domid, XC_PAGE_SIZE,
1234 PROT_READ|PROT_WRITE, ioreq_pfn);
1235 if (state->shared_page == NULL) {
1236 hw_error("map shared IO page returned error %d handle=" XC_INTERFACE_FMT,
1237 errno, xen_xc);
1238 }
1239
1240 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn);
1241 if (!rc) {
1242 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn);
1243 state->shared_vmport_page =
1244 xc_map_foreign_range(xen_xc, xen_domid, XC_PAGE_SIZE,
1245 PROT_READ|PROT_WRITE, ioreq_pfn);
1246 if (state->shared_vmport_page == NULL) {
1247 hw_error("map shared vmport IO page returned error %d handle="
1248 XC_INTERFACE_FMT, errno, xen_xc);
1249 }
1250 } else if (rc != -ENOSYS) {
1251 hw_error("get vmport regs pfn returned error %d, rc=%d", errno, rc);
1252 }
1253
1254 state->buffered_io_page = xc_map_foreign_range(xen_xc, xen_domid,
1255 XC_PAGE_SIZE,
1256 PROT_READ|PROT_WRITE,
1257 bufioreq_pfn);
1258 if (state->buffered_io_page == NULL) {
1259 hw_error("map buffered IO page returned error %d", errno);
1260 }
1261
1262 /* Note: cpus is empty at this point in init */
1263 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *));
1264
1265 rc = xen_set_ioreq_server_state(xen_xc, xen_domid, state->ioservid, true);
1266 if (rc < 0) {
1267 hw_error("failed to enable ioreq server info: error %d handle=" XC_INTERFACE_FMT,
1268 errno, xen_xc);
1269 }
1270
1271 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t));
1272
1273 /* FIXME: how about if we overflow the page here? */
1274 for (i = 0; i < max_cpus; i++) {
1275 rc = xc_evtchn_bind_interdomain(state->xce_handle, xen_domid,
1276 xen_vcpu_eport(state->shared_page, i));
1277 if (rc == -1) {
1278 fprintf(stderr, "shared evtchn %d bind error %d\n", i, errno);
1279 return -1;
1280 }
1281 state->ioreq_local_port[i] = rc;
1282 }
1283
1284 rc = xc_evtchn_bind_interdomain(state->xce_handle, xen_domid,
1285 bufioreq_evtchn);
1286 if (rc == -1) {
1287 fprintf(stderr, "buffered evtchn bind error %d\n", errno);
1288 return -1;
1289 }
1290 state->bufioreq_local_port = rc;
1291
1292 /* Init RAM management */
1293 xen_map_cache_init(xen_phys_offset_to_gaddr, state);
1294 xen_ram_init(below_4g_mem_size, above_4g_mem_size, ram_size, ram_memory);
1295
1296 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
1297
1298 state->memory_listener = xen_memory_listener;
1299 QLIST_INIT(&state->physmap);
1300 memory_listener_register(&state->memory_listener, &address_space_memory);
1301 state->log_for_dirtybit = NULL;
1302
1303 state->io_listener = xen_io_listener;
1304 memory_listener_register(&state->io_listener, &address_space_io);
1305
1306 state->device_listener = xen_device_listener;
1307 device_listener_register(&state->device_listener);
1308
1309 /* Initialize backend core & drivers */
1310 if (xen_be_init() != 0) {
1311 fprintf(stderr, "%s: xen backend core setup failed\n", __FUNCTION__);
1312 return -1;
1313 }
1314 xen_be_register("console", &xen_console_ops);
1315 xen_be_register("vkbd", &xen_kbdmouse_ops);
1316 xen_be_register("qdisk", &xen_blkdev_ops);
1317 xen_read_physmap(state);
1318
1319 return 0;
1320 }
1321
1322 void destroy_hvm_domain(bool reboot)
1323 {
1324 XenXC xc_handle;
1325 int sts;
1326
1327 xc_handle = xen_xc_interface_open(0, 0, 0);
1328 if (xc_handle == XC_HANDLER_INITIAL_VALUE) {
1329 fprintf(stderr, "Cannot acquire xenctrl handle\n");
1330 } else {
1331 sts = xc_domain_shutdown(xc_handle, xen_domid,
1332 reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff);
1333 if (sts != 0) {
1334 fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
1335 "sts %d, %s\n", reboot ? "reboot" : "poweroff",
1336 sts, strerror(errno));
1337 } else {
1338 fprintf(stderr, "Issued domain %d %s\n", xen_domid,
1339 reboot ? "reboot" : "poweroff");
1340 }
1341 xc_interface_close(xc_handle);
1342 }
1343 }
1344
1345 void xen_register_framebuffer(MemoryRegion *mr)
1346 {
1347 framebuffer = mr;
1348 }
1349
1350 void xen_shutdown_fatal_error(const char *fmt, ...)
1351 {
1352 va_list ap;
1353
1354 va_start(ap, fmt);
1355 vfprintf(stderr, fmt, ap);
1356 va_end(ap);
1357 fprintf(stderr, "Will destroy the domain.\n");
1358 /* destroy the domain */
1359 qemu_system_shutdown_request();
1360 }
1361
1362 void xen_modified_memory(ram_addr_t start, ram_addr_t length)
1363 {
1364 if (unlikely(xen_in_migration)) {
1365 int rc;
1366 ram_addr_t start_pfn, nb_pages;
1367
1368 if (length == 0) {
1369 length = TARGET_PAGE_SIZE;
1370 }
1371 start_pfn = start >> TARGET_PAGE_BITS;
1372 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS)
1373 - start_pfn;
1374 rc = xc_hvm_modified_memory(xen_xc, xen_domid, start_pfn, nb_pages);
1375 if (rc) {
1376 fprintf(stderr,
1377 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n",
1378 __func__, start, nb_pages, rc, strerror(-rc));
1379 }
1380 }
1381 }
1382
1383 void qmp_xen_set_global_dirty_log(bool enable, Error **errp)
1384 {
1385 if (enable) {
1386 memory_global_dirty_log_start();
1387 } else {
1388 memory_global_dirty_log_stop();
1389 }
1390 }