]> git.proxmox.com Git - mirror_qemu.git/blob - xen-hvm.c
Merge remote-tracking branch 'remotes/armbru/tags/pull-error-2015-09-10' into staging
[mirror_qemu.git] / xen-hvm.c
1 /*
2 * Copyright (C) 2010 Citrix Ltd.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 *
7 * Contributions after 2012-01-13 are licensed under the terms of the
8 * GNU GPL, version 2 or (at your option) any later version.
9 */
10
11 #include <sys/mman.h>
12
13 #include "hw/pci/pci.h"
14 #include "hw/i386/pc.h"
15 #include "hw/xen/xen_common.h"
16 #include "hw/xen/xen_backend.h"
17 #include "qmp-commands.h"
18
19 #include "sysemu/char.h"
20 #include "qemu/range.h"
21 #include "sysemu/xen-mapcache.h"
22 #include "trace.h"
23 #include "exec/address-spaces.h"
24
25 #include <xen/hvm/ioreq.h>
26 #include <xen/hvm/params.h>
27 #include <xen/hvm/e820.h>
28
29 //#define DEBUG_XEN_HVM
30
31 #ifdef DEBUG_XEN_HVM
32 #define DPRINTF(fmt, ...) \
33 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
34 #else
35 #define DPRINTF(fmt, ...) \
36 do { } while (0)
37 #endif
38
39 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi;
40 static MemoryRegion *framebuffer;
41 static bool xen_in_migration;
42
43 /* Compatibility with older version */
44
45 /* This allows QEMU to build on a system that has Xen 4.5 or earlier
46 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
47 * needs to be included before this block and hw/xen/xen_common.h needs to
48 * be included before xen/hvm/ioreq.h
49 */
50 #ifndef IOREQ_TYPE_VMWARE_PORT
51 #define IOREQ_TYPE_VMWARE_PORT 3
52 struct vmware_regs {
53 uint32_t esi;
54 uint32_t edi;
55 uint32_t ebx;
56 uint32_t ecx;
57 uint32_t edx;
58 };
59 typedef struct vmware_regs vmware_regs_t;
60
61 struct shared_vmport_iopage {
62 struct vmware_regs vcpu_vmport_regs[1];
63 };
64 typedef struct shared_vmport_iopage shared_vmport_iopage_t;
65 #endif
66
67 #if __XEN_LATEST_INTERFACE_VERSION__ < 0x0003020a
68 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
69 {
70 return shared_page->vcpu_iodata[i].vp_eport;
71 }
72 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
73 {
74 return &shared_page->vcpu_iodata[vcpu].vp_ioreq;
75 }
76 # define FMT_ioreq_size PRIx64
77 #else
78 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
79 {
80 return shared_page->vcpu_ioreq[i].vp_eport;
81 }
82 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
83 {
84 return &shared_page->vcpu_ioreq[vcpu];
85 }
86 # define FMT_ioreq_size "u"
87 #endif
88
89 #define BUFFER_IO_MAX_DELAY 100
90
91 typedef struct XenPhysmap {
92 hwaddr start_addr;
93 ram_addr_t size;
94 const char *name;
95 hwaddr phys_offset;
96
97 QLIST_ENTRY(XenPhysmap) list;
98 } XenPhysmap;
99
100 typedef struct XenIOState {
101 ioservid_t ioservid;
102 shared_iopage_t *shared_page;
103 shared_vmport_iopage_t *shared_vmport_page;
104 buffered_iopage_t *buffered_io_page;
105 QEMUTimer *buffered_io_timer;
106 CPUState **cpu_by_vcpu_id;
107 /* the evtchn port for polling the notification, */
108 evtchn_port_t *ioreq_local_port;
109 /* evtchn local port for buffered io */
110 evtchn_port_t bufioreq_local_port;
111 /* the evtchn fd for polling */
112 XenEvtchn xce_handle;
113 /* which vcpu we are serving */
114 int send_vcpu;
115
116 struct xs_handle *xenstore;
117 MemoryListener memory_listener;
118 MemoryListener io_listener;
119 DeviceListener device_listener;
120 QLIST_HEAD(, XenPhysmap) physmap;
121 hwaddr free_phys_offset;
122 const XenPhysmap *log_for_dirtybit;
123
124 Notifier exit;
125 Notifier suspend;
126 Notifier wakeup;
127 } XenIOState;
128
129 /* Xen specific function for piix pci */
130
131 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
132 {
133 return irq_num + ((pci_dev->devfn >> 3) << 2);
134 }
135
136 void xen_piix3_set_irq(void *opaque, int irq_num, int level)
137 {
138 xc_hvm_set_pci_intx_level(xen_xc, xen_domid, 0, 0, irq_num >> 2,
139 irq_num & 3, level);
140 }
141
142 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len)
143 {
144 int i;
145
146 /* Scan for updates to PCI link routes (0x60-0x63). */
147 for (i = 0; i < len; i++) {
148 uint8_t v = (val >> (8 * i)) & 0xff;
149 if (v & 0x80) {
150 v = 0;
151 }
152 v &= 0xf;
153 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) {
154 xc_hvm_set_pci_link_route(xen_xc, xen_domid, address + i - 0x60, v);
155 }
156 }
157 }
158
159 void xen_hvm_inject_msi(uint64_t addr, uint32_t data)
160 {
161 xen_xc_hvm_inject_msi(xen_xc, xen_domid, addr, data);
162 }
163
164 static void xen_suspend_notifier(Notifier *notifier, void *data)
165 {
166 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
167 }
168
169 /* Xen Interrupt Controller */
170
171 static void xen_set_irq(void *opaque, int irq, int level)
172 {
173 xc_hvm_set_isa_irq_level(xen_xc, xen_domid, irq, level);
174 }
175
176 qemu_irq *xen_interrupt_controller_init(void)
177 {
178 return qemu_allocate_irqs(xen_set_irq, NULL, 16);
179 }
180
181 /* Memory Ops */
182
183 static void xen_ram_init(PCMachineState *pcms,
184 ram_addr_t ram_size, MemoryRegion **ram_memory_p)
185 {
186 MemoryRegion *sysmem = get_system_memory();
187 ram_addr_t block_len;
188 uint64_t user_lowmem = object_property_get_int(qdev_get_machine(),
189 PC_MACHINE_MAX_RAM_BELOW_4G,
190 &error_abort);
191
192 /* Handle the machine opt max-ram-below-4g. It is basically doing
193 * min(xen limit, user limit).
194 */
195 if (HVM_BELOW_4G_RAM_END <= user_lowmem) {
196 user_lowmem = HVM_BELOW_4G_RAM_END;
197 }
198
199 if (ram_size >= user_lowmem) {
200 pcms->above_4g_mem_size = ram_size - user_lowmem;
201 pcms->below_4g_mem_size = user_lowmem;
202 } else {
203 pcms->above_4g_mem_size = 0;
204 pcms->below_4g_mem_size = ram_size;
205 }
206 if (!pcms->above_4g_mem_size) {
207 block_len = ram_size;
208 } else {
209 /*
210 * Xen does not allocate the memory continuously, it keeps a
211 * hole of the size computed above or passed in.
212 */
213 block_len = (1ULL << 32) + pcms->above_4g_mem_size;
214 }
215 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
216 &error_abort);
217 *ram_memory_p = &ram_memory;
218 vmstate_register_ram_global(&ram_memory);
219
220 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k",
221 &ram_memory, 0, 0xa0000);
222 memory_region_add_subregion(sysmem, 0, &ram_640k);
223 /* Skip of the VGA IO memory space, it will be registered later by the VGA
224 * emulated device.
225 *
226 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
227 * the Options ROM, so it is registered here as RAM.
228 */
229 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
230 &ram_memory, 0xc0000,
231 pcms->below_4g_mem_size - 0xc0000);
232 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
233 if (pcms->above_4g_mem_size > 0) {
234 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
235 &ram_memory, 0x100000000ULL,
236 pcms->above_4g_mem_size);
237 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
238 }
239 }
240
241 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr)
242 {
243 unsigned long nr_pfn;
244 xen_pfn_t *pfn_list;
245 int i;
246
247 if (runstate_check(RUN_STATE_INMIGRATE)) {
248 /* RAM already populated in Xen */
249 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
250 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
251 __func__, size, ram_addr);
252 return;
253 }
254
255 if (mr == &ram_memory) {
256 return;
257 }
258
259 trace_xen_ram_alloc(ram_addr, size);
260
261 nr_pfn = size >> TARGET_PAGE_BITS;
262 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn);
263
264 for (i = 0; i < nr_pfn; i++) {
265 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
266 }
267
268 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
269 hw_error("xen: failed to populate ram at " RAM_ADDR_FMT, ram_addr);
270 }
271
272 g_free(pfn_list);
273 }
274
275 static XenPhysmap *get_physmapping(XenIOState *state,
276 hwaddr start_addr, ram_addr_t size)
277 {
278 XenPhysmap *physmap = NULL;
279
280 start_addr &= TARGET_PAGE_MASK;
281
282 QLIST_FOREACH(physmap, &state->physmap, list) {
283 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
284 return physmap;
285 }
286 }
287 return NULL;
288 }
289
290 static hwaddr xen_phys_offset_to_gaddr(hwaddr start_addr,
291 ram_addr_t size, void *opaque)
292 {
293 hwaddr addr = start_addr & TARGET_PAGE_MASK;
294 XenIOState *xen_io_state = opaque;
295 XenPhysmap *physmap = NULL;
296
297 QLIST_FOREACH(physmap, &xen_io_state->physmap, list) {
298 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) {
299 return physmap->start_addr;
300 }
301 }
302
303 return start_addr;
304 }
305
306 #if CONFIG_XEN_CTRL_INTERFACE_VERSION >= 340
307 static int xen_add_to_physmap(XenIOState *state,
308 hwaddr start_addr,
309 ram_addr_t size,
310 MemoryRegion *mr,
311 hwaddr offset_within_region)
312 {
313 unsigned long i = 0;
314 int rc = 0;
315 XenPhysmap *physmap = NULL;
316 hwaddr pfn, start_gpfn;
317 hwaddr phys_offset = memory_region_get_ram_addr(mr);
318 char path[80], value[17];
319 const char *mr_name;
320
321 if (get_physmapping(state, start_addr, size)) {
322 return 0;
323 }
324 if (size <= 0) {
325 return -1;
326 }
327
328 /* Xen can only handle a single dirty log region for now and we want
329 * the linear framebuffer to be that region.
330 * Avoid tracking any regions that is not videoram and avoid tracking
331 * the legacy vga region. */
332 if (mr == framebuffer && start_addr > 0xbffff) {
333 goto go_physmap;
334 }
335 return -1;
336
337 go_physmap:
338 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
339 start_addr, start_addr + size);
340
341 pfn = phys_offset >> TARGET_PAGE_BITS;
342 start_gpfn = start_addr >> TARGET_PAGE_BITS;
343 for (i = 0; i < size >> TARGET_PAGE_BITS; i++) {
344 unsigned long idx = pfn + i;
345 xen_pfn_t gpfn = start_gpfn + i;
346
347 rc = xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
348 if (rc) {
349 DPRINTF("add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
350 PRI_xen_pfn" failed: %d\n", idx, gpfn, rc);
351 return -rc;
352 }
353 }
354
355 mr_name = memory_region_name(mr);
356
357 physmap = g_malloc(sizeof (XenPhysmap));
358
359 physmap->start_addr = start_addr;
360 physmap->size = size;
361 physmap->name = mr_name;
362 physmap->phys_offset = phys_offset;
363
364 QLIST_INSERT_HEAD(&state->physmap, physmap, list);
365
366 xc_domain_pin_memory_cacheattr(xen_xc, xen_domid,
367 start_addr >> TARGET_PAGE_BITS,
368 (start_addr + size - 1) >> TARGET_PAGE_BITS,
369 XEN_DOMCTL_MEM_CACHEATTR_WB);
370
371 snprintf(path, sizeof(path),
372 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr",
373 xen_domid, (uint64_t)phys_offset);
374 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)start_addr);
375 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
376 return -1;
377 }
378 snprintf(path, sizeof(path),
379 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size",
380 xen_domid, (uint64_t)phys_offset);
381 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)size);
382 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
383 return -1;
384 }
385 if (mr_name) {
386 snprintf(path, sizeof(path),
387 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name",
388 xen_domid, (uint64_t)phys_offset);
389 if (!xs_write(state->xenstore, 0, path, mr_name, strlen(mr_name))) {
390 return -1;
391 }
392 }
393
394 return 0;
395 }
396
397 static int xen_remove_from_physmap(XenIOState *state,
398 hwaddr start_addr,
399 ram_addr_t size)
400 {
401 unsigned long i = 0;
402 int rc = 0;
403 XenPhysmap *physmap = NULL;
404 hwaddr phys_offset = 0;
405
406 physmap = get_physmapping(state, start_addr, size);
407 if (physmap == NULL) {
408 return -1;
409 }
410
411 phys_offset = physmap->phys_offset;
412 size = physmap->size;
413
414 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
415 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
416
417 size >>= TARGET_PAGE_BITS;
418 start_addr >>= TARGET_PAGE_BITS;
419 phys_offset >>= TARGET_PAGE_BITS;
420 for (i = 0; i < size; i++) {
421 xen_pfn_t idx = start_addr + i;
422 xen_pfn_t gpfn = phys_offset + i;
423
424 rc = xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
425 if (rc) {
426 fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
427 PRI_xen_pfn" failed: %d\n", idx, gpfn, rc);
428 return -rc;
429 }
430 }
431
432 QLIST_REMOVE(physmap, list);
433 if (state->log_for_dirtybit == physmap) {
434 state->log_for_dirtybit = NULL;
435 }
436 g_free(physmap);
437
438 return 0;
439 }
440
441 #else
442 static int xen_add_to_physmap(XenIOState *state,
443 hwaddr start_addr,
444 ram_addr_t size,
445 MemoryRegion *mr,
446 hwaddr offset_within_region)
447 {
448 return -ENOSYS;
449 }
450
451 static int xen_remove_from_physmap(XenIOState *state,
452 hwaddr start_addr,
453 ram_addr_t size)
454 {
455 return -ENOSYS;
456 }
457 #endif
458
459 static void xen_set_memory(struct MemoryListener *listener,
460 MemoryRegionSection *section,
461 bool add)
462 {
463 XenIOState *state = container_of(listener, XenIOState, memory_listener);
464 hwaddr start_addr = section->offset_within_address_space;
465 ram_addr_t size = int128_get64(section->size);
466 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA);
467 hvmmem_type_t mem_type;
468
469 if (section->mr == &ram_memory) {
470 return;
471 } else {
472 if (add) {
473 xen_map_memory_section(xen_xc, xen_domid, state->ioservid,
474 section);
475 } else {
476 xen_unmap_memory_section(xen_xc, xen_domid, state->ioservid,
477 section);
478 }
479 }
480
481 if (!memory_region_is_ram(section->mr)) {
482 return;
483 }
484
485 if (log_dirty != add) {
486 return;
487 }
488
489 trace_xen_client_set_memory(start_addr, size, log_dirty);
490
491 start_addr &= TARGET_PAGE_MASK;
492 size = TARGET_PAGE_ALIGN(size);
493
494 if (add) {
495 if (!memory_region_is_rom(section->mr)) {
496 xen_add_to_physmap(state, start_addr, size,
497 section->mr, section->offset_within_region);
498 } else {
499 mem_type = HVMMEM_ram_ro;
500 if (xc_hvm_set_mem_type(xen_xc, xen_domid, mem_type,
501 start_addr >> TARGET_PAGE_BITS,
502 size >> TARGET_PAGE_BITS)) {
503 DPRINTF("xc_hvm_set_mem_type error, addr: "TARGET_FMT_plx"\n",
504 start_addr);
505 }
506 }
507 } else {
508 if (xen_remove_from_physmap(state, start_addr, size) < 0) {
509 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
510 }
511 }
512 }
513
514 static void xen_region_add(MemoryListener *listener,
515 MemoryRegionSection *section)
516 {
517 memory_region_ref(section->mr);
518 xen_set_memory(listener, section, true);
519 }
520
521 static void xen_region_del(MemoryListener *listener,
522 MemoryRegionSection *section)
523 {
524 xen_set_memory(listener, section, false);
525 memory_region_unref(section->mr);
526 }
527
528 static void xen_io_add(MemoryListener *listener,
529 MemoryRegionSection *section)
530 {
531 XenIOState *state = container_of(listener, XenIOState, io_listener);
532
533 memory_region_ref(section->mr);
534
535 xen_map_io_section(xen_xc, xen_domid, state->ioservid, section);
536 }
537
538 static void xen_io_del(MemoryListener *listener,
539 MemoryRegionSection *section)
540 {
541 XenIOState *state = container_of(listener, XenIOState, io_listener);
542
543 xen_unmap_io_section(xen_xc, xen_domid, state->ioservid, section);
544
545 memory_region_unref(section->mr);
546 }
547
548 static void xen_device_realize(DeviceListener *listener,
549 DeviceState *dev)
550 {
551 XenIOState *state = container_of(listener, XenIOState, device_listener);
552
553 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
554 PCIDevice *pci_dev = PCI_DEVICE(dev);
555
556 xen_map_pcidev(xen_xc, xen_domid, state->ioservid, pci_dev);
557 }
558 }
559
560 static void xen_device_unrealize(DeviceListener *listener,
561 DeviceState *dev)
562 {
563 XenIOState *state = container_of(listener, XenIOState, device_listener);
564
565 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
566 PCIDevice *pci_dev = PCI_DEVICE(dev);
567
568 xen_unmap_pcidev(xen_xc, xen_domid, state->ioservid, pci_dev);
569 }
570 }
571
572 static void xen_sync_dirty_bitmap(XenIOState *state,
573 hwaddr start_addr,
574 ram_addr_t size)
575 {
576 hwaddr npages = size >> TARGET_PAGE_BITS;
577 const int width = sizeof(unsigned long) * 8;
578 unsigned long bitmap[(npages + width - 1) / width];
579 int rc, i, j;
580 const XenPhysmap *physmap = NULL;
581
582 physmap = get_physmapping(state, start_addr, size);
583 if (physmap == NULL) {
584 /* not handled */
585 return;
586 }
587
588 if (state->log_for_dirtybit == NULL) {
589 state->log_for_dirtybit = physmap;
590 } else if (state->log_for_dirtybit != physmap) {
591 /* Only one range for dirty bitmap can be tracked. */
592 return;
593 }
594
595 rc = xc_hvm_track_dirty_vram(xen_xc, xen_domid,
596 start_addr >> TARGET_PAGE_BITS, npages,
597 bitmap);
598 if (rc < 0) {
599 #ifndef ENODATA
600 #define ENODATA ENOENT
601 #endif
602 if (errno == ENODATA) {
603 memory_region_set_dirty(framebuffer, 0, size);
604 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
605 ", 0x" TARGET_FMT_plx "): %s\n",
606 start_addr, start_addr + size, strerror(errno));
607 }
608 return;
609 }
610
611 for (i = 0; i < ARRAY_SIZE(bitmap); i++) {
612 unsigned long map = bitmap[i];
613 while (map != 0) {
614 j = ctzl(map);
615 map &= ~(1ul << j);
616 memory_region_set_dirty(framebuffer,
617 (i * width + j) * TARGET_PAGE_SIZE,
618 TARGET_PAGE_SIZE);
619 };
620 }
621 }
622
623 static void xen_log_start(MemoryListener *listener,
624 MemoryRegionSection *section,
625 int old, int new)
626 {
627 XenIOState *state = container_of(listener, XenIOState, memory_listener);
628
629 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) {
630 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
631 int128_get64(section->size));
632 }
633 }
634
635 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section,
636 int old, int new)
637 {
638 XenIOState *state = container_of(listener, XenIOState, memory_listener);
639
640 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) {
641 state->log_for_dirtybit = NULL;
642 /* Disable dirty bit tracking */
643 xc_hvm_track_dirty_vram(xen_xc, xen_domid, 0, 0, NULL);
644 }
645 }
646
647 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section)
648 {
649 XenIOState *state = container_of(listener, XenIOState, memory_listener);
650
651 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
652 int128_get64(section->size));
653 }
654
655 static void xen_log_global_start(MemoryListener *listener)
656 {
657 if (xen_enabled()) {
658 xen_in_migration = true;
659 }
660 }
661
662 static void xen_log_global_stop(MemoryListener *listener)
663 {
664 xen_in_migration = false;
665 }
666
667 static MemoryListener xen_memory_listener = {
668 .region_add = xen_region_add,
669 .region_del = xen_region_del,
670 .log_start = xen_log_start,
671 .log_stop = xen_log_stop,
672 .log_sync = xen_log_sync,
673 .log_global_start = xen_log_global_start,
674 .log_global_stop = xen_log_global_stop,
675 .priority = 10,
676 };
677
678 static MemoryListener xen_io_listener = {
679 .region_add = xen_io_add,
680 .region_del = xen_io_del,
681 .priority = 10,
682 };
683
684 static DeviceListener xen_device_listener = {
685 .realize = xen_device_realize,
686 .unrealize = xen_device_unrealize,
687 };
688
689 /* get the ioreq packets from share mem */
690 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
691 {
692 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
693
694 if (req->state != STATE_IOREQ_READY) {
695 DPRINTF("I/O request not ready: "
696 "%x, ptr: %x, port: %"PRIx64", "
697 "data: %"PRIx64", count: %" FMT_ioreq_size ", size: %" FMT_ioreq_size "\n",
698 req->state, req->data_is_ptr, req->addr,
699 req->data, req->count, req->size);
700 return NULL;
701 }
702
703 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
704
705 req->state = STATE_IOREQ_INPROCESS;
706 return req;
707 }
708
709 /* use poll to get the port notification */
710 /* ioreq_vec--out,the */
711 /* retval--the number of ioreq packet */
712 static ioreq_t *cpu_get_ioreq(XenIOState *state)
713 {
714 int i;
715 evtchn_port_t port;
716
717 port = xc_evtchn_pending(state->xce_handle);
718 if (port == state->bufioreq_local_port) {
719 timer_mod(state->buffered_io_timer,
720 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
721 return NULL;
722 }
723
724 if (port != -1) {
725 for (i = 0; i < max_cpus; i++) {
726 if (state->ioreq_local_port[i] == port) {
727 break;
728 }
729 }
730
731 if (i == max_cpus) {
732 hw_error("Fatal error while trying to get io event!\n");
733 }
734
735 /* unmask the wanted port again */
736 xc_evtchn_unmask(state->xce_handle, port);
737
738 /* get the io packet from shared memory */
739 state->send_vcpu = i;
740 return cpu_get_ioreq_from_shared_memory(state, i);
741 }
742
743 /* read error or read nothing */
744 return NULL;
745 }
746
747 static uint32_t do_inp(pio_addr_t addr, unsigned long size)
748 {
749 switch (size) {
750 case 1:
751 return cpu_inb(addr);
752 case 2:
753 return cpu_inw(addr);
754 case 4:
755 return cpu_inl(addr);
756 default:
757 hw_error("inp: bad size: %04"FMT_pioaddr" %lx", addr, size);
758 }
759 }
760
761 static void do_outp(pio_addr_t addr,
762 unsigned long size, uint32_t val)
763 {
764 switch (size) {
765 case 1:
766 return cpu_outb(addr, val);
767 case 2:
768 return cpu_outw(addr, val);
769 case 4:
770 return cpu_outl(addr, val);
771 default:
772 hw_error("outp: bad size: %04"FMT_pioaddr" %lx", addr, size);
773 }
774 }
775
776 /*
777 * Helper functions which read/write an object from/to physical guest
778 * memory, as part of the implementation of an ioreq.
779 *
780 * Equivalent to
781 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
782 * val, req->size, 0/1)
783 * except without the integer overflow problems.
784 */
785 static void rw_phys_req_item(hwaddr addr,
786 ioreq_t *req, uint32_t i, void *val, int rw)
787 {
788 /* Do everything unsigned so overflow just results in a truncated result
789 * and accesses to undesired parts of guest memory, which is up
790 * to the guest */
791 hwaddr offset = (hwaddr)req->size * i;
792 if (req->df) {
793 addr -= offset;
794 } else {
795 addr += offset;
796 }
797 cpu_physical_memory_rw(addr, val, req->size, rw);
798 }
799
800 static inline void read_phys_req_item(hwaddr addr,
801 ioreq_t *req, uint32_t i, void *val)
802 {
803 rw_phys_req_item(addr, req, i, val, 0);
804 }
805 static inline void write_phys_req_item(hwaddr addr,
806 ioreq_t *req, uint32_t i, void *val)
807 {
808 rw_phys_req_item(addr, req, i, val, 1);
809 }
810
811
812 static void cpu_ioreq_pio(ioreq_t *req)
813 {
814 uint32_t i;
815
816 if (req->dir == IOREQ_READ) {
817 if (!req->data_is_ptr) {
818 req->data = do_inp(req->addr, req->size);
819 } else {
820 uint32_t tmp;
821
822 for (i = 0; i < req->count; i++) {
823 tmp = do_inp(req->addr, req->size);
824 write_phys_req_item(req->data, req, i, &tmp);
825 }
826 }
827 } else if (req->dir == IOREQ_WRITE) {
828 if (!req->data_is_ptr) {
829 do_outp(req->addr, req->size, req->data);
830 } else {
831 for (i = 0; i < req->count; i++) {
832 uint32_t tmp = 0;
833
834 read_phys_req_item(req->data, req, i, &tmp);
835 do_outp(req->addr, req->size, tmp);
836 }
837 }
838 }
839 }
840
841 static void cpu_ioreq_move(ioreq_t *req)
842 {
843 uint32_t i;
844
845 if (!req->data_is_ptr) {
846 if (req->dir == IOREQ_READ) {
847 for (i = 0; i < req->count; i++) {
848 read_phys_req_item(req->addr, req, i, &req->data);
849 }
850 } else if (req->dir == IOREQ_WRITE) {
851 for (i = 0; i < req->count; i++) {
852 write_phys_req_item(req->addr, req, i, &req->data);
853 }
854 }
855 } else {
856 uint64_t tmp;
857
858 if (req->dir == IOREQ_READ) {
859 for (i = 0; i < req->count; i++) {
860 read_phys_req_item(req->addr, req, i, &tmp);
861 write_phys_req_item(req->data, req, i, &tmp);
862 }
863 } else if (req->dir == IOREQ_WRITE) {
864 for (i = 0; i < req->count; i++) {
865 read_phys_req_item(req->data, req, i, &tmp);
866 write_phys_req_item(req->addr, req, i, &tmp);
867 }
868 }
869 }
870 }
871
872 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)
873 {
874 X86CPU *cpu;
875 CPUX86State *env;
876
877 cpu = X86_CPU(current_cpu);
878 env = &cpu->env;
879 env->regs[R_EAX] = req->data;
880 env->regs[R_EBX] = vmport_regs->ebx;
881 env->regs[R_ECX] = vmport_regs->ecx;
882 env->regs[R_EDX] = vmport_regs->edx;
883 env->regs[R_ESI] = vmport_regs->esi;
884 env->regs[R_EDI] = vmport_regs->edi;
885 }
886
887 static void regs_from_cpu(vmware_regs_t *vmport_regs)
888 {
889 X86CPU *cpu = X86_CPU(current_cpu);
890 CPUX86State *env = &cpu->env;
891
892 vmport_regs->ebx = env->regs[R_EBX];
893 vmport_regs->ecx = env->regs[R_ECX];
894 vmport_regs->edx = env->regs[R_EDX];
895 vmport_regs->esi = env->regs[R_ESI];
896 vmport_regs->edi = env->regs[R_EDI];
897 }
898
899 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req)
900 {
901 vmware_regs_t *vmport_regs;
902
903 assert(state->shared_vmport_page);
904 vmport_regs =
905 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu];
906 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs));
907
908 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu];
909 regs_to_cpu(vmport_regs, req);
910 cpu_ioreq_pio(req);
911 regs_from_cpu(vmport_regs);
912 current_cpu = NULL;
913 }
914
915 static void handle_ioreq(XenIOState *state, ioreq_t *req)
916 {
917 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
918 (req->size < sizeof (target_ulong))) {
919 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
920 }
921
922 switch (req->type) {
923 case IOREQ_TYPE_PIO:
924 cpu_ioreq_pio(req);
925 break;
926 case IOREQ_TYPE_COPY:
927 cpu_ioreq_move(req);
928 break;
929 case IOREQ_TYPE_VMWARE_PORT:
930 handle_vmport_ioreq(state, req);
931 break;
932 case IOREQ_TYPE_TIMEOFFSET:
933 break;
934 case IOREQ_TYPE_INVALIDATE:
935 xen_invalidate_map_cache();
936 break;
937 case IOREQ_TYPE_PCI_CONFIG: {
938 uint32_t sbdf = req->addr >> 32;
939 uint32_t val;
940
941 /* Fake a write to port 0xCF8 so that
942 * the config space access will target the
943 * correct device model.
944 */
945 val = (1u << 31) |
946 ((req->addr & 0x0f00) << 16) |
947 ((sbdf & 0xffff) << 8) |
948 (req->addr & 0xfc);
949 do_outp(0xcf8, 4, val);
950
951 /* Now issue the config space access via
952 * port 0xCFC
953 */
954 req->addr = 0xcfc | (req->addr & 0x03);
955 cpu_ioreq_pio(req);
956 break;
957 }
958 default:
959 hw_error("Invalid ioreq type 0x%x\n", req->type);
960 }
961 }
962
963 static int handle_buffered_iopage(XenIOState *state)
964 {
965 buf_ioreq_t *buf_req = NULL;
966 ioreq_t req;
967 int qw;
968
969 if (!state->buffered_io_page) {
970 return 0;
971 }
972
973 memset(&req, 0x00, sizeof(req));
974
975 while (state->buffered_io_page->read_pointer != state->buffered_io_page->write_pointer) {
976 buf_req = &state->buffered_io_page->buf_ioreq[
977 state->buffered_io_page->read_pointer % IOREQ_BUFFER_SLOT_NUM];
978 req.size = 1UL << buf_req->size;
979 req.count = 1;
980 req.addr = buf_req->addr;
981 req.data = buf_req->data;
982 req.state = STATE_IOREQ_READY;
983 req.dir = buf_req->dir;
984 req.df = 1;
985 req.type = buf_req->type;
986 req.data_is_ptr = 0;
987 qw = (req.size == 8);
988 if (qw) {
989 buf_req = &state->buffered_io_page->buf_ioreq[
990 (state->buffered_io_page->read_pointer + 1) % IOREQ_BUFFER_SLOT_NUM];
991 req.data |= ((uint64_t)buf_req->data) << 32;
992 }
993
994 handle_ioreq(state, &req);
995
996 xen_mb();
997 state->buffered_io_page->read_pointer += qw ? 2 : 1;
998 }
999
1000 return req.count;
1001 }
1002
1003 static void handle_buffered_io(void *opaque)
1004 {
1005 XenIOState *state = opaque;
1006
1007 if (handle_buffered_iopage(state)) {
1008 timer_mod(state->buffered_io_timer,
1009 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
1010 } else {
1011 timer_del(state->buffered_io_timer);
1012 xc_evtchn_unmask(state->xce_handle, state->bufioreq_local_port);
1013 }
1014 }
1015
1016 static void cpu_handle_ioreq(void *opaque)
1017 {
1018 XenIOState *state = opaque;
1019 ioreq_t *req = cpu_get_ioreq(state);
1020
1021 handle_buffered_iopage(state);
1022 if (req) {
1023 handle_ioreq(state, req);
1024
1025 if (req->state != STATE_IOREQ_INPROCESS) {
1026 fprintf(stderr, "Badness in I/O request ... not in service?!: "
1027 "%x, ptr: %x, port: %"PRIx64", "
1028 "data: %"PRIx64", count: %" FMT_ioreq_size
1029 ", size: %" FMT_ioreq_size
1030 ", type: %"FMT_ioreq_size"\n",
1031 req->state, req->data_is_ptr, req->addr,
1032 req->data, req->count, req->size, req->type);
1033 destroy_hvm_domain(false);
1034 return;
1035 }
1036
1037 xen_wmb(); /* Update ioreq contents /then/ update state. */
1038
1039 /*
1040 * We do this before we send the response so that the tools
1041 * have the opportunity to pick up on the reset before the
1042 * guest resumes and does a hlt with interrupts disabled which
1043 * causes Xen to powerdown the domain.
1044 */
1045 if (runstate_is_running()) {
1046 if (qemu_shutdown_requested_get()) {
1047 destroy_hvm_domain(false);
1048 }
1049 if (qemu_reset_requested_get()) {
1050 qemu_system_reset(VMRESET_REPORT);
1051 destroy_hvm_domain(true);
1052 }
1053 }
1054
1055 req->state = STATE_IORESP_READY;
1056 xc_evtchn_notify(state->xce_handle, state->ioreq_local_port[state->send_vcpu]);
1057 }
1058 }
1059
1060 static void xen_main_loop_prepare(XenIOState *state)
1061 {
1062 int evtchn_fd = -1;
1063
1064 if (state->xce_handle != XC_HANDLER_INITIAL_VALUE) {
1065 evtchn_fd = xc_evtchn_fd(state->xce_handle);
1066 }
1067
1068 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
1069 state);
1070
1071 if (evtchn_fd != -1) {
1072 CPUState *cpu_state;
1073
1074 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
1075 CPU_FOREACH(cpu_state) {
1076 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
1077 __func__, cpu_state->cpu_index, cpu_state);
1078 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
1079 }
1080 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
1081 }
1082 }
1083
1084
1085 static void xen_hvm_change_state_handler(void *opaque, int running,
1086 RunState rstate)
1087 {
1088 XenIOState *state = opaque;
1089
1090 if (running) {
1091 xen_main_loop_prepare(state);
1092 }
1093
1094 xen_set_ioreq_server_state(xen_xc, xen_domid,
1095 state->ioservid,
1096 (rstate == RUN_STATE_RUNNING));
1097 }
1098
1099 static void xen_exit_notifier(Notifier *n, void *data)
1100 {
1101 XenIOState *state = container_of(n, XenIOState, exit);
1102
1103 xc_evtchn_close(state->xce_handle);
1104 xs_daemon_close(state->xenstore);
1105 }
1106
1107 static void xen_read_physmap(XenIOState *state)
1108 {
1109 XenPhysmap *physmap = NULL;
1110 unsigned int len, num, i;
1111 char path[80], *value = NULL;
1112 char **entries = NULL;
1113
1114 snprintf(path, sizeof(path),
1115 "/local/domain/0/device-model/%d/physmap", xen_domid);
1116 entries = xs_directory(state->xenstore, 0, path, &num);
1117 if (entries == NULL)
1118 return;
1119
1120 for (i = 0; i < num; i++) {
1121 physmap = g_malloc(sizeof (XenPhysmap));
1122 physmap->phys_offset = strtoull(entries[i], NULL, 16);
1123 snprintf(path, sizeof(path),
1124 "/local/domain/0/device-model/%d/physmap/%s/start_addr",
1125 xen_domid, entries[i]);
1126 value = xs_read(state->xenstore, 0, path, &len);
1127 if (value == NULL) {
1128 g_free(physmap);
1129 continue;
1130 }
1131 physmap->start_addr = strtoull(value, NULL, 16);
1132 free(value);
1133
1134 snprintf(path, sizeof(path),
1135 "/local/domain/0/device-model/%d/physmap/%s/size",
1136 xen_domid, entries[i]);
1137 value = xs_read(state->xenstore, 0, path, &len);
1138 if (value == NULL) {
1139 g_free(physmap);
1140 continue;
1141 }
1142 physmap->size = strtoull(value, NULL, 16);
1143 free(value);
1144
1145 snprintf(path, sizeof(path),
1146 "/local/domain/0/device-model/%d/physmap/%s/name",
1147 xen_domid, entries[i]);
1148 physmap->name = xs_read(state->xenstore, 0, path, &len);
1149
1150 QLIST_INSERT_HEAD(&state->physmap, physmap, list);
1151 }
1152 free(entries);
1153 }
1154
1155 static void xen_wakeup_notifier(Notifier *notifier, void *data)
1156 {
1157 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0);
1158 }
1159
1160 /* return 0 means OK, or -1 means critical issue -- will exit(1) */
1161 int xen_hvm_init(PCMachineState *pcms,
1162 MemoryRegion **ram_memory)
1163 {
1164 int i, rc;
1165 xen_pfn_t ioreq_pfn;
1166 xen_pfn_t bufioreq_pfn;
1167 evtchn_port_t bufioreq_evtchn;
1168 XenIOState *state;
1169
1170 state = g_malloc0(sizeof (XenIOState));
1171
1172 state->xce_handle = xen_xc_evtchn_open(NULL, 0);
1173 if (state->xce_handle == XC_HANDLER_INITIAL_VALUE) {
1174 perror("xen: event channel open");
1175 return -1;
1176 }
1177
1178 state->xenstore = xs_daemon_open();
1179 if (state->xenstore == NULL) {
1180 perror("xen: xenstore open");
1181 return -1;
1182 }
1183
1184 rc = xen_create_ioreq_server(xen_xc, xen_domid, &state->ioservid);
1185 if (rc < 0) {
1186 perror("xen: ioreq server create");
1187 return -1;
1188 }
1189
1190 state->exit.notify = xen_exit_notifier;
1191 qemu_add_exit_notifier(&state->exit);
1192
1193 state->suspend.notify = xen_suspend_notifier;
1194 qemu_register_suspend_notifier(&state->suspend);
1195
1196 state->wakeup.notify = xen_wakeup_notifier;
1197 qemu_register_wakeup_notifier(&state->wakeup);
1198
1199 rc = xen_get_ioreq_server_info(xen_xc, xen_domid, state->ioservid,
1200 &ioreq_pfn, &bufioreq_pfn,
1201 &bufioreq_evtchn);
1202 if (rc < 0) {
1203 hw_error("failed to get ioreq server info: error %d handle=" XC_INTERFACE_FMT,
1204 errno, xen_xc);
1205 }
1206
1207 DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
1208 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
1209 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
1210
1211 state->shared_page = xc_map_foreign_range(xen_xc, xen_domid, XC_PAGE_SIZE,
1212 PROT_READ|PROT_WRITE, ioreq_pfn);
1213 if (state->shared_page == NULL) {
1214 hw_error("map shared IO page returned error %d handle=" XC_INTERFACE_FMT,
1215 errno, xen_xc);
1216 }
1217
1218 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn);
1219 if (!rc) {
1220 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn);
1221 state->shared_vmport_page =
1222 xc_map_foreign_range(xen_xc, xen_domid, XC_PAGE_SIZE,
1223 PROT_READ|PROT_WRITE, ioreq_pfn);
1224 if (state->shared_vmport_page == NULL) {
1225 hw_error("map shared vmport IO page returned error %d handle="
1226 XC_INTERFACE_FMT, errno, xen_xc);
1227 }
1228 } else if (rc != -ENOSYS) {
1229 hw_error("get vmport regs pfn returned error %d, rc=%d", errno, rc);
1230 }
1231
1232 state->buffered_io_page = xc_map_foreign_range(xen_xc, xen_domid,
1233 XC_PAGE_SIZE,
1234 PROT_READ|PROT_WRITE,
1235 bufioreq_pfn);
1236 if (state->buffered_io_page == NULL) {
1237 hw_error("map buffered IO page returned error %d", errno);
1238 }
1239
1240 /* Note: cpus is empty at this point in init */
1241 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *));
1242
1243 rc = xen_set_ioreq_server_state(xen_xc, xen_domid, state->ioservid, true);
1244 if (rc < 0) {
1245 hw_error("failed to enable ioreq server info: error %d handle=" XC_INTERFACE_FMT,
1246 errno, xen_xc);
1247 }
1248
1249 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t));
1250
1251 /* FIXME: how about if we overflow the page here? */
1252 for (i = 0; i < max_cpus; i++) {
1253 rc = xc_evtchn_bind_interdomain(state->xce_handle, xen_domid,
1254 xen_vcpu_eport(state->shared_page, i));
1255 if (rc == -1) {
1256 fprintf(stderr, "shared evtchn %d bind error %d\n", i, errno);
1257 return -1;
1258 }
1259 state->ioreq_local_port[i] = rc;
1260 }
1261
1262 rc = xc_evtchn_bind_interdomain(state->xce_handle, xen_domid,
1263 bufioreq_evtchn);
1264 if (rc == -1) {
1265 fprintf(stderr, "buffered evtchn bind error %d\n", errno);
1266 return -1;
1267 }
1268 state->bufioreq_local_port = rc;
1269
1270 /* Init RAM management */
1271 xen_map_cache_init(xen_phys_offset_to_gaddr, state);
1272 xen_ram_init(pcms, ram_size, ram_memory);
1273
1274 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
1275
1276 state->memory_listener = xen_memory_listener;
1277 QLIST_INIT(&state->physmap);
1278 memory_listener_register(&state->memory_listener, &address_space_memory);
1279 state->log_for_dirtybit = NULL;
1280
1281 state->io_listener = xen_io_listener;
1282 memory_listener_register(&state->io_listener, &address_space_io);
1283
1284 state->device_listener = xen_device_listener;
1285 device_listener_register(&state->device_listener);
1286
1287 /* Initialize backend core & drivers */
1288 if (xen_be_init() != 0) {
1289 fprintf(stderr, "%s: xen backend core setup failed\n", __FUNCTION__);
1290 return -1;
1291 }
1292 xen_be_register("console", &xen_console_ops);
1293 xen_be_register("vkbd", &xen_kbdmouse_ops);
1294 xen_be_register("qdisk", &xen_blkdev_ops);
1295 xen_read_physmap(state);
1296
1297 return 0;
1298 }
1299
1300 void destroy_hvm_domain(bool reboot)
1301 {
1302 XenXC xc_handle;
1303 int sts;
1304
1305 xc_handle = xen_xc_interface_open(0, 0, 0);
1306 if (xc_handle == XC_HANDLER_INITIAL_VALUE) {
1307 fprintf(stderr, "Cannot acquire xenctrl handle\n");
1308 } else {
1309 sts = xc_domain_shutdown(xc_handle, xen_domid,
1310 reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff);
1311 if (sts != 0) {
1312 fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
1313 "sts %d, %s\n", reboot ? "reboot" : "poweroff",
1314 sts, strerror(errno));
1315 } else {
1316 fprintf(stderr, "Issued domain %d %s\n", xen_domid,
1317 reboot ? "reboot" : "poweroff");
1318 }
1319 xc_interface_close(xc_handle);
1320 }
1321 }
1322
1323 void xen_register_framebuffer(MemoryRegion *mr)
1324 {
1325 framebuffer = mr;
1326 }
1327
1328 void xen_shutdown_fatal_error(const char *fmt, ...)
1329 {
1330 va_list ap;
1331
1332 va_start(ap, fmt);
1333 vfprintf(stderr, fmt, ap);
1334 va_end(ap);
1335 fprintf(stderr, "Will destroy the domain.\n");
1336 /* destroy the domain */
1337 qemu_system_shutdown_request();
1338 }
1339
1340 void xen_modified_memory(ram_addr_t start, ram_addr_t length)
1341 {
1342 if (unlikely(xen_in_migration)) {
1343 int rc;
1344 ram_addr_t start_pfn, nb_pages;
1345
1346 if (length == 0) {
1347 length = TARGET_PAGE_SIZE;
1348 }
1349 start_pfn = start >> TARGET_PAGE_BITS;
1350 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS)
1351 - start_pfn;
1352 rc = xc_hvm_modified_memory(xen_xc, xen_domid, start_pfn, nb_pages);
1353 if (rc) {
1354 fprintf(stderr,
1355 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n",
1356 __func__, start, nb_pages, rc, strerror(-rc));
1357 }
1358 }
1359 }
1360
1361 void qmp_xen_set_global_dirty_log(bool enable, Error **errp)
1362 {
1363 if (enable) {
1364 memory_global_dirty_log_start();
1365 } else {
1366 memory_global_dirty_log_stop();
1367 }
1368 }