]> git.proxmox.com Git - mirror_frr.git/blob - zebra/if_netlink.c
Merge pull request #7089 from pguibert6WIND/netns-refactor
[mirror_frr.git] / zebra / if_netlink.c
1 /*
2 * Interface looking up by netlink.
3 * Copyright (C) 1998 Kunihiro Ishiguro
4 *
5 * This file is part of GNU Zebra.
6 *
7 * GNU Zebra is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2, or (at your option) any
10 * later version.
11 *
12 * GNU Zebra is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; see the file COPYING; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 #include <zebra.h>
23
24 #ifdef GNU_LINUX
25
26 /* The following definition is to workaround an issue in the Linux kernel
27 * header files with redefinition of 'struct in6_addr' in both
28 * netinet/in.h and linux/in6.h.
29 * Reference - https://sourceware.org/ml/libc-alpha/2013-01/msg00599.html
30 */
31 #define _LINUX_IN6_H
32
33 #include <netinet/if_ether.h>
34 #include <linux/if_bridge.h>
35 #include <linux/if_link.h>
36 #include <net/if_arp.h>
37 #include <linux/sockios.h>
38 #include <linux/ethtool.h>
39
40 #include "linklist.h"
41 #include "if.h"
42 #include "log.h"
43 #include "prefix.h"
44 #include "connected.h"
45 #include "table.h"
46 #include "memory.h"
47 #include "zebra_memory.h"
48 #include "rib.h"
49 #include "thread.h"
50 #include "privs.h"
51 #include "nexthop.h"
52 #include "vrf.h"
53 #include "vrf_int.h"
54 #include "mpls.h"
55 #include "lib_errors.h"
56
57 #include "vty.h"
58 #include "zebra/zserv.h"
59 #include "zebra/zebra_ns.h"
60 #include "zebra/zebra_vrf.h"
61 #include "zebra/rt.h"
62 #include "zebra/redistribute.h"
63 #include "zebra/interface.h"
64 #include "zebra/debug.h"
65 #include "zebra/rtadv.h"
66 #include "zebra/zebra_ptm.h"
67 #include "zebra/zebra_mpls.h"
68 #include "zebra/kernel_netlink.h"
69 #include "zebra/rt_netlink.h"
70 #include "zebra/if_netlink.h"
71 #include "zebra/zebra_errors.h"
72 #include "zebra/zebra_vxlan.h"
73 #include "zebra/zebra_evpn_mh.h"
74
75 extern struct zebra_privs_t zserv_privs;
76
77 /* Note: on netlink systems, there should be a 1-to-1 mapping between interface
78 names and ifindex values. */
79 static void set_ifindex(struct interface *ifp, ifindex_t ifi_index,
80 struct zebra_ns *zns)
81 {
82 struct interface *oifp;
83
84 if (((oifp = if_lookup_by_index_per_ns(zns, ifi_index)) != NULL)
85 && (oifp != ifp)) {
86 if (ifi_index == IFINDEX_INTERNAL)
87 flog_err(
88 EC_LIB_INTERFACE,
89 "Netlink is setting interface %s ifindex to reserved internal value %u",
90 ifp->name, ifi_index);
91 else {
92 if (IS_ZEBRA_DEBUG_KERNEL)
93 zlog_debug(
94 "interface index %d was renamed from %s to %s",
95 ifi_index, oifp->name, ifp->name);
96 if (if_is_up(oifp))
97 flog_err(
98 EC_LIB_INTERFACE,
99 "interface rename detected on up interface: index %d was renamed from %s to %s, results are uncertain!",
100 ifi_index, oifp->name, ifp->name);
101 if_delete_update(oifp);
102 }
103 }
104 if_set_index(ifp, ifi_index);
105 }
106
107 /* Utility function to parse hardware link-layer address and update ifp */
108 static void netlink_interface_update_hw_addr(struct rtattr **tb,
109 struct interface *ifp)
110 {
111 int i;
112
113 if (tb[IFLA_ADDRESS]) {
114 int hw_addr_len;
115
116 hw_addr_len = RTA_PAYLOAD(tb[IFLA_ADDRESS]);
117
118 if (hw_addr_len > INTERFACE_HWADDR_MAX)
119 zlog_debug("Hardware address is too large: %d",
120 hw_addr_len);
121 else {
122 ifp->hw_addr_len = hw_addr_len;
123 memcpy(ifp->hw_addr, RTA_DATA(tb[IFLA_ADDRESS]),
124 hw_addr_len);
125
126 for (i = 0; i < hw_addr_len; i++)
127 if (ifp->hw_addr[i] != 0)
128 break;
129
130 if (i == hw_addr_len)
131 ifp->hw_addr_len = 0;
132 else
133 ifp->hw_addr_len = hw_addr_len;
134 }
135 }
136 }
137
138 static enum zebra_link_type netlink_to_zebra_link_type(unsigned int hwt)
139 {
140 switch (hwt) {
141 case ARPHRD_ETHER:
142 return ZEBRA_LLT_ETHER;
143 case ARPHRD_EETHER:
144 return ZEBRA_LLT_EETHER;
145 case ARPHRD_AX25:
146 return ZEBRA_LLT_AX25;
147 case ARPHRD_PRONET:
148 return ZEBRA_LLT_PRONET;
149 case ARPHRD_IEEE802:
150 return ZEBRA_LLT_IEEE802;
151 case ARPHRD_ARCNET:
152 return ZEBRA_LLT_ARCNET;
153 case ARPHRD_APPLETLK:
154 return ZEBRA_LLT_APPLETLK;
155 case ARPHRD_DLCI:
156 return ZEBRA_LLT_DLCI;
157 case ARPHRD_ATM:
158 return ZEBRA_LLT_ATM;
159 case ARPHRD_METRICOM:
160 return ZEBRA_LLT_METRICOM;
161 case ARPHRD_IEEE1394:
162 return ZEBRA_LLT_IEEE1394;
163 case ARPHRD_EUI64:
164 return ZEBRA_LLT_EUI64;
165 case ARPHRD_INFINIBAND:
166 return ZEBRA_LLT_INFINIBAND;
167 case ARPHRD_SLIP:
168 return ZEBRA_LLT_SLIP;
169 case ARPHRD_CSLIP:
170 return ZEBRA_LLT_CSLIP;
171 case ARPHRD_SLIP6:
172 return ZEBRA_LLT_SLIP6;
173 case ARPHRD_CSLIP6:
174 return ZEBRA_LLT_CSLIP6;
175 case ARPHRD_RSRVD:
176 return ZEBRA_LLT_RSRVD;
177 case ARPHRD_ADAPT:
178 return ZEBRA_LLT_ADAPT;
179 case ARPHRD_ROSE:
180 return ZEBRA_LLT_ROSE;
181 case ARPHRD_X25:
182 return ZEBRA_LLT_X25;
183 case ARPHRD_PPP:
184 return ZEBRA_LLT_PPP;
185 case ARPHRD_CISCO:
186 return ZEBRA_LLT_CHDLC;
187 case ARPHRD_LAPB:
188 return ZEBRA_LLT_LAPB;
189 case ARPHRD_RAWHDLC:
190 return ZEBRA_LLT_RAWHDLC;
191 case ARPHRD_TUNNEL:
192 return ZEBRA_LLT_IPIP;
193 case ARPHRD_TUNNEL6:
194 return ZEBRA_LLT_IPIP6;
195 case ARPHRD_FRAD:
196 return ZEBRA_LLT_FRAD;
197 case ARPHRD_SKIP:
198 return ZEBRA_LLT_SKIP;
199 case ARPHRD_LOOPBACK:
200 return ZEBRA_LLT_LOOPBACK;
201 case ARPHRD_LOCALTLK:
202 return ZEBRA_LLT_LOCALTLK;
203 case ARPHRD_FDDI:
204 return ZEBRA_LLT_FDDI;
205 case ARPHRD_SIT:
206 return ZEBRA_LLT_SIT;
207 case ARPHRD_IPDDP:
208 return ZEBRA_LLT_IPDDP;
209 case ARPHRD_IPGRE:
210 return ZEBRA_LLT_IPGRE;
211 case ARPHRD_PIMREG:
212 return ZEBRA_LLT_PIMREG;
213 case ARPHRD_HIPPI:
214 return ZEBRA_LLT_HIPPI;
215 case ARPHRD_ECONET:
216 return ZEBRA_LLT_ECONET;
217 case ARPHRD_IRDA:
218 return ZEBRA_LLT_IRDA;
219 case ARPHRD_FCPP:
220 return ZEBRA_LLT_FCPP;
221 case ARPHRD_FCAL:
222 return ZEBRA_LLT_FCAL;
223 case ARPHRD_FCPL:
224 return ZEBRA_LLT_FCPL;
225 case ARPHRD_FCFABRIC:
226 return ZEBRA_LLT_FCFABRIC;
227 case ARPHRD_IEEE802_TR:
228 return ZEBRA_LLT_IEEE802_TR;
229 case ARPHRD_IEEE80211:
230 return ZEBRA_LLT_IEEE80211;
231 #ifdef ARPHRD_IEEE802154
232 case ARPHRD_IEEE802154:
233 return ZEBRA_LLT_IEEE802154;
234 #endif
235 #ifdef ARPHRD_IP6GRE
236 case ARPHRD_IP6GRE:
237 return ZEBRA_LLT_IP6GRE;
238 #endif
239 #ifdef ARPHRD_IEEE802154_PHY
240 case ARPHRD_IEEE802154_PHY:
241 return ZEBRA_LLT_IEEE802154_PHY;
242 #endif
243
244 default:
245 return ZEBRA_LLT_UNKNOWN;
246 }
247 }
248
249 static inline void zebra_if_set_ziftype(struct interface *ifp,
250 zebra_iftype_t zif_type,
251 zebra_slave_iftype_t zif_slave_type)
252 {
253 struct zebra_if *zif;
254
255 zif = (struct zebra_if *)ifp->info;
256 zif->zif_slave_type = zif_slave_type;
257
258 if (zif->zif_type != zif_type) {
259 zif->zif_type = zif_type;
260 /* If the if_type has been set to bond initialize ES info
261 * against it. XXX - note that we don't handle the case where
262 * a zif changes from bond to non-bond; it is really
263 * an unexpected/error condition.
264 */
265 zebra_evpn_if_init(zif);
266 }
267 }
268
269 static void netlink_determine_zebra_iftype(const char *kind,
270 zebra_iftype_t *zif_type)
271 {
272 *zif_type = ZEBRA_IF_OTHER;
273
274 if (!kind)
275 return;
276
277 if (strcmp(kind, "vrf") == 0)
278 *zif_type = ZEBRA_IF_VRF;
279 else if (strcmp(kind, "bridge") == 0)
280 *zif_type = ZEBRA_IF_BRIDGE;
281 else if (strcmp(kind, "vlan") == 0)
282 *zif_type = ZEBRA_IF_VLAN;
283 else if (strcmp(kind, "vxlan") == 0)
284 *zif_type = ZEBRA_IF_VXLAN;
285 else if (strcmp(kind, "macvlan") == 0)
286 *zif_type = ZEBRA_IF_MACVLAN;
287 else if (strcmp(kind, "veth") == 0)
288 *zif_type = ZEBRA_IF_VETH;
289 else if (strcmp(kind, "bond") == 0)
290 *zif_type = ZEBRA_IF_BOND;
291 else if (strcmp(kind, "bond_slave") == 0)
292 *zif_type = ZEBRA_IF_BOND_SLAVE;
293 }
294
295 #define parse_rtattr_nested(tb, max, rta) \
296 netlink_parse_rtattr((tb), (max), RTA_DATA(rta), RTA_PAYLOAD(rta))
297
298 static void netlink_vrf_change(struct nlmsghdr *h, struct rtattr *tb,
299 uint32_t ns_id, const char *name)
300 {
301 struct ifinfomsg *ifi;
302 struct rtattr *linkinfo[IFLA_INFO_MAX + 1];
303 struct rtattr *attr[IFLA_VRF_MAX + 1];
304 struct vrf *vrf;
305 struct zebra_vrf *zvrf;
306 uint32_t nl_table_id;
307
308 ifi = NLMSG_DATA(h);
309
310 memset(linkinfo, 0, sizeof(linkinfo));
311 parse_rtattr_nested(linkinfo, IFLA_INFO_MAX, tb);
312
313 if (!linkinfo[IFLA_INFO_DATA]) {
314 if (IS_ZEBRA_DEBUG_KERNEL)
315 zlog_debug(
316 "%s: IFLA_INFO_DATA missing from VRF message: %s",
317 __func__, name);
318 return;
319 }
320
321 memset(attr, 0, sizeof(attr));
322 parse_rtattr_nested(attr, IFLA_VRF_MAX, linkinfo[IFLA_INFO_DATA]);
323 if (!attr[IFLA_VRF_TABLE]) {
324 if (IS_ZEBRA_DEBUG_KERNEL)
325 zlog_debug(
326 "%s: IFLA_VRF_TABLE missing from VRF message: %s",
327 __func__, name);
328 return;
329 }
330
331 nl_table_id = *(uint32_t *)RTA_DATA(attr[IFLA_VRF_TABLE]);
332
333 if (h->nlmsg_type == RTM_NEWLINK) {
334 if (IS_ZEBRA_DEBUG_KERNEL)
335 zlog_debug("RTM_NEWLINK for VRF %s(%u) table %u", name,
336 ifi->ifi_index, nl_table_id);
337
338 if (!vrf_lookup_by_id((vrf_id_t)ifi->ifi_index)) {
339 vrf_id_t exist_id;
340
341 exist_id = vrf_lookup_by_table(nl_table_id, ns_id);
342 if (exist_id != VRF_DEFAULT) {
343 vrf = vrf_lookup_by_id(exist_id);
344
345 flog_err(
346 EC_ZEBRA_VRF_MISCONFIGURED,
347 "VRF %s id %u table id overlaps existing vrf %s, misconfiguration exiting",
348 name, ifi->ifi_index, vrf->name);
349 exit(-1);
350 }
351 }
352
353 /*
354 * vrf_get is implied creation if it does not exist
355 */
356 vrf = vrf_get((vrf_id_t)ifi->ifi_index,
357 name); // It would create vrf
358 if (!vrf) {
359 flog_err(EC_LIB_INTERFACE, "VRF %s id %u not created",
360 name, ifi->ifi_index);
361 return;
362 }
363
364 /*
365 * This is the only place that we get the actual kernel table_id
366 * being used. We need it to set the table_id of the routes
367 * we are passing to the kernel.... And to throw some totally
368 * awesome parties. that too.
369 *
370 * At this point we *must* have a zvrf because the vrf_create
371 * callback creates one. We *must* set the table id
372 * before the vrf_enable because of( at the very least )
373 * static routes being delayed for installation until
374 * during the vrf_enable callbacks.
375 */
376 zvrf = (struct zebra_vrf *)vrf->info;
377 zvrf->table_id = nl_table_id;
378
379 /* Enable the created VRF. */
380 if (!vrf_enable(vrf)) {
381 flog_err(EC_LIB_INTERFACE,
382 "Failed to enable VRF %s id %u", name,
383 ifi->ifi_index);
384 return;
385 }
386
387 } else // h->nlmsg_type == RTM_DELLINK
388 {
389 if (IS_ZEBRA_DEBUG_KERNEL)
390 zlog_debug("RTM_DELLINK for VRF %s(%u)", name,
391 ifi->ifi_index);
392
393 vrf = vrf_lookup_by_id((vrf_id_t)ifi->ifi_index);
394
395 if (!vrf) {
396 flog_warn(EC_ZEBRA_VRF_NOT_FOUND, "%s: vrf not found",
397 __func__);
398 return;
399 }
400
401 vrf_delete(vrf);
402 }
403 }
404
405 static uint32_t get_iflink_speed(struct interface *interface, int *error)
406 {
407 struct ifreq ifdata;
408 struct ethtool_cmd ecmd;
409 int sd;
410 int rc;
411 const char *ifname = interface->name;
412
413 if (error)
414 *error = 0;
415 /* initialize struct */
416 memset(&ifdata, 0, sizeof(ifdata));
417
418 /* set interface name */
419 strlcpy(ifdata.ifr_name, ifname, sizeof(ifdata.ifr_name));
420
421 /* initialize ethtool interface */
422 memset(&ecmd, 0, sizeof(ecmd));
423 ecmd.cmd = ETHTOOL_GSET; /* ETHTOOL_GLINK */
424 ifdata.ifr_data = (caddr_t)&ecmd;
425
426 /* use ioctl to get IP address of an interface */
427 frr_with_privs(&zserv_privs) {
428 sd = vrf_socket(PF_INET, SOCK_DGRAM, IPPROTO_IP,
429 interface->vrf_id,
430 NULL);
431 if (sd < 0) {
432 if (IS_ZEBRA_DEBUG_KERNEL)
433 zlog_debug("Failure to read interface %s speed: %d %s",
434 ifname, errno, safe_strerror(errno));
435 /* no vrf socket creation may probably mean vrf issue */
436 if (error)
437 *error = -1;
438 return 0;
439 }
440 /* Get the current link state for the interface */
441 rc = vrf_ioctl(interface->vrf_id, sd, SIOCETHTOOL,
442 (char *)&ifdata);
443 }
444 if (rc < 0) {
445 if (errno != EOPNOTSUPP && IS_ZEBRA_DEBUG_KERNEL)
446 zlog_debug(
447 "IOCTL failure to read interface %s speed: %d %s",
448 ifname, errno, safe_strerror(errno));
449 /* no device means interface unreachable */
450 if (errno == ENODEV && error)
451 *error = -1;
452 ecmd.speed_hi = 0;
453 ecmd.speed = 0;
454 }
455
456 close(sd);
457
458 return ((uint32_t)ecmd.speed_hi << 16) | ecmd.speed;
459 }
460
461 uint32_t kernel_get_speed(struct interface *ifp, int *error)
462 {
463 return get_iflink_speed(ifp, error);
464 }
465
466 static int netlink_extract_bridge_info(struct rtattr *link_data,
467 struct zebra_l2info_bridge *bridge_info)
468 {
469 struct rtattr *attr[IFLA_BR_MAX + 1];
470
471 memset(bridge_info, 0, sizeof(*bridge_info));
472 memset(attr, 0, sizeof(attr));
473 parse_rtattr_nested(attr, IFLA_BR_MAX, link_data);
474 if (attr[IFLA_BR_VLAN_FILTERING])
475 bridge_info->vlan_aware =
476 *(uint8_t *)RTA_DATA(attr[IFLA_BR_VLAN_FILTERING]);
477 return 0;
478 }
479
480 static int netlink_extract_vlan_info(struct rtattr *link_data,
481 struct zebra_l2info_vlan *vlan_info)
482 {
483 struct rtattr *attr[IFLA_VLAN_MAX + 1];
484 vlanid_t vid_in_msg;
485
486 memset(vlan_info, 0, sizeof(*vlan_info));
487 memset(attr, 0, sizeof(attr));
488 parse_rtattr_nested(attr, IFLA_VLAN_MAX, link_data);
489 if (!attr[IFLA_VLAN_ID]) {
490 if (IS_ZEBRA_DEBUG_KERNEL)
491 zlog_debug("IFLA_VLAN_ID missing from VLAN IF message");
492 return -1;
493 }
494
495 vid_in_msg = *(vlanid_t *)RTA_DATA(attr[IFLA_VLAN_ID]);
496 vlan_info->vid = vid_in_msg;
497 return 0;
498 }
499
500 static int netlink_extract_vxlan_info(struct rtattr *link_data,
501 struct zebra_l2info_vxlan *vxl_info)
502 {
503 struct rtattr *attr[IFLA_VXLAN_MAX + 1];
504 vni_t vni_in_msg;
505 struct in_addr vtep_ip_in_msg;
506 ifindex_t ifindex_link;
507
508 memset(vxl_info, 0, sizeof(*vxl_info));
509 memset(attr, 0, sizeof(attr));
510 parse_rtattr_nested(attr, IFLA_VXLAN_MAX, link_data);
511 if (!attr[IFLA_VXLAN_ID]) {
512 if (IS_ZEBRA_DEBUG_KERNEL)
513 zlog_debug(
514 "IFLA_VXLAN_ID missing from VXLAN IF message");
515 return -1;
516 }
517
518 vni_in_msg = *(vni_t *)RTA_DATA(attr[IFLA_VXLAN_ID]);
519 vxl_info->vni = vni_in_msg;
520 if (!attr[IFLA_VXLAN_LOCAL]) {
521 if (IS_ZEBRA_DEBUG_KERNEL)
522 zlog_debug(
523 "IFLA_VXLAN_LOCAL missing from VXLAN IF message");
524 } else {
525 vtep_ip_in_msg =
526 *(struct in_addr *)RTA_DATA(attr[IFLA_VXLAN_LOCAL]);
527 vxl_info->vtep_ip = vtep_ip_in_msg;
528 }
529
530 if (attr[IFLA_VXLAN_GROUP]) {
531 vxl_info->mcast_grp =
532 *(struct in_addr *)RTA_DATA(attr[IFLA_VXLAN_GROUP]);
533 }
534
535 if (!attr[IFLA_VXLAN_LINK]) {
536 if (IS_ZEBRA_DEBUG_KERNEL)
537 zlog_debug("IFLA_VXLAN_LINK missing from VXLAN IF message");
538 } else {
539 ifindex_link =
540 *(ifindex_t *)RTA_DATA(attr[IFLA_VXLAN_LINK]);
541 vxl_info->ifindex_link = ifindex_link;
542 }
543 return 0;
544 }
545
546 /*
547 * Extract and save L2 params (of interest) for an interface. When a
548 * bridge interface is added or updated, take further actions to map
549 * its members. Likewise, for VxLAN interface.
550 */
551 static void netlink_interface_update_l2info(struct interface *ifp,
552 struct rtattr *link_data, int add,
553 ns_id_t link_nsid)
554 {
555 if (!link_data)
556 return;
557
558 if (IS_ZEBRA_IF_BRIDGE(ifp)) {
559 struct zebra_l2info_bridge bridge_info;
560
561 netlink_extract_bridge_info(link_data, &bridge_info);
562 zebra_l2_bridge_add_update(ifp, &bridge_info, add);
563 } else if (IS_ZEBRA_IF_VLAN(ifp)) {
564 struct zebra_l2info_vlan vlan_info;
565
566 netlink_extract_vlan_info(link_data, &vlan_info);
567 zebra_l2_vlanif_update(ifp, &vlan_info);
568 } else if (IS_ZEBRA_IF_VXLAN(ifp)) {
569 struct zebra_l2info_vxlan vxlan_info;
570
571 netlink_extract_vxlan_info(link_data, &vxlan_info);
572 vxlan_info.link_nsid = link_nsid;
573 zebra_l2_vxlanif_add_update(ifp, &vxlan_info, add);
574 if (link_nsid != NS_UNKNOWN &&
575 vxlan_info.ifindex_link)
576 zebra_if_update_link(ifp, vxlan_info.ifindex_link,
577 link_nsid);
578 }
579 }
580
581 static int netlink_bridge_vxlan_update(struct interface *ifp,
582 struct rtattr *af_spec)
583 {
584 struct rtattr *aftb[IFLA_BRIDGE_MAX + 1];
585 struct bridge_vlan_info *vinfo;
586 vlanid_t access_vlan;
587
588 /* There is a 1-to-1 mapping of VLAN to VxLAN - hence
589 * only 1 access VLAN is accepted.
590 */
591 memset(aftb, 0, sizeof(aftb));
592 parse_rtattr_nested(aftb, IFLA_BRIDGE_MAX, af_spec);
593 if (!aftb[IFLA_BRIDGE_VLAN_INFO])
594 return 0;
595
596 vinfo = RTA_DATA(aftb[IFLA_BRIDGE_VLAN_INFO]);
597 if (!(vinfo->flags & BRIDGE_VLAN_INFO_PVID))
598 return 0;
599
600 access_vlan = (vlanid_t)vinfo->vid;
601 if (IS_ZEBRA_DEBUG_KERNEL)
602 zlog_debug("Access VLAN %u for VxLAN IF %s(%u)", access_vlan,
603 ifp->name, ifp->ifindex);
604 zebra_l2_vxlanif_update_access_vlan(ifp, access_vlan);
605 return 0;
606 }
607
608 static void netlink_bridge_vlan_update(struct interface *ifp,
609 struct rtattr *af_spec)
610 {
611 struct rtattr *i;
612 int rem;
613 uint16_t vid_range_start = 0;
614 struct zebra_if *zif;
615 bitfield_t old_vlan_bitmap;
616 struct bridge_vlan_info *vinfo;
617
618 zif = (struct zebra_if *)ifp->info;
619
620 /* cache the old bitmap addrs */
621 old_vlan_bitmap = zif->vlan_bitmap;
622 /* create a new bitmap space for re-eval */
623 bf_init(zif->vlan_bitmap, IF_VLAN_BITMAP_MAX);
624
625 for (i = RTA_DATA(af_spec), rem = RTA_PAYLOAD(af_spec);
626 RTA_OK(i, rem); i = RTA_NEXT(i, rem)) {
627
628 if (i->rta_type != IFLA_BRIDGE_VLAN_INFO)
629 continue;
630
631 vinfo = RTA_DATA(i);
632
633 if (vinfo->flags & BRIDGE_VLAN_INFO_RANGE_BEGIN) {
634 vid_range_start = vinfo->vid;
635 continue;
636 }
637
638 if (!(vinfo->flags & BRIDGE_VLAN_INFO_RANGE_END))
639 vid_range_start = vinfo->vid;
640
641 zebra_vlan_bitmap_compute(ifp, vid_range_start, vinfo->vid);
642 }
643
644 zebra_vlan_mbr_re_eval(ifp, old_vlan_bitmap);
645
646 bf_free(old_vlan_bitmap);
647 }
648
649 static int netlink_bridge_interface(struct nlmsghdr *h, int len, ns_id_t ns_id,
650 int startup)
651 {
652 char *name = NULL;
653 struct ifinfomsg *ifi;
654 struct rtattr *tb[IFLA_MAX + 1];
655 struct interface *ifp;
656 struct zebra_if *zif;
657 struct rtattr *af_spec;
658
659 /* Fetch name and ifindex */
660 ifi = NLMSG_DATA(h);
661 memset(tb, 0, sizeof(tb));
662 netlink_parse_rtattr(tb, IFLA_MAX, IFLA_RTA(ifi), len);
663
664 if (tb[IFLA_IFNAME] == NULL)
665 return -1;
666 name = (char *)RTA_DATA(tb[IFLA_IFNAME]);
667
668 /* The interface should already be known, if not discard. */
669 ifp = if_lookup_by_index_per_ns(zebra_ns_lookup(ns_id), ifi->ifi_index);
670 if (!ifp) {
671 zlog_debug("Cannot find bridge IF %s(%u)", name,
672 ifi->ifi_index);
673 return 0;
674 }
675
676 /* We are only interested in the access VLAN i.e., AF_SPEC */
677 af_spec = tb[IFLA_AF_SPEC];
678 if (!af_spec)
679 return 0;
680
681 if (IS_ZEBRA_IF_VXLAN(ifp))
682 return netlink_bridge_vxlan_update(ifp, af_spec);
683
684 /* build vlan bitmap associated with this interface if that
685 * device type is interested in the vlans
686 */
687 zif = (struct zebra_if *)ifp->info;
688 if (bf_is_inited(zif->vlan_bitmap))
689 netlink_bridge_vlan_update(ifp, af_spec);
690
691 return 0;
692 }
693
694 /*
695 * Called from interface_lookup_netlink(). This function is only used
696 * during bootstrap.
697 */
698 static int netlink_interface(struct nlmsghdr *h, ns_id_t ns_id, int startup)
699 {
700 int len;
701 struct ifinfomsg *ifi;
702 struct rtattr *tb[IFLA_MAX + 1];
703 struct rtattr *linkinfo[IFLA_MAX + 1];
704 struct interface *ifp;
705 char *name = NULL;
706 char *kind = NULL;
707 char *desc = NULL;
708 char *slave_kind = NULL;
709 struct zebra_ns *zns = NULL;
710 vrf_id_t vrf_id = VRF_DEFAULT;
711 zebra_iftype_t zif_type = ZEBRA_IF_OTHER;
712 zebra_slave_iftype_t zif_slave_type = ZEBRA_IF_SLAVE_NONE;
713 ifindex_t bridge_ifindex = IFINDEX_INTERNAL;
714 ifindex_t link_ifindex = IFINDEX_INTERNAL;
715 ifindex_t bond_ifindex = IFINDEX_INTERNAL;
716 struct zebra_if *zif;
717 ns_id_t link_nsid = ns_id;
718
719 zns = zebra_ns_lookup(ns_id);
720 ifi = NLMSG_DATA(h);
721
722 if (h->nlmsg_type != RTM_NEWLINK)
723 return 0;
724
725 len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct ifinfomsg));
726 if (len < 0) {
727 zlog_err(
728 "%s: Message received from netlink is of a broken size: %d %zu",
729 __func__, h->nlmsg_len,
730 (size_t)NLMSG_LENGTH(sizeof(struct ifinfomsg)));
731 return -1;
732 }
733
734 /* We are interested in some AF_BRIDGE notifications. */
735 if (ifi->ifi_family == AF_BRIDGE)
736 return netlink_bridge_interface(h, len, ns_id, startup);
737
738 /* Looking up interface name. */
739 memset(tb, 0, sizeof(tb));
740 memset(linkinfo, 0, sizeof(linkinfo));
741 netlink_parse_rtattr(tb, IFLA_MAX, IFLA_RTA(ifi), len);
742
743 /* check for wireless messages to ignore */
744 if ((tb[IFLA_WIRELESS] != NULL) && (ifi->ifi_change == 0)) {
745 if (IS_ZEBRA_DEBUG_KERNEL)
746 zlog_debug("%s: ignoring IFLA_WIRELESS message",
747 __func__);
748 return 0;
749 }
750
751 if (tb[IFLA_IFNAME] == NULL)
752 return -1;
753 name = (char *)RTA_DATA(tb[IFLA_IFNAME]);
754
755 if (tb[IFLA_IFALIAS])
756 desc = (char *)RTA_DATA(tb[IFLA_IFALIAS]);
757
758 if (tb[IFLA_LINKINFO]) {
759 parse_rtattr_nested(linkinfo, IFLA_INFO_MAX, tb[IFLA_LINKINFO]);
760
761 if (linkinfo[IFLA_INFO_KIND])
762 kind = RTA_DATA(linkinfo[IFLA_INFO_KIND]);
763
764 if (linkinfo[IFLA_INFO_SLAVE_KIND])
765 slave_kind = RTA_DATA(linkinfo[IFLA_INFO_SLAVE_KIND]);
766
767 if ((slave_kind != NULL) && strcmp(slave_kind, "bond") == 0)
768 netlink_determine_zebra_iftype("bond_slave", &zif_type);
769 else
770 netlink_determine_zebra_iftype(kind, &zif_type);
771 }
772
773 /* If VRF, create the VRF structure itself. */
774 if (zif_type == ZEBRA_IF_VRF && !vrf_is_backend_netns()) {
775 netlink_vrf_change(h, tb[IFLA_LINKINFO], ns_id, name);
776 vrf_id = (vrf_id_t)ifi->ifi_index;
777 }
778
779 if (tb[IFLA_MASTER]) {
780 if (slave_kind && (strcmp(slave_kind, "vrf") == 0)
781 && !vrf_is_backend_netns()) {
782 zif_slave_type = ZEBRA_IF_SLAVE_VRF;
783 vrf_id = *(uint32_t *)RTA_DATA(tb[IFLA_MASTER]);
784 } else if (slave_kind && (strcmp(slave_kind, "bridge") == 0)) {
785 zif_slave_type = ZEBRA_IF_SLAVE_BRIDGE;
786 bridge_ifindex =
787 *(ifindex_t *)RTA_DATA(tb[IFLA_MASTER]);
788 } else if (slave_kind && (strcmp(slave_kind, "bond") == 0)) {
789 zif_slave_type = ZEBRA_IF_SLAVE_BOND;
790 bond_ifindex = *(ifindex_t *)RTA_DATA(tb[IFLA_MASTER]);
791 } else
792 zif_slave_type = ZEBRA_IF_SLAVE_OTHER;
793 }
794 if (vrf_is_backend_netns())
795 vrf_id = (vrf_id_t)ns_id;
796
797 /* If linking to another interface, note it. */
798 if (tb[IFLA_LINK])
799 link_ifindex = *(ifindex_t *)RTA_DATA(tb[IFLA_LINK]);
800
801 if (tb[IFLA_LINK_NETNSID]) {
802 link_nsid = *(ns_id_t *)RTA_DATA(tb[IFLA_LINK_NETNSID]);
803 link_nsid = ns_id_get_absolute(ns_id, link_nsid);
804 }
805
806 /* Add interface.
807 * We add by index first because in some cases such as the master
808 * interface, we have the index before we have the name. Fixing
809 * back references on the slave interfaces is painful if not done
810 * this way, i.e. by creating by ifindex.
811 */
812 ifp = if_get_by_ifindex(ifi->ifi_index, vrf_id);
813 set_ifindex(ifp, ifi->ifi_index, zns); /* add it to ns struct */
814
815 if_set_name(ifp, name);
816
817 ifp->flags = ifi->ifi_flags & 0x0000fffff;
818 ifp->mtu6 = ifp->mtu = *(uint32_t *)RTA_DATA(tb[IFLA_MTU]);
819 ifp->metric = 0;
820 ifp->speed = get_iflink_speed(ifp, NULL);
821 ifp->ptm_status = ZEBRA_PTM_STATUS_UNKNOWN;
822
823 /* Set zebra interface type */
824 zebra_if_set_ziftype(ifp, zif_type, zif_slave_type);
825 if (IS_ZEBRA_IF_VRF(ifp))
826 SET_FLAG(ifp->status, ZEBRA_INTERFACE_VRF_LOOPBACK);
827
828 /*
829 * Just set the @link/lower-device ifindex. During nldump interfaces are
830 * not ordered in any fashion so we may end up getting upper devices
831 * before lower devices. We will setup the real linkage once the dump
832 * is complete.
833 */
834 zif = (struct zebra_if *)ifp->info;
835 zif->link_ifindex = link_ifindex;
836
837 if (desc) {
838 XFREE(MTYPE_TMP, zif->desc);
839 zif->desc = XSTRDUP(MTYPE_TMP, desc);
840 }
841
842 /* Hardware type and address. */
843 ifp->ll_type = netlink_to_zebra_link_type(ifi->ifi_type);
844 netlink_interface_update_hw_addr(tb, ifp);
845
846 if_add_update(ifp);
847
848 /* Extract and save L2 interface information, take additional actions.
849 */
850 netlink_interface_update_l2info(ifp, linkinfo[IFLA_INFO_DATA],
851 1, link_nsid);
852 if (IS_ZEBRA_IF_BRIDGE_SLAVE(ifp))
853 zebra_l2if_update_bridge_slave(ifp, bridge_ifindex, ns_id);
854 else if (IS_ZEBRA_IF_BOND_SLAVE(ifp))
855 zebra_l2if_update_bond_slave(ifp, bond_ifindex);
856
857 return 0;
858 }
859
860 /* Request for specific interface or address information from the kernel */
861 static int netlink_request_intf_addr(struct nlsock *netlink_cmd, int family,
862 int type, uint32_t filter_mask)
863 {
864 struct {
865 struct nlmsghdr n;
866 struct ifinfomsg ifm;
867 char buf[256];
868 } req;
869
870 /* Form the request, specifying filter (rtattr) if needed. */
871 memset(&req, 0, sizeof(req));
872 req.n.nlmsg_type = type;
873 req.n.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST;
874 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg));
875 req.ifm.ifi_family = family;
876
877 /* Include filter, if specified. */
878 if (filter_mask)
879 nl_attr_put32(&req.n, sizeof(req), IFLA_EXT_MASK, filter_mask);
880
881 return netlink_request(netlink_cmd, &req);
882 }
883
884 /* Interface lookup by netlink socket. */
885 int interface_lookup_netlink(struct zebra_ns *zns)
886 {
887 int ret;
888 struct zebra_dplane_info dp_info;
889 struct nlsock *netlink_cmd = &zns->netlink_cmd;
890
891 /* Capture key info from ns struct */
892 zebra_dplane_info_from_zns(&dp_info, zns, true /*is_cmd*/);
893
894 /* Get interface information. */
895 ret = netlink_request_intf_addr(netlink_cmd, AF_PACKET, RTM_GETLINK, 0);
896 if (ret < 0)
897 return ret;
898 ret = netlink_parse_info(netlink_interface, netlink_cmd, &dp_info, 0,
899 1);
900 if (ret < 0)
901 return ret;
902
903 /* Get interface information - for bridge interfaces. */
904 ret = netlink_request_intf_addr(netlink_cmd, AF_BRIDGE, RTM_GETLINK,
905 RTEXT_FILTER_BRVLAN);
906 if (ret < 0)
907 return ret;
908 ret = netlink_parse_info(netlink_interface, netlink_cmd, &dp_info, 0,
909 0);
910 if (ret < 0)
911 return ret;
912
913 /* Get interface information - for bridge interfaces. */
914 ret = netlink_request_intf_addr(netlink_cmd, AF_BRIDGE, RTM_GETLINK,
915 RTEXT_FILTER_BRVLAN);
916 if (ret < 0)
917 return ret;
918 ret = netlink_parse_info(netlink_interface, netlink_cmd, &dp_info, 0,
919 0);
920 if (ret < 0)
921 return ret;
922
923 /* fixup linkages */
924 zebra_if_update_all_links();
925 return 0;
926 }
927
928 /**
929 * interface_addr_lookup_netlink() - Look up interface addresses
930 *
931 * @zns: Zebra netlink socket
932 * Return: Result status
933 */
934 static int interface_addr_lookup_netlink(struct zebra_ns *zns)
935 {
936 int ret;
937 struct zebra_dplane_info dp_info;
938 struct nlsock *netlink_cmd = &zns->netlink_cmd;
939
940 /* Capture key info from ns struct */
941 zebra_dplane_info_from_zns(&dp_info, zns, true /*is_cmd*/);
942
943 /* Get IPv4 address of the interfaces. */
944 ret = netlink_request_intf_addr(netlink_cmd, AF_INET, RTM_GETADDR, 0);
945 if (ret < 0)
946 return ret;
947 ret = netlink_parse_info(netlink_interface_addr, netlink_cmd, &dp_info,
948 0, 1);
949 if (ret < 0)
950 return ret;
951
952 /* Get IPv6 address of the interfaces. */
953 ret = netlink_request_intf_addr(netlink_cmd, AF_INET6, RTM_GETADDR, 0);
954 if (ret < 0)
955 return ret;
956 ret = netlink_parse_info(netlink_interface_addr, netlink_cmd, &dp_info,
957 0, 1);
958 if (ret < 0)
959 return ret;
960
961 return 0;
962 }
963
964 int kernel_interface_set_master(struct interface *master,
965 struct interface *slave)
966 {
967 struct zebra_ns *zns = zebra_ns_lookup(NS_DEFAULT);
968
969 struct {
970 struct nlmsghdr n;
971 struct ifinfomsg ifa;
972 char buf[NL_PKT_BUF_SIZE];
973 } req;
974
975 memset(&req, 0, sizeof(req));
976
977 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg));
978 req.n.nlmsg_flags = NLM_F_REQUEST;
979 req.n.nlmsg_type = RTM_SETLINK;
980 req.n.nlmsg_pid = zns->netlink_cmd.snl.nl_pid;
981
982 req.ifa.ifi_index = slave->ifindex;
983
984 nl_attr_put32(&req.n, sizeof(req), IFLA_MASTER, master->ifindex);
985 nl_attr_put32(&req.n, sizeof(req), IFLA_LINK, slave->ifindex);
986
987 return netlink_talk(netlink_talk_filter, &req.n, &zns->netlink_cmd, zns,
988 0);
989 }
990
991 /* Interface address modification. */
992 static ssize_t netlink_address_msg_encoder(struct zebra_dplane_ctx *ctx,
993 void *buf, size_t buflen)
994 {
995 int bytelen;
996 const struct prefix *p;
997 int cmd;
998 const char *label;
999
1000 struct {
1001 struct nlmsghdr n;
1002 struct ifaddrmsg ifa;
1003 char buf[0];
1004 } *req = buf;
1005
1006 if (buflen < sizeof(*req))
1007 return 0;
1008
1009 p = dplane_ctx_get_intf_addr(ctx);
1010 memset(req, 0, sizeof(*req));
1011
1012 bytelen = (p->family == AF_INET ? 4 : 16);
1013
1014 req->n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifaddrmsg));
1015 req->n.nlmsg_flags = NLM_F_REQUEST;
1016
1017 if (dplane_ctx_get_op(ctx) == DPLANE_OP_ADDR_INSTALL)
1018 cmd = RTM_NEWADDR;
1019 else
1020 cmd = RTM_DELADDR;
1021
1022 req->n.nlmsg_type = cmd;
1023 req->ifa.ifa_family = p->family;
1024
1025 req->ifa.ifa_index = dplane_ctx_get_ifindex(ctx);
1026
1027 if (!nl_attr_put(&req->n, buflen, IFA_LOCAL, &p->u.prefix, bytelen))
1028 return 0;
1029
1030 if (p->family == AF_INET) {
1031 if (dplane_ctx_intf_is_connected(ctx)) {
1032 p = dplane_ctx_get_intf_dest(ctx);
1033 if (!nl_attr_put(&req->n, buflen, IFA_ADDRESS,
1034 &p->u.prefix, bytelen))
1035 return 0;
1036 } else if (cmd == RTM_NEWADDR) {
1037 struct in_addr broad = {
1038 .s_addr = ipv4_broadcast_addr(p->u.prefix4.s_addr,
1039 p->prefixlen)
1040 };
1041 if (!nl_attr_put(&req->n, buflen, IFA_BROADCAST, &broad,
1042 bytelen))
1043 return 0;
1044 }
1045 }
1046
1047 /* p is now either address or destination/bcast addr */
1048 req->ifa.ifa_prefixlen = p->prefixlen;
1049
1050 if (dplane_ctx_intf_is_secondary(ctx))
1051 SET_FLAG(req->ifa.ifa_flags, IFA_F_SECONDARY);
1052
1053 if (dplane_ctx_intf_has_label(ctx)) {
1054 label = dplane_ctx_get_intf_label(ctx);
1055 if (!nl_attr_put(&req->n, buflen, IFA_LABEL, label,
1056 strlen(label) + 1))
1057 return 0;
1058 }
1059
1060 return NLMSG_ALIGN(req->n.nlmsg_len);
1061 }
1062
1063 enum netlink_msg_status
1064 netlink_put_address_update_msg(struct nl_batch *bth,
1065 struct zebra_dplane_ctx *ctx)
1066 {
1067 return netlink_batch_add_msg(bth, ctx, netlink_address_msg_encoder,
1068 false);
1069 }
1070
1071 int netlink_interface_addr(struct nlmsghdr *h, ns_id_t ns_id, int startup)
1072 {
1073 int len;
1074 struct ifaddrmsg *ifa;
1075 struct rtattr *tb[IFA_MAX + 1];
1076 struct interface *ifp;
1077 void *addr;
1078 void *broad;
1079 uint8_t flags = 0;
1080 char *label = NULL;
1081 struct zebra_ns *zns;
1082 uint32_t metric = METRIC_MAX;
1083 uint32_t kernel_flags = 0;
1084
1085 zns = zebra_ns_lookup(ns_id);
1086 ifa = NLMSG_DATA(h);
1087
1088 if (ifa->ifa_family != AF_INET && ifa->ifa_family != AF_INET6) {
1089 flog_warn(
1090 EC_ZEBRA_UNKNOWN_FAMILY,
1091 "Invalid address family: %u received from kernel interface addr change: %s",
1092 ifa->ifa_family, nl_msg_type_to_str(h->nlmsg_type));
1093 return 0;
1094 }
1095
1096 if (h->nlmsg_type != RTM_NEWADDR && h->nlmsg_type != RTM_DELADDR)
1097 return 0;
1098
1099 len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct ifaddrmsg));
1100 if (len < 0) {
1101 zlog_err(
1102 "%s: Message received from netlink is of a broken size: %d %zu",
1103 __func__, h->nlmsg_len,
1104 (size_t)NLMSG_LENGTH(sizeof(struct ifaddrmsg)));
1105 return -1;
1106 }
1107
1108 memset(tb, 0, sizeof(tb));
1109 netlink_parse_rtattr(tb, IFA_MAX, IFA_RTA(ifa), len);
1110
1111 ifp = if_lookup_by_index_per_ns(zns, ifa->ifa_index);
1112 if (ifp == NULL) {
1113 flog_err(
1114 EC_LIB_INTERFACE,
1115 "netlink_interface_addr can't find interface by index %d",
1116 ifa->ifa_index);
1117 return -1;
1118 }
1119
1120 /* Flags passed through */
1121 if (tb[IFA_FLAGS])
1122 kernel_flags = *(int *)RTA_DATA(tb[IFA_FLAGS]);
1123 else
1124 kernel_flags = ifa->ifa_flags;
1125
1126 if (IS_ZEBRA_DEBUG_KERNEL) /* remove this line to see initial ifcfg */
1127 {
1128 char buf[BUFSIZ];
1129 zlog_debug("netlink_interface_addr %s %s flags 0x%x:",
1130 nl_msg_type_to_str(h->nlmsg_type), ifp->name,
1131 kernel_flags);
1132 if (tb[IFA_LOCAL])
1133 zlog_debug(" IFA_LOCAL %s/%d",
1134 inet_ntop(ifa->ifa_family,
1135 RTA_DATA(tb[IFA_LOCAL]), buf,
1136 BUFSIZ),
1137 ifa->ifa_prefixlen);
1138 if (tb[IFA_ADDRESS])
1139 zlog_debug(" IFA_ADDRESS %s/%d",
1140 inet_ntop(ifa->ifa_family,
1141 RTA_DATA(tb[IFA_ADDRESS]), buf,
1142 BUFSIZ),
1143 ifa->ifa_prefixlen);
1144 if (tb[IFA_BROADCAST])
1145 zlog_debug(" IFA_BROADCAST %s/%d",
1146 inet_ntop(ifa->ifa_family,
1147 RTA_DATA(tb[IFA_BROADCAST]), buf,
1148 BUFSIZ),
1149 ifa->ifa_prefixlen);
1150 if (tb[IFA_LABEL] && strcmp(ifp->name, RTA_DATA(tb[IFA_LABEL])))
1151 zlog_debug(" IFA_LABEL %s",
1152 (char *)RTA_DATA(tb[IFA_LABEL]));
1153
1154 if (tb[IFA_CACHEINFO]) {
1155 struct ifa_cacheinfo *ci = RTA_DATA(tb[IFA_CACHEINFO]);
1156 zlog_debug(" IFA_CACHEINFO pref %d, valid %d",
1157 ci->ifa_prefered, ci->ifa_valid);
1158 }
1159 }
1160
1161 /* logic copied from iproute2/ip/ipaddress.c:print_addrinfo() */
1162 if (tb[IFA_LOCAL] == NULL)
1163 tb[IFA_LOCAL] = tb[IFA_ADDRESS];
1164 if (tb[IFA_ADDRESS] == NULL)
1165 tb[IFA_ADDRESS] = tb[IFA_LOCAL];
1166
1167 /* local interface address */
1168 addr = (tb[IFA_LOCAL] ? RTA_DATA(tb[IFA_LOCAL]) : NULL);
1169
1170 /* is there a peer address? */
1171 if (tb[IFA_ADDRESS]
1172 && memcmp(RTA_DATA(tb[IFA_ADDRESS]), RTA_DATA(tb[IFA_LOCAL]),
1173 RTA_PAYLOAD(tb[IFA_ADDRESS]))) {
1174 broad = RTA_DATA(tb[IFA_ADDRESS]);
1175 SET_FLAG(flags, ZEBRA_IFA_PEER);
1176 } else
1177 /* seeking a broadcast address */
1178 broad = (tb[IFA_BROADCAST] ? RTA_DATA(tb[IFA_BROADCAST])
1179 : NULL);
1180
1181 /* addr is primary key, SOL if we don't have one */
1182 if (addr == NULL) {
1183 zlog_debug("%s: Local Interface Address is NULL for %s",
1184 __func__, ifp->name);
1185 return -1;
1186 }
1187
1188 /* Flags. */
1189 if (kernel_flags & IFA_F_SECONDARY)
1190 SET_FLAG(flags, ZEBRA_IFA_SECONDARY);
1191
1192 /* Label */
1193 if (tb[IFA_LABEL])
1194 label = (char *)RTA_DATA(tb[IFA_LABEL]);
1195
1196 if (label && strcmp(ifp->name, label) == 0)
1197 label = NULL;
1198
1199 if (tb[IFA_RT_PRIORITY])
1200 metric = *(uint32_t *)RTA_DATA(tb[IFA_RT_PRIORITY]);
1201
1202 /* Register interface address to the interface. */
1203 if (ifa->ifa_family == AF_INET) {
1204 if (ifa->ifa_prefixlen > IPV4_MAX_BITLEN) {
1205 zlog_err(
1206 "Invalid prefix length: %u received from kernel interface addr change: %s",
1207 ifa->ifa_prefixlen,
1208 nl_msg_type_to_str(h->nlmsg_type));
1209 return -1;
1210 }
1211
1212 if (h->nlmsg_type == RTM_NEWADDR)
1213 connected_add_ipv4(ifp, flags, (struct in_addr *)addr,
1214 ifa->ifa_prefixlen,
1215 (struct in_addr *)broad, label,
1216 metric);
1217 else if (CHECK_FLAG(flags, ZEBRA_IFA_PEER)) {
1218 /* Delete with a peer address */
1219 connected_delete_ipv4(
1220 ifp, flags, (struct in_addr *)addr,
1221 ifa->ifa_prefixlen, broad);
1222 } else
1223 connected_delete_ipv4(
1224 ifp, flags, (struct in_addr *)addr,
1225 ifa->ifa_prefixlen, NULL);
1226 }
1227
1228 if (ifa->ifa_family == AF_INET6) {
1229 if (ifa->ifa_prefixlen > IPV6_MAX_BITLEN) {
1230 zlog_err(
1231 "Invalid prefix length: %u received from kernel interface addr change: %s",
1232 ifa->ifa_prefixlen,
1233 nl_msg_type_to_str(h->nlmsg_type));
1234 return -1;
1235 }
1236 if (h->nlmsg_type == RTM_NEWADDR) {
1237 /* Only consider valid addresses; we'll not get a
1238 * notification from
1239 * the kernel till IPv6 DAD has completed, but at init
1240 * time, Quagga
1241 * does query for and will receive all addresses.
1242 */
1243 if (!(kernel_flags
1244 & (IFA_F_DADFAILED | IFA_F_TENTATIVE)))
1245 connected_add_ipv6(ifp, flags,
1246 (struct in6_addr *)addr,
1247 (struct in6_addr *)broad,
1248 ifa->ifa_prefixlen, label,
1249 metric);
1250 } else
1251 connected_delete_ipv6(ifp, (struct in6_addr *)addr,
1252 NULL, ifa->ifa_prefixlen);
1253 }
1254
1255
1256 /*
1257 * Linux kernel does not send route delete on interface down/addr del
1258 * so we have to re-process routes it owns (i.e. kernel routes)
1259 */
1260 if (h->nlmsg_type != RTM_NEWADDR)
1261 rib_update(RIB_UPDATE_KERNEL);
1262
1263 return 0;
1264 }
1265
1266 int netlink_link_change(struct nlmsghdr *h, ns_id_t ns_id, int startup)
1267 {
1268 int len;
1269 struct ifinfomsg *ifi;
1270 struct rtattr *tb[IFLA_MAX + 1];
1271 struct rtattr *linkinfo[IFLA_MAX + 1];
1272 struct interface *ifp;
1273 char *name = NULL;
1274 char *kind = NULL;
1275 char *desc = NULL;
1276 char *slave_kind = NULL;
1277 struct zebra_ns *zns;
1278 vrf_id_t vrf_id = VRF_DEFAULT;
1279 zebra_iftype_t zif_type = ZEBRA_IF_OTHER;
1280 zebra_slave_iftype_t zif_slave_type = ZEBRA_IF_SLAVE_NONE;
1281 ifindex_t bridge_ifindex = IFINDEX_INTERNAL;
1282 ifindex_t bond_ifindex = IFINDEX_INTERNAL;
1283 ifindex_t link_ifindex = IFINDEX_INTERNAL;
1284 uint8_t old_hw_addr[INTERFACE_HWADDR_MAX];
1285 struct zebra_if *zif;
1286 ns_id_t link_nsid = ns_id;
1287
1288 zns = zebra_ns_lookup(ns_id);
1289 ifi = NLMSG_DATA(h);
1290
1291 /* assume if not default zns, then new VRF */
1292 if (!(h->nlmsg_type == RTM_NEWLINK || h->nlmsg_type == RTM_DELLINK)) {
1293 /* If this is not link add/delete message so print warning. */
1294 zlog_debug("netlink_link_change: wrong kernel message %s",
1295 nl_msg_type_to_str(h->nlmsg_type));
1296 return 0;
1297 }
1298
1299 if (!(ifi->ifi_family == AF_UNSPEC || ifi->ifi_family == AF_BRIDGE
1300 || ifi->ifi_family == AF_INET6)) {
1301 flog_warn(
1302 EC_ZEBRA_UNKNOWN_FAMILY,
1303 "Invalid address family: %u received from kernel link change: %s",
1304 ifi->ifi_family, nl_msg_type_to_str(h->nlmsg_type));
1305 return 0;
1306 }
1307
1308 len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct ifinfomsg));
1309 if (len < 0) {
1310 zlog_err(
1311 "%s: Message received from netlink is of a broken size %d %zu",
1312 __func__, h->nlmsg_len,
1313 (size_t)NLMSG_LENGTH(sizeof(struct ifinfomsg)));
1314 return -1;
1315 }
1316
1317 /* We are interested in some AF_BRIDGE notifications. */
1318 if (ifi->ifi_family == AF_BRIDGE)
1319 return netlink_bridge_interface(h, len, ns_id, startup);
1320
1321 /* Looking up interface name. */
1322 memset(tb, 0, sizeof(tb));
1323 memset(linkinfo, 0, sizeof(linkinfo));
1324 netlink_parse_rtattr(tb, IFLA_MAX, IFLA_RTA(ifi), len);
1325
1326 /* check for wireless messages to ignore */
1327 if ((tb[IFLA_WIRELESS] != NULL) && (ifi->ifi_change == 0)) {
1328 if (IS_ZEBRA_DEBUG_KERNEL)
1329 zlog_debug("%s: ignoring IFLA_WIRELESS message",
1330 __func__);
1331 return 0;
1332 }
1333
1334 if (tb[IFLA_IFNAME] == NULL)
1335 return -1;
1336 name = (char *)RTA_DATA(tb[IFLA_IFNAME]);
1337
1338 if (tb[IFLA_LINKINFO]) {
1339 parse_rtattr_nested(linkinfo, IFLA_INFO_MAX, tb[IFLA_LINKINFO]);
1340
1341 if (linkinfo[IFLA_INFO_KIND])
1342 kind = RTA_DATA(linkinfo[IFLA_INFO_KIND]);
1343
1344 if (linkinfo[IFLA_INFO_SLAVE_KIND])
1345 slave_kind = RTA_DATA(linkinfo[IFLA_INFO_SLAVE_KIND]);
1346
1347 netlink_determine_zebra_iftype(kind, &zif_type);
1348 }
1349
1350 /* If linking to another interface, note it. */
1351 if (tb[IFLA_LINK])
1352 link_ifindex = *(ifindex_t *)RTA_DATA(tb[IFLA_LINK]);
1353
1354 if (tb[IFLA_LINK_NETNSID]) {
1355 link_nsid = *(ns_id_t *)RTA_DATA(tb[IFLA_LINK_NETNSID]);
1356 link_nsid = ns_id_get_absolute(ns_id, link_nsid);
1357 }
1358 if (tb[IFLA_IFALIAS]) {
1359 desc = (char *)RTA_DATA(tb[IFLA_IFALIAS]);
1360 }
1361
1362 /* If VRF, create or update the VRF structure itself. */
1363 if (zif_type == ZEBRA_IF_VRF && !vrf_is_backend_netns()) {
1364 netlink_vrf_change(h, tb[IFLA_LINKINFO], ns_id, name);
1365 vrf_id = (vrf_id_t)ifi->ifi_index;
1366 }
1367
1368 /* See if interface is present. */
1369 ifp = if_lookup_by_name_per_ns(zns, name);
1370
1371 if (h->nlmsg_type == RTM_NEWLINK) {
1372 if (tb[IFLA_MASTER]) {
1373 if (slave_kind && (strcmp(slave_kind, "vrf") == 0)
1374 && !vrf_is_backend_netns()) {
1375 zif_slave_type = ZEBRA_IF_SLAVE_VRF;
1376 vrf_id = *(uint32_t *)RTA_DATA(tb[IFLA_MASTER]);
1377 } else if (slave_kind
1378 && (strcmp(slave_kind, "bridge") == 0)) {
1379 zif_slave_type = ZEBRA_IF_SLAVE_BRIDGE;
1380 bridge_ifindex =
1381 *(ifindex_t *)RTA_DATA(tb[IFLA_MASTER]);
1382 } else if (slave_kind
1383 && (strcmp(slave_kind, "bond") == 0)) {
1384 zif_slave_type = ZEBRA_IF_SLAVE_BOND;
1385 bond_ifindex =
1386 *(ifindex_t *)RTA_DATA(tb[IFLA_MASTER]);
1387 } else
1388 zif_slave_type = ZEBRA_IF_SLAVE_OTHER;
1389 }
1390 if (vrf_is_backend_netns())
1391 vrf_id = (vrf_id_t)ns_id;
1392 if (ifp == NULL
1393 || !CHECK_FLAG(ifp->status, ZEBRA_INTERFACE_ACTIVE)) {
1394 /* Add interface notification from kernel */
1395 if (IS_ZEBRA_DEBUG_KERNEL)
1396 zlog_debug(
1397 "RTM_NEWLINK ADD for %s(%u) vrf_id %u type %d sl_type %d master %u flags 0x%x",
1398 name, ifi->ifi_index, vrf_id, zif_type,
1399 zif_slave_type, bridge_ifindex,
1400 ifi->ifi_flags);
1401
1402 if (ifp == NULL) {
1403 /* unknown interface */
1404 ifp = if_get_by_name(name, vrf_id);
1405 } else {
1406 /* pre-configured interface, learnt now */
1407 if (ifp->vrf_id != vrf_id)
1408 if_update_to_new_vrf(ifp, vrf_id);
1409 }
1410
1411 /* Update interface information. */
1412 set_ifindex(ifp, ifi->ifi_index, zns);
1413 ifp->flags = ifi->ifi_flags & 0x0000fffff;
1414 if (!tb[IFLA_MTU]) {
1415 zlog_debug(
1416 "RTM_NEWLINK for interface %s(%u) without MTU set",
1417 name, ifi->ifi_index);
1418 return 0;
1419 }
1420 ifp->mtu6 = ifp->mtu = *(int *)RTA_DATA(tb[IFLA_MTU]);
1421 ifp->metric = 0;
1422 ifp->ptm_status = ZEBRA_PTM_STATUS_UNKNOWN;
1423
1424 /* Set interface type */
1425 zebra_if_set_ziftype(ifp, zif_type, zif_slave_type);
1426 if (IS_ZEBRA_IF_VRF(ifp))
1427 SET_FLAG(ifp->status,
1428 ZEBRA_INTERFACE_VRF_LOOPBACK);
1429
1430 /* Update link. */
1431 zebra_if_update_link(ifp, link_ifindex, ns_id);
1432
1433 netlink_interface_update_hw_addr(tb, ifp);
1434
1435 /* Inform clients, install any configured addresses. */
1436 if_add_update(ifp);
1437
1438 /* Extract and save L2 interface information, take
1439 * additional actions. */
1440 netlink_interface_update_l2info(
1441 ifp, linkinfo[IFLA_INFO_DATA],
1442 1, link_nsid);
1443 if (IS_ZEBRA_IF_BRIDGE_SLAVE(ifp))
1444 zebra_l2if_update_bridge_slave(ifp,
1445 bridge_ifindex,
1446 ns_id);
1447 else if (IS_ZEBRA_IF_BOND_SLAVE(ifp))
1448 zebra_l2if_update_bond_slave(ifp, bond_ifindex);
1449 } else if (ifp->vrf_id != vrf_id) {
1450 /* VRF change for an interface. */
1451 if (IS_ZEBRA_DEBUG_KERNEL)
1452 zlog_debug(
1453 "RTM_NEWLINK vrf-change for %s(%u) vrf_id %u -> %u flags 0x%x",
1454 name, ifp->ifindex, ifp->vrf_id, vrf_id,
1455 ifi->ifi_flags);
1456
1457 if_handle_vrf_change(ifp, vrf_id);
1458 } else {
1459 bool was_bridge_slave, was_bond_slave;
1460
1461 /* Interface update. */
1462 if (IS_ZEBRA_DEBUG_KERNEL)
1463 zlog_debug(
1464 "RTM_NEWLINK update for %s(%u) sl_type %d master %u flags 0x%x",
1465 name, ifp->ifindex, zif_slave_type,
1466 bridge_ifindex, ifi->ifi_flags);
1467
1468 set_ifindex(ifp, ifi->ifi_index, zns);
1469 if (!tb[IFLA_MTU]) {
1470 zlog_debug(
1471 "RTM_NEWLINK for interface %s(%u) without MTU set",
1472 name, ifi->ifi_index);
1473 return 0;
1474 }
1475 ifp->mtu6 = ifp->mtu = *(int *)RTA_DATA(tb[IFLA_MTU]);
1476 ifp->metric = 0;
1477
1478 /* Update interface type - NOTE: Only slave_type can
1479 * change. */
1480 was_bridge_slave = IS_ZEBRA_IF_BRIDGE_SLAVE(ifp);
1481 was_bond_slave = IS_ZEBRA_IF_BOND_SLAVE(ifp);
1482 zebra_if_set_ziftype(ifp, zif_type, zif_slave_type);
1483
1484 memcpy(old_hw_addr, ifp->hw_addr, INTERFACE_HWADDR_MAX);
1485
1486 netlink_interface_update_hw_addr(tb, ifp);
1487
1488 if (if_is_no_ptm_operative(ifp)) {
1489 ifp->flags = ifi->ifi_flags & 0x0000fffff;
1490 if (!if_is_no_ptm_operative(ifp)) {
1491 if (IS_ZEBRA_DEBUG_KERNEL)
1492 zlog_debug(
1493 "Intf %s(%u) has gone DOWN",
1494 name, ifp->ifindex);
1495 if_down(ifp);
1496 rib_update(RIB_UPDATE_KERNEL);
1497 } else if (if_is_operative(ifp)) {
1498 /* Must notify client daemons of new
1499 * interface status. */
1500 if (IS_ZEBRA_DEBUG_KERNEL)
1501 zlog_debug(
1502 "Intf %s(%u) PTM up, notifying clients",
1503 name, ifp->ifindex);
1504 zebra_interface_up_update(ifp);
1505
1506 /* Update EVPN VNI when SVI MAC change
1507 */
1508 if (IS_ZEBRA_IF_VLAN(ifp) &&
1509 memcmp(old_hw_addr, ifp->hw_addr,
1510 INTERFACE_HWADDR_MAX)) {
1511 struct interface *link_if;
1512
1513 link_if =
1514 if_lookup_by_index_per_ns(
1515 zebra_ns_lookup(NS_DEFAULT),
1516 link_ifindex);
1517 if (link_if)
1518 zebra_vxlan_svi_up(ifp,
1519 link_if);
1520 }
1521 }
1522 } else {
1523 ifp->flags = ifi->ifi_flags & 0x0000fffff;
1524 if (if_is_operative(ifp)) {
1525 if (IS_ZEBRA_DEBUG_KERNEL)
1526 zlog_debug(
1527 "Intf %s(%u) has come UP",
1528 name, ifp->ifindex);
1529 if_up(ifp);
1530 } else {
1531 if (IS_ZEBRA_DEBUG_KERNEL)
1532 zlog_debug(
1533 "Intf %s(%u) has gone DOWN",
1534 name, ifp->ifindex);
1535 if_down(ifp);
1536 rib_update(RIB_UPDATE_KERNEL);
1537 }
1538 }
1539
1540 /* Extract and save L2 interface information, take
1541 * additional actions. */
1542 netlink_interface_update_l2info(
1543 ifp, linkinfo[IFLA_INFO_DATA],
1544 0, link_nsid);
1545 if (IS_ZEBRA_IF_BRIDGE_SLAVE(ifp) || was_bridge_slave)
1546 zebra_l2if_update_bridge_slave(ifp,
1547 bridge_ifindex,
1548 ns_id);
1549 else if (IS_ZEBRA_IF_BOND_SLAVE(ifp) || was_bond_slave)
1550 zebra_l2if_update_bond_slave(ifp, bond_ifindex);
1551 }
1552
1553 zif = ifp->info;
1554 if (zif) {
1555 XFREE(MTYPE_TMP, zif->desc);
1556 if (desc)
1557 zif->desc = XSTRDUP(MTYPE_TMP, desc);
1558 }
1559 } else {
1560 /* Delete interface notification from kernel */
1561 if (ifp == NULL) {
1562 if (IS_ZEBRA_DEBUG_KERNEL)
1563 zlog_debug(
1564 "RTM_DELLINK for unknown interface %s(%u)",
1565 name, ifi->ifi_index);
1566 return 0;
1567 }
1568
1569 if (IS_ZEBRA_DEBUG_KERNEL)
1570 zlog_debug("RTM_DELLINK for %s(%u)", name,
1571 ifp->ifindex);
1572
1573 UNSET_FLAG(ifp->status, ZEBRA_INTERFACE_VRF_LOOPBACK);
1574
1575 /* Special handling for bridge or VxLAN interfaces. */
1576 if (IS_ZEBRA_IF_BRIDGE(ifp))
1577 zebra_l2_bridge_del(ifp);
1578 else if (IS_ZEBRA_IF_VXLAN(ifp))
1579 zebra_l2_vxlanif_del(ifp);
1580
1581 if (!IS_ZEBRA_IF_VRF(ifp))
1582 if_delete_update(ifp);
1583 }
1584
1585 return 0;
1586 }
1587
1588 int netlink_protodown(struct interface *ifp, bool down)
1589 {
1590 struct zebra_ns *zns = zebra_ns_lookup(NS_DEFAULT);
1591
1592 struct {
1593 struct nlmsghdr n;
1594 struct ifinfomsg ifa;
1595 char buf[NL_PKT_BUF_SIZE];
1596 } req;
1597
1598 memset(&req, 0, sizeof(req));
1599
1600 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg));
1601 req.n.nlmsg_flags = NLM_F_REQUEST;
1602 req.n.nlmsg_type = RTM_SETLINK;
1603 req.n.nlmsg_pid = zns->netlink_cmd.snl.nl_pid;
1604
1605 req.ifa.ifi_index = ifp->ifindex;
1606
1607 nl_attr_put(&req.n, sizeof(req), IFLA_PROTO_DOWN, &down, sizeof(down));
1608 nl_attr_put32(&req.n, sizeof(req), IFLA_LINK, ifp->ifindex);
1609
1610 return netlink_talk(netlink_talk_filter, &req.n, &zns->netlink_cmd, zns,
1611 0);
1612 }
1613
1614 /* Interface information read by netlink. */
1615 void interface_list(struct zebra_ns *zns)
1616 {
1617 interface_lookup_netlink(zns);
1618 /* We add routes for interface address,
1619 * so we need to get the nexthop info
1620 * from the kernel before we can do that
1621 */
1622 netlink_nexthop_read(zns);
1623
1624 interface_addr_lookup_netlink(zns);
1625 }
1626
1627 #endif /* GNU_LINUX */