]> git.proxmox.com Git - mirror_frr.git/blob - zebra/if_netlink.c
Merge pull request #2123 from qlyoung/zserv-mt
[mirror_frr.git] / zebra / if_netlink.c
1 /*
2 * Interface looking up by netlink.
3 * Copyright (C) 1998 Kunihiro Ishiguro
4 *
5 * This file is part of GNU Zebra.
6 *
7 * GNU Zebra is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2, or (at your option) any
10 * later version.
11 *
12 * GNU Zebra is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; see the file COPYING; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 #include <zebra.h>
23
24 #ifdef GNU_LINUX
25
26 /* The following definition is to workaround an issue in the Linux kernel
27 * header files with redefinition of 'struct in6_addr' in both
28 * netinet/in.h and linux/in6.h.
29 * Reference - https://sourceware.org/ml/libc-alpha/2013-01/msg00599.html
30 */
31 #define _LINUX_IN6_H
32
33 #include <netinet/if_ether.h>
34 #include <linux/if_bridge.h>
35 #include <linux/if_link.h>
36 #include <net/if_arp.h>
37 #include <linux/sockios.h>
38 #include <linux/ethtool.h>
39
40 #include "linklist.h"
41 #include "if.h"
42 #include "log.h"
43 #include "prefix.h"
44 #include "connected.h"
45 #include "table.h"
46 #include "memory.h"
47 #include "zebra_memory.h"
48 #include "rib.h"
49 #include "thread.h"
50 #include "privs.h"
51 #include "nexthop.h"
52 #include "vrf.h"
53 #include "vrf_int.h"
54 #include "mpls.h"
55
56 #include "vty.h"
57 #include "zebra/zserv.h"
58 #include "zebra/zebra_ns.h"
59 #include "zebra/zebra_vrf.h"
60 #include "zebra/rt.h"
61 #include "zebra/redistribute.h"
62 #include "zebra/interface.h"
63 #include "zebra/debug.h"
64 #include "zebra/rtadv.h"
65 #include "zebra/zebra_ptm.h"
66 #include "zebra/zebra_mpls.h"
67 #include "zebra/kernel_netlink.h"
68 #include "zebra/if_netlink.h"
69
70 extern struct zebra_privs_t zserv_privs;
71
72 /* Note: on netlink systems, there should be a 1-to-1 mapping between interface
73 names and ifindex values. */
74 static void set_ifindex(struct interface *ifp, ifindex_t ifi_index,
75 struct zebra_ns *zns)
76 {
77 struct interface *oifp;
78
79 if (((oifp = if_lookup_by_index_per_ns(zns, ifi_index)) != NULL)
80 && (oifp != ifp)) {
81 if (ifi_index == IFINDEX_INTERNAL)
82 zlog_err(
83 "Netlink is setting interface %s ifindex to reserved "
84 "internal value %u",
85 ifp->name, ifi_index);
86 else {
87 if (IS_ZEBRA_DEBUG_KERNEL)
88 zlog_debug(
89 "interface index %d was renamed from %s to %s",
90 ifi_index, oifp->name, ifp->name);
91 if (if_is_up(oifp))
92 zlog_err(
93 "interface rename detected on up interface: index %d "
94 "was renamed from %s to %s, results are uncertain!",
95 ifi_index, oifp->name, ifp->name);
96 if_delete_update(oifp);
97 }
98 }
99 if_set_index(ifp, ifi_index);
100 }
101
102 /* Utility function to parse hardware link-layer address and update ifp */
103 static void netlink_interface_update_hw_addr(struct rtattr **tb,
104 struct interface *ifp)
105 {
106 int i;
107
108 if (tb[IFLA_ADDRESS]) {
109 int hw_addr_len;
110
111 hw_addr_len = RTA_PAYLOAD(tb[IFLA_ADDRESS]);
112
113 if (hw_addr_len > INTERFACE_HWADDR_MAX)
114 zlog_warn("Hardware address is too large: %d",
115 hw_addr_len);
116 else {
117 ifp->hw_addr_len = hw_addr_len;
118 memcpy(ifp->hw_addr, RTA_DATA(tb[IFLA_ADDRESS]),
119 hw_addr_len);
120
121 for (i = 0; i < hw_addr_len; i++)
122 if (ifp->hw_addr[i] != 0)
123 break;
124
125 if (i == hw_addr_len)
126 ifp->hw_addr_len = 0;
127 else
128 ifp->hw_addr_len = hw_addr_len;
129 }
130 }
131 }
132
133 static enum zebra_link_type netlink_to_zebra_link_type(unsigned int hwt)
134 {
135 switch (hwt) {
136 case ARPHRD_ETHER:
137 return ZEBRA_LLT_ETHER;
138 case ARPHRD_EETHER:
139 return ZEBRA_LLT_EETHER;
140 case ARPHRD_AX25:
141 return ZEBRA_LLT_AX25;
142 case ARPHRD_PRONET:
143 return ZEBRA_LLT_PRONET;
144 case ARPHRD_IEEE802:
145 return ZEBRA_LLT_IEEE802;
146 case ARPHRD_ARCNET:
147 return ZEBRA_LLT_ARCNET;
148 case ARPHRD_APPLETLK:
149 return ZEBRA_LLT_APPLETLK;
150 case ARPHRD_DLCI:
151 return ZEBRA_LLT_DLCI;
152 case ARPHRD_ATM:
153 return ZEBRA_LLT_ATM;
154 case ARPHRD_METRICOM:
155 return ZEBRA_LLT_METRICOM;
156 case ARPHRD_IEEE1394:
157 return ZEBRA_LLT_IEEE1394;
158 case ARPHRD_EUI64:
159 return ZEBRA_LLT_EUI64;
160 case ARPHRD_INFINIBAND:
161 return ZEBRA_LLT_INFINIBAND;
162 case ARPHRD_SLIP:
163 return ZEBRA_LLT_SLIP;
164 case ARPHRD_CSLIP:
165 return ZEBRA_LLT_CSLIP;
166 case ARPHRD_SLIP6:
167 return ZEBRA_LLT_SLIP6;
168 case ARPHRD_CSLIP6:
169 return ZEBRA_LLT_CSLIP6;
170 case ARPHRD_RSRVD:
171 return ZEBRA_LLT_RSRVD;
172 case ARPHRD_ADAPT:
173 return ZEBRA_LLT_ADAPT;
174 case ARPHRD_ROSE:
175 return ZEBRA_LLT_ROSE;
176 case ARPHRD_X25:
177 return ZEBRA_LLT_X25;
178 case ARPHRD_PPP:
179 return ZEBRA_LLT_PPP;
180 case ARPHRD_CISCO:
181 return ZEBRA_LLT_CHDLC;
182 case ARPHRD_LAPB:
183 return ZEBRA_LLT_LAPB;
184 case ARPHRD_RAWHDLC:
185 return ZEBRA_LLT_RAWHDLC;
186 case ARPHRD_TUNNEL:
187 return ZEBRA_LLT_IPIP;
188 case ARPHRD_TUNNEL6:
189 return ZEBRA_LLT_IPIP6;
190 case ARPHRD_FRAD:
191 return ZEBRA_LLT_FRAD;
192 case ARPHRD_SKIP:
193 return ZEBRA_LLT_SKIP;
194 case ARPHRD_LOOPBACK:
195 return ZEBRA_LLT_LOOPBACK;
196 case ARPHRD_LOCALTLK:
197 return ZEBRA_LLT_LOCALTLK;
198 case ARPHRD_FDDI:
199 return ZEBRA_LLT_FDDI;
200 case ARPHRD_SIT:
201 return ZEBRA_LLT_SIT;
202 case ARPHRD_IPDDP:
203 return ZEBRA_LLT_IPDDP;
204 case ARPHRD_IPGRE:
205 return ZEBRA_LLT_IPGRE;
206 case ARPHRD_PIMREG:
207 return ZEBRA_LLT_PIMREG;
208 case ARPHRD_HIPPI:
209 return ZEBRA_LLT_HIPPI;
210 case ARPHRD_ECONET:
211 return ZEBRA_LLT_ECONET;
212 case ARPHRD_IRDA:
213 return ZEBRA_LLT_IRDA;
214 case ARPHRD_FCPP:
215 return ZEBRA_LLT_FCPP;
216 case ARPHRD_FCAL:
217 return ZEBRA_LLT_FCAL;
218 case ARPHRD_FCPL:
219 return ZEBRA_LLT_FCPL;
220 case ARPHRD_FCFABRIC:
221 return ZEBRA_LLT_FCFABRIC;
222 case ARPHRD_IEEE802_TR:
223 return ZEBRA_LLT_IEEE802_TR;
224 case ARPHRD_IEEE80211:
225 return ZEBRA_LLT_IEEE80211;
226 #ifdef ARPHRD_IEEE802154
227 case ARPHRD_IEEE802154:
228 return ZEBRA_LLT_IEEE802154;
229 #endif
230 #ifdef ARPHRD_IP6GRE
231 case ARPHRD_IP6GRE:
232 return ZEBRA_LLT_IP6GRE;
233 #endif
234 #ifdef ARPHRD_IEEE802154_PHY
235 case ARPHRD_IEEE802154_PHY:
236 return ZEBRA_LLT_IEEE802154_PHY;
237 #endif
238
239 default:
240 return ZEBRA_LLT_UNKNOWN;
241 }
242 }
243
244 static void netlink_determine_zebra_iftype(char *kind, zebra_iftype_t *zif_type)
245 {
246 *zif_type = ZEBRA_IF_OTHER;
247
248 if (!kind)
249 return;
250
251 if (strcmp(kind, "vrf") == 0)
252 *zif_type = ZEBRA_IF_VRF;
253 else if (strcmp(kind, "bridge") == 0)
254 *zif_type = ZEBRA_IF_BRIDGE;
255 else if (strcmp(kind, "vlan") == 0)
256 *zif_type = ZEBRA_IF_VLAN;
257 else if (strcmp(kind, "vxlan") == 0)
258 *zif_type = ZEBRA_IF_VXLAN;
259 else if (strcmp(kind, "macvlan") == 0)
260 *zif_type = ZEBRA_IF_MACVLAN;
261 }
262
263 #define parse_rtattr_nested(tb, max, rta) \
264 netlink_parse_rtattr((tb), (max), RTA_DATA(rta), RTA_PAYLOAD(rta))
265
266 static void netlink_vrf_change(struct nlmsghdr *h, struct rtattr *tb,
267 const char *name)
268 {
269 struct ifinfomsg *ifi;
270 struct rtattr *linkinfo[IFLA_INFO_MAX + 1];
271 struct rtattr *attr[IFLA_VRF_MAX + 1];
272 struct vrf *vrf;
273 struct zebra_vrf *zvrf;
274 uint32_t nl_table_id;
275
276 ifi = NLMSG_DATA(h);
277
278 memset(linkinfo, 0, sizeof linkinfo);
279 parse_rtattr_nested(linkinfo, IFLA_INFO_MAX, tb);
280
281 if (!linkinfo[IFLA_INFO_DATA]) {
282 if (IS_ZEBRA_DEBUG_KERNEL)
283 zlog_debug(
284 "%s: IFLA_INFO_DATA missing from VRF message: %s",
285 __func__, name);
286 return;
287 }
288
289 memset(attr, 0, sizeof attr);
290 parse_rtattr_nested(attr, IFLA_VRF_MAX, linkinfo[IFLA_INFO_DATA]);
291 if (!attr[IFLA_VRF_TABLE]) {
292 if (IS_ZEBRA_DEBUG_KERNEL)
293 zlog_debug(
294 "%s: IFLA_VRF_TABLE missing from VRF message: %s",
295 __func__, name);
296 return;
297 }
298
299 nl_table_id = *(uint32_t *)RTA_DATA(attr[IFLA_VRF_TABLE]);
300
301 if (h->nlmsg_type == RTM_NEWLINK) {
302 if (IS_ZEBRA_DEBUG_KERNEL)
303 zlog_debug("RTM_NEWLINK for VRF %s(%u) table %u", name,
304 ifi->ifi_index, nl_table_id);
305
306 /*
307 * vrf_get is implied creation if it does not exist
308 */
309 vrf = vrf_get((vrf_id_t)ifi->ifi_index,
310 name); // It would create vrf
311 if (!vrf) {
312 zlog_err("VRF %s id %u not created", name,
313 ifi->ifi_index);
314 return;
315 }
316
317 /*
318 * This is the only place that we get the actual kernel table_id
319 * being used. We need it to set the table_id of the routes
320 * we are passing to the kernel.... And to throw some totally
321 * awesome parties. that too.
322 *
323 * At this point we *must* have a zvrf because the vrf_create
324 * callback creates one. We *must* set the table id
325 * before the vrf_enable because of( at the very least )
326 * static routes being delayed for installation until
327 * during the vrf_enable callbacks.
328 */
329 zvrf = (struct zebra_vrf *)vrf->info;
330 zvrf->table_id = nl_table_id;
331
332 /* Enable the created VRF. */
333 if (!vrf_enable(vrf)) {
334 zlog_err("Failed to enable VRF %s id %u", name,
335 ifi->ifi_index);
336 return;
337 }
338
339 } else // h->nlmsg_type == RTM_DELLINK
340 {
341 if (IS_ZEBRA_DEBUG_KERNEL)
342 zlog_debug("RTM_DELLINK for VRF %s(%u)", name,
343 ifi->ifi_index);
344
345 vrf = vrf_lookup_by_id((vrf_id_t)ifi->ifi_index);
346
347 if (!vrf) {
348 zlog_warn("%s: vrf not found", __func__);
349 return;
350 }
351
352 vrf_delete(vrf);
353 }
354 }
355
356 static int get_iflink_speed(struct interface *interface)
357 {
358 struct ifreq ifdata;
359 struct ethtool_cmd ecmd;
360 int sd;
361 int rc;
362 const char *ifname = interface->name;
363
364 /* initialize struct */
365 memset(&ifdata, 0, sizeof(ifdata));
366
367 /* set interface name */
368 strlcpy(ifdata.ifr_name, ifname, sizeof(ifdata.ifr_name));
369
370 /* initialize ethtool interface */
371 memset(&ecmd, 0, sizeof(ecmd));
372 ecmd.cmd = ETHTOOL_GSET; /* ETHTOOL_GLINK */
373 ifdata.ifr_data = (caddr_t)&ecmd;
374
375 /* use ioctl to get IP address of an interface */
376 if (zserv_privs.change(ZPRIVS_RAISE))
377 zlog_err("Can't raise privileges");
378 sd = vrf_socket(PF_INET, SOCK_DGRAM, IPPROTO_IP, interface->vrf_id,
379 NULL);
380 if (sd < 0) {
381 if (IS_ZEBRA_DEBUG_KERNEL)
382 zlog_debug("Failure to read interface %s speed: %d %s",
383 ifname, errno, safe_strerror(errno));
384 return 0;
385 }
386 /* Get the current link state for the interface */
387 rc = vrf_ioctl(interface->vrf_id, sd, SIOCETHTOOL, (char *)&ifdata);
388 if (zserv_privs.change(ZPRIVS_LOWER))
389 zlog_err("Can't lower privileges");
390 if (rc < 0) {
391 if (IS_ZEBRA_DEBUG_KERNEL)
392 zlog_debug(
393 "IOCTL failure to read interface %s speed: %d %s",
394 ifname, errno, safe_strerror(errno));
395 ecmd.speed_hi = 0;
396 ecmd.speed = 0;
397 }
398
399 close(sd);
400
401 return (ecmd.speed_hi << 16) | ecmd.speed;
402 }
403
404 uint32_t kernel_get_speed(struct interface *ifp)
405 {
406 return get_iflink_speed(ifp);
407 }
408
409 static int netlink_extract_bridge_info(struct rtattr *link_data,
410 struct zebra_l2info_bridge *bridge_info)
411 {
412 struct rtattr *attr[IFLA_BR_MAX + 1];
413
414 memset(bridge_info, 0, sizeof(*bridge_info));
415 memset(attr, 0, sizeof attr);
416 parse_rtattr_nested(attr, IFLA_BR_MAX, link_data);
417 if (attr[IFLA_BR_VLAN_FILTERING])
418 bridge_info->vlan_aware =
419 *(uint8_t *)RTA_DATA(attr[IFLA_BR_VLAN_FILTERING]);
420 return 0;
421 }
422
423 static int netlink_extract_vlan_info(struct rtattr *link_data,
424 struct zebra_l2info_vlan *vlan_info)
425 {
426 struct rtattr *attr[IFLA_VLAN_MAX + 1];
427 vlanid_t vid_in_msg;
428
429 memset(vlan_info, 0, sizeof(*vlan_info));
430 memset(attr, 0, sizeof attr);
431 parse_rtattr_nested(attr, IFLA_VLAN_MAX, link_data);
432 if (!attr[IFLA_VLAN_ID]) {
433 if (IS_ZEBRA_DEBUG_KERNEL)
434 zlog_debug("IFLA_VLAN_ID missing from VLAN IF message");
435 return -1;
436 }
437
438 vid_in_msg = *(vlanid_t *)RTA_DATA(attr[IFLA_VLAN_ID]);
439 vlan_info->vid = vid_in_msg;
440 return 0;
441 }
442
443 static int netlink_extract_vxlan_info(struct rtattr *link_data,
444 struct zebra_l2info_vxlan *vxl_info)
445 {
446 struct rtattr *attr[IFLA_VXLAN_MAX + 1];
447 vni_t vni_in_msg;
448 struct in_addr vtep_ip_in_msg;
449
450 memset(vxl_info, 0, sizeof(*vxl_info));
451 memset(attr, 0, sizeof attr);
452 parse_rtattr_nested(attr, IFLA_VXLAN_MAX, link_data);
453 if (!attr[IFLA_VXLAN_ID]) {
454 if (IS_ZEBRA_DEBUG_KERNEL)
455 zlog_debug(
456 "IFLA_VXLAN_ID missing from VXLAN IF message");
457 return -1;
458 }
459
460 vni_in_msg = *(vni_t *)RTA_DATA(attr[IFLA_VXLAN_ID]);
461 vxl_info->vni = vni_in_msg;
462 if (!attr[IFLA_VXLAN_LOCAL]) {
463 if (IS_ZEBRA_DEBUG_KERNEL)
464 zlog_debug(
465 "IFLA_VXLAN_LOCAL missing from VXLAN IF message");
466 } else {
467 vtep_ip_in_msg =
468 *(struct in_addr *)RTA_DATA(attr[IFLA_VXLAN_LOCAL]);
469 vxl_info->vtep_ip = vtep_ip_in_msg;
470 }
471
472 return 0;
473 }
474
475 /*
476 * Extract and save L2 params (of interest) for an interface. When a
477 * bridge interface is added or updated, take further actions to map
478 * its members. Likewise, for VxLAN interface.
479 */
480 static void netlink_interface_update_l2info(struct interface *ifp,
481 struct rtattr *link_data, int add)
482 {
483 if (!link_data)
484 return;
485
486 if (IS_ZEBRA_IF_BRIDGE(ifp)) {
487 struct zebra_l2info_bridge bridge_info;
488
489 netlink_extract_bridge_info(link_data, &bridge_info);
490 zebra_l2_bridge_add_update(ifp, &bridge_info, add);
491 } else if (IS_ZEBRA_IF_VLAN(ifp)) {
492 struct zebra_l2info_vlan vlan_info;
493
494 netlink_extract_vlan_info(link_data, &vlan_info);
495 zebra_l2_vlanif_update(ifp, &vlan_info);
496 } else if (IS_ZEBRA_IF_VXLAN(ifp)) {
497 struct zebra_l2info_vxlan vxlan_info;
498
499 netlink_extract_vxlan_info(link_data, &vxlan_info);
500 zebra_l2_vxlanif_add_update(ifp, &vxlan_info, add);
501 }
502 }
503
504 static int netlink_bridge_interface(struct nlmsghdr *h, int len, ns_id_t ns_id,
505 int startup)
506 {
507 char *name = NULL;
508 struct ifinfomsg *ifi;
509 struct rtattr *tb[IFLA_MAX + 1];
510 struct interface *ifp;
511 struct rtattr *aftb[IFLA_BRIDGE_MAX + 1];
512 struct {
513 uint16_t flags;
514 uint16_t vid;
515 } * vinfo;
516 vlanid_t access_vlan;
517
518 /* Fetch name and ifindex */
519 ifi = NLMSG_DATA(h);
520 memset(tb, 0, sizeof tb);
521 netlink_parse_rtattr(tb, IFLA_MAX, IFLA_RTA(ifi), len);
522
523 if (tb[IFLA_IFNAME] == NULL)
524 return -1;
525 name = (char *)RTA_DATA(tb[IFLA_IFNAME]);
526
527 /* The interface should already be known, if not discard. */
528 ifp = if_lookup_by_index_per_ns(zebra_ns_lookup(ns_id), ifi->ifi_index);
529 if (!ifp) {
530 zlog_warn("Cannot find bridge IF %s(%u)", name, ifi->ifi_index);
531 return 0;
532 }
533 if (!IS_ZEBRA_IF_VXLAN(ifp))
534 return 0;
535
536 /* We are only interested in the access VLAN i.e., AF_SPEC */
537 if (!tb[IFLA_AF_SPEC])
538 return 0;
539
540 /* There is a 1-to-1 mapping of VLAN to VxLAN - hence
541 * only 1 access VLAN is accepted.
542 */
543 memset(aftb, 0, sizeof aftb);
544 parse_rtattr_nested(aftb, IFLA_BRIDGE_MAX, tb[IFLA_AF_SPEC]);
545 if (!aftb[IFLA_BRIDGE_VLAN_INFO])
546 return 0;
547
548 vinfo = RTA_DATA(aftb[IFLA_BRIDGE_VLAN_INFO]);
549 if (!(vinfo->flags & BRIDGE_VLAN_INFO_PVID))
550 return 0;
551
552 access_vlan = (vlanid_t)vinfo->vid;
553 if (IS_ZEBRA_DEBUG_KERNEL)
554 zlog_debug("Access VLAN %u for VxLAN IF %s(%u)", access_vlan,
555 name, ifi->ifi_index);
556 zebra_l2_vxlanif_update_access_vlan(ifp, access_vlan);
557 return 0;
558 }
559
560 /*
561 * Called from interface_lookup_netlink(). This function is only used
562 * during bootstrap.
563 */
564 static int netlink_interface(struct nlmsghdr *h, ns_id_t ns_id, int startup)
565 {
566 int len;
567 struct ifinfomsg *ifi;
568 struct rtattr *tb[IFLA_MAX + 1];
569 struct rtattr *linkinfo[IFLA_MAX + 1];
570 struct interface *ifp;
571 char *name = NULL;
572 char *kind = NULL;
573 char *desc = NULL;
574 char *slave_kind = NULL;
575 struct zebra_ns *zns;
576 vrf_id_t vrf_id = VRF_DEFAULT;
577 zebra_iftype_t zif_type = ZEBRA_IF_OTHER;
578 zebra_slave_iftype_t zif_slave_type = ZEBRA_IF_SLAVE_NONE;
579 ifindex_t bridge_ifindex = IFINDEX_INTERNAL;
580 ifindex_t link_ifindex = IFINDEX_INTERNAL;
581
582 zns = zebra_ns_lookup(ns_id);
583 ifi = NLMSG_DATA(h);
584
585 if (h->nlmsg_type != RTM_NEWLINK)
586 return 0;
587
588 len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct ifinfomsg));
589 if (len < 0)
590 return -1;
591
592 /* We are interested in some AF_BRIDGE notifications. */
593 if (ifi->ifi_family == AF_BRIDGE)
594 return netlink_bridge_interface(h, len, ns_id, startup);
595
596 /* Looking up interface name. */
597 memset(tb, 0, sizeof tb);
598 memset(linkinfo, 0, sizeof linkinfo);
599 netlink_parse_rtattr(tb, IFLA_MAX, IFLA_RTA(ifi), len);
600
601 /* check for wireless messages to ignore */
602 if ((tb[IFLA_WIRELESS] != NULL) && (ifi->ifi_change == 0)) {
603 if (IS_ZEBRA_DEBUG_KERNEL)
604 zlog_debug("%s: ignoring IFLA_WIRELESS message",
605 __func__);
606 return 0;
607 }
608
609 if (tb[IFLA_IFNAME] == NULL)
610 return -1;
611 name = (char *)RTA_DATA(tb[IFLA_IFNAME]);
612
613 if (tb[IFLA_IFALIAS])
614 desc = (char *)RTA_DATA(tb[IFLA_IFALIAS]);
615
616 if (tb[IFLA_LINKINFO]) {
617 parse_rtattr_nested(linkinfo, IFLA_INFO_MAX, tb[IFLA_LINKINFO]);
618
619 if (linkinfo[IFLA_INFO_KIND])
620 kind = RTA_DATA(linkinfo[IFLA_INFO_KIND]);
621
622 if (linkinfo[IFLA_INFO_SLAVE_KIND])
623 slave_kind = RTA_DATA(linkinfo[IFLA_INFO_SLAVE_KIND]);
624
625 netlink_determine_zebra_iftype(kind, &zif_type);
626 }
627
628 /* If VRF, create the VRF structure itself. */
629 if (zif_type == ZEBRA_IF_VRF && !vrf_is_backend_netns()) {
630 netlink_vrf_change(h, tb[IFLA_LINKINFO], name);
631 vrf_id = (vrf_id_t)ifi->ifi_index;
632 }
633
634 if (tb[IFLA_MASTER]) {
635 if (slave_kind && (strcmp(slave_kind, "vrf") == 0)
636 && !vrf_is_backend_netns()) {
637 zif_slave_type = ZEBRA_IF_SLAVE_VRF;
638 vrf_id = *(uint32_t *)RTA_DATA(tb[IFLA_MASTER]);
639 } else if (slave_kind && (strcmp(slave_kind, "bridge") == 0)) {
640 zif_slave_type = ZEBRA_IF_SLAVE_BRIDGE;
641 bridge_ifindex =
642 *(ifindex_t *)RTA_DATA(tb[IFLA_MASTER]);
643 } else
644 zif_slave_type = ZEBRA_IF_SLAVE_OTHER;
645 }
646 if (vrf_is_backend_netns())
647 vrf_id = (vrf_id_t)ns_id;
648
649 /* If linking to another interface, note it. */
650 if (tb[IFLA_LINK])
651 link_ifindex = *(ifindex_t *)RTA_DATA(tb[IFLA_LINK]);
652
653 /* Add interface. */
654 ifp = if_get_by_name(name, vrf_id, 0);
655 set_ifindex(ifp, ifi->ifi_index, zns);
656 ifp->flags = ifi->ifi_flags & 0x0000fffff;
657 ifp->mtu6 = ifp->mtu = *(uint32_t *)RTA_DATA(tb[IFLA_MTU]);
658 ifp->metric = 0;
659 ifp->speed = get_iflink_speed(ifp);
660 ifp->ptm_status = ZEBRA_PTM_STATUS_UNKNOWN;
661
662 if (desc)
663 ifp->desc = XSTRDUP(MTYPE_TMP, desc);
664
665 /* Set zebra interface type */
666 zebra_if_set_ziftype(ifp, zif_type, zif_slave_type);
667 if (IS_ZEBRA_IF_VRF(ifp))
668 SET_FLAG(ifp->status, ZEBRA_INTERFACE_VRF_LOOPBACK);
669
670 /* Update link. */
671 zebra_if_update_link(ifp, link_ifindex);
672
673 /* Hardware type and address. */
674 ifp->ll_type = netlink_to_zebra_link_type(ifi->ifi_type);
675 netlink_interface_update_hw_addr(tb, ifp);
676
677 if_add_update(ifp);
678
679 /* Extract and save L2 interface information, take additional actions.
680 */
681 netlink_interface_update_l2info(ifp, linkinfo[IFLA_INFO_DATA], 1);
682 if (IS_ZEBRA_IF_BRIDGE_SLAVE(ifp))
683 zebra_l2if_update_bridge_slave(ifp, bridge_ifindex);
684
685 return 0;
686 }
687
688 /* Request for specific interface or address information from the kernel */
689 static int netlink_request_intf_addr(struct zebra_ns *zns, int family, int type,
690 uint32_t filter_mask)
691 {
692 struct {
693 struct nlmsghdr n;
694 struct ifinfomsg ifm;
695 char buf[256];
696 } req;
697
698 /* Form the request, specifying filter (rtattr) if needed. */
699 memset(&req, 0, sizeof(req));
700 req.n.nlmsg_type = type;
701 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg));
702 req.ifm.ifi_family = family;
703
704 /* Include filter, if specified. */
705 if (filter_mask)
706 addattr32(&req.n, sizeof(req), IFLA_EXT_MASK, filter_mask);
707
708 return netlink_request(&zns->netlink_cmd, &req.n);
709 }
710
711 /* Interface lookup by netlink socket. */
712 int interface_lookup_netlink(struct zebra_ns *zns)
713 {
714 int ret;
715
716 /* Get interface information. */
717 ret = netlink_request_intf_addr(zns, AF_PACKET, RTM_GETLINK, 0);
718 if (ret < 0)
719 return ret;
720 ret = netlink_parse_info(netlink_interface, &zns->netlink_cmd, zns, 0,
721 1);
722 if (ret < 0)
723 return ret;
724
725 /* Get interface information - for bridge interfaces. */
726 ret = netlink_request_intf_addr(zns, AF_BRIDGE, RTM_GETLINK,
727 RTEXT_FILTER_BRVLAN);
728 if (ret < 0)
729 return ret;
730 ret = netlink_parse_info(netlink_interface, &zns->netlink_cmd, zns, 0,
731 0);
732 if (ret < 0)
733 return ret;
734
735 /* Get interface information - for bridge interfaces. */
736 ret = netlink_request_intf_addr(zns, AF_BRIDGE, RTM_GETLINK,
737 RTEXT_FILTER_BRVLAN);
738 if (ret < 0)
739 return ret;
740 ret = netlink_parse_info(netlink_interface, &zns->netlink_cmd, zns, 0,
741 0);
742 if (ret < 0)
743 return ret;
744
745 /* Get IPv4 address of the interfaces. */
746 ret = netlink_request_intf_addr(zns, AF_INET, RTM_GETADDR, 0);
747 if (ret < 0)
748 return ret;
749 ret = netlink_parse_info(netlink_interface_addr, &zns->netlink_cmd, zns,
750 0, 1);
751 if (ret < 0)
752 return ret;
753
754 /* Get IPv6 address of the interfaces. */
755 ret = netlink_request_intf_addr(zns, AF_INET6, RTM_GETADDR, 0);
756 if (ret < 0)
757 return ret;
758 ret = netlink_parse_info(netlink_interface_addr, &zns->netlink_cmd, zns,
759 0, 1);
760 if (ret < 0)
761 return ret;
762
763 return 0;
764 }
765
766 int kernel_interface_set_master(struct interface *master,
767 struct interface *slave)
768 {
769 struct zebra_ns *zns = zebra_ns_lookup(NS_DEFAULT);
770
771 struct {
772 struct nlmsghdr n;
773 struct ifinfomsg ifa;
774 char buf[NL_PKT_BUF_SIZE];
775 } req;
776
777 memset(&req, 0, sizeof req);
778
779 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg));
780 req.n.nlmsg_flags = NLM_F_REQUEST;
781 req.n.nlmsg_type = RTM_SETLINK;
782 req.n.nlmsg_pid = zns->netlink_cmd.snl.nl_pid;
783
784 req.ifa.ifi_index = slave->ifindex;
785
786 addattr_l(&req.n, sizeof req, IFLA_MASTER, &master->ifindex, 4);
787 addattr_l(&req.n, sizeof req, IFLA_LINK, &slave->ifindex, 4);
788
789 return netlink_talk(netlink_talk_filter, &req.n, &zns->netlink_cmd, zns,
790 0);
791 }
792
793 /* Interface address modification. */
794 static int netlink_address(int cmd, int family, struct interface *ifp,
795 struct connected *ifc)
796 {
797 int bytelen;
798 struct prefix *p;
799
800 struct {
801 struct nlmsghdr n;
802 struct ifaddrmsg ifa;
803 char buf[NL_PKT_BUF_SIZE];
804 } req;
805
806 struct zebra_ns *zns;
807
808 if (vrf_is_backend_netns())
809 zns = zebra_ns_lookup((ns_id_t)ifp->vrf_id);
810 else
811 zns = zebra_ns_lookup(NS_DEFAULT);
812 p = ifc->address;
813 memset(&req, 0, sizeof req - NL_PKT_BUF_SIZE);
814
815 bytelen = (family == AF_INET ? 4 : 16);
816
817 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifaddrmsg));
818 req.n.nlmsg_flags = NLM_F_REQUEST;
819 req.n.nlmsg_type = cmd;
820 req.n.nlmsg_pid = zns->netlink_cmd.snl.nl_pid;
821
822 req.ifa.ifa_family = family;
823
824 req.ifa.ifa_index = ifp->ifindex;
825
826 addattr_l(&req.n, sizeof req, IFA_LOCAL, &p->u.prefix, bytelen);
827
828 if (family == AF_INET) {
829 if (CONNECTED_PEER(ifc)) {
830 p = ifc->destination;
831 addattr_l(&req.n, sizeof req, IFA_ADDRESS, &p->u.prefix,
832 bytelen);
833 } else if (cmd == RTM_NEWADDR && ifc->destination) {
834 p = ifc->destination;
835 addattr_l(&req.n, sizeof req, IFA_BROADCAST,
836 &p->u.prefix, bytelen);
837 }
838 }
839
840 /* p is now either ifc->address or ifc->destination */
841 req.ifa.ifa_prefixlen = p->prefixlen;
842
843 if (CHECK_FLAG(ifc->flags, ZEBRA_IFA_SECONDARY))
844 SET_FLAG(req.ifa.ifa_flags, IFA_F_SECONDARY);
845
846 if (ifc->label)
847 addattr_l(&req.n, sizeof req, IFA_LABEL, ifc->label,
848 strlen(ifc->label) + 1);
849
850 return netlink_talk(netlink_talk_filter, &req.n, &zns->netlink_cmd, zns,
851 0);
852 }
853
854 int kernel_address_add_ipv4(struct interface *ifp, struct connected *ifc)
855 {
856 return netlink_address(RTM_NEWADDR, AF_INET, ifp, ifc);
857 }
858
859 int kernel_address_delete_ipv4(struct interface *ifp, struct connected *ifc)
860 {
861 return netlink_address(RTM_DELADDR, AF_INET, ifp, ifc);
862 }
863
864 int kernel_address_add_ipv6(struct interface *ifp, struct connected *ifc)
865 {
866 return netlink_address(RTM_NEWADDR, AF_INET6, ifp, ifc);
867 }
868
869 int kernel_address_delete_ipv6(struct interface *ifp, struct connected *ifc)
870 {
871 return netlink_address(RTM_DELADDR, AF_INET6, ifp, ifc);
872 }
873
874 int netlink_interface_addr(struct nlmsghdr *h, ns_id_t ns_id, int startup)
875 {
876 int len;
877 struct ifaddrmsg *ifa;
878 struct rtattr *tb[IFA_MAX + 1];
879 struct interface *ifp;
880 void *addr;
881 void *broad;
882 uint8_t flags = 0;
883 char *label = NULL;
884 struct zebra_ns *zns;
885
886 zns = zebra_ns_lookup(ns_id);
887 ifa = NLMSG_DATA(h);
888
889 if (ifa->ifa_family != AF_INET && ifa->ifa_family != AF_INET6)
890 return 0;
891
892 if (h->nlmsg_type != RTM_NEWADDR && h->nlmsg_type != RTM_DELADDR)
893 return 0;
894
895 len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct ifaddrmsg));
896 if (len < 0)
897 return -1;
898
899 memset(tb, 0, sizeof tb);
900 netlink_parse_rtattr(tb, IFA_MAX, IFA_RTA(ifa), len);
901
902 ifp = if_lookup_by_index_per_ns(zns, ifa->ifa_index);
903 if (ifp == NULL) {
904 zlog_err(
905 "netlink_interface_addr can't find interface by index %d",
906 ifa->ifa_index);
907 return -1;
908 }
909
910 if (IS_ZEBRA_DEBUG_KERNEL) /* remove this line to see initial ifcfg */
911 {
912 char buf[BUFSIZ];
913 zlog_debug("netlink_interface_addr %s %s flags 0x%x:",
914 nl_msg_type_to_str(h->nlmsg_type), ifp->name,
915 ifa->ifa_flags);
916 if (tb[IFA_LOCAL])
917 zlog_debug(" IFA_LOCAL %s/%d",
918 inet_ntop(ifa->ifa_family,
919 RTA_DATA(tb[IFA_LOCAL]), buf,
920 BUFSIZ),
921 ifa->ifa_prefixlen);
922 if (tb[IFA_ADDRESS])
923 zlog_debug(" IFA_ADDRESS %s/%d",
924 inet_ntop(ifa->ifa_family,
925 RTA_DATA(tb[IFA_ADDRESS]), buf,
926 BUFSIZ),
927 ifa->ifa_prefixlen);
928 if (tb[IFA_BROADCAST])
929 zlog_debug(" IFA_BROADCAST %s/%d",
930 inet_ntop(ifa->ifa_family,
931 RTA_DATA(tb[IFA_BROADCAST]), buf,
932 BUFSIZ),
933 ifa->ifa_prefixlen);
934 if (tb[IFA_LABEL] && strcmp(ifp->name, RTA_DATA(tb[IFA_LABEL])))
935 zlog_debug(" IFA_LABEL %s",
936 (char *)RTA_DATA(tb[IFA_LABEL]));
937
938 if (tb[IFA_CACHEINFO]) {
939 struct ifa_cacheinfo *ci = RTA_DATA(tb[IFA_CACHEINFO]);
940 zlog_debug(" IFA_CACHEINFO pref %d, valid %d",
941 ci->ifa_prefered, ci->ifa_valid);
942 }
943 }
944
945 /* logic copied from iproute2/ip/ipaddress.c:print_addrinfo() */
946 if (tb[IFA_LOCAL] == NULL)
947 tb[IFA_LOCAL] = tb[IFA_ADDRESS];
948 if (tb[IFA_ADDRESS] == NULL)
949 tb[IFA_ADDRESS] = tb[IFA_LOCAL];
950
951 /* local interface address */
952 addr = (tb[IFA_LOCAL] ? RTA_DATA(tb[IFA_LOCAL]) : NULL);
953
954 /* is there a peer address? */
955 if (tb[IFA_ADDRESS]
956 && memcmp(RTA_DATA(tb[IFA_ADDRESS]), RTA_DATA(tb[IFA_LOCAL]),
957 RTA_PAYLOAD(tb[IFA_ADDRESS]))) {
958 broad = RTA_DATA(tb[IFA_ADDRESS]);
959 SET_FLAG(flags, ZEBRA_IFA_PEER);
960 } else
961 /* seeking a broadcast address */
962 broad = (tb[IFA_BROADCAST] ? RTA_DATA(tb[IFA_BROADCAST])
963 : NULL);
964
965 /* addr is primary key, SOL if we don't have one */
966 if (addr == NULL) {
967 zlog_debug("%s: NULL address", __func__);
968 return -1;
969 }
970
971 /* Flags. */
972 if (ifa->ifa_flags & IFA_F_SECONDARY)
973 SET_FLAG(flags, ZEBRA_IFA_SECONDARY);
974
975 /* Label */
976 if (tb[IFA_LABEL])
977 label = (char *)RTA_DATA(tb[IFA_LABEL]);
978
979 if (ifp && label && strcmp(ifp->name, label) == 0)
980 label = NULL;
981
982 /* Register interface address to the interface. */
983 if (ifa->ifa_family == AF_INET) {
984 if (h->nlmsg_type == RTM_NEWADDR)
985 connected_add_ipv4(ifp, flags, (struct in_addr *)addr,
986 ifa->ifa_prefixlen,
987 (struct in_addr *)broad, label);
988 else
989 connected_delete_ipv4(
990 ifp, flags, (struct in_addr *)addr,
991 ifa->ifa_prefixlen, (struct in_addr *)broad);
992 }
993 if (ifa->ifa_family == AF_INET6) {
994 if (h->nlmsg_type == RTM_NEWADDR) {
995 /* Only consider valid addresses; we'll not get a
996 * notification from
997 * the kernel till IPv6 DAD has completed, but at init
998 * time, Quagga
999 * does query for and will receive all addresses.
1000 */
1001 if (!(ifa->ifa_flags
1002 & (IFA_F_DADFAILED | IFA_F_TENTATIVE)))
1003 connected_add_ipv6(ifp, flags,
1004 (struct in6_addr *)addr,
1005 (struct in6_addr *)broad,
1006 ifa->ifa_prefixlen, label);
1007 } else
1008 connected_delete_ipv6(ifp, (struct in6_addr *)addr,
1009 (struct in6_addr *)broad,
1010 ifa->ifa_prefixlen);
1011 }
1012
1013 return 0;
1014 }
1015
1016 /* helper function called by if_netlink_change
1017 * to delete interfaces in case the interface moved
1018 * to an other netns
1019 */
1020 static void if_netlink_check_ifp_instance_consistency(uint16_t cmd,
1021 struct interface *ifp,
1022 ns_id_t ns_id)
1023 {
1024 struct interface *other_ifp;
1025
1026 /*
1027 * look if interface name is also found on other netns
1028 * - only if vrf backend is netns
1029 * - do not concern lo interface
1030 * - then remove previous one
1031 * - for new link case, check found interface is not active
1032 */
1033 if (!vrf_is_backend_netns() ||
1034 !strcmp(ifp->name, "lo"))
1035 return;
1036 other_ifp = if_lookup_by_name_not_ns(ns_id, ifp->name);
1037 if (!other_ifp)
1038 return;
1039 /* because previous interface may be inactive,
1040 * interface is moved back to default vrf
1041 * then one may find the same pointer; ignore
1042 */
1043 if (other_ifp == ifp)
1044 return;
1045 if ((cmd == RTM_NEWLINK)
1046 && (CHECK_FLAG(other_ifp->status, ZEBRA_INTERFACE_ACTIVE)))
1047 return;
1048 if (IS_ZEBRA_DEBUG_KERNEL && cmd == RTM_NEWLINK) {
1049 zlog_debug("RTM_NEWLINK %s(%u, VRF %u) replaces %s(%u, VRF %u)\n",
1050 ifp->name,
1051 ifp->ifindex,
1052 ifp->vrf_id,
1053 other_ifp->name,
1054 other_ifp->ifindex,
1055 other_ifp->vrf_id);
1056 } else if (IS_ZEBRA_DEBUG_KERNEL && cmd == RTM_DELLINK) {
1057 zlog_debug("RTM_DELLINK %s(%u, VRF %u) is replaced by %s(%u, VRF %u)\n",
1058 ifp->name,
1059 ifp->ifindex,
1060 ifp->vrf_id,
1061 other_ifp->name,
1062 other_ifp->ifindex,
1063 other_ifp->vrf_id);
1064 }
1065 /* the found interface replaces the current one
1066 * remove it
1067 */
1068 if (cmd == RTM_DELLINK)
1069 if_delete(ifp);
1070 else
1071 if_delete(other_ifp);
1072 /* the found interface is replaced by the current one
1073 * suppress it
1074 */
1075 }
1076
1077 int netlink_link_change(struct nlmsghdr *h, ns_id_t ns_id, int startup)
1078 {
1079 int len;
1080 struct ifinfomsg *ifi;
1081 struct rtattr *tb[IFLA_MAX + 1];
1082 struct rtattr *linkinfo[IFLA_MAX + 1];
1083 struct interface *ifp;
1084 char *name = NULL;
1085 char *kind = NULL;
1086 char *desc = NULL;
1087 char *slave_kind = NULL;
1088 struct zebra_ns *zns;
1089 vrf_id_t vrf_id = VRF_DEFAULT;
1090 zebra_iftype_t zif_type = ZEBRA_IF_OTHER;
1091 zebra_slave_iftype_t zif_slave_type = ZEBRA_IF_SLAVE_NONE;
1092 ifindex_t bridge_ifindex = IFINDEX_INTERNAL;
1093 ifindex_t link_ifindex = IFINDEX_INTERNAL;
1094
1095
1096 zns = zebra_ns_lookup(ns_id);
1097 ifi = NLMSG_DATA(h);
1098
1099 /* assume if not default zns, then new VRF */
1100 if (!(h->nlmsg_type == RTM_NEWLINK || h->nlmsg_type == RTM_DELLINK)) {
1101 /* If this is not link add/delete message so print warning. */
1102 zlog_warn("netlink_link_change: wrong kernel message %d",
1103 h->nlmsg_type);
1104 return 0;
1105 }
1106
1107 len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct ifinfomsg));
1108 if (len < 0)
1109 return -1;
1110
1111 /* We are interested in some AF_BRIDGE notifications. */
1112 if (ifi->ifi_family == AF_BRIDGE)
1113 return netlink_bridge_interface(h, len, ns_id, startup);
1114
1115 /* Looking up interface name. */
1116 memset(tb, 0, sizeof tb);
1117 memset(linkinfo, 0, sizeof linkinfo);
1118 netlink_parse_rtattr(tb, IFLA_MAX, IFLA_RTA(ifi), len);
1119
1120 /* check for wireless messages to ignore */
1121 if ((tb[IFLA_WIRELESS] != NULL) && (ifi->ifi_change == 0)) {
1122 if (IS_ZEBRA_DEBUG_KERNEL)
1123 zlog_debug("%s: ignoring IFLA_WIRELESS message",
1124 __func__);
1125 return 0;
1126 }
1127
1128 if (tb[IFLA_IFNAME] == NULL)
1129 return -1;
1130 name = (char *)RTA_DATA(tb[IFLA_IFNAME]);
1131
1132 if (tb[IFLA_LINKINFO]) {
1133 parse_rtattr_nested(linkinfo, IFLA_INFO_MAX, tb[IFLA_LINKINFO]);
1134
1135 if (linkinfo[IFLA_INFO_KIND])
1136 kind = RTA_DATA(linkinfo[IFLA_INFO_KIND]);
1137
1138 if (linkinfo[IFLA_INFO_SLAVE_KIND])
1139 slave_kind = RTA_DATA(linkinfo[IFLA_INFO_SLAVE_KIND]);
1140
1141 netlink_determine_zebra_iftype(kind, &zif_type);
1142 }
1143
1144 /* If linking to another interface, note it. */
1145 if (tb[IFLA_LINK])
1146 link_ifindex = *(ifindex_t *)RTA_DATA(tb[IFLA_LINK]);
1147
1148 if (tb[IFLA_IFALIAS]) {
1149 desc = (char *)RTA_DATA(tb[IFLA_IFALIAS]);
1150 }
1151
1152 /* If VRF, create or update the VRF structure itself. */
1153 if (zif_type == ZEBRA_IF_VRF && !vrf_is_backend_netns()) {
1154 netlink_vrf_change(h, tb[IFLA_LINKINFO], name);
1155 vrf_id = (vrf_id_t)ifi->ifi_index;
1156 }
1157
1158 /* See if interface is present. */
1159 ifp = if_lookup_by_name_per_ns(zns, name);
1160
1161 if (ifp) {
1162 if (ifp->desc)
1163 XFREE(MTYPE_TMP, ifp->desc);
1164 if (desc)
1165 ifp->desc = XSTRDUP(MTYPE_TMP, desc);
1166 }
1167
1168 if (h->nlmsg_type == RTM_NEWLINK) {
1169 if (tb[IFLA_MASTER]) {
1170 if (slave_kind && (strcmp(slave_kind, "vrf") == 0)
1171 && !vrf_is_backend_netns()) {
1172 zif_slave_type = ZEBRA_IF_SLAVE_VRF;
1173 vrf_id = *(uint32_t *)RTA_DATA(tb[IFLA_MASTER]);
1174 } else if (slave_kind
1175 && (strcmp(slave_kind, "bridge") == 0)) {
1176 zif_slave_type = ZEBRA_IF_SLAVE_BRIDGE;
1177 bridge_ifindex =
1178 *(ifindex_t *)RTA_DATA(tb[IFLA_MASTER]);
1179 } else
1180 zif_slave_type = ZEBRA_IF_SLAVE_OTHER;
1181 }
1182 if (vrf_is_backend_netns())
1183 vrf_id = (vrf_id_t)ns_id;
1184 if (ifp == NULL
1185 || !CHECK_FLAG(ifp->status, ZEBRA_INTERFACE_ACTIVE)) {
1186 /* Add interface notification from kernel */
1187 if (IS_ZEBRA_DEBUG_KERNEL)
1188 zlog_debug(
1189 "RTM_NEWLINK ADD for %s(%u) vrf_id %u type %d "
1190 "sl_type %d master %u flags 0x%x",
1191 name, ifi->ifi_index, vrf_id, zif_type,
1192 zif_slave_type, bridge_ifindex,
1193 ifi->ifi_flags);
1194
1195 if (ifp == NULL) {
1196 /* unknown interface */
1197 ifp = if_get_by_name(name, vrf_id, 0);
1198 } else {
1199 /* pre-configured interface, learnt now */
1200 if (ifp->vrf_id != vrf_id)
1201 if_update_to_new_vrf(ifp, vrf_id);
1202 }
1203
1204 /* Update interface information. */
1205 set_ifindex(ifp, ifi->ifi_index, zns);
1206 ifp->flags = ifi->ifi_flags & 0x0000fffff;
1207 ifp->mtu6 = ifp->mtu = *(int *)RTA_DATA(tb[IFLA_MTU]);
1208 ifp->metric = 0;
1209 ifp->ptm_status = ZEBRA_PTM_STATUS_UNKNOWN;
1210
1211 /* Set interface type */
1212 zebra_if_set_ziftype(ifp, zif_type, zif_slave_type);
1213 if (IS_ZEBRA_IF_VRF(ifp))
1214 SET_FLAG(ifp->status,
1215 ZEBRA_INTERFACE_VRF_LOOPBACK);
1216
1217 /* Update link. */
1218 zebra_if_update_link(ifp, link_ifindex);
1219
1220 netlink_interface_update_hw_addr(tb, ifp);
1221
1222 /* Inform clients, install any configured addresses. */
1223 if_add_update(ifp);
1224
1225 /* Extract and save L2 interface information, take
1226 * additional actions. */
1227 netlink_interface_update_l2info(
1228 ifp, linkinfo[IFLA_INFO_DATA], 1);
1229 if (IS_ZEBRA_IF_BRIDGE_SLAVE(ifp))
1230 zebra_l2if_update_bridge_slave(ifp,
1231 bridge_ifindex);
1232 if_netlink_check_ifp_instance_consistency(RTM_NEWLINK,
1233 ifp, ns_id);
1234 } else if (ifp->vrf_id != vrf_id) {
1235 /* VRF change for an interface. */
1236 if (IS_ZEBRA_DEBUG_KERNEL)
1237 zlog_debug(
1238 "RTM_NEWLINK vrf-change for %s(%u) "
1239 "vrf_id %u -> %u flags 0x%x",
1240 name, ifp->ifindex, ifp->vrf_id, vrf_id,
1241 ifi->ifi_flags);
1242
1243 if_handle_vrf_change(ifp, vrf_id);
1244 } else {
1245 int was_bridge_slave;
1246
1247 /* Interface update. */
1248 if (IS_ZEBRA_DEBUG_KERNEL)
1249 zlog_debug(
1250 "RTM_NEWLINK update for %s(%u) "
1251 "sl_type %d master %u flags 0x%x",
1252 name, ifp->ifindex, zif_slave_type,
1253 bridge_ifindex, ifi->ifi_flags);
1254
1255 set_ifindex(ifp, ifi->ifi_index, zns);
1256 ifp->mtu6 = ifp->mtu = *(int *)RTA_DATA(tb[IFLA_MTU]);
1257 ifp->metric = 0;
1258
1259 /* Update interface type - NOTE: Only slave_type can
1260 * change. */
1261 was_bridge_slave = IS_ZEBRA_IF_BRIDGE_SLAVE(ifp);
1262 zebra_if_set_ziftype(ifp, zif_type, zif_slave_type);
1263
1264 netlink_interface_update_hw_addr(tb, ifp);
1265
1266 if (if_is_no_ptm_operative(ifp)) {
1267 ifp->flags = ifi->ifi_flags & 0x0000fffff;
1268 if (!if_is_no_ptm_operative(ifp)) {
1269 if (IS_ZEBRA_DEBUG_KERNEL)
1270 zlog_debug(
1271 "Intf %s(%u) has gone DOWN",
1272 name, ifp->ifindex);
1273 if_down(ifp);
1274 } else if (if_is_operative(ifp)) {
1275 /* Must notify client daemons of new
1276 * interface status. */
1277 if (IS_ZEBRA_DEBUG_KERNEL)
1278 zlog_debug(
1279 "Intf %s(%u) PTM up, notifying clients",
1280 name, ifp->ifindex);
1281 zebra_interface_up_update(ifp);
1282 }
1283 } else {
1284 ifp->flags = ifi->ifi_flags & 0x0000fffff;
1285 if (if_is_operative(ifp)) {
1286 if (IS_ZEBRA_DEBUG_KERNEL)
1287 zlog_debug(
1288 "Intf %s(%u) has come UP",
1289 name, ifp->ifindex);
1290 if_up(ifp);
1291 }
1292 }
1293
1294 /* Extract and save L2 interface information, take
1295 * additional actions. */
1296 netlink_interface_update_l2info(
1297 ifp, linkinfo[IFLA_INFO_DATA], 0);
1298 if (IS_ZEBRA_IF_BRIDGE_SLAVE(ifp) || was_bridge_slave)
1299 zebra_l2if_update_bridge_slave(ifp,
1300 bridge_ifindex);
1301 if_netlink_check_ifp_instance_consistency(RTM_NEWLINK,
1302 ifp, ns_id);
1303 }
1304 } else {
1305 /* Delete interface notification from kernel */
1306 if (ifp == NULL) {
1307 zlog_warn("RTM_DELLINK for unknown interface %s(%u)",
1308 name, ifi->ifi_index);
1309 return 0;
1310 }
1311
1312 if (IS_ZEBRA_DEBUG_KERNEL)
1313 zlog_debug("RTM_DELLINK for %s(%u)", name,
1314 ifp->ifindex);
1315
1316 UNSET_FLAG(ifp->status, ZEBRA_INTERFACE_VRF_LOOPBACK);
1317
1318 /* Special handling for bridge or VxLAN interfaces. */
1319 if (IS_ZEBRA_IF_BRIDGE(ifp))
1320 zebra_l2_bridge_del(ifp);
1321 else if (IS_ZEBRA_IF_VXLAN(ifp))
1322 zebra_l2_vxlanif_del(ifp);
1323
1324 if (!IS_ZEBRA_IF_VRF(ifp))
1325 if_delete_update(ifp);
1326 if_netlink_check_ifp_instance_consistency(RTM_DELLINK,
1327 ifp, ns_id);
1328 }
1329
1330 return 0;
1331 }
1332
1333 /* Interface information read by netlink. */
1334 void interface_list(struct zebra_ns *zns)
1335 {
1336 interface_lookup_netlink(zns);
1337 }
1338
1339 #endif /* GNU_LINUX */