]> git.proxmox.com Git - mirror_frr.git/blob - zebra/if_netlink.c
zebra: netlink message batching
[mirror_frr.git] / zebra / if_netlink.c
1 /*
2 * Interface looking up by netlink.
3 * Copyright (C) 1998 Kunihiro Ishiguro
4 *
5 * This file is part of GNU Zebra.
6 *
7 * GNU Zebra is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2, or (at your option) any
10 * later version.
11 *
12 * GNU Zebra is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; see the file COPYING; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 #include <zebra.h>
23
24 #ifdef GNU_LINUX
25
26 /* The following definition is to workaround an issue in the Linux kernel
27 * header files with redefinition of 'struct in6_addr' in both
28 * netinet/in.h and linux/in6.h.
29 * Reference - https://sourceware.org/ml/libc-alpha/2013-01/msg00599.html
30 */
31 #define _LINUX_IN6_H
32
33 #include <netinet/if_ether.h>
34 #include <linux/if_bridge.h>
35 #include <linux/if_link.h>
36 #include <net/if_arp.h>
37 #include <linux/sockios.h>
38 #include <linux/ethtool.h>
39
40 #include "linklist.h"
41 #include "if.h"
42 #include "log.h"
43 #include "prefix.h"
44 #include "connected.h"
45 #include "table.h"
46 #include "memory.h"
47 #include "zebra_memory.h"
48 #include "rib.h"
49 #include "thread.h"
50 #include "privs.h"
51 #include "nexthop.h"
52 #include "vrf.h"
53 #include "vrf_int.h"
54 #include "mpls.h"
55 #include "lib_errors.h"
56
57 #include "vty.h"
58 #include "zebra/zserv.h"
59 #include "zebra/zebra_ns.h"
60 #include "zebra/zebra_vrf.h"
61 #include "zebra/rt.h"
62 #include "zebra/redistribute.h"
63 #include "zebra/interface.h"
64 #include "zebra/debug.h"
65 #include "zebra/rtadv.h"
66 #include "zebra/zebra_ptm.h"
67 #include "zebra/zebra_mpls.h"
68 #include "zebra/kernel_netlink.h"
69 #include "zebra/rt_netlink.h"
70 #include "zebra/if_netlink.h"
71 #include "zebra/zebra_errors.h"
72 #include "zebra/zebra_vxlan.h"
73 #include "zebra/zebra_evpn_mh.h"
74
75 extern struct zebra_privs_t zserv_privs;
76
77 /* Note: on netlink systems, there should be a 1-to-1 mapping between interface
78 names and ifindex values. */
79 static void set_ifindex(struct interface *ifp, ifindex_t ifi_index,
80 struct zebra_ns *zns)
81 {
82 struct interface *oifp;
83
84 if (((oifp = if_lookup_by_index_per_ns(zns, ifi_index)) != NULL)
85 && (oifp != ifp)) {
86 if (ifi_index == IFINDEX_INTERNAL)
87 flog_err(
88 EC_LIB_INTERFACE,
89 "Netlink is setting interface %s ifindex to reserved internal value %u",
90 ifp->name, ifi_index);
91 else {
92 if (IS_ZEBRA_DEBUG_KERNEL)
93 zlog_debug(
94 "interface index %d was renamed from %s to %s",
95 ifi_index, oifp->name, ifp->name);
96 if (if_is_up(oifp))
97 flog_err(
98 EC_LIB_INTERFACE,
99 "interface rename detected on up interface: index %d was renamed from %s to %s, results are uncertain!",
100 ifi_index, oifp->name, ifp->name);
101 if_delete_update(oifp);
102 }
103 }
104 if_set_index(ifp, ifi_index);
105 }
106
107 /* Utility function to parse hardware link-layer address and update ifp */
108 static void netlink_interface_update_hw_addr(struct rtattr **tb,
109 struct interface *ifp)
110 {
111 int i;
112
113 if (tb[IFLA_ADDRESS]) {
114 int hw_addr_len;
115
116 hw_addr_len = RTA_PAYLOAD(tb[IFLA_ADDRESS]);
117
118 if (hw_addr_len > INTERFACE_HWADDR_MAX)
119 zlog_debug("Hardware address is too large: %d",
120 hw_addr_len);
121 else {
122 ifp->hw_addr_len = hw_addr_len;
123 memcpy(ifp->hw_addr, RTA_DATA(tb[IFLA_ADDRESS]),
124 hw_addr_len);
125
126 for (i = 0; i < hw_addr_len; i++)
127 if (ifp->hw_addr[i] != 0)
128 break;
129
130 if (i == hw_addr_len)
131 ifp->hw_addr_len = 0;
132 else
133 ifp->hw_addr_len = hw_addr_len;
134 }
135 }
136 }
137
138 static enum zebra_link_type netlink_to_zebra_link_type(unsigned int hwt)
139 {
140 switch (hwt) {
141 case ARPHRD_ETHER:
142 return ZEBRA_LLT_ETHER;
143 case ARPHRD_EETHER:
144 return ZEBRA_LLT_EETHER;
145 case ARPHRD_AX25:
146 return ZEBRA_LLT_AX25;
147 case ARPHRD_PRONET:
148 return ZEBRA_LLT_PRONET;
149 case ARPHRD_IEEE802:
150 return ZEBRA_LLT_IEEE802;
151 case ARPHRD_ARCNET:
152 return ZEBRA_LLT_ARCNET;
153 case ARPHRD_APPLETLK:
154 return ZEBRA_LLT_APPLETLK;
155 case ARPHRD_DLCI:
156 return ZEBRA_LLT_DLCI;
157 case ARPHRD_ATM:
158 return ZEBRA_LLT_ATM;
159 case ARPHRD_METRICOM:
160 return ZEBRA_LLT_METRICOM;
161 case ARPHRD_IEEE1394:
162 return ZEBRA_LLT_IEEE1394;
163 case ARPHRD_EUI64:
164 return ZEBRA_LLT_EUI64;
165 case ARPHRD_INFINIBAND:
166 return ZEBRA_LLT_INFINIBAND;
167 case ARPHRD_SLIP:
168 return ZEBRA_LLT_SLIP;
169 case ARPHRD_CSLIP:
170 return ZEBRA_LLT_CSLIP;
171 case ARPHRD_SLIP6:
172 return ZEBRA_LLT_SLIP6;
173 case ARPHRD_CSLIP6:
174 return ZEBRA_LLT_CSLIP6;
175 case ARPHRD_RSRVD:
176 return ZEBRA_LLT_RSRVD;
177 case ARPHRD_ADAPT:
178 return ZEBRA_LLT_ADAPT;
179 case ARPHRD_ROSE:
180 return ZEBRA_LLT_ROSE;
181 case ARPHRD_X25:
182 return ZEBRA_LLT_X25;
183 case ARPHRD_PPP:
184 return ZEBRA_LLT_PPP;
185 case ARPHRD_CISCO:
186 return ZEBRA_LLT_CHDLC;
187 case ARPHRD_LAPB:
188 return ZEBRA_LLT_LAPB;
189 case ARPHRD_RAWHDLC:
190 return ZEBRA_LLT_RAWHDLC;
191 case ARPHRD_TUNNEL:
192 return ZEBRA_LLT_IPIP;
193 case ARPHRD_TUNNEL6:
194 return ZEBRA_LLT_IPIP6;
195 case ARPHRD_FRAD:
196 return ZEBRA_LLT_FRAD;
197 case ARPHRD_SKIP:
198 return ZEBRA_LLT_SKIP;
199 case ARPHRD_LOOPBACK:
200 return ZEBRA_LLT_LOOPBACK;
201 case ARPHRD_LOCALTLK:
202 return ZEBRA_LLT_LOCALTLK;
203 case ARPHRD_FDDI:
204 return ZEBRA_LLT_FDDI;
205 case ARPHRD_SIT:
206 return ZEBRA_LLT_SIT;
207 case ARPHRD_IPDDP:
208 return ZEBRA_LLT_IPDDP;
209 case ARPHRD_IPGRE:
210 return ZEBRA_LLT_IPGRE;
211 case ARPHRD_PIMREG:
212 return ZEBRA_LLT_PIMREG;
213 case ARPHRD_HIPPI:
214 return ZEBRA_LLT_HIPPI;
215 case ARPHRD_ECONET:
216 return ZEBRA_LLT_ECONET;
217 case ARPHRD_IRDA:
218 return ZEBRA_LLT_IRDA;
219 case ARPHRD_FCPP:
220 return ZEBRA_LLT_FCPP;
221 case ARPHRD_FCAL:
222 return ZEBRA_LLT_FCAL;
223 case ARPHRD_FCPL:
224 return ZEBRA_LLT_FCPL;
225 case ARPHRD_FCFABRIC:
226 return ZEBRA_LLT_FCFABRIC;
227 case ARPHRD_IEEE802_TR:
228 return ZEBRA_LLT_IEEE802_TR;
229 case ARPHRD_IEEE80211:
230 return ZEBRA_LLT_IEEE80211;
231 #ifdef ARPHRD_IEEE802154
232 case ARPHRD_IEEE802154:
233 return ZEBRA_LLT_IEEE802154;
234 #endif
235 #ifdef ARPHRD_IP6GRE
236 case ARPHRD_IP6GRE:
237 return ZEBRA_LLT_IP6GRE;
238 #endif
239 #ifdef ARPHRD_IEEE802154_PHY
240 case ARPHRD_IEEE802154_PHY:
241 return ZEBRA_LLT_IEEE802154_PHY;
242 #endif
243
244 default:
245 return ZEBRA_LLT_UNKNOWN;
246 }
247 }
248
249 static inline void zebra_if_set_ziftype(struct interface *ifp,
250 zebra_iftype_t zif_type,
251 zebra_slave_iftype_t zif_slave_type)
252 {
253 struct zebra_if *zif;
254
255 zif = (struct zebra_if *)ifp->info;
256 zif->zif_slave_type = zif_slave_type;
257
258 if (zif->zif_type != zif_type) {
259 zif->zif_type = zif_type;
260 /* If the if_type has been set to bond initialize ES info
261 * against it. XXX - note that we don't handle the case where
262 * a zif changes from bond to non-bond; it is really
263 * an unexpected/error condition.
264 */
265 zebra_evpn_if_init(zif);
266 }
267 }
268
269 static void netlink_determine_zebra_iftype(const char *kind,
270 zebra_iftype_t *zif_type)
271 {
272 *zif_type = ZEBRA_IF_OTHER;
273
274 if (!kind)
275 return;
276
277 if (strcmp(kind, "vrf") == 0)
278 *zif_type = ZEBRA_IF_VRF;
279 else if (strcmp(kind, "bridge") == 0)
280 *zif_type = ZEBRA_IF_BRIDGE;
281 else if (strcmp(kind, "vlan") == 0)
282 *zif_type = ZEBRA_IF_VLAN;
283 else if (strcmp(kind, "vxlan") == 0)
284 *zif_type = ZEBRA_IF_VXLAN;
285 else if (strcmp(kind, "macvlan") == 0)
286 *zif_type = ZEBRA_IF_MACVLAN;
287 else if (strcmp(kind, "veth") == 0)
288 *zif_type = ZEBRA_IF_VETH;
289 else if (strcmp(kind, "bond") == 0)
290 *zif_type = ZEBRA_IF_BOND;
291 else if (strcmp(kind, "bond_slave") == 0)
292 *zif_type = ZEBRA_IF_BOND_SLAVE;
293 }
294
295 #define parse_rtattr_nested(tb, max, rta) \
296 netlink_parse_rtattr((tb), (max), RTA_DATA(rta), RTA_PAYLOAD(rta))
297
298 static void netlink_vrf_change(struct nlmsghdr *h, struct rtattr *tb,
299 uint32_t ns_id, const char *name)
300 {
301 struct ifinfomsg *ifi;
302 struct rtattr *linkinfo[IFLA_INFO_MAX + 1];
303 struct rtattr *attr[IFLA_VRF_MAX + 1];
304 struct vrf *vrf;
305 struct zebra_vrf *zvrf;
306 uint32_t nl_table_id;
307
308 ifi = NLMSG_DATA(h);
309
310 memset(linkinfo, 0, sizeof(linkinfo));
311 parse_rtattr_nested(linkinfo, IFLA_INFO_MAX, tb);
312
313 if (!linkinfo[IFLA_INFO_DATA]) {
314 if (IS_ZEBRA_DEBUG_KERNEL)
315 zlog_debug(
316 "%s: IFLA_INFO_DATA missing from VRF message: %s",
317 __func__, name);
318 return;
319 }
320
321 memset(attr, 0, sizeof(attr));
322 parse_rtattr_nested(attr, IFLA_VRF_MAX, linkinfo[IFLA_INFO_DATA]);
323 if (!attr[IFLA_VRF_TABLE]) {
324 if (IS_ZEBRA_DEBUG_KERNEL)
325 zlog_debug(
326 "%s: IFLA_VRF_TABLE missing from VRF message: %s",
327 __func__, name);
328 return;
329 }
330
331 nl_table_id = *(uint32_t *)RTA_DATA(attr[IFLA_VRF_TABLE]);
332
333 if (h->nlmsg_type == RTM_NEWLINK) {
334 if (IS_ZEBRA_DEBUG_KERNEL)
335 zlog_debug("RTM_NEWLINK for VRF %s(%u) table %u", name,
336 ifi->ifi_index, nl_table_id);
337
338 if (!vrf_lookup_by_id((vrf_id_t)ifi->ifi_index)) {
339 vrf_id_t exist_id;
340
341 exist_id = vrf_lookup_by_table(nl_table_id, ns_id);
342 if (exist_id != VRF_DEFAULT) {
343 vrf = vrf_lookup_by_id(exist_id);
344
345 flog_err(
346 EC_ZEBRA_VRF_MISCONFIGURED,
347 "VRF %s id %u table id overlaps existing vrf %s, misconfiguration exiting",
348 name, ifi->ifi_index, vrf->name);
349 exit(-1);
350 }
351 }
352
353 /*
354 * vrf_get is implied creation if it does not exist
355 */
356 vrf = vrf_get((vrf_id_t)ifi->ifi_index,
357 name); // It would create vrf
358 if (!vrf) {
359 flog_err(EC_LIB_INTERFACE, "VRF %s id %u not created",
360 name, ifi->ifi_index);
361 return;
362 }
363
364 /*
365 * This is the only place that we get the actual kernel table_id
366 * being used. We need it to set the table_id of the routes
367 * we are passing to the kernel.... And to throw some totally
368 * awesome parties. that too.
369 *
370 * At this point we *must* have a zvrf because the vrf_create
371 * callback creates one. We *must* set the table id
372 * before the vrf_enable because of( at the very least )
373 * static routes being delayed for installation until
374 * during the vrf_enable callbacks.
375 */
376 zvrf = (struct zebra_vrf *)vrf->info;
377 zvrf->table_id = nl_table_id;
378
379 /* Enable the created VRF. */
380 if (!vrf_enable(vrf)) {
381 flog_err(EC_LIB_INTERFACE,
382 "Failed to enable VRF %s id %u", name,
383 ifi->ifi_index);
384 return;
385 }
386
387 } else // h->nlmsg_type == RTM_DELLINK
388 {
389 if (IS_ZEBRA_DEBUG_KERNEL)
390 zlog_debug("RTM_DELLINK for VRF %s(%u)", name,
391 ifi->ifi_index);
392
393 vrf = vrf_lookup_by_id((vrf_id_t)ifi->ifi_index);
394
395 if (!vrf) {
396 flog_warn(EC_ZEBRA_VRF_NOT_FOUND, "%s: vrf not found",
397 __func__);
398 return;
399 }
400
401 vrf_delete(vrf);
402 }
403 }
404
405 static uint32_t get_iflink_speed(struct interface *interface, int *error)
406 {
407 struct ifreq ifdata;
408 struct ethtool_cmd ecmd;
409 int sd;
410 int rc;
411 const char *ifname = interface->name;
412
413 if (error)
414 *error = 0;
415 /* initialize struct */
416 memset(&ifdata, 0, sizeof(ifdata));
417
418 /* set interface name */
419 strlcpy(ifdata.ifr_name, ifname, sizeof(ifdata.ifr_name));
420
421 /* initialize ethtool interface */
422 memset(&ecmd, 0, sizeof(ecmd));
423 ecmd.cmd = ETHTOOL_GSET; /* ETHTOOL_GLINK */
424 ifdata.ifr_data = (caddr_t)&ecmd;
425
426 /* use ioctl to get IP address of an interface */
427 frr_with_privs(&zserv_privs) {
428 sd = vrf_socket(PF_INET, SOCK_DGRAM, IPPROTO_IP,
429 interface->vrf_id,
430 NULL);
431 if (sd < 0) {
432 if (IS_ZEBRA_DEBUG_KERNEL)
433 zlog_debug("Failure to read interface %s speed: %d %s",
434 ifname, errno, safe_strerror(errno));
435 /* no vrf socket creation may probably mean vrf issue */
436 if (error)
437 *error = -1;
438 return 0;
439 }
440 /* Get the current link state for the interface */
441 rc = vrf_ioctl(interface->vrf_id, sd, SIOCETHTOOL,
442 (char *)&ifdata);
443 }
444 if (rc < 0) {
445 if (errno != EOPNOTSUPP && IS_ZEBRA_DEBUG_KERNEL)
446 zlog_debug(
447 "IOCTL failure to read interface %s speed: %d %s",
448 ifname, errno, safe_strerror(errno));
449 /* no device means interface unreachable */
450 if (errno == ENODEV && error)
451 *error = -1;
452 ecmd.speed_hi = 0;
453 ecmd.speed = 0;
454 }
455
456 close(sd);
457
458 return ((uint32_t)ecmd.speed_hi << 16) | ecmd.speed;
459 }
460
461 uint32_t kernel_get_speed(struct interface *ifp, int *error)
462 {
463 return get_iflink_speed(ifp, error);
464 }
465
466 static int netlink_extract_bridge_info(struct rtattr *link_data,
467 struct zebra_l2info_bridge *bridge_info)
468 {
469 struct rtattr *attr[IFLA_BR_MAX + 1];
470
471 memset(bridge_info, 0, sizeof(*bridge_info));
472 memset(attr, 0, sizeof(attr));
473 parse_rtattr_nested(attr, IFLA_BR_MAX, link_data);
474 if (attr[IFLA_BR_VLAN_FILTERING])
475 bridge_info->vlan_aware =
476 *(uint8_t *)RTA_DATA(attr[IFLA_BR_VLAN_FILTERING]);
477 return 0;
478 }
479
480 static int netlink_extract_vlan_info(struct rtattr *link_data,
481 struct zebra_l2info_vlan *vlan_info)
482 {
483 struct rtattr *attr[IFLA_VLAN_MAX + 1];
484 vlanid_t vid_in_msg;
485
486 memset(vlan_info, 0, sizeof(*vlan_info));
487 memset(attr, 0, sizeof(attr));
488 parse_rtattr_nested(attr, IFLA_VLAN_MAX, link_data);
489 if (!attr[IFLA_VLAN_ID]) {
490 if (IS_ZEBRA_DEBUG_KERNEL)
491 zlog_debug("IFLA_VLAN_ID missing from VLAN IF message");
492 return -1;
493 }
494
495 vid_in_msg = *(vlanid_t *)RTA_DATA(attr[IFLA_VLAN_ID]);
496 vlan_info->vid = vid_in_msg;
497 return 0;
498 }
499
500 static int netlink_extract_vxlan_info(struct rtattr *link_data,
501 struct zebra_l2info_vxlan *vxl_info)
502 {
503 struct rtattr *attr[IFLA_VXLAN_MAX + 1];
504 vni_t vni_in_msg;
505 struct in_addr vtep_ip_in_msg;
506 ifindex_t ifindex_link;
507
508 memset(vxl_info, 0, sizeof(*vxl_info));
509 memset(attr, 0, sizeof(attr));
510 parse_rtattr_nested(attr, IFLA_VXLAN_MAX, link_data);
511 if (!attr[IFLA_VXLAN_ID]) {
512 if (IS_ZEBRA_DEBUG_KERNEL)
513 zlog_debug(
514 "IFLA_VXLAN_ID missing from VXLAN IF message");
515 return -1;
516 }
517
518 vni_in_msg = *(vni_t *)RTA_DATA(attr[IFLA_VXLAN_ID]);
519 vxl_info->vni = vni_in_msg;
520 if (!attr[IFLA_VXLAN_LOCAL]) {
521 if (IS_ZEBRA_DEBUG_KERNEL)
522 zlog_debug(
523 "IFLA_VXLAN_LOCAL missing from VXLAN IF message");
524 } else {
525 vtep_ip_in_msg =
526 *(struct in_addr *)RTA_DATA(attr[IFLA_VXLAN_LOCAL]);
527 vxl_info->vtep_ip = vtep_ip_in_msg;
528 }
529
530 if (attr[IFLA_VXLAN_GROUP]) {
531 vxl_info->mcast_grp =
532 *(struct in_addr *)RTA_DATA(attr[IFLA_VXLAN_GROUP]);
533 }
534
535 if (!attr[IFLA_VXLAN_LINK]) {
536 if (IS_ZEBRA_DEBUG_KERNEL)
537 zlog_debug("IFLA_VXLAN_LINK missing from VXLAN IF message");
538 } else {
539 ifindex_link =
540 *(ifindex_t *)RTA_DATA(attr[IFLA_VXLAN_LINK]);
541 vxl_info->ifindex_link = ifindex_link;
542 }
543 return 0;
544 }
545
546 /*
547 * Extract and save L2 params (of interest) for an interface. When a
548 * bridge interface is added or updated, take further actions to map
549 * its members. Likewise, for VxLAN interface.
550 */
551 static void netlink_interface_update_l2info(struct interface *ifp,
552 struct rtattr *link_data, int add,
553 ns_id_t link_nsid)
554 {
555 if (!link_data)
556 return;
557
558 if (IS_ZEBRA_IF_BRIDGE(ifp)) {
559 struct zebra_l2info_bridge bridge_info;
560
561 netlink_extract_bridge_info(link_data, &bridge_info);
562 zebra_l2_bridge_add_update(ifp, &bridge_info, add);
563 } else if (IS_ZEBRA_IF_VLAN(ifp)) {
564 struct zebra_l2info_vlan vlan_info;
565
566 netlink_extract_vlan_info(link_data, &vlan_info);
567 zebra_l2_vlanif_update(ifp, &vlan_info);
568 } else if (IS_ZEBRA_IF_VXLAN(ifp)) {
569 struct zebra_l2info_vxlan vxlan_info;
570
571 netlink_extract_vxlan_info(link_data, &vxlan_info);
572 vxlan_info.link_nsid = link_nsid;
573 zebra_l2_vxlanif_add_update(ifp, &vxlan_info, add);
574 if (link_nsid != NS_UNKNOWN &&
575 vxlan_info.ifindex_link)
576 zebra_if_update_link(ifp, vxlan_info.ifindex_link,
577 link_nsid);
578 }
579 }
580
581 static int netlink_bridge_vxlan_update(struct interface *ifp,
582 struct rtattr *af_spec)
583 {
584 struct rtattr *aftb[IFLA_BRIDGE_MAX + 1];
585 struct bridge_vlan_info *vinfo;
586 vlanid_t access_vlan;
587
588 /* There is a 1-to-1 mapping of VLAN to VxLAN - hence
589 * only 1 access VLAN is accepted.
590 */
591 memset(aftb, 0, sizeof(aftb));
592 parse_rtattr_nested(aftb, IFLA_BRIDGE_MAX, af_spec);
593 if (!aftb[IFLA_BRIDGE_VLAN_INFO])
594 return 0;
595
596 vinfo = RTA_DATA(aftb[IFLA_BRIDGE_VLAN_INFO]);
597 if (!(vinfo->flags & BRIDGE_VLAN_INFO_PVID))
598 return 0;
599
600 access_vlan = (vlanid_t)vinfo->vid;
601 if (IS_ZEBRA_DEBUG_KERNEL)
602 zlog_debug("Access VLAN %u for VxLAN IF %s(%u)", access_vlan,
603 ifp->name, ifp->ifindex);
604 zebra_l2_vxlanif_update_access_vlan(ifp, access_vlan);
605 return 0;
606 }
607
608 static void netlink_bridge_vlan_update(struct interface *ifp,
609 struct rtattr *af_spec)
610 {
611 struct rtattr *i;
612 int rem;
613 uint16_t vid_range_start = 0;
614 struct zebra_if *zif;
615 bitfield_t old_vlan_bitmap;
616 struct bridge_vlan_info *vinfo;
617
618 zif = (struct zebra_if *)ifp->info;
619
620 /* cache the old bitmap addrs */
621 old_vlan_bitmap = zif->vlan_bitmap;
622 /* create a new bitmap space for re-eval */
623 bf_init(zif->vlan_bitmap, IF_VLAN_BITMAP_MAX);
624
625 for (i = RTA_DATA(af_spec), rem = RTA_PAYLOAD(af_spec);
626 RTA_OK(i, rem); i = RTA_NEXT(i, rem)) {
627
628 if (i->rta_type != IFLA_BRIDGE_VLAN_INFO)
629 continue;
630
631 vinfo = RTA_DATA(i);
632
633 if (vinfo->flags & BRIDGE_VLAN_INFO_RANGE_BEGIN) {
634 vid_range_start = vinfo->vid;
635 continue;
636 }
637
638 if (!(vinfo->flags & BRIDGE_VLAN_INFO_RANGE_END))
639 vid_range_start = vinfo->vid;
640
641 zebra_vlan_bitmap_compute(ifp, vid_range_start, vinfo->vid);
642 }
643
644 zebra_vlan_mbr_re_eval(ifp, old_vlan_bitmap);
645
646 bf_free(old_vlan_bitmap);
647 }
648
649 static int netlink_bridge_interface(struct nlmsghdr *h, int len, ns_id_t ns_id,
650 int startup)
651 {
652 char *name = NULL;
653 struct ifinfomsg *ifi;
654 struct rtattr *tb[IFLA_MAX + 1];
655 struct interface *ifp;
656 struct zebra_if *zif;
657 struct rtattr *af_spec;
658
659 /* Fetch name and ifindex */
660 ifi = NLMSG_DATA(h);
661 memset(tb, 0, sizeof(tb));
662 netlink_parse_rtattr(tb, IFLA_MAX, IFLA_RTA(ifi), len);
663
664 if (tb[IFLA_IFNAME] == NULL)
665 return -1;
666 name = (char *)RTA_DATA(tb[IFLA_IFNAME]);
667
668 /* The interface should already be known, if not discard. */
669 ifp = if_lookup_by_index_per_ns(zebra_ns_lookup(ns_id), ifi->ifi_index);
670 if (!ifp) {
671 zlog_debug("Cannot find bridge IF %s(%u)", name,
672 ifi->ifi_index);
673 return 0;
674 }
675
676 /* We are only interested in the access VLAN i.e., AF_SPEC */
677 af_spec = tb[IFLA_AF_SPEC];
678 if (!af_spec)
679 return 0;
680
681 if (IS_ZEBRA_IF_VXLAN(ifp))
682 return netlink_bridge_vxlan_update(ifp, af_spec);
683
684 /* build vlan bitmap associated with this interface if that
685 * device type is interested in the vlans
686 */
687 zif = (struct zebra_if *)ifp->info;
688 if (bf_is_inited(zif->vlan_bitmap))
689 netlink_bridge_vlan_update(ifp, af_spec);
690
691 return 0;
692 }
693
694 /*
695 * Called from interface_lookup_netlink(). This function is only used
696 * during bootstrap.
697 */
698 static int netlink_interface(struct nlmsghdr *h, ns_id_t ns_id, int startup)
699 {
700 int len;
701 struct ifinfomsg *ifi;
702 struct rtattr *tb[IFLA_MAX + 1];
703 struct rtattr *linkinfo[IFLA_MAX + 1];
704 struct interface *ifp;
705 char *name = NULL;
706 char *kind = NULL;
707 char *desc = NULL;
708 char *slave_kind = NULL;
709 struct zebra_ns *zns = NULL;
710 vrf_id_t vrf_id = VRF_DEFAULT;
711 zebra_iftype_t zif_type = ZEBRA_IF_OTHER;
712 zebra_slave_iftype_t zif_slave_type = ZEBRA_IF_SLAVE_NONE;
713 ifindex_t bridge_ifindex = IFINDEX_INTERNAL;
714 ifindex_t link_ifindex = IFINDEX_INTERNAL;
715 ifindex_t bond_ifindex = IFINDEX_INTERNAL;
716 struct zebra_if *zif;
717 ns_id_t link_nsid = ns_id;
718
719 zns = zebra_ns_lookup(ns_id);
720 ifi = NLMSG_DATA(h);
721
722 if (h->nlmsg_type != RTM_NEWLINK)
723 return 0;
724
725 len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct ifinfomsg));
726 if (len < 0) {
727 zlog_err(
728 "%s: Message received from netlink is of a broken size: %d %zu",
729 __func__, h->nlmsg_len,
730 (size_t)NLMSG_LENGTH(sizeof(struct ifinfomsg)));
731 return -1;
732 }
733
734 /* We are interested in some AF_BRIDGE notifications. */
735 if (ifi->ifi_family == AF_BRIDGE)
736 return netlink_bridge_interface(h, len, ns_id, startup);
737
738 /* Looking up interface name. */
739 memset(tb, 0, sizeof(tb));
740 memset(linkinfo, 0, sizeof(linkinfo));
741 netlink_parse_rtattr(tb, IFLA_MAX, IFLA_RTA(ifi), len);
742
743 /* check for wireless messages to ignore */
744 if ((tb[IFLA_WIRELESS] != NULL) && (ifi->ifi_change == 0)) {
745 if (IS_ZEBRA_DEBUG_KERNEL)
746 zlog_debug("%s: ignoring IFLA_WIRELESS message",
747 __func__);
748 return 0;
749 }
750
751 if (tb[IFLA_IFNAME] == NULL)
752 return -1;
753 name = (char *)RTA_DATA(tb[IFLA_IFNAME]);
754
755 if (tb[IFLA_IFALIAS])
756 desc = (char *)RTA_DATA(tb[IFLA_IFALIAS]);
757
758 if (tb[IFLA_LINKINFO]) {
759 parse_rtattr_nested(linkinfo, IFLA_INFO_MAX, tb[IFLA_LINKINFO]);
760
761 if (linkinfo[IFLA_INFO_KIND])
762 kind = RTA_DATA(linkinfo[IFLA_INFO_KIND]);
763
764 if (linkinfo[IFLA_INFO_SLAVE_KIND])
765 slave_kind = RTA_DATA(linkinfo[IFLA_INFO_SLAVE_KIND]);
766
767 if ((slave_kind != NULL) && strcmp(slave_kind, "bond") == 0)
768 netlink_determine_zebra_iftype("bond_slave", &zif_type);
769 else
770 netlink_determine_zebra_iftype(kind, &zif_type);
771 }
772
773 /* If VRF, create the VRF structure itself. */
774 if (zif_type == ZEBRA_IF_VRF && !vrf_is_backend_netns()) {
775 netlink_vrf_change(h, tb[IFLA_LINKINFO], ns_id, name);
776 vrf_id = (vrf_id_t)ifi->ifi_index;
777 }
778
779 if (tb[IFLA_MASTER]) {
780 if (slave_kind && (strcmp(slave_kind, "vrf") == 0)
781 && !vrf_is_backend_netns()) {
782 zif_slave_type = ZEBRA_IF_SLAVE_VRF;
783 vrf_id = *(uint32_t *)RTA_DATA(tb[IFLA_MASTER]);
784 } else if (slave_kind && (strcmp(slave_kind, "bridge") == 0)) {
785 zif_slave_type = ZEBRA_IF_SLAVE_BRIDGE;
786 bridge_ifindex =
787 *(ifindex_t *)RTA_DATA(tb[IFLA_MASTER]);
788 } else if (slave_kind && (strcmp(slave_kind, "bond") == 0)) {
789 zif_slave_type = ZEBRA_IF_SLAVE_BOND;
790 bond_ifindex = *(ifindex_t *)RTA_DATA(tb[IFLA_MASTER]);
791 } else
792 zif_slave_type = ZEBRA_IF_SLAVE_OTHER;
793 }
794 if (vrf_is_backend_netns())
795 vrf_id = (vrf_id_t)ns_id;
796
797 /* If linking to another interface, note it. */
798 if (tb[IFLA_LINK])
799 link_ifindex = *(ifindex_t *)RTA_DATA(tb[IFLA_LINK]);
800
801 if (tb[IFLA_LINK_NETNSID])
802 link_nsid = *(ns_id_t *)RTA_DATA(tb[IFLA_LINK_NETNSID]);
803
804 /* Add interface.
805 * We add by index first because in some cases such as the master
806 * interface, we have the index before we have the name. Fixing
807 * back references on the slave interfaces is painful if not done
808 * this way, i.e. by creating by ifindex.
809 */
810 ifp = if_get_by_ifindex(ifi->ifi_index, vrf_id);
811 set_ifindex(ifp, ifi->ifi_index, zns); /* add it to ns struct */
812
813 if_set_name(ifp, name);
814
815 ifp->flags = ifi->ifi_flags & 0x0000fffff;
816 ifp->mtu6 = ifp->mtu = *(uint32_t *)RTA_DATA(tb[IFLA_MTU]);
817 ifp->metric = 0;
818 ifp->speed = get_iflink_speed(ifp, NULL);
819 ifp->ptm_status = ZEBRA_PTM_STATUS_UNKNOWN;
820
821 /* Set zebra interface type */
822 zebra_if_set_ziftype(ifp, zif_type, zif_slave_type);
823 if (IS_ZEBRA_IF_VRF(ifp))
824 SET_FLAG(ifp->status, ZEBRA_INTERFACE_VRF_LOOPBACK);
825
826 /*
827 * Just set the @link/lower-device ifindex. During nldump interfaces are
828 * not ordered in any fashion so we may end up getting upper devices
829 * before lower devices. We will setup the real linkage once the dump
830 * is complete.
831 */
832 zif = (struct zebra_if *)ifp->info;
833 zif->link_ifindex = link_ifindex;
834
835 if (desc) {
836 XFREE(MTYPE_TMP, zif->desc);
837 zif->desc = XSTRDUP(MTYPE_TMP, desc);
838 }
839
840 /* Hardware type and address. */
841 ifp->ll_type = netlink_to_zebra_link_type(ifi->ifi_type);
842 netlink_interface_update_hw_addr(tb, ifp);
843
844 if_add_update(ifp);
845
846 /* Extract and save L2 interface information, take additional actions.
847 */
848 netlink_interface_update_l2info(ifp, linkinfo[IFLA_INFO_DATA],
849 1, link_nsid);
850 if (IS_ZEBRA_IF_BRIDGE_SLAVE(ifp))
851 zebra_l2if_update_bridge_slave(ifp, bridge_ifindex);
852 else if (IS_ZEBRA_IF_BOND_SLAVE(ifp))
853 zebra_l2if_update_bond_slave(ifp, bond_ifindex);
854
855 return 0;
856 }
857
858 /* Request for specific interface or address information from the kernel */
859 static int netlink_request_intf_addr(struct nlsock *netlink_cmd, int family,
860 int type, uint32_t filter_mask)
861 {
862 struct {
863 struct nlmsghdr n;
864 struct ifinfomsg ifm;
865 char buf[256];
866 } req;
867
868 /* Form the request, specifying filter (rtattr) if needed. */
869 memset(&req, 0, sizeof(req));
870 req.n.nlmsg_type = type;
871 req.n.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST;
872 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg));
873 req.ifm.ifi_family = family;
874
875 /* Include filter, if specified. */
876 if (filter_mask)
877 nl_attr_put32(&req.n, sizeof(req), IFLA_EXT_MASK, filter_mask);
878
879 return netlink_request(netlink_cmd, &req);
880 }
881
882 /* Interface lookup by netlink socket. */
883 int interface_lookup_netlink(struct zebra_ns *zns)
884 {
885 int ret;
886 struct zebra_dplane_info dp_info;
887 struct nlsock *netlink_cmd = &zns->netlink_cmd;
888
889 /* Capture key info from ns struct */
890 zebra_dplane_info_from_zns(&dp_info, zns, true /*is_cmd*/);
891
892 /* Get interface information. */
893 ret = netlink_request_intf_addr(netlink_cmd, AF_PACKET, RTM_GETLINK, 0);
894 if (ret < 0)
895 return ret;
896 ret = netlink_parse_info(netlink_interface, netlink_cmd, &dp_info, 0,
897 1);
898 if (ret < 0)
899 return ret;
900
901 /* Get interface information - for bridge interfaces. */
902 ret = netlink_request_intf_addr(netlink_cmd, AF_BRIDGE, RTM_GETLINK,
903 RTEXT_FILTER_BRVLAN);
904 if (ret < 0)
905 return ret;
906 ret = netlink_parse_info(netlink_interface, netlink_cmd, &dp_info, 0,
907 0);
908 if (ret < 0)
909 return ret;
910
911 /* Get interface information - for bridge interfaces. */
912 ret = netlink_request_intf_addr(netlink_cmd, AF_BRIDGE, RTM_GETLINK,
913 RTEXT_FILTER_BRVLAN);
914 if (ret < 0)
915 return ret;
916 ret = netlink_parse_info(netlink_interface, netlink_cmd, &dp_info, 0,
917 0);
918 if (ret < 0)
919 return ret;
920
921 /* fixup linkages */
922 zebra_if_update_all_links();
923 return 0;
924 }
925
926 /**
927 * interface_addr_lookup_netlink() - Look up interface addresses
928 *
929 * @zns: Zebra netlink socket
930 * Return: Result status
931 */
932 static int interface_addr_lookup_netlink(struct zebra_ns *zns)
933 {
934 int ret;
935 struct zebra_dplane_info dp_info;
936 struct nlsock *netlink_cmd = &zns->netlink_cmd;
937
938 /* Capture key info from ns struct */
939 zebra_dplane_info_from_zns(&dp_info, zns, true /*is_cmd*/);
940
941 /* Get IPv4 address of the interfaces. */
942 ret = netlink_request_intf_addr(netlink_cmd, AF_INET, RTM_GETADDR, 0);
943 if (ret < 0)
944 return ret;
945 ret = netlink_parse_info(netlink_interface_addr, netlink_cmd, &dp_info,
946 0, 1);
947 if (ret < 0)
948 return ret;
949
950 /* Get IPv6 address of the interfaces. */
951 ret = netlink_request_intf_addr(netlink_cmd, AF_INET6, RTM_GETADDR, 0);
952 if (ret < 0)
953 return ret;
954 ret = netlink_parse_info(netlink_interface_addr, netlink_cmd, &dp_info,
955 0, 1);
956 if (ret < 0)
957 return ret;
958
959 return 0;
960 }
961
962 int kernel_interface_set_master(struct interface *master,
963 struct interface *slave)
964 {
965 struct zebra_ns *zns = zebra_ns_lookup(NS_DEFAULT);
966
967 struct {
968 struct nlmsghdr n;
969 struct ifinfomsg ifa;
970 char buf[NL_PKT_BUF_SIZE];
971 } req;
972
973 memset(&req, 0, sizeof(req));
974
975 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg));
976 req.n.nlmsg_flags = NLM_F_REQUEST;
977 req.n.nlmsg_type = RTM_SETLINK;
978 req.n.nlmsg_pid = zns->netlink_cmd.snl.nl_pid;
979
980 req.ifa.ifi_index = slave->ifindex;
981
982 nl_attr_put32(&req.n, sizeof(req), IFLA_MASTER, master->ifindex);
983 nl_attr_put32(&req.n, sizeof(req), IFLA_LINK, slave->ifindex);
984
985 return netlink_talk(netlink_talk_filter, &req.n, &zns->netlink_cmd, zns,
986 0);
987 }
988
989 /* Interface address modification. */
990 static ssize_t netlink_address_msg_encoder(struct zebra_dplane_ctx *ctx,
991 void *buf, size_t buflen)
992 {
993 int bytelen;
994 const struct prefix *p;
995 int cmd;
996 const char *label;
997
998 struct {
999 struct nlmsghdr n;
1000 struct ifaddrmsg ifa;
1001 char buf[0];
1002 } *req = buf;
1003
1004 if (buflen < sizeof(*req))
1005 return 0;
1006
1007 p = dplane_ctx_get_intf_addr(ctx);
1008 memset(req, 0, sizeof(*req));
1009
1010 bytelen = (p->family == AF_INET ? 4 : 16);
1011
1012 req->n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifaddrmsg));
1013 req->n.nlmsg_flags = NLM_F_REQUEST;
1014
1015 if (dplane_ctx_get_op(ctx) == DPLANE_OP_ADDR_INSTALL)
1016 cmd = RTM_NEWADDR;
1017 else
1018 cmd = RTM_DELADDR;
1019
1020 req->n.nlmsg_type = cmd;
1021 req->ifa.ifa_family = p->family;
1022
1023 req->ifa.ifa_index = dplane_ctx_get_ifindex(ctx);
1024
1025 if (!nl_attr_put(&req->n, buflen, IFA_LOCAL, &p->u.prefix, bytelen))
1026 return 0;
1027
1028 if (p->family == AF_INET) {
1029 if (dplane_ctx_intf_is_connected(ctx)) {
1030 p = dplane_ctx_get_intf_dest(ctx);
1031 if (!nl_attr_put(&req->n, buflen, IFA_ADDRESS,
1032 &p->u.prefix, bytelen))
1033 return 0;
1034 } else if (cmd == RTM_NEWADDR) {
1035 struct in_addr broad = {
1036 .s_addr = ipv4_broadcast_addr(p->u.prefix4.s_addr,
1037 p->prefixlen)
1038 };
1039 if (!nl_attr_put(&req->n, buflen, IFA_BROADCAST, &broad,
1040 bytelen))
1041 return 0;
1042 }
1043 }
1044
1045 /* p is now either address or destination/bcast addr */
1046 req->ifa.ifa_prefixlen = p->prefixlen;
1047
1048 if (dplane_ctx_intf_is_secondary(ctx))
1049 SET_FLAG(req->ifa.ifa_flags, IFA_F_SECONDARY);
1050
1051 if (dplane_ctx_intf_has_label(ctx)) {
1052 label = dplane_ctx_get_intf_label(ctx);
1053 if (!nl_attr_put(&req->n, buflen, IFA_LABEL, label,
1054 strlen(label) + 1))
1055 return 0;
1056 }
1057
1058 return NLMSG_ALIGN(req->n.nlmsg_len);
1059 }
1060
1061 /*
1062 * The communication with the kernel is done using the message batching
1063 * interface, so return a failure.
1064 */
1065 enum zebra_dplane_result kernel_address_update_ctx(struct zebra_dplane_ctx *ctx)
1066 {
1067 return ZEBRA_DPLANE_REQUEST_FAILURE;
1068 }
1069
1070 enum netlink_msg_status
1071 netlink_put_address_update_msg(struct nl_batch *bth,
1072 struct zebra_dplane_ctx *ctx)
1073 {
1074 return netlink_batch_add_msg(bth, ctx, netlink_address_msg_encoder,
1075 false);
1076 }
1077
1078 int netlink_interface_addr(struct nlmsghdr *h, ns_id_t ns_id, int startup)
1079 {
1080 int len;
1081 struct ifaddrmsg *ifa;
1082 struct rtattr *tb[IFA_MAX + 1];
1083 struct interface *ifp;
1084 void *addr;
1085 void *broad;
1086 uint8_t flags = 0;
1087 char *label = NULL;
1088 struct zebra_ns *zns;
1089 uint32_t metric = METRIC_MAX;
1090 uint32_t kernel_flags = 0;
1091
1092 zns = zebra_ns_lookup(ns_id);
1093 ifa = NLMSG_DATA(h);
1094
1095 if (ifa->ifa_family != AF_INET && ifa->ifa_family != AF_INET6) {
1096 flog_warn(
1097 EC_ZEBRA_UNKNOWN_FAMILY,
1098 "Invalid address family: %u received from kernel interface addr change: %s",
1099 ifa->ifa_family, nl_msg_type_to_str(h->nlmsg_type));
1100 return 0;
1101 }
1102
1103 if (h->nlmsg_type != RTM_NEWADDR && h->nlmsg_type != RTM_DELADDR)
1104 return 0;
1105
1106 len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct ifaddrmsg));
1107 if (len < 0) {
1108 zlog_err(
1109 "%s: Message received from netlink is of a broken size: %d %zu",
1110 __func__, h->nlmsg_len,
1111 (size_t)NLMSG_LENGTH(sizeof(struct ifaddrmsg)));
1112 return -1;
1113 }
1114
1115 memset(tb, 0, sizeof(tb));
1116 netlink_parse_rtattr(tb, IFA_MAX, IFA_RTA(ifa), len);
1117
1118 ifp = if_lookup_by_index_per_ns(zns, ifa->ifa_index);
1119 if (ifp == NULL) {
1120 flog_err(
1121 EC_LIB_INTERFACE,
1122 "netlink_interface_addr can't find interface by index %d",
1123 ifa->ifa_index);
1124 return -1;
1125 }
1126
1127 /* Flags passed through */
1128 if (tb[IFA_FLAGS])
1129 kernel_flags = *(int *)RTA_DATA(tb[IFA_FLAGS]);
1130 else
1131 kernel_flags = ifa->ifa_flags;
1132
1133 if (IS_ZEBRA_DEBUG_KERNEL) /* remove this line to see initial ifcfg */
1134 {
1135 char buf[BUFSIZ];
1136 zlog_debug("netlink_interface_addr %s %s flags 0x%x:",
1137 nl_msg_type_to_str(h->nlmsg_type), ifp->name,
1138 kernel_flags);
1139 if (tb[IFA_LOCAL])
1140 zlog_debug(" IFA_LOCAL %s/%d",
1141 inet_ntop(ifa->ifa_family,
1142 RTA_DATA(tb[IFA_LOCAL]), buf,
1143 BUFSIZ),
1144 ifa->ifa_prefixlen);
1145 if (tb[IFA_ADDRESS])
1146 zlog_debug(" IFA_ADDRESS %s/%d",
1147 inet_ntop(ifa->ifa_family,
1148 RTA_DATA(tb[IFA_ADDRESS]), buf,
1149 BUFSIZ),
1150 ifa->ifa_prefixlen);
1151 if (tb[IFA_BROADCAST])
1152 zlog_debug(" IFA_BROADCAST %s/%d",
1153 inet_ntop(ifa->ifa_family,
1154 RTA_DATA(tb[IFA_BROADCAST]), buf,
1155 BUFSIZ),
1156 ifa->ifa_prefixlen);
1157 if (tb[IFA_LABEL] && strcmp(ifp->name, RTA_DATA(tb[IFA_LABEL])))
1158 zlog_debug(" IFA_LABEL %s",
1159 (char *)RTA_DATA(tb[IFA_LABEL]));
1160
1161 if (tb[IFA_CACHEINFO]) {
1162 struct ifa_cacheinfo *ci = RTA_DATA(tb[IFA_CACHEINFO]);
1163 zlog_debug(" IFA_CACHEINFO pref %d, valid %d",
1164 ci->ifa_prefered, ci->ifa_valid);
1165 }
1166 }
1167
1168 /* logic copied from iproute2/ip/ipaddress.c:print_addrinfo() */
1169 if (tb[IFA_LOCAL] == NULL)
1170 tb[IFA_LOCAL] = tb[IFA_ADDRESS];
1171 if (tb[IFA_ADDRESS] == NULL)
1172 tb[IFA_ADDRESS] = tb[IFA_LOCAL];
1173
1174 /* local interface address */
1175 addr = (tb[IFA_LOCAL] ? RTA_DATA(tb[IFA_LOCAL]) : NULL);
1176
1177 /* is there a peer address? */
1178 if (tb[IFA_ADDRESS]
1179 && memcmp(RTA_DATA(tb[IFA_ADDRESS]), RTA_DATA(tb[IFA_LOCAL]),
1180 RTA_PAYLOAD(tb[IFA_ADDRESS]))) {
1181 broad = RTA_DATA(tb[IFA_ADDRESS]);
1182 SET_FLAG(flags, ZEBRA_IFA_PEER);
1183 } else
1184 /* seeking a broadcast address */
1185 broad = (tb[IFA_BROADCAST] ? RTA_DATA(tb[IFA_BROADCAST])
1186 : NULL);
1187
1188 /* addr is primary key, SOL if we don't have one */
1189 if (addr == NULL) {
1190 zlog_debug("%s: Local Interface Address is NULL for %s",
1191 __func__, ifp->name);
1192 return -1;
1193 }
1194
1195 /* Flags. */
1196 if (kernel_flags & IFA_F_SECONDARY)
1197 SET_FLAG(flags, ZEBRA_IFA_SECONDARY);
1198
1199 /* Label */
1200 if (tb[IFA_LABEL])
1201 label = (char *)RTA_DATA(tb[IFA_LABEL]);
1202
1203 if (label && strcmp(ifp->name, label) == 0)
1204 label = NULL;
1205
1206 if (tb[IFA_RT_PRIORITY])
1207 metric = *(uint32_t *)RTA_DATA(tb[IFA_RT_PRIORITY]);
1208
1209 /* Register interface address to the interface. */
1210 if (ifa->ifa_family == AF_INET) {
1211 if (ifa->ifa_prefixlen > IPV4_MAX_BITLEN) {
1212 zlog_err(
1213 "Invalid prefix length: %u received from kernel interface addr change: %s",
1214 ifa->ifa_prefixlen,
1215 nl_msg_type_to_str(h->nlmsg_type));
1216 return -1;
1217 }
1218
1219 if (h->nlmsg_type == RTM_NEWADDR)
1220 connected_add_ipv4(ifp, flags, (struct in_addr *)addr,
1221 ifa->ifa_prefixlen,
1222 (struct in_addr *)broad, label,
1223 metric);
1224 else if (CHECK_FLAG(flags, ZEBRA_IFA_PEER)) {
1225 /* Delete with a peer address */
1226 connected_delete_ipv4(
1227 ifp, flags, (struct in_addr *)addr,
1228 ifa->ifa_prefixlen, broad);
1229 } else
1230 connected_delete_ipv4(
1231 ifp, flags, (struct in_addr *)addr,
1232 ifa->ifa_prefixlen, NULL);
1233 }
1234
1235 if (ifa->ifa_family == AF_INET6) {
1236 if (ifa->ifa_prefixlen > IPV6_MAX_BITLEN) {
1237 zlog_err(
1238 "Invalid prefix length: %u received from kernel interface addr change: %s",
1239 ifa->ifa_prefixlen,
1240 nl_msg_type_to_str(h->nlmsg_type));
1241 return -1;
1242 }
1243 if (h->nlmsg_type == RTM_NEWADDR) {
1244 /* Only consider valid addresses; we'll not get a
1245 * notification from
1246 * the kernel till IPv6 DAD has completed, but at init
1247 * time, Quagga
1248 * does query for and will receive all addresses.
1249 */
1250 if (!(kernel_flags
1251 & (IFA_F_DADFAILED | IFA_F_TENTATIVE)))
1252 connected_add_ipv6(ifp, flags,
1253 (struct in6_addr *)addr,
1254 (struct in6_addr *)broad,
1255 ifa->ifa_prefixlen, label,
1256 metric);
1257 } else
1258 connected_delete_ipv6(ifp, (struct in6_addr *)addr,
1259 NULL, ifa->ifa_prefixlen);
1260 }
1261
1262
1263 /*
1264 * Linux kernel does not send route delete on interface down/addr del
1265 * so we have to re-process routes it owns (i.e. kernel routes)
1266 */
1267 if (h->nlmsg_type != RTM_NEWADDR)
1268 rib_update(RIB_UPDATE_KERNEL);
1269
1270 return 0;
1271 }
1272
1273 int netlink_link_change(struct nlmsghdr *h, ns_id_t ns_id, int startup)
1274 {
1275 int len;
1276 struct ifinfomsg *ifi;
1277 struct rtattr *tb[IFLA_MAX + 1];
1278 struct rtattr *linkinfo[IFLA_MAX + 1];
1279 struct interface *ifp;
1280 char *name = NULL;
1281 char *kind = NULL;
1282 char *desc = NULL;
1283 char *slave_kind = NULL;
1284 struct zebra_ns *zns;
1285 vrf_id_t vrf_id = VRF_DEFAULT;
1286 zebra_iftype_t zif_type = ZEBRA_IF_OTHER;
1287 zebra_slave_iftype_t zif_slave_type = ZEBRA_IF_SLAVE_NONE;
1288 ifindex_t bridge_ifindex = IFINDEX_INTERNAL;
1289 ifindex_t bond_ifindex = IFINDEX_INTERNAL;
1290 ifindex_t link_ifindex = IFINDEX_INTERNAL;
1291 uint8_t old_hw_addr[INTERFACE_HWADDR_MAX];
1292 struct zebra_if *zif;
1293 ns_id_t link_nsid = ns_id;
1294
1295 zns = zebra_ns_lookup(ns_id);
1296 ifi = NLMSG_DATA(h);
1297
1298 /* assume if not default zns, then new VRF */
1299 if (!(h->nlmsg_type == RTM_NEWLINK || h->nlmsg_type == RTM_DELLINK)) {
1300 /* If this is not link add/delete message so print warning. */
1301 zlog_debug("netlink_link_change: wrong kernel message %s",
1302 nl_msg_type_to_str(h->nlmsg_type));
1303 return 0;
1304 }
1305
1306 if (!(ifi->ifi_family == AF_UNSPEC || ifi->ifi_family == AF_BRIDGE
1307 || ifi->ifi_family == AF_INET6)) {
1308 flog_warn(
1309 EC_ZEBRA_UNKNOWN_FAMILY,
1310 "Invalid address family: %u received from kernel link change: %s",
1311 ifi->ifi_family, nl_msg_type_to_str(h->nlmsg_type));
1312 return 0;
1313 }
1314
1315 len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct ifinfomsg));
1316 if (len < 0) {
1317 zlog_err(
1318 "%s: Message received from netlink is of a broken size %d %zu",
1319 __func__, h->nlmsg_len,
1320 (size_t)NLMSG_LENGTH(sizeof(struct ifinfomsg)));
1321 return -1;
1322 }
1323
1324 /* We are interested in some AF_BRIDGE notifications. */
1325 if (ifi->ifi_family == AF_BRIDGE)
1326 return netlink_bridge_interface(h, len, ns_id, startup);
1327
1328 /* Looking up interface name. */
1329 memset(tb, 0, sizeof(tb));
1330 memset(linkinfo, 0, sizeof(linkinfo));
1331 netlink_parse_rtattr(tb, IFLA_MAX, IFLA_RTA(ifi), len);
1332
1333 /* check for wireless messages to ignore */
1334 if ((tb[IFLA_WIRELESS] != NULL) && (ifi->ifi_change == 0)) {
1335 if (IS_ZEBRA_DEBUG_KERNEL)
1336 zlog_debug("%s: ignoring IFLA_WIRELESS message",
1337 __func__);
1338 return 0;
1339 }
1340
1341 if (tb[IFLA_IFNAME] == NULL)
1342 return -1;
1343 name = (char *)RTA_DATA(tb[IFLA_IFNAME]);
1344
1345 if (tb[IFLA_LINKINFO]) {
1346 parse_rtattr_nested(linkinfo, IFLA_INFO_MAX, tb[IFLA_LINKINFO]);
1347
1348 if (linkinfo[IFLA_INFO_KIND])
1349 kind = RTA_DATA(linkinfo[IFLA_INFO_KIND]);
1350
1351 if (linkinfo[IFLA_INFO_SLAVE_KIND])
1352 slave_kind = RTA_DATA(linkinfo[IFLA_INFO_SLAVE_KIND]);
1353
1354 netlink_determine_zebra_iftype(kind, &zif_type);
1355 }
1356
1357 /* If linking to another interface, note it. */
1358 if (tb[IFLA_LINK])
1359 link_ifindex = *(ifindex_t *)RTA_DATA(tb[IFLA_LINK]);
1360
1361 if (tb[IFLA_LINK_NETNSID])
1362 link_nsid = *(ns_id_t *)RTA_DATA(tb[IFLA_LINK_NETNSID]);
1363
1364 if (tb[IFLA_IFALIAS]) {
1365 desc = (char *)RTA_DATA(tb[IFLA_IFALIAS]);
1366 }
1367
1368 /* If VRF, create or update the VRF structure itself. */
1369 if (zif_type == ZEBRA_IF_VRF && !vrf_is_backend_netns()) {
1370 netlink_vrf_change(h, tb[IFLA_LINKINFO], ns_id, name);
1371 vrf_id = (vrf_id_t)ifi->ifi_index;
1372 }
1373
1374 /* See if interface is present. */
1375 ifp = if_lookup_by_name_per_ns(zns, name);
1376
1377 if (h->nlmsg_type == RTM_NEWLINK) {
1378 if (tb[IFLA_MASTER]) {
1379 if (slave_kind && (strcmp(slave_kind, "vrf") == 0)
1380 && !vrf_is_backend_netns()) {
1381 zif_slave_type = ZEBRA_IF_SLAVE_VRF;
1382 vrf_id = *(uint32_t *)RTA_DATA(tb[IFLA_MASTER]);
1383 } else if (slave_kind
1384 && (strcmp(slave_kind, "bridge") == 0)) {
1385 zif_slave_type = ZEBRA_IF_SLAVE_BRIDGE;
1386 bridge_ifindex =
1387 *(ifindex_t *)RTA_DATA(tb[IFLA_MASTER]);
1388 } else if (slave_kind
1389 && (strcmp(slave_kind, "bond") == 0)) {
1390 zif_slave_type = ZEBRA_IF_SLAVE_BOND;
1391 bond_ifindex =
1392 *(ifindex_t *)RTA_DATA(tb[IFLA_MASTER]);
1393 } else
1394 zif_slave_type = ZEBRA_IF_SLAVE_OTHER;
1395 }
1396 if (vrf_is_backend_netns())
1397 vrf_id = (vrf_id_t)ns_id;
1398 if (ifp == NULL
1399 || !CHECK_FLAG(ifp->status, ZEBRA_INTERFACE_ACTIVE)) {
1400 /* Add interface notification from kernel */
1401 if (IS_ZEBRA_DEBUG_KERNEL)
1402 zlog_debug(
1403 "RTM_NEWLINK ADD for %s(%u) vrf_id %u type %d sl_type %d master %u flags 0x%x",
1404 name, ifi->ifi_index, vrf_id, zif_type,
1405 zif_slave_type, bridge_ifindex,
1406 ifi->ifi_flags);
1407
1408 if (ifp == NULL) {
1409 /* unknown interface */
1410 ifp = if_get_by_name(name, vrf_id);
1411 } else {
1412 /* pre-configured interface, learnt now */
1413 if (ifp->vrf_id != vrf_id)
1414 if_update_to_new_vrf(ifp, vrf_id);
1415 }
1416
1417 /* Update interface information. */
1418 set_ifindex(ifp, ifi->ifi_index, zns);
1419 ifp->flags = ifi->ifi_flags & 0x0000fffff;
1420 if (!tb[IFLA_MTU]) {
1421 zlog_debug(
1422 "RTM_NEWLINK for interface %s(%u) without MTU set",
1423 name, ifi->ifi_index);
1424 return 0;
1425 }
1426 ifp->mtu6 = ifp->mtu = *(int *)RTA_DATA(tb[IFLA_MTU]);
1427 ifp->metric = 0;
1428 ifp->ptm_status = ZEBRA_PTM_STATUS_UNKNOWN;
1429
1430 /* Set interface type */
1431 zebra_if_set_ziftype(ifp, zif_type, zif_slave_type);
1432 if (IS_ZEBRA_IF_VRF(ifp))
1433 SET_FLAG(ifp->status,
1434 ZEBRA_INTERFACE_VRF_LOOPBACK);
1435
1436 /* Update link. */
1437 zebra_if_update_link(ifp, link_ifindex, ns_id);
1438
1439 netlink_interface_update_hw_addr(tb, ifp);
1440
1441 /* Inform clients, install any configured addresses. */
1442 if_add_update(ifp);
1443
1444 /* Extract and save L2 interface information, take
1445 * additional actions. */
1446 netlink_interface_update_l2info(
1447 ifp, linkinfo[IFLA_INFO_DATA],
1448 1, link_nsid);
1449 if (IS_ZEBRA_IF_BRIDGE_SLAVE(ifp))
1450 zebra_l2if_update_bridge_slave(ifp,
1451 bridge_ifindex);
1452 else if (IS_ZEBRA_IF_BOND_SLAVE(ifp))
1453 zebra_l2if_update_bond_slave(ifp, bond_ifindex);
1454 } else if (ifp->vrf_id != vrf_id) {
1455 /* VRF change for an interface. */
1456 if (IS_ZEBRA_DEBUG_KERNEL)
1457 zlog_debug(
1458 "RTM_NEWLINK vrf-change for %s(%u) vrf_id %u -> %u flags 0x%x",
1459 name, ifp->ifindex, ifp->vrf_id, vrf_id,
1460 ifi->ifi_flags);
1461
1462 if_handle_vrf_change(ifp, vrf_id);
1463 } else {
1464 bool was_bridge_slave, was_bond_slave;
1465
1466 /* Interface update. */
1467 if (IS_ZEBRA_DEBUG_KERNEL)
1468 zlog_debug(
1469 "RTM_NEWLINK update for %s(%u) sl_type %d master %u flags 0x%x",
1470 name, ifp->ifindex, zif_slave_type,
1471 bridge_ifindex, ifi->ifi_flags);
1472
1473 set_ifindex(ifp, ifi->ifi_index, zns);
1474 if (!tb[IFLA_MTU]) {
1475 zlog_debug(
1476 "RTM_NEWLINK for interface %s(%u) without MTU set",
1477 name, ifi->ifi_index);
1478 return 0;
1479 }
1480 ifp->mtu6 = ifp->mtu = *(int *)RTA_DATA(tb[IFLA_MTU]);
1481 ifp->metric = 0;
1482
1483 /* Update interface type - NOTE: Only slave_type can
1484 * change. */
1485 was_bridge_slave = IS_ZEBRA_IF_BRIDGE_SLAVE(ifp);
1486 was_bond_slave = IS_ZEBRA_IF_BOND_SLAVE(ifp);
1487 zebra_if_set_ziftype(ifp, zif_type, zif_slave_type);
1488
1489 memcpy(old_hw_addr, ifp->hw_addr, INTERFACE_HWADDR_MAX);
1490
1491 netlink_interface_update_hw_addr(tb, ifp);
1492
1493 if (if_is_no_ptm_operative(ifp)) {
1494 ifp->flags = ifi->ifi_flags & 0x0000fffff;
1495 if (!if_is_no_ptm_operative(ifp)) {
1496 if (IS_ZEBRA_DEBUG_KERNEL)
1497 zlog_debug(
1498 "Intf %s(%u) has gone DOWN",
1499 name, ifp->ifindex);
1500 if_down(ifp);
1501 rib_update(RIB_UPDATE_KERNEL);
1502 } else if (if_is_operative(ifp)) {
1503 /* Must notify client daemons of new
1504 * interface status. */
1505 if (IS_ZEBRA_DEBUG_KERNEL)
1506 zlog_debug(
1507 "Intf %s(%u) PTM up, notifying clients",
1508 name, ifp->ifindex);
1509 zebra_interface_up_update(ifp);
1510
1511 /* Update EVPN VNI when SVI MAC change
1512 */
1513 if (IS_ZEBRA_IF_VLAN(ifp) &&
1514 memcmp(old_hw_addr, ifp->hw_addr,
1515 INTERFACE_HWADDR_MAX)) {
1516 struct interface *link_if;
1517
1518 link_if =
1519 if_lookup_by_index_per_ns(
1520 zebra_ns_lookup(NS_DEFAULT),
1521 link_ifindex);
1522 if (link_if)
1523 zebra_vxlan_svi_up(ifp,
1524 link_if);
1525 }
1526 }
1527 } else {
1528 ifp->flags = ifi->ifi_flags & 0x0000fffff;
1529 if (if_is_operative(ifp)) {
1530 if (IS_ZEBRA_DEBUG_KERNEL)
1531 zlog_debug(
1532 "Intf %s(%u) has come UP",
1533 name, ifp->ifindex);
1534 if_up(ifp);
1535 } else {
1536 if (IS_ZEBRA_DEBUG_KERNEL)
1537 zlog_debug(
1538 "Intf %s(%u) has gone DOWN",
1539 name, ifp->ifindex);
1540 if_down(ifp);
1541 rib_update(RIB_UPDATE_KERNEL);
1542 }
1543 }
1544
1545 /* Extract and save L2 interface information, take
1546 * additional actions. */
1547 netlink_interface_update_l2info(
1548 ifp, linkinfo[IFLA_INFO_DATA],
1549 0, link_nsid);
1550 if (IS_ZEBRA_IF_BRIDGE_SLAVE(ifp) || was_bridge_slave)
1551 zebra_l2if_update_bridge_slave(ifp,
1552 bridge_ifindex);
1553 else if (IS_ZEBRA_IF_BOND_SLAVE(ifp) || was_bond_slave)
1554 zebra_l2if_update_bond_slave(ifp, bond_ifindex);
1555 }
1556
1557 zif = ifp->info;
1558 if (zif) {
1559 XFREE(MTYPE_TMP, zif->desc);
1560 if (desc)
1561 zif->desc = XSTRDUP(MTYPE_TMP, desc);
1562 }
1563 } else {
1564 /* Delete interface notification from kernel */
1565 if (ifp == NULL) {
1566 if (IS_ZEBRA_DEBUG_KERNEL)
1567 zlog_debug(
1568 "RTM_DELLINK for unknown interface %s(%u)",
1569 name, ifi->ifi_index);
1570 return 0;
1571 }
1572
1573 if (IS_ZEBRA_DEBUG_KERNEL)
1574 zlog_debug("RTM_DELLINK for %s(%u)", name,
1575 ifp->ifindex);
1576
1577 UNSET_FLAG(ifp->status, ZEBRA_INTERFACE_VRF_LOOPBACK);
1578
1579 /* Special handling for bridge or VxLAN interfaces. */
1580 if (IS_ZEBRA_IF_BRIDGE(ifp))
1581 zebra_l2_bridge_del(ifp);
1582 else if (IS_ZEBRA_IF_VXLAN(ifp))
1583 zebra_l2_vxlanif_del(ifp);
1584
1585 if (!IS_ZEBRA_IF_VRF(ifp))
1586 if_delete_update(ifp);
1587 }
1588
1589 return 0;
1590 }
1591
1592 int netlink_protodown(struct interface *ifp, bool down)
1593 {
1594 struct zebra_ns *zns = zebra_ns_lookup(NS_DEFAULT);
1595
1596 struct {
1597 struct nlmsghdr n;
1598 struct ifinfomsg ifa;
1599 char buf[NL_PKT_BUF_SIZE];
1600 } req;
1601
1602 memset(&req, 0, sizeof(req));
1603
1604 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg));
1605 req.n.nlmsg_flags = NLM_F_REQUEST;
1606 req.n.nlmsg_type = RTM_SETLINK;
1607 req.n.nlmsg_pid = zns->netlink_cmd.snl.nl_pid;
1608
1609 req.ifa.ifi_index = ifp->ifindex;
1610
1611 nl_attr_put(&req.n, sizeof(req), IFLA_PROTO_DOWN, &down, sizeof(down));
1612 nl_attr_put32(&req.n, sizeof(req), IFLA_LINK, ifp->ifindex);
1613
1614 return netlink_talk(netlink_talk_filter, &req.n, &zns->netlink_cmd, zns,
1615 0);
1616 }
1617
1618 /* Interface information read by netlink. */
1619 void interface_list(struct zebra_ns *zns)
1620 {
1621 interface_lookup_netlink(zns);
1622 /* We add routes for interface address,
1623 * so we need to get the nexthop info
1624 * from the kernel before we can do that
1625 */
1626 netlink_nexthop_read(zns);
1627
1628 interface_addr_lookup_netlink(zns);
1629 }
1630
1631 #endif /* GNU_LINUX */