]> git.proxmox.com Git - mirror_frr.git/blob - zebra/if_netlink.c
Merge branch 'pr/3063'
[mirror_frr.git] / zebra / if_netlink.c
1 /*
2 * Interface looking up by netlink.
3 * Copyright (C) 1998 Kunihiro Ishiguro
4 *
5 * This file is part of GNU Zebra.
6 *
7 * GNU Zebra is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2, or (at your option) any
10 * later version.
11 *
12 * GNU Zebra is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; see the file COPYING; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 #include <zebra.h>
23
24 #ifdef GNU_LINUX
25
26 /* The following definition is to workaround an issue in the Linux kernel
27 * header files with redefinition of 'struct in6_addr' in both
28 * netinet/in.h and linux/in6.h.
29 * Reference - https://sourceware.org/ml/libc-alpha/2013-01/msg00599.html
30 */
31 #define _LINUX_IN6_H
32
33 #include <netinet/if_ether.h>
34 #include <linux/if_bridge.h>
35 #include <linux/if_link.h>
36 #include <net/if_arp.h>
37 #include <linux/sockios.h>
38 #include <linux/ethtool.h>
39
40 #include "linklist.h"
41 #include "if.h"
42 #include "log.h"
43 #include "prefix.h"
44 #include "connected.h"
45 #include "table.h"
46 #include "memory.h"
47 #include "zebra_memory.h"
48 #include "rib.h"
49 #include "thread.h"
50 #include "privs.h"
51 #include "nexthop.h"
52 #include "vrf.h"
53 #include "vrf_int.h"
54 #include "mpls.h"
55 #include "lib_errors.h"
56
57 #include "vty.h"
58 #include "zebra/zserv.h"
59 #include "zebra/zebra_ns.h"
60 #include "zebra/zebra_vrf.h"
61 #include "zebra/rt.h"
62 #include "zebra/redistribute.h"
63 #include "zebra/interface.h"
64 #include "zebra/debug.h"
65 #include "zebra/rtadv.h"
66 #include "zebra/zebra_ptm.h"
67 #include "zebra/zebra_mpls.h"
68 #include "zebra/kernel_netlink.h"
69 #include "zebra/if_netlink.h"
70 #include "zebra/zebra_errors.h"
71
72 extern struct zebra_privs_t zserv_privs;
73
74 /* Note: on netlink systems, there should be a 1-to-1 mapping between interface
75 names and ifindex values. */
76 static void set_ifindex(struct interface *ifp, ifindex_t ifi_index,
77 struct zebra_ns *zns)
78 {
79 struct interface *oifp;
80
81 if (((oifp = if_lookup_by_index_per_ns(zns, ifi_index)) != NULL)
82 && (oifp != ifp)) {
83 if (ifi_index == IFINDEX_INTERNAL)
84 flog_err(
85 EC_LIB_INTERFACE,
86 "Netlink is setting interface %s ifindex to reserved internal value %u",
87 ifp->name, ifi_index);
88 else {
89 if (IS_ZEBRA_DEBUG_KERNEL)
90 zlog_debug(
91 "interface index %d was renamed from %s to %s",
92 ifi_index, oifp->name, ifp->name);
93 if (if_is_up(oifp))
94 flog_err(
95 EC_LIB_INTERFACE,
96 "interface rename detected on up interface: index %d was renamed from %s to %s, results are uncertain!",
97 ifi_index, oifp->name, ifp->name);
98 if_delete_update(oifp);
99 }
100 }
101 if_set_index(ifp, ifi_index);
102 }
103
104 /* Utility function to parse hardware link-layer address and update ifp */
105 static void netlink_interface_update_hw_addr(struct rtattr **tb,
106 struct interface *ifp)
107 {
108 int i;
109
110 if (tb[IFLA_ADDRESS]) {
111 int hw_addr_len;
112
113 hw_addr_len = RTA_PAYLOAD(tb[IFLA_ADDRESS]);
114
115 if (hw_addr_len > INTERFACE_HWADDR_MAX)
116 zlog_debug("Hardware address is too large: %d",
117 hw_addr_len);
118 else {
119 ifp->hw_addr_len = hw_addr_len;
120 memcpy(ifp->hw_addr, RTA_DATA(tb[IFLA_ADDRESS]),
121 hw_addr_len);
122
123 for (i = 0; i < hw_addr_len; i++)
124 if (ifp->hw_addr[i] != 0)
125 break;
126
127 if (i == hw_addr_len)
128 ifp->hw_addr_len = 0;
129 else
130 ifp->hw_addr_len = hw_addr_len;
131 }
132 }
133 }
134
135 static enum zebra_link_type netlink_to_zebra_link_type(unsigned int hwt)
136 {
137 switch (hwt) {
138 case ARPHRD_ETHER:
139 return ZEBRA_LLT_ETHER;
140 case ARPHRD_EETHER:
141 return ZEBRA_LLT_EETHER;
142 case ARPHRD_AX25:
143 return ZEBRA_LLT_AX25;
144 case ARPHRD_PRONET:
145 return ZEBRA_LLT_PRONET;
146 case ARPHRD_IEEE802:
147 return ZEBRA_LLT_IEEE802;
148 case ARPHRD_ARCNET:
149 return ZEBRA_LLT_ARCNET;
150 case ARPHRD_APPLETLK:
151 return ZEBRA_LLT_APPLETLK;
152 case ARPHRD_DLCI:
153 return ZEBRA_LLT_DLCI;
154 case ARPHRD_ATM:
155 return ZEBRA_LLT_ATM;
156 case ARPHRD_METRICOM:
157 return ZEBRA_LLT_METRICOM;
158 case ARPHRD_IEEE1394:
159 return ZEBRA_LLT_IEEE1394;
160 case ARPHRD_EUI64:
161 return ZEBRA_LLT_EUI64;
162 case ARPHRD_INFINIBAND:
163 return ZEBRA_LLT_INFINIBAND;
164 case ARPHRD_SLIP:
165 return ZEBRA_LLT_SLIP;
166 case ARPHRD_CSLIP:
167 return ZEBRA_LLT_CSLIP;
168 case ARPHRD_SLIP6:
169 return ZEBRA_LLT_SLIP6;
170 case ARPHRD_CSLIP6:
171 return ZEBRA_LLT_CSLIP6;
172 case ARPHRD_RSRVD:
173 return ZEBRA_LLT_RSRVD;
174 case ARPHRD_ADAPT:
175 return ZEBRA_LLT_ADAPT;
176 case ARPHRD_ROSE:
177 return ZEBRA_LLT_ROSE;
178 case ARPHRD_X25:
179 return ZEBRA_LLT_X25;
180 case ARPHRD_PPP:
181 return ZEBRA_LLT_PPP;
182 case ARPHRD_CISCO:
183 return ZEBRA_LLT_CHDLC;
184 case ARPHRD_LAPB:
185 return ZEBRA_LLT_LAPB;
186 case ARPHRD_RAWHDLC:
187 return ZEBRA_LLT_RAWHDLC;
188 case ARPHRD_TUNNEL:
189 return ZEBRA_LLT_IPIP;
190 case ARPHRD_TUNNEL6:
191 return ZEBRA_LLT_IPIP6;
192 case ARPHRD_FRAD:
193 return ZEBRA_LLT_FRAD;
194 case ARPHRD_SKIP:
195 return ZEBRA_LLT_SKIP;
196 case ARPHRD_LOOPBACK:
197 return ZEBRA_LLT_LOOPBACK;
198 case ARPHRD_LOCALTLK:
199 return ZEBRA_LLT_LOCALTLK;
200 case ARPHRD_FDDI:
201 return ZEBRA_LLT_FDDI;
202 case ARPHRD_SIT:
203 return ZEBRA_LLT_SIT;
204 case ARPHRD_IPDDP:
205 return ZEBRA_LLT_IPDDP;
206 case ARPHRD_IPGRE:
207 return ZEBRA_LLT_IPGRE;
208 case ARPHRD_PIMREG:
209 return ZEBRA_LLT_PIMREG;
210 case ARPHRD_HIPPI:
211 return ZEBRA_LLT_HIPPI;
212 case ARPHRD_ECONET:
213 return ZEBRA_LLT_ECONET;
214 case ARPHRD_IRDA:
215 return ZEBRA_LLT_IRDA;
216 case ARPHRD_FCPP:
217 return ZEBRA_LLT_FCPP;
218 case ARPHRD_FCAL:
219 return ZEBRA_LLT_FCAL;
220 case ARPHRD_FCPL:
221 return ZEBRA_LLT_FCPL;
222 case ARPHRD_FCFABRIC:
223 return ZEBRA_LLT_FCFABRIC;
224 case ARPHRD_IEEE802_TR:
225 return ZEBRA_LLT_IEEE802_TR;
226 case ARPHRD_IEEE80211:
227 return ZEBRA_LLT_IEEE80211;
228 #ifdef ARPHRD_IEEE802154
229 case ARPHRD_IEEE802154:
230 return ZEBRA_LLT_IEEE802154;
231 #endif
232 #ifdef ARPHRD_IP6GRE
233 case ARPHRD_IP6GRE:
234 return ZEBRA_LLT_IP6GRE;
235 #endif
236 #ifdef ARPHRD_IEEE802154_PHY
237 case ARPHRD_IEEE802154_PHY:
238 return ZEBRA_LLT_IEEE802154_PHY;
239 #endif
240
241 default:
242 return ZEBRA_LLT_UNKNOWN;
243 }
244 }
245
246 static void netlink_determine_zebra_iftype(char *kind, zebra_iftype_t *zif_type)
247 {
248 *zif_type = ZEBRA_IF_OTHER;
249
250 if (!kind)
251 return;
252
253 if (strcmp(kind, "vrf") == 0)
254 *zif_type = ZEBRA_IF_VRF;
255 else if (strcmp(kind, "bridge") == 0)
256 *zif_type = ZEBRA_IF_BRIDGE;
257 else if (strcmp(kind, "vlan") == 0)
258 *zif_type = ZEBRA_IF_VLAN;
259 else if (strcmp(kind, "vxlan") == 0)
260 *zif_type = ZEBRA_IF_VXLAN;
261 else if (strcmp(kind, "macvlan") == 0)
262 *zif_type = ZEBRA_IF_MACVLAN;
263 else if (strcmp(kind, "veth") == 0)
264 *zif_type = ZEBRA_IF_VETH;
265 }
266
267 #define parse_rtattr_nested(tb, max, rta) \
268 netlink_parse_rtattr((tb), (max), RTA_DATA(rta), RTA_PAYLOAD(rta))
269
270 static void netlink_vrf_change(struct nlmsghdr *h, struct rtattr *tb,
271 const char *name)
272 {
273 struct ifinfomsg *ifi;
274 struct rtattr *linkinfo[IFLA_INFO_MAX + 1];
275 struct rtattr *attr[IFLA_VRF_MAX + 1];
276 struct vrf *vrf;
277 struct zebra_vrf *zvrf;
278 uint32_t nl_table_id;
279
280 ifi = NLMSG_DATA(h);
281
282 memset(linkinfo, 0, sizeof linkinfo);
283 parse_rtattr_nested(linkinfo, IFLA_INFO_MAX, tb);
284
285 if (!linkinfo[IFLA_INFO_DATA]) {
286 if (IS_ZEBRA_DEBUG_KERNEL)
287 zlog_debug(
288 "%s: IFLA_INFO_DATA missing from VRF message: %s",
289 __func__, name);
290 return;
291 }
292
293 memset(attr, 0, sizeof attr);
294 parse_rtattr_nested(attr, IFLA_VRF_MAX, linkinfo[IFLA_INFO_DATA]);
295 if (!attr[IFLA_VRF_TABLE]) {
296 if (IS_ZEBRA_DEBUG_KERNEL)
297 zlog_debug(
298 "%s: IFLA_VRF_TABLE missing from VRF message: %s",
299 __func__, name);
300 return;
301 }
302
303 nl_table_id = *(uint32_t *)RTA_DATA(attr[IFLA_VRF_TABLE]);
304
305 if (h->nlmsg_type == RTM_NEWLINK) {
306 if (IS_ZEBRA_DEBUG_KERNEL)
307 zlog_debug("RTM_NEWLINK for VRF %s(%u) table %u", name,
308 ifi->ifi_index, nl_table_id);
309
310 /*
311 * vrf_get is implied creation if it does not exist
312 */
313 vrf = vrf_get((vrf_id_t)ifi->ifi_index,
314 name); // It would create vrf
315 if (!vrf) {
316 flog_err(EC_LIB_INTERFACE, "VRF %s id %u not created",
317 name, ifi->ifi_index);
318 return;
319 }
320
321 /*
322 * This is the only place that we get the actual kernel table_id
323 * being used. We need it to set the table_id of the routes
324 * we are passing to the kernel.... And to throw some totally
325 * awesome parties. that too.
326 *
327 * At this point we *must* have a zvrf because the vrf_create
328 * callback creates one. We *must* set the table id
329 * before the vrf_enable because of( at the very least )
330 * static routes being delayed for installation until
331 * during the vrf_enable callbacks.
332 */
333 zvrf = (struct zebra_vrf *)vrf->info;
334 zvrf->table_id = nl_table_id;
335
336 /* Enable the created VRF. */
337 if (!vrf_enable(vrf)) {
338 flog_err(EC_LIB_INTERFACE,
339 "Failed to enable VRF %s id %u", name,
340 ifi->ifi_index);
341 return;
342 }
343
344 } else // h->nlmsg_type == RTM_DELLINK
345 {
346 if (IS_ZEBRA_DEBUG_KERNEL)
347 zlog_debug("RTM_DELLINK for VRF %s(%u)", name,
348 ifi->ifi_index);
349
350 vrf = vrf_lookup_by_id((vrf_id_t)ifi->ifi_index);
351
352 if (!vrf) {
353 flog_warn(EC_ZEBRA_VRF_NOT_FOUND, "%s: vrf not found",
354 __func__);
355 return;
356 }
357
358 vrf_delete(vrf);
359 }
360 }
361
362 static int get_iflink_speed(struct interface *interface)
363 {
364 struct ifreq ifdata;
365 struct ethtool_cmd ecmd;
366 int sd;
367 int rc;
368 const char *ifname = interface->name;
369
370 /* initialize struct */
371 memset(&ifdata, 0, sizeof(ifdata));
372
373 /* set interface name */
374 strlcpy(ifdata.ifr_name, ifname, sizeof(ifdata.ifr_name));
375
376 /* initialize ethtool interface */
377 memset(&ecmd, 0, sizeof(ecmd));
378 ecmd.cmd = ETHTOOL_GSET; /* ETHTOOL_GLINK */
379 ifdata.ifr_data = (caddr_t)&ecmd;
380
381 /* use ioctl to get IP address of an interface */
382 frr_elevate_privs(&zserv_privs) {
383 sd = vrf_socket(PF_INET, SOCK_DGRAM, IPPROTO_IP,
384 interface->vrf_id,
385 NULL);
386 if (sd < 0) {
387 if (IS_ZEBRA_DEBUG_KERNEL)
388 zlog_debug("Failure to read interface %s speed: %d %s",
389 ifname, errno, safe_strerror(errno));
390 return 0;
391 }
392 /* Get the current link state for the interface */
393 rc = vrf_ioctl(interface->vrf_id, sd, SIOCETHTOOL,
394 (char *)&ifdata);
395 }
396 if (rc < 0) {
397 if (IS_ZEBRA_DEBUG_KERNEL)
398 zlog_debug(
399 "IOCTL failure to read interface %s speed: %d %s",
400 ifname, errno, safe_strerror(errno));
401 ecmd.speed_hi = 0;
402 ecmd.speed = 0;
403 }
404
405 close(sd);
406
407 return (ecmd.speed_hi << 16) | ecmd.speed;
408 }
409
410 uint32_t kernel_get_speed(struct interface *ifp)
411 {
412 return get_iflink_speed(ifp);
413 }
414
415 static int netlink_extract_bridge_info(struct rtattr *link_data,
416 struct zebra_l2info_bridge *bridge_info)
417 {
418 struct rtattr *attr[IFLA_BR_MAX + 1];
419
420 memset(bridge_info, 0, sizeof(*bridge_info));
421 memset(attr, 0, sizeof attr);
422 parse_rtattr_nested(attr, IFLA_BR_MAX, link_data);
423 if (attr[IFLA_BR_VLAN_FILTERING])
424 bridge_info->vlan_aware =
425 *(uint8_t *)RTA_DATA(attr[IFLA_BR_VLAN_FILTERING]);
426 return 0;
427 }
428
429 static int netlink_extract_vlan_info(struct rtattr *link_data,
430 struct zebra_l2info_vlan *vlan_info)
431 {
432 struct rtattr *attr[IFLA_VLAN_MAX + 1];
433 vlanid_t vid_in_msg;
434
435 memset(vlan_info, 0, sizeof(*vlan_info));
436 memset(attr, 0, sizeof attr);
437 parse_rtattr_nested(attr, IFLA_VLAN_MAX, link_data);
438 if (!attr[IFLA_VLAN_ID]) {
439 if (IS_ZEBRA_DEBUG_KERNEL)
440 zlog_debug("IFLA_VLAN_ID missing from VLAN IF message");
441 return -1;
442 }
443
444 vid_in_msg = *(vlanid_t *)RTA_DATA(attr[IFLA_VLAN_ID]);
445 vlan_info->vid = vid_in_msg;
446 return 0;
447 }
448
449 static int netlink_extract_vxlan_info(struct rtattr *link_data,
450 struct zebra_l2info_vxlan *vxl_info)
451 {
452 struct rtattr *attr[IFLA_VXLAN_MAX + 1];
453 vni_t vni_in_msg;
454 struct in_addr vtep_ip_in_msg;
455
456 memset(vxl_info, 0, sizeof(*vxl_info));
457 memset(attr, 0, sizeof attr);
458 parse_rtattr_nested(attr, IFLA_VXLAN_MAX, link_data);
459 if (!attr[IFLA_VXLAN_ID]) {
460 if (IS_ZEBRA_DEBUG_KERNEL)
461 zlog_debug(
462 "IFLA_VXLAN_ID missing from VXLAN IF message");
463 return -1;
464 }
465
466 vni_in_msg = *(vni_t *)RTA_DATA(attr[IFLA_VXLAN_ID]);
467 vxl_info->vni = vni_in_msg;
468 if (!attr[IFLA_VXLAN_LOCAL]) {
469 if (IS_ZEBRA_DEBUG_KERNEL)
470 zlog_debug(
471 "IFLA_VXLAN_LOCAL missing from VXLAN IF message");
472 } else {
473 vtep_ip_in_msg =
474 *(struct in_addr *)RTA_DATA(attr[IFLA_VXLAN_LOCAL]);
475 vxl_info->vtep_ip = vtep_ip_in_msg;
476 }
477
478 return 0;
479 }
480
481 /*
482 * Extract and save L2 params (of interest) for an interface. When a
483 * bridge interface is added or updated, take further actions to map
484 * its members. Likewise, for VxLAN interface.
485 */
486 static void netlink_interface_update_l2info(struct interface *ifp,
487 struct rtattr *link_data, int add)
488 {
489 if (!link_data)
490 return;
491
492 if (IS_ZEBRA_IF_BRIDGE(ifp)) {
493 struct zebra_l2info_bridge bridge_info;
494
495 netlink_extract_bridge_info(link_data, &bridge_info);
496 zebra_l2_bridge_add_update(ifp, &bridge_info, add);
497 } else if (IS_ZEBRA_IF_VLAN(ifp)) {
498 struct zebra_l2info_vlan vlan_info;
499
500 netlink_extract_vlan_info(link_data, &vlan_info);
501 zebra_l2_vlanif_update(ifp, &vlan_info);
502 } else if (IS_ZEBRA_IF_VXLAN(ifp)) {
503 struct zebra_l2info_vxlan vxlan_info;
504
505 netlink_extract_vxlan_info(link_data, &vxlan_info);
506 zebra_l2_vxlanif_add_update(ifp, &vxlan_info, add);
507 }
508 }
509
510 static int netlink_bridge_interface(struct nlmsghdr *h, int len, ns_id_t ns_id,
511 int startup)
512 {
513 char *name = NULL;
514 struct ifinfomsg *ifi;
515 struct rtattr *tb[IFLA_MAX + 1];
516 struct interface *ifp;
517 struct rtattr *aftb[IFLA_BRIDGE_MAX + 1];
518 struct {
519 uint16_t flags;
520 uint16_t vid;
521 } * vinfo;
522 vlanid_t access_vlan;
523
524 /* Fetch name and ifindex */
525 ifi = NLMSG_DATA(h);
526 memset(tb, 0, sizeof tb);
527 netlink_parse_rtattr(tb, IFLA_MAX, IFLA_RTA(ifi), len);
528
529 if (tb[IFLA_IFNAME] == NULL)
530 return -1;
531 name = (char *)RTA_DATA(tb[IFLA_IFNAME]);
532
533 /* The interface should already be known, if not discard. */
534 ifp = if_lookup_by_index_per_ns(zebra_ns_lookup(ns_id), ifi->ifi_index);
535 if (!ifp) {
536 zlog_debug("Cannot find bridge IF %s(%u)", name,
537 ifi->ifi_index);
538 return 0;
539 }
540 if (!IS_ZEBRA_IF_VXLAN(ifp))
541 return 0;
542
543 /* We are only interested in the access VLAN i.e., AF_SPEC */
544 if (!tb[IFLA_AF_SPEC])
545 return 0;
546
547 /* There is a 1-to-1 mapping of VLAN to VxLAN - hence
548 * only 1 access VLAN is accepted.
549 */
550 memset(aftb, 0, sizeof aftb);
551 parse_rtattr_nested(aftb, IFLA_BRIDGE_MAX, tb[IFLA_AF_SPEC]);
552 if (!aftb[IFLA_BRIDGE_VLAN_INFO])
553 return 0;
554
555 vinfo = RTA_DATA(aftb[IFLA_BRIDGE_VLAN_INFO]);
556 if (!(vinfo->flags & BRIDGE_VLAN_INFO_PVID))
557 return 0;
558
559 access_vlan = (vlanid_t)vinfo->vid;
560 if (IS_ZEBRA_DEBUG_KERNEL)
561 zlog_debug("Access VLAN %u for VxLAN IF %s(%u)", access_vlan,
562 name, ifi->ifi_index);
563 zebra_l2_vxlanif_update_access_vlan(ifp, access_vlan);
564 return 0;
565 }
566
567 /*
568 * Called from interface_lookup_netlink(). This function is only used
569 * during bootstrap.
570 */
571 static int netlink_interface(struct nlmsghdr *h, ns_id_t ns_id, int startup)
572 {
573 int len;
574 struct ifinfomsg *ifi;
575 struct rtattr *tb[IFLA_MAX + 1];
576 struct rtattr *linkinfo[IFLA_MAX + 1];
577 struct interface *ifp;
578 char *name = NULL;
579 char *kind = NULL;
580 char *desc = NULL;
581 char *slave_kind = NULL;
582 struct zebra_ns *zns;
583 vrf_id_t vrf_id = VRF_DEFAULT;
584 zebra_iftype_t zif_type = ZEBRA_IF_OTHER;
585 zebra_slave_iftype_t zif_slave_type = ZEBRA_IF_SLAVE_NONE;
586 ifindex_t bridge_ifindex = IFINDEX_INTERNAL;
587 ifindex_t link_ifindex = IFINDEX_INTERNAL;
588 struct zebra_if *zif;
589
590 zns = zebra_ns_lookup(ns_id);
591 ifi = NLMSG_DATA(h);
592
593 if (h->nlmsg_type != RTM_NEWLINK)
594 return 0;
595
596 len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct ifinfomsg));
597 if (len < 0) {
598 zlog_err("%s: Message received from netlink is of a broken size: %d %zu",
599 __PRETTY_FUNCTION__,
600 h->nlmsg_len,
601 (size_t)NLMSG_LENGTH(sizeof(struct ifinfomsg)));
602 return -1;
603 }
604
605 /* We are interested in some AF_BRIDGE notifications. */
606 if (ifi->ifi_family == AF_BRIDGE)
607 return netlink_bridge_interface(h, len, ns_id, startup);
608
609 /* Looking up interface name. */
610 memset(tb, 0, sizeof tb);
611 memset(linkinfo, 0, sizeof linkinfo);
612 netlink_parse_rtattr(tb, IFLA_MAX, IFLA_RTA(ifi), len);
613
614 /* check for wireless messages to ignore */
615 if ((tb[IFLA_WIRELESS] != NULL) && (ifi->ifi_change == 0)) {
616 if (IS_ZEBRA_DEBUG_KERNEL)
617 zlog_debug("%s: ignoring IFLA_WIRELESS message",
618 __func__);
619 return 0;
620 }
621
622 if (tb[IFLA_IFNAME] == NULL)
623 return -1;
624 name = (char *)RTA_DATA(tb[IFLA_IFNAME]);
625
626 if (tb[IFLA_IFALIAS])
627 desc = (char *)RTA_DATA(tb[IFLA_IFALIAS]);
628
629 if (tb[IFLA_LINKINFO]) {
630 parse_rtattr_nested(linkinfo, IFLA_INFO_MAX, tb[IFLA_LINKINFO]);
631
632 if (linkinfo[IFLA_INFO_KIND])
633 kind = RTA_DATA(linkinfo[IFLA_INFO_KIND]);
634
635 if (linkinfo[IFLA_INFO_SLAVE_KIND])
636 slave_kind = RTA_DATA(linkinfo[IFLA_INFO_SLAVE_KIND]);
637
638 netlink_determine_zebra_iftype(kind, &zif_type);
639 }
640
641 /* If VRF, create the VRF structure itself. */
642 if (zif_type == ZEBRA_IF_VRF && !vrf_is_backend_netns()) {
643 netlink_vrf_change(h, tb[IFLA_LINKINFO], name);
644 vrf_id = (vrf_id_t)ifi->ifi_index;
645 }
646
647 if (tb[IFLA_MASTER]) {
648 if (slave_kind && (strcmp(slave_kind, "vrf") == 0)
649 && !vrf_is_backend_netns()) {
650 zif_slave_type = ZEBRA_IF_SLAVE_VRF;
651 vrf_id = *(uint32_t *)RTA_DATA(tb[IFLA_MASTER]);
652 } else if (slave_kind && (strcmp(slave_kind, "bridge") == 0)) {
653 zif_slave_type = ZEBRA_IF_SLAVE_BRIDGE;
654 bridge_ifindex =
655 *(ifindex_t *)RTA_DATA(tb[IFLA_MASTER]);
656 } else
657 zif_slave_type = ZEBRA_IF_SLAVE_OTHER;
658 }
659 if (vrf_is_backend_netns())
660 vrf_id = (vrf_id_t)ns_id;
661
662 /* If linking to another interface, note it. */
663 if (tb[IFLA_LINK])
664 link_ifindex = *(ifindex_t *)RTA_DATA(tb[IFLA_LINK]);
665
666 /* Add interface. */
667 ifp = if_get_by_name(name, vrf_id, 0);
668 set_ifindex(ifp, ifi->ifi_index, zns);
669 ifp->flags = ifi->ifi_flags & 0x0000fffff;
670 ifp->mtu6 = ifp->mtu = *(uint32_t *)RTA_DATA(tb[IFLA_MTU]);
671 ifp->metric = 0;
672 ifp->speed = get_iflink_speed(ifp);
673 ifp->ptm_status = ZEBRA_PTM_STATUS_UNKNOWN;
674
675 if (desc)
676 ifp->desc = XSTRDUP(MTYPE_TMP, desc);
677
678 /* Set zebra interface type */
679 zebra_if_set_ziftype(ifp, zif_type, zif_slave_type);
680 if (IS_ZEBRA_IF_VRF(ifp))
681 SET_FLAG(ifp->status, ZEBRA_INTERFACE_VRF_LOOPBACK);
682
683 /*
684 * Just set the @link/lower-device ifindex. During nldump interfaces are
685 * not ordered in any fashion so we may end up getting upper devices
686 * before lower devices. We will setup the real linkage once the dump
687 * is complete.
688 */
689 zif = (struct zebra_if *)ifp->info;
690 zif->link_ifindex = link_ifindex;
691
692 /* Hardware type and address. */
693 ifp->ll_type = netlink_to_zebra_link_type(ifi->ifi_type);
694 netlink_interface_update_hw_addr(tb, ifp);
695
696 if_add_update(ifp);
697
698 /* Extract and save L2 interface information, take additional actions.
699 */
700 netlink_interface_update_l2info(ifp, linkinfo[IFLA_INFO_DATA], 1);
701 if (IS_ZEBRA_IF_BRIDGE_SLAVE(ifp))
702 zebra_l2if_update_bridge_slave(ifp, bridge_ifindex);
703
704 return 0;
705 }
706
707 /* Request for specific interface or address information from the kernel */
708 static int netlink_request_intf_addr(struct nlsock *netlink_cmd, int family,
709 int type, uint32_t filter_mask)
710 {
711 struct {
712 struct nlmsghdr n;
713 struct ifinfomsg ifm;
714 char buf[256];
715 } req;
716
717 /* Form the request, specifying filter (rtattr) if needed. */
718 memset(&req, 0, sizeof(req));
719 req.n.nlmsg_type = type;
720 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg));
721 req.ifm.ifi_family = family;
722
723 /* Include filter, if specified. */
724 if (filter_mask)
725 addattr32(&req.n, sizeof(req), IFLA_EXT_MASK, filter_mask);
726
727 return netlink_request(netlink_cmd, &req.n);
728 }
729
730 /* Interface lookup by netlink socket. */
731 int interface_lookup_netlink(struct zebra_ns *zns)
732 {
733 int ret;
734 struct zebra_dplane_info dp_info;
735 struct nlsock *netlink_cmd = &zns->netlink_cmd;
736
737 /* Capture key info from ns struct */
738 zebra_dplane_info_from_zns(&dp_info, zns, true /*is_cmd*/);
739
740 /* Get interface information. */
741 ret = netlink_request_intf_addr(netlink_cmd, AF_PACKET, RTM_GETLINK, 0);
742 if (ret < 0)
743 return ret;
744 ret = netlink_parse_info(netlink_interface, netlink_cmd, &dp_info, 0,
745 1);
746 if (ret < 0)
747 return ret;
748
749 /* Get interface information - for bridge interfaces. */
750 ret = netlink_request_intf_addr(netlink_cmd, AF_BRIDGE, RTM_GETLINK,
751 RTEXT_FILTER_BRVLAN);
752 if (ret < 0)
753 return ret;
754 ret = netlink_parse_info(netlink_interface, netlink_cmd, &dp_info, 0,
755 0);
756 if (ret < 0)
757 return ret;
758
759 /* Get interface information - for bridge interfaces. */
760 ret = netlink_request_intf_addr(netlink_cmd, AF_BRIDGE, RTM_GETLINK,
761 RTEXT_FILTER_BRVLAN);
762 if (ret < 0)
763 return ret;
764 ret = netlink_parse_info(netlink_interface, netlink_cmd, &dp_info, 0,
765 0);
766 if (ret < 0)
767 return ret;
768
769 /* fixup linkages */
770 zebra_if_update_all_links();
771
772 /* Get IPv4 address of the interfaces. */
773 ret = netlink_request_intf_addr(netlink_cmd, AF_INET, RTM_GETADDR, 0);
774 if (ret < 0)
775 return ret;
776 ret = netlink_parse_info(netlink_interface_addr, netlink_cmd, &dp_info,
777 0, 1);
778 if (ret < 0)
779 return ret;
780
781 /* Get IPv6 address of the interfaces. */
782 ret = netlink_request_intf_addr(netlink_cmd, AF_INET6, RTM_GETADDR, 0);
783 if (ret < 0)
784 return ret;
785 ret = netlink_parse_info(netlink_interface_addr, netlink_cmd, &dp_info,
786 0, 1);
787 if (ret < 0)
788 return ret;
789
790 return 0;
791 }
792
793 int kernel_interface_set_master(struct interface *master,
794 struct interface *slave)
795 {
796 struct zebra_ns *zns = zebra_ns_lookup(NS_DEFAULT);
797
798 struct {
799 struct nlmsghdr n;
800 struct ifinfomsg ifa;
801 char buf[NL_PKT_BUF_SIZE];
802 } req;
803
804 memset(&req, 0, sizeof req);
805
806 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg));
807 req.n.nlmsg_flags = NLM_F_REQUEST;
808 req.n.nlmsg_type = RTM_SETLINK;
809 req.n.nlmsg_pid = zns->netlink_cmd.snl.nl_pid;
810
811 req.ifa.ifi_index = slave->ifindex;
812
813 addattr_l(&req.n, sizeof req, IFLA_MASTER, &master->ifindex, 4);
814 addattr_l(&req.n, sizeof req, IFLA_LINK, &slave->ifindex, 4);
815
816 return netlink_talk(netlink_talk_filter, &req.n, &zns->netlink_cmd, zns,
817 0);
818 }
819
820 /* Interface address modification. */
821 static int netlink_address(int cmd, int family, struct interface *ifp,
822 struct connected *ifc)
823 {
824 int bytelen;
825 struct prefix *p;
826
827 struct {
828 struct nlmsghdr n;
829 struct ifaddrmsg ifa;
830 char buf[NL_PKT_BUF_SIZE];
831 } req;
832
833 struct zebra_ns *zns;
834
835 if (vrf_is_backend_netns())
836 zns = zebra_ns_lookup((ns_id_t)ifp->vrf_id);
837 else
838 zns = zebra_ns_lookup(NS_DEFAULT);
839 p = ifc->address;
840 memset(&req, 0, sizeof req - NL_PKT_BUF_SIZE);
841
842 bytelen = (family == AF_INET ? 4 : 16);
843
844 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifaddrmsg));
845 req.n.nlmsg_flags = NLM_F_REQUEST;
846 req.n.nlmsg_type = cmd;
847 req.n.nlmsg_pid = zns->netlink_cmd.snl.nl_pid;
848
849 req.ifa.ifa_family = family;
850
851 req.ifa.ifa_index = ifp->ifindex;
852
853 addattr_l(&req.n, sizeof req, IFA_LOCAL, &p->u.prefix, bytelen);
854
855 if (family == AF_INET) {
856 if (CONNECTED_PEER(ifc)) {
857 p = ifc->destination;
858 addattr_l(&req.n, sizeof req, IFA_ADDRESS, &p->u.prefix,
859 bytelen);
860 } else if (cmd == RTM_NEWADDR && ifc->destination) {
861 p = ifc->destination;
862 addattr_l(&req.n, sizeof req, IFA_BROADCAST,
863 &p->u.prefix, bytelen);
864 }
865 }
866
867 /* p is now either ifc->address or ifc->destination */
868 req.ifa.ifa_prefixlen = p->prefixlen;
869
870 if (CHECK_FLAG(ifc->flags, ZEBRA_IFA_SECONDARY))
871 SET_FLAG(req.ifa.ifa_flags, IFA_F_SECONDARY);
872
873 if (ifc->label)
874 addattr_l(&req.n, sizeof req, IFA_LABEL, ifc->label,
875 strlen(ifc->label) + 1);
876
877 return netlink_talk(netlink_talk_filter, &req.n, &zns->netlink_cmd, zns,
878 0);
879 }
880
881 int kernel_address_add_ipv4(struct interface *ifp, struct connected *ifc)
882 {
883 return netlink_address(RTM_NEWADDR, AF_INET, ifp, ifc);
884 }
885
886 int kernel_address_delete_ipv4(struct interface *ifp, struct connected *ifc)
887 {
888 return netlink_address(RTM_DELADDR, AF_INET, ifp, ifc);
889 }
890
891 int kernel_address_add_ipv6(struct interface *ifp, struct connected *ifc)
892 {
893 return netlink_address(RTM_NEWADDR, AF_INET6, ifp, ifc);
894 }
895
896 int kernel_address_delete_ipv6(struct interface *ifp, struct connected *ifc)
897 {
898 return netlink_address(RTM_DELADDR, AF_INET6, ifp, ifc);
899 }
900
901 int netlink_interface_addr(struct nlmsghdr *h, ns_id_t ns_id, int startup)
902 {
903 int len;
904 struct ifaddrmsg *ifa;
905 struct rtattr *tb[IFA_MAX + 1];
906 struct interface *ifp;
907 void *addr;
908 void *broad;
909 uint8_t flags = 0;
910 char *label = NULL;
911 struct zebra_ns *zns;
912
913 zns = zebra_ns_lookup(ns_id);
914 ifa = NLMSG_DATA(h);
915
916 if (ifa->ifa_family != AF_INET && ifa->ifa_family != AF_INET6) {
917 flog_warn(
918 EC_ZEBRA_UNKNOWN_FAMILY,
919 "Invalid address family: %u received from kernel interface addr change: %s",
920 ifa->ifa_family, nl_msg_type_to_str(h->nlmsg_type));
921 return 0;
922 }
923
924 if (h->nlmsg_type != RTM_NEWADDR && h->nlmsg_type != RTM_DELADDR)
925 return 0;
926
927 len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct ifaddrmsg));
928 if (len < 0) {
929 zlog_err("%s: Message received from netlink is of a broken size: %d %zu",
930 __PRETTY_FUNCTION__,
931 h->nlmsg_len,
932 (size_t)NLMSG_LENGTH(sizeof(struct ifaddrmsg)));
933 return -1;
934 }
935
936 memset(tb, 0, sizeof tb);
937 netlink_parse_rtattr(tb, IFA_MAX, IFA_RTA(ifa), len);
938
939 ifp = if_lookup_by_index_per_ns(zns, ifa->ifa_index);
940 if (ifp == NULL) {
941 flog_err(
942 EC_LIB_INTERFACE,
943 "netlink_interface_addr can't find interface by index %d",
944 ifa->ifa_index);
945 return -1;
946 }
947
948 if (IS_ZEBRA_DEBUG_KERNEL) /* remove this line to see initial ifcfg */
949 {
950 char buf[BUFSIZ];
951 zlog_debug("netlink_interface_addr %s %s flags 0x%x:",
952 nl_msg_type_to_str(h->nlmsg_type), ifp->name,
953 ifa->ifa_flags);
954 if (tb[IFA_LOCAL])
955 zlog_debug(" IFA_LOCAL %s/%d",
956 inet_ntop(ifa->ifa_family,
957 RTA_DATA(tb[IFA_LOCAL]), buf,
958 BUFSIZ),
959 ifa->ifa_prefixlen);
960 if (tb[IFA_ADDRESS])
961 zlog_debug(" IFA_ADDRESS %s/%d",
962 inet_ntop(ifa->ifa_family,
963 RTA_DATA(tb[IFA_ADDRESS]), buf,
964 BUFSIZ),
965 ifa->ifa_prefixlen);
966 if (tb[IFA_BROADCAST])
967 zlog_debug(" IFA_BROADCAST %s/%d",
968 inet_ntop(ifa->ifa_family,
969 RTA_DATA(tb[IFA_BROADCAST]), buf,
970 BUFSIZ),
971 ifa->ifa_prefixlen);
972 if (tb[IFA_LABEL] && strcmp(ifp->name, RTA_DATA(tb[IFA_LABEL])))
973 zlog_debug(" IFA_LABEL %s",
974 (char *)RTA_DATA(tb[IFA_LABEL]));
975
976 if (tb[IFA_CACHEINFO]) {
977 struct ifa_cacheinfo *ci = RTA_DATA(tb[IFA_CACHEINFO]);
978 zlog_debug(" IFA_CACHEINFO pref %d, valid %d",
979 ci->ifa_prefered, ci->ifa_valid);
980 }
981 }
982
983 /* logic copied from iproute2/ip/ipaddress.c:print_addrinfo() */
984 if (tb[IFA_LOCAL] == NULL)
985 tb[IFA_LOCAL] = tb[IFA_ADDRESS];
986 if (tb[IFA_ADDRESS] == NULL)
987 tb[IFA_ADDRESS] = tb[IFA_LOCAL];
988
989 /* local interface address */
990 addr = (tb[IFA_LOCAL] ? RTA_DATA(tb[IFA_LOCAL]) : NULL);
991
992 /* is there a peer address? */
993 if (tb[IFA_ADDRESS]
994 && memcmp(RTA_DATA(tb[IFA_ADDRESS]), RTA_DATA(tb[IFA_LOCAL]),
995 RTA_PAYLOAD(tb[IFA_ADDRESS]))) {
996 broad = RTA_DATA(tb[IFA_ADDRESS]);
997 SET_FLAG(flags, ZEBRA_IFA_PEER);
998 } else
999 /* seeking a broadcast address */
1000 broad = (tb[IFA_BROADCAST] ? RTA_DATA(tb[IFA_BROADCAST])
1001 : NULL);
1002
1003 /* addr is primary key, SOL if we don't have one */
1004 if (addr == NULL) {
1005 zlog_debug("%s: NULL address", __func__);
1006 return -1;
1007 }
1008
1009 /* Flags. */
1010 if (ifa->ifa_flags & IFA_F_SECONDARY)
1011 SET_FLAG(flags, ZEBRA_IFA_SECONDARY);
1012
1013 /* Label */
1014 if (tb[IFA_LABEL])
1015 label = (char *)RTA_DATA(tb[IFA_LABEL]);
1016
1017 if (label && strcmp(ifp->name, label) == 0)
1018 label = NULL;
1019
1020 /* Register interface address to the interface. */
1021 if (ifa->ifa_family == AF_INET) {
1022 if (ifa->ifa_prefixlen > IPV4_MAX_BITLEN) {
1023 zlog_err(
1024 "Invalid prefix length: %u received from kernel interface addr change: %s",
1025 ifa->ifa_prefixlen,
1026 nl_msg_type_to_str(h->nlmsg_type));
1027 return -1;
1028 }
1029 if (h->nlmsg_type == RTM_NEWADDR)
1030 connected_add_ipv4(ifp, flags, (struct in_addr *)addr,
1031 ifa->ifa_prefixlen,
1032 (struct in_addr *)broad, label);
1033 else
1034 connected_delete_ipv4(
1035 ifp, flags, (struct in_addr *)addr,
1036 ifa->ifa_prefixlen, (struct in_addr *)broad);
1037 }
1038 if (ifa->ifa_family == AF_INET6) {
1039 if (ifa->ifa_prefixlen > IPV6_MAX_BITLEN) {
1040 zlog_err(
1041 "Invalid prefix length: %u received from kernel interface addr change: %s",
1042 ifa->ifa_prefixlen,
1043 nl_msg_type_to_str(h->nlmsg_type));
1044 return -1;
1045 }
1046 if (h->nlmsg_type == RTM_NEWADDR) {
1047 /* Only consider valid addresses; we'll not get a
1048 * notification from
1049 * the kernel till IPv6 DAD has completed, but at init
1050 * time, Quagga
1051 * does query for and will receive all addresses.
1052 */
1053 if (!(ifa->ifa_flags
1054 & (IFA_F_DADFAILED | IFA_F_TENTATIVE)))
1055 connected_add_ipv6(ifp, flags,
1056 (struct in6_addr *)addr,
1057 (struct in6_addr *)broad,
1058 ifa->ifa_prefixlen, label);
1059 } else
1060 connected_delete_ipv6(ifp, (struct in6_addr *)addr,
1061 (struct in6_addr *)broad,
1062 ifa->ifa_prefixlen);
1063 }
1064
1065 return 0;
1066 }
1067
1068 int netlink_link_change(struct nlmsghdr *h, ns_id_t ns_id, int startup)
1069 {
1070 int len;
1071 struct ifinfomsg *ifi;
1072 struct rtattr *tb[IFLA_MAX + 1];
1073 struct rtattr *linkinfo[IFLA_MAX + 1];
1074 struct interface *ifp;
1075 char *name = NULL;
1076 char *kind = NULL;
1077 char *desc = NULL;
1078 char *slave_kind = NULL;
1079 struct zebra_ns *zns;
1080 vrf_id_t vrf_id = VRF_DEFAULT;
1081 zebra_iftype_t zif_type = ZEBRA_IF_OTHER;
1082 zebra_slave_iftype_t zif_slave_type = ZEBRA_IF_SLAVE_NONE;
1083 ifindex_t bridge_ifindex = IFINDEX_INTERNAL;
1084 ifindex_t link_ifindex = IFINDEX_INTERNAL;
1085
1086
1087 zns = zebra_ns_lookup(ns_id);
1088 ifi = NLMSG_DATA(h);
1089
1090 /* assume if not default zns, then new VRF */
1091 if (!(h->nlmsg_type == RTM_NEWLINK || h->nlmsg_type == RTM_DELLINK)) {
1092 /* If this is not link add/delete message so print warning. */
1093 zlog_debug("netlink_link_change: wrong kernel message %s",
1094 nl_msg_type_to_str(h->nlmsg_type));
1095 return 0;
1096 }
1097
1098 if (!(ifi->ifi_family == AF_UNSPEC || ifi->ifi_family == AF_BRIDGE
1099 || ifi->ifi_family == AF_INET6)) {
1100 flog_warn(
1101 EC_ZEBRA_UNKNOWN_FAMILY,
1102 "Invalid address family: %u received from kernel link change: %s",
1103 ifi->ifi_family, nl_msg_type_to_str(h->nlmsg_type));
1104 return 0;
1105 }
1106
1107 len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct ifinfomsg));
1108 if (len < 0) {
1109 zlog_err("%s: Message received from netlink is of a broken size %d %zu",
1110 __PRETTY_FUNCTION__, h->nlmsg_len,
1111 (size_t)NLMSG_LENGTH(sizeof(struct ifinfomsg)));
1112 return -1;
1113 }
1114
1115 /* We are interested in some AF_BRIDGE notifications. */
1116 if (ifi->ifi_family == AF_BRIDGE)
1117 return netlink_bridge_interface(h, len, ns_id, startup);
1118
1119 /* Looking up interface name. */
1120 memset(tb, 0, sizeof tb);
1121 memset(linkinfo, 0, sizeof linkinfo);
1122 netlink_parse_rtattr(tb, IFLA_MAX, IFLA_RTA(ifi), len);
1123
1124 /* check for wireless messages to ignore */
1125 if ((tb[IFLA_WIRELESS] != NULL) && (ifi->ifi_change == 0)) {
1126 if (IS_ZEBRA_DEBUG_KERNEL)
1127 zlog_debug("%s: ignoring IFLA_WIRELESS message",
1128 __func__);
1129 return 0;
1130 }
1131
1132 if (tb[IFLA_IFNAME] == NULL)
1133 return -1;
1134 name = (char *)RTA_DATA(tb[IFLA_IFNAME]);
1135
1136 if (tb[IFLA_LINKINFO]) {
1137 parse_rtattr_nested(linkinfo, IFLA_INFO_MAX, tb[IFLA_LINKINFO]);
1138
1139 if (linkinfo[IFLA_INFO_KIND])
1140 kind = RTA_DATA(linkinfo[IFLA_INFO_KIND]);
1141
1142 if (linkinfo[IFLA_INFO_SLAVE_KIND])
1143 slave_kind = RTA_DATA(linkinfo[IFLA_INFO_SLAVE_KIND]);
1144
1145 netlink_determine_zebra_iftype(kind, &zif_type);
1146 }
1147
1148 /* If linking to another interface, note it. */
1149 if (tb[IFLA_LINK])
1150 link_ifindex = *(ifindex_t *)RTA_DATA(tb[IFLA_LINK]);
1151
1152 if (tb[IFLA_IFALIAS]) {
1153 desc = (char *)RTA_DATA(tb[IFLA_IFALIAS]);
1154 }
1155
1156 /* If VRF, create or update the VRF structure itself. */
1157 if (zif_type == ZEBRA_IF_VRF && !vrf_is_backend_netns()) {
1158 netlink_vrf_change(h, tb[IFLA_LINKINFO], name);
1159 vrf_id = (vrf_id_t)ifi->ifi_index;
1160 }
1161
1162 /* See if interface is present. */
1163 ifp = if_lookup_by_name_per_ns(zns, name);
1164
1165 if (ifp) {
1166 if (ifp->desc)
1167 XFREE(MTYPE_TMP, ifp->desc);
1168 if (desc)
1169 ifp->desc = XSTRDUP(MTYPE_TMP, desc);
1170 }
1171
1172 if (h->nlmsg_type == RTM_NEWLINK) {
1173 if (tb[IFLA_MASTER]) {
1174 if (slave_kind && (strcmp(slave_kind, "vrf") == 0)
1175 && !vrf_is_backend_netns()) {
1176 zif_slave_type = ZEBRA_IF_SLAVE_VRF;
1177 vrf_id = *(uint32_t *)RTA_DATA(tb[IFLA_MASTER]);
1178 } else if (slave_kind
1179 && (strcmp(slave_kind, "bridge") == 0)) {
1180 zif_slave_type = ZEBRA_IF_SLAVE_BRIDGE;
1181 bridge_ifindex =
1182 *(ifindex_t *)RTA_DATA(tb[IFLA_MASTER]);
1183 } else
1184 zif_slave_type = ZEBRA_IF_SLAVE_OTHER;
1185 }
1186 if (vrf_is_backend_netns())
1187 vrf_id = (vrf_id_t)ns_id;
1188 if (ifp == NULL
1189 || !CHECK_FLAG(ifp->status, ZEBRA_INTERFACE_ACTIVE)) {
1190 /* Add interface notification from kernel */
1191 if (IS_ZEBRA_DEBUG_KERNEL)
1192 zlog_debug(
1193 "RTM_NEWLINK ADD for %s(%u) vrf_id %u type %d "
1194 "sl_type %d master %u flags 0x%x",
1195 name, ifi->ifi_index, vrf_id, zif_type,
1196 zif_slave_type, bridge_ifindex,
1197 ifi->ifi_flags);
1198
1199 if (ifp == NULL) {
1200 /* unknown interface */
1201 ifp = if_get_by_name(name, vrf_id, 0);
1202 } else {
1203 /* pre-configured interface, learnt now */
1204 if (ifp->vrf_id != vrf_id)
1205 if_update_to_new_vrf(ifp, vrf_id);
1206 }
1207
1208 /* Update interface information. */
1209 set_ifindex(ifp, ifi->ifi_index, zns);
1210 ifp->flags = ifi->ifi_flags & 0x0000fffff;
1211 if (!tb[IFLA_MTU]) {
1212 zlog_debug(
1213 "RTM_NEWLINK for interface %s(%u) without MTU set",
1214 name, ifi->ifi_index);
1215 return 0;
1216 }
1217 ifp->mtu6 = ifp->mtu = *(int *)RTA_DATA(tb[IFLA_MTU]);
1218 ifp->metric = 0;
1219 ifp->ptm_status = ZEBRA_PTM_STATUS_UNKNOWN;
1220
1221 /* Set interface type */
1222 zebra_if_set_ziftype(ifp, zif_type, zif_slave_type);
1223 if (IS_ZEBRA_IF_VRF(ifp))
1224 SET_FLAG(ifp->status,
1225 ZEBRA_INTERFACE_VRF_LOOPBACK);
1226
1227 /* Update link. */
1228 zebra_if_update_link(ifp, link_ifindex, ns_id);
1229
1230 netlink_interface_update_hw_addr(tb, ifp);
1231
1232 /* Inform clients, install any configured addresses. */
1233 if_add_update(ifp);
1234
1235 /* Extract and save L2 interface information, take
1236 * additional actions. */
1237 netlink_interface_update_l2info(
1238 ifp, linkinfo[IFLA_INFO_DATA], 1);
1239 if (IS_ZEBRA_IF_BRIDGE_SLAVE(ifp))
1240 zebra_l2if_update_bridge_slave(ifp,
1241 bridge_ifindex);
1242 } else if (ifp->vrf_id != vrf_id) {
1243 /* VRF change for an interface. */
1244 if (IS_ZEBRA_DEBUG_KERNEL)
1245 zlog_debug(
1246 "RTM_NEWLINK vrf-change for %s(%u) "
1247 "vrf_id %u -> %u flags 0x%x",
1248 name, ifp->ifindex, ifp->vrf_id, vrf_id,
1249 ifi->ifi_flags);
1250
1251 if_handle_vrf_change(ifp, vrf_id);
1252 } else {
1253 int was_bridge_slave;
1254
1255 /* Interface update. */
1256 if (IS_ZEBRA_DEBUG_KERNEL)
1257 zlog_debug(
1258 "RTM_NEWLINK update for %s(%u) "
1259 "sl_type %d master %u flags 0x%x",
1260 name, ifp->ifindex, zif_slave_type,
1261 bridge_ifindex, ifi->ifi_flags);
1262
1263 set_ifindex(ifp, ifi->ifi_index, zns);
1264 if (!tb[IFLA_MTU]) {
1265 zlog_debug(
1266 "RTM_NEWLINK for interface %s(%u) without MTU set",
1267 name, ifi->ifi_index);
1268 return 0;
1269 }
1270 ifp->mtu6 = ifp->mtu = *(int *)RTA_DATA(tb[IFLA_MTU]);
1271 ifp->metric = 0;
1272
1273 /* Update interface type - NOTE: Only slave_type can
1274 * change. */
1275 was_bridge_slave = IS_ZEBRA_IF_BRIDGE_SLAVE(ifp);
1276 zebra_if_set_ziftype(ifp, zif_type, zif_slave_type);
1277
1278 netlink_interface_update_hw_addr(tb, ifp);
1279
1280 if (if_is_no_ptm_operative(ifp)) {
1281 ifp->flags = ifi->ifi_flags & 0x0000fffff;
1282 if (!if_is_no_ptm_operative(ifp)) {
1283 if (IS_ZEBRA_DEBUG_KERNEL)
1284 zlog_debug(
1285 "Intf %s(%u) has gone DOWN",
1286 name, ifp->ifindex);
1287 if_down(ifp);
1288 } else if (if_is_operative(ifp)) {
1289 /* Must notify client daemons of new
1290 * interface status. */
1291 if (IS_ZEBRA_DEBUG_KERNEL)
1292 zlog_debug(
1293 "Intf %s(%u) PTM up, notifying clients",
1294 name, ifp->ifindex);
1295 zebra_interface_up_update(ifp);
1296 }
1297 } else {
1298 ifp->flags = ifi->ifi_flags & 0x0000fffff;
1299 if (if_is_operative(ifp)) {
1300 if (IS_ZEBRA_DEBUG_KERNEL)
1301 zlog_debug(
1302 "Intf %s(%u) has come UP",
1303 name, ifp->ifindex);
1304 if_up(ifp);
1305 }
1306 }
1307
1308 /* Extract and save L2 interface information, take
1309 * additional actions. */
1310 netlink_interface_update_l2info(
1311 ifp, linkinfo[IFLA_INFO_DATA], 0);
1312 if (IS_ZEBRA_IF_BRIDGE_SLAVE(ifp) || was_bridge_slave)
1313 zebra_l2if_update_bridge_slave(ifp,
1314 bridge_ifindex);
1315 }
1316 } else {
1317 /* Delete interface notification from kernel */
1318 if (ifp == NULL) {
1319 if (IS_ZEBRA_DEBUG_KERNEL)
1320 zlog_debug(
1321 "RTM_DELLINK for unknown interface %s(%u)",
1322 name, ifi->ifi_index);
1323 return 0;
1324 }
1325
1326 if (IS_ZEBRA_DEBUG_KERNEL)
1327 zlog_debug("RTM_DELLINK for %s(%u)", name,
1328 ifp->ifindex);
1329
1330 UNSET_FLAG(ifp->status, ZEBRA_INTERFACE_VRF_LOOPBACK);
1331
1332 /* Special handling for bridge or VxLAN interfaces. */
1333 if (IS_ZEBRA_IF_BRIDGE(ifp))
1334 zebra_l2_bridge_del(ifp);
1335 else if (IS_ZEBRA_IF_VXLAN(ifp))
1336 zebra_l2_vxlanif_del(ifp);
1337
1338 if (!IS_ZEBRA_IF_VRF(ifp))
1339 if_delete_update(ifp);
1340 }
1341
1342 return 0;
1343 }
1344
1345 /* Interface information read by netlink. */
1346 void interface_list(struct zebra_ns *zns)
1347 {
1348 interface_lookup_netlink(zns);
1349 }
1350
1351 #endif /* GNU_LINUX */