]> git.proxmox.com Git - mirror_frr.git/blob - zebra/kernel_netlink.c
Merge pull request #12670 from louis-6wind/fix-bfd-zclient
[mirror_frr.git] / zebra / kernel_netlink.c
1 /* Kernel communication using netlink interface.
2 * Copyright (C) 1999 Kunihiro Ishiguro
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; see the file COPYING; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include <zebra.h>
22
23 #ifdef HAVE_NETLINK
24
25 #include "linklist.h"
26 #include "if.h"
27 #include "log.h"
28 #include "prefix.h"
29 #include "connected.h"
30 #include "table.h"
31 #include "memory.h"
32 #include "rib.h"
33 #include "thread.h"
34 #include "privs.h"
35 #include "nexthop.h"
36 #include "vrf.h"
37 #include "mpls.h"
38 #include "lib_errors.h"
39 #include "hash.h"
40
41 #include "zebra/zebra_router.h"
42 #include "zebra/zebra_ns.h"
43 #include "zebra/zebra_vrf.h"
44 #include "zebra/rt.h"
45 #include "zebra/debug.h"
46 #include "zebra/kernel_netlink.h"
47 #include "zebra/rt_netlink.h"
48 #include "zebra/if_netlink.h"
49 #include "zebra/rule_netlink.h"
50 #include "zebra/tc_netlink.h"
51 #include "zebra/netconf_netlink.h"
52 #include "zebra/zebra_errors.h"
53
54 #ifndef SO_RCVBUFFORCE
55 #define SO_RCVBUFFORCE (33)
56 #endif
57
58 /* Hack for GNU libc version 2. */
59 #ifndef MSG_TRUNC
60 #define MSG_TRUNC 0x20
61 #endif /* MSG_TRUNC */
62
63 #ifndef NLMSG_TAIL
64 #define NLMSG_TAIL(nmsg) \
65 ((struct rtattr *)(((uint8_t *)(nmsg)) \
66 + NLMSG_ALIGN((nmsg)->nlmsg_len)))
67 #endif
68
69 #ifndef RTA_TAIL
70 #define RTA_TAIL(rta) \
71 ((struct rtattr *)(((uint8_t *)(rta)) + RTA_ALIGN((rta)->rta_len)))
72 #endif
73
74 #ifndef RTNL_FAMILY_IP6MR
75 #define RTNL_FAMILY_IP6MR 129
76 #endif
77
78 #ifndef RTPROT_MROUTED
79 #define RTPROT_MROUTED 17
80 #endif
81
82 #define NL_DEFAULT_BATCH_BUFSIZE (16 * NL_PKT_BUF_SIZE)
83
84 /*
85 * We limit the batch's size to a number smaller than the length of the
86 * underlying buffer since the last message that wouldn't fit the batch would go
87 * over the upper boundary and then it would have to be encoded again into a new
88 * buffer. If the difference between the limit and the length of the buffer is
89 * big enough (bigger than the biggest Netlink message) then this situation
90 * won't occur.
91 */
92 #define NL_DEFAULT_BATCH_SEND_THRESHOLD (15 * NL_PKT_BUF_SIZE)
93
94 static const struct message nlmsg_str[] = {{RTM_NEWROUTE, "RTM_NEWROUTE"},
95 {RTM_DELROUTE, "RTM_DELROUTE"},
96 {RTM_GETROUTE, "RTM_GETROUTE"},
97 {RTM_NEWLINK, "RTM_NEWLINK"},
98 {RTM_SETLINK, "RTM_SETLINK"},
99 {RTM_DELLINK, "RTM_DELLINK"},
100 {RTM_GETLINK, "RTM_GETLINK"},
101 {RTM_NEWADDR, "RTM_NEWADDR"},
102 {RTM_DELADDR, "RTM_DELADDR"},
103 {RTM_GETADDR, "RTM_GETADDR"},
104 {RTM_NEWNEIGH, "RTM_NEWNEIGH"},
105 {RTM_DELNEIGH, "RTM_DELNEIGH"},
106 {RTM_GETNEIGH, "RTM_GETNEIGH"},
107 {RTM_NEWRULE, "RTM_NEWRULE"},
108 {RTM_DELRULE, "RTM_DELRULE"},
109 {RTM_GETRULE, "RTM_GETRULE"},
110 {RTM_NEWNEXTHOP, "RTM_NEWNEXTHOP"},
111 {RTM_DELNEXTHOP, "RTM_DELNEXTHOP"},
112 {RTM_GETNEXTHOP, "RTM_GETNEXTHOP"},
113 {RTM_NEWNETCONF, "RTM_NEWNETCONF"},
114 {RTM_DELNETCONF, "RTM_DELNETCONF"},
115 {RTM_NEWTUNNEL, "RTM_NEWTUNNEL"},
116 {RTM_DELTUNNEL, "RTM_DELTUNNEL"},
117 {RTM_GETTUNNEL, "RTM_GETTUNNEL"},
118 {RTM_NEWQDISC, "RTM_NEWQDISC"},
119 {RTM_DELQDISC, "RTM_DELQDISC"},
120 {RTM_GETQDISC, "RTM_GETQDISC"},
121 {RTM_NEWTCLASS, "RTM_NEWTCLASS"},
122 {RTM_DELTCLASS, "RTM_DELTCLASS"},
123 {RTM_GETTCLASS, "RTM_GETTCLASS"},
124 {RTM_NEWTFILTER, "RTM_NEWTFILTER"},
125 {RTM_DELTFILTER, "RTM_DELTFILTER"},
126 {RTM_GETTFILTER, "RTM_GETTFILTER"},
127 {0}};
128
129 static const struct message rtproto_str[] = {
130 {RTPROT_REDIRECT, "redirect"},
131 {RTPROT_KERNEL, "kernel"},
132 {RTPROT_BOOT, "boot"},
133 {RTPROT_STATIC, "static"},
134 {RTPROT_GATED, "GateD"},
135 {RTPROT_RA, "router advertisement"},
136 {RTPROT_MRT, "MRT"},
137 {RTPROT_ZEBRA, "Zebra"},
138 #ifdef RTPROT_BIRD
139 {RTPROT_BIRD, "BIRD"},
140 #endif /* RTPROT_BIRD */
141 {RTPROT_MROUTED, "mroute"},
142 {RTPROT_BGP, "BGP"},
143 {RTPROT_OSPF, "OSPF"},
144 {RTPROT_ISIS, "IS-IS"},
145 {RTPROT_RIP, "RIP"},
146 {RTPROT_RIPNG, "RIPNG"},
147 {RTPROT_ZSTATIC, "static"},
148 {0}};
149
150 static const struct message family_str[] = {{AF_INET, "ipv4"},
151 {AF_INET6, "ipv6"},
152 {AF_BRIDGE, "bridge"},
153 {RTNL_FAMILY_IPMR, "ipv4MR"},
154 {RTNL_FAMILY_IP6MR, "ipv6MR"},
155 {0}};
156
157 static const struct message rttype_str[] = {{RTN_UNSPEC, "none"},
158 {RTN_UNICAST, "unicast"},
159 {RTN_LOCAL, "local"},
160 {RTN_BROADCAST, "broadcast"},
161 {RTN_ANYCAST, "anycast"},
162 {RTN_MULTICAST, "multicast"},
163 {RTN_BLACKHOLE, "blackhole"},
164 {RTN_UNREACHABLE, "unreachable"},
165 {RTN_PROHIBIT, "prohibited"},
166 {RTN_THROW, "throw"},
167 {RTN_NAT, "nat"},
168 {RTN_XRESOLVE, "resolver"},
169 {0}};
170
171 extern struct thread_master *master;
172
173 extern struct zebra_privs_t zserv_privs;
174
175 DEFINE_MTYPE_STATIC(ZEBRA, NL_BUF, "Zebra Netlink buffers");
176
177 /* Hashtable and mutex to allow lookup of nlsock structs by socket/fd value.
178 * We have both the main and dplane pthreads using these structs, so we have
179 * to protect the hash with a lock.
180 */
181 static struct hash *nlsock_hash;
182 pthread_mutex_t nlsock_mutex;
183
184 /* Lock and unlock wrappers for nlsock hash */
185 #define NLSOCK_LOCK() pthread_mutex_lock(&nlsock_mutex)
186 #define NLSOCK_UNLOCK() pthread_mutex_unlock(&nlsock_mutex)
187
188 size_t nl_batch_tx_bufsize;
189 char *nl_batch_tx_buf;
190
191 _Atomic uint32_t nl_batch_bufsize = NL_DEFAULT_BATCH_BUFSIZE;
192 _Atomic uint32_t nl_batch_send_threshold = NL_DEFAULT_BATCH_SEND_THRESHOLD;
193
194 struct nl_batch {
195 void *buf;
196 size_t bufsiz;
197 size_t limit;
198
199 void *buf_head;
200 size_t curlen;
201 size_t msgcnt;
202
203 const struct zebra_dplane_info *zns;
204
205 struct dplane_ctx_q ctx_list;
206
207 /*
208 * Pointer to the queue of completed contexts outbound back
209 * towards the dataplane module.
210 */
211 struct dplane_ctx_q *ctx_out_q;
212 };
213
214 int netlink_config_write_helper(struct vty *vty)
215 {
216 uint32_t size =
217 atomic_load_explicit(&nl_batch_bufsize, memory_order_relaxed);
218 uint32_t threshold = atomic_load_explicit(&nl_batch_send_threshold,
219 memory_order_relaxed);
220
221 if (size != NL_DEFAULT_BATCH_BUFSIZE
222 || threshold != NL_DEFAULT_BATCH_SEND_THRESHOLD)
223 vty_out(vty, "zebra kernel netlink batch-tx-buf %u %u\n", size,
224 threshold);
225
226 if (if_netlink_frr_protodown_r_bit_is_set())
227 vty_out(vty, "zebra protodown reason-bit %u\n",
228 if_netlink_get_frr_protodown_r_bit());
229
230 return 0;
231 }
232
233 void netlink_set_batch_buffer_size(uint32_t size, uint32_t threshold, bool set)
234 {
235 if (!set) {
236 size = NL_DEFAULT_BATCH_BUFSIZE;
237 threshold = NL_DEFAULT_BATCH_SEND_THRESHOLD;
238 }
239
240 atomic_store_explicit(&nl_batch_bufsize, size, memory_order_relaxed);
241 atomic_store_explicit(&nl_batch_send_threshold, threshold,
242 memory_order_relaxed);
243 }
244
245 int netlink_talk_filter(struct nlmsghdr *h, ns_id_t ns_id, int startup)
246 {
247 /*
248 * This is an error condition that must be handled during
249 * development.
250 *
251 * The netlink_talk_filter function is used for communication
252 * down the netlink_cmd pipe and we are expecting
253 * an ack being received. So if we get here
254 * then we did not receive the ack and instead
255 * received some other message in an unexpected
256 * way.
257 */
258 zlog_debug("%s: ignoring message type 0x%04x(%s) NS %u", __func__,
259 h->nlmsg_type, nl_msg_type_to_str(h->nlmsg_type), ns_id);
260 return 0;
261 }
262
263 static int netlink_recvbuf(struct nlsock *nl, uint32_t newsize)
264 {
265 uint32_t oldsize;
266 socklen_t newlen = sizeof(newsize);
267 socklen_t oldlen = sizeof(oldsize);
268 int ret;
269
270 ret = getsockopt(nl->sock, SOL_SOCKET, SO_RCVBUF, &oldsize, &oldlen);
271 if (ret < 0) {
272 flog_err_sys(EC_LIB_SOCKET,
273 "Can't get %s receive buffer size: %s", nl->name,
274 safe_strerror(errno));
275 return -1;
276 }
277
278 /* Try force option (linux >= 2.6.14) and fall back to normal set */
279 frr_with_privs(&zserv_privs) {
280 ret = setsockopt(nl->sock, SOL_SOCKET, SO_RCVBUFFORCE,
281 &rcvbufsize, sizeof(rcvbufsize));
282 }
283 if (ret < 0)
284 ret = setsockopt(nl->sock, SOL_SOCKET, SO_RCVBUF, &rcvbufsize,
285 sizeof(rcvbufsize));
286 if (ret < 0) {
287 flog_err_sys(EC_LIB_SOCKET,
288 "Can't set %s receive buffer size: %s", nl->name,
289 safe_strerror(errno));
290 return -1;
291 }
292
293 ret = getsockopt(nl->sock, SOL_SOCKET, SO_RCVBUF, &newsize, &newlen);
294 if (ret < 0) {
295 flog_err_sys(EC_LIB_SOCKET,
296 "Can't get %s receive buffer size: %s", nl->name,
297 safe_strerror(errno));
298 return -1;
299 }
300 return 0;
301 }
302
303 static const char *group2str(uint32_t group)
304 {
305 switch (group) {
306 case RTNLGRP_TUNNEL:
307 return "RTNLGRP_TUNNEL";
308 default:
309 return "UNKNOWN";
310 }
311 }
312
313 /* Make socket for Linux netlink interface. */
314 static int netlink_socket(struct nlsock *nl, unsigned long groups,
315 uint32_t ext_groups[], uint8_t ext_group_size,
316 ns_id_t ns_id)
317 {
318 int ret;
319 struct sockaddr_nl snl;
320 int sock;
321 int namelen;
322
323 frr_with_privs(&zserv_privs) {
324 sock = ns_socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE, ns_id);
325 if (sock < 0) {
326 zlog_err("Can't open %s socket: %s", nl->name,
327 safe_strerror(errno));
328 return -1;
329 }
330
331 memset(&snl, 0, sizeof(snl));
332 snl.nl_family = AF_NETLINK;
333 snl.nl_groups = groups;
334
335 if (ext_group_size) {
336 uint8_t i;
337
338 for (i = 0; i < ext_group_size; i++) {
339 #if defined SOL_NETLINK
340 ret = setsockopt(sock, SOL_NETLINK,
341 NETLINK_ADD_MEMBERSHIP,
342 &ext_groups[i],
343 sizeof(ext_groups[i]));
344 if (ret < 0) {
345 zlog_notice(
346 "can't setsockopt NETLINK_ADD_MEMBERSHIP for group %s(%u), this linux kernel does not support it: %s(%d)",
347 group2str(ext_groups[i]),
348 ext_groups[i],
349 safe_strerror(errno), errno);
350 }
351 #else
352 zlog_notice(
353 "Unable to use NETLINK_ADD_MEMBERSHIP via SOL_NETLINK for %s(%u) since the linux kernel does not support the socket option",
354 group2str(ext_groups[i]),
355 ext_groups[i]);
356 #endif
357 }
358 }
359
360 /* Bind the socket to the netlink structure for anything. */
361 ret = bind(sock, (struct sockaddr *)&snl, sizeof(snl));
362 }
363
364 if (ret < 0) {
365 zlog_err("Can't bind %s socket to group 0x%x: %s", nl->name,
366 snl.nl_groups, safe_strerror(errno));
367 close(sock);
368 return -1;
369 }
370
371 /* multiple netlink sockets will have different nl_pid */
372 namelen = sizeof(snl);
373 ret = getsockname(sock, (struct sockaddr *)&snl, (socklen_t *)&namelen);
374 if (ret < 0 || namelen != sizeof(snl)) {
375 flog_err_sys(EC_LIB_SOCKET, "Can't get %s socket name: %s",
376 nl->name, safe_strerror(errno));
377 close(sock);
378 return -1;
379 }
380
381 nl->snl = snl;
382 nl->sock = sock;
383 nl->buflen = NL_RCV_PKT_BUF_SIZE;
384 nl->buf = XMALLOC(MTYPE_NL_BUF, nl->buflen);
385
386 return ret;
387 }
388
389 /*
390 * Dispatch an incoming netlink message; used by the zebra main pthread's
391 * netlink event reader.
392 */
393 static int netlink_information_fetch(struct nlmsghdr *h, ns_id_t ns_id,
394 int startup)
395 {
396 /*
397 * When we handle new message types here
398 * because we are starting to install them
399 * then lets check the netlink_install_filter
400 * and see if we should add the corresponding
401 * allow through entry there.
402 * Probably not needed to do but please
403 * think about it.
404 */
405 switch (h->nlmsg_type) {
406 case RTM_NEWROUTE:
407 return netlink_route_change(h, ns_id, startup);
408 case RTM_DELROUTE:
409 return netlink_route_change(h, ns_id, startup);
410 case RTM_NEWLINK:
411 return netlink_link_change(h, ns_id, startup);
412 case RTM_DELLINK:
413 return netlink_link_change(h, ns_id, startup);
414 case RTM_NEWNEIGH:
415 case RTM_DELNEIGH:
416 case RTM_GETNEIGH:
417 return netlink_neigh_change(h, ns_id);
418 case RTM_NEWRULE:
419 return netlink_rule_change(h, ns_id, startup);
420 case RTM_DELRULE:
421 return netlink_rule_change(h, ns_id, startup);
422 case RTM_NEWNEXTHOP:
423 return netlink_nexthop_change(h, ns_id, startup);
424 case RTM_DELNEXTHOP:
425 return netlink_nexthop_change(h, ns_id, startup);
426 case RTM_NEWQDISC:
427 case RTM_DELQDISC:
428 return netlink_qdisc_change(h, ns_id, startup);
429 case RTM_NEWTCLASS:
430 case RTM_DELTCLASS:
431 return netlink_tclass_change(h, ns_id, startup);
432 case RTM_NEWTFILTER:
433 case RTM_DELTFILTER:
434 return netlink_tfilter_change(h, ns_id, startup);
435
436 /* Messages handled in the dplane thread */
437 case RTM_NEWADDR:
438 case RTM_DELADDR:
439 case RTM_NEWNETCONF:
440 case RTM_DELNETCONF:
441 case RTM_NEWTUNNEL:
442 case RTM_DELTUNNEL:
443 case RTM_GETTUNNEL:
444 return 0;
445 default:
446 /*
447 * If we have received this message then
448 * we have made a mistake during development
449 * and we need to write some code to handle
450 * this message type or not ask for
451 * it to be sent up to us
452 */
453 flog_err(EC_ZEBRA_UNKNOWN_NLMSG,
454 "Unknown netlink nlmsg_type %s(%d) vrf %u",
455 nl_msg_type_to_str(h->nlmsg_type), h->nlmsg_type,
456 ns_id);
457 break;
458 }
459 return 0;
460 }
461
462 /*
463 * Dispatch an incoming netlink message; used by the dataplane pthread's
464 * netlink event reader code.
465 */
466 static int dplane_netlink_information_fetch(struct nlmsghdr *h, ns_id_t ns_id,
467 int startup)
468 {
469 /*
470 * Dispatch the incoming messages that the dplane pthread handles
471 */
472 switch (h->nlmsg_type) {
473 case RTM_NEWADDR:
474 case RTM_DELADDR:
475 return netlink_interface_addr_dplane(h, ns_id, startup);
476
477 case RTM_NEWNETCONF:
478 case RTM_DELNETCONF:
479 return netlink_netconf_change(h, ns_id, startup);
480
481 /* TODO -- other messages for the dplane socket and pthread */
482
483 case RTM_NEWLINK:
484 case RTM_DELLINK:
485
486 default:
487 break;
488 }
489
490 return 0;
491 }
492
493 static void kernel_read(struct thread *thread)
494 {
495 struct zebra_ns *zns = (struct zebra_ns *)THREAD_ARG(thread);
496 struct zebra_dplane_info dp_info;
497
498 /* Capture key info from ns struct */
499 zebra_dplane_info_from_zns(&dp_info, zns, false);
500
501 netlink_parse_info(netlink_information_fetch, &zns->netlink, &dp_info,
502 5, false);
503
504 thread_add_read(zrouter.master, kernel_read, zns, zns->netlink.sock,
505 &zns->t_netlink);
506 }
507
508 /*
509 * Called by the dplane pthread to read incoming OS messages and dispatch them.
510 */
511 int kernel_dplane_read(struct zebra_dplane_info *info)
512 {
513 struct nlsock *nl = kernel_netlink_nlsock_lookup(info->sock);
514
515 netlink_parse_info(dplane_netlink_information_fetch, nl, info, 5,
516 false);
517
518 return 0;
519 }
520
521 /*
522 * Filter out messages from self that occur on listener socket,
523 * caused by our actions on the command socket(s)
524 *
525 * When we add new Netlink message types we probably
526 * do not need to add them here as that we are filtering
527 * on the routes we actually care to receive( which is rarer
528 * then the normal course of operations). We are intentionally
529 * allowing some messages from ourselves through
530 * ( I'm looking at you Interface based netlink messages )
531 * so that we only have to write one way to handle incoming
532 * address add/delete and xxxNETCONF changes.
533 */
534 static void netlink_install_filter(int sock, uint32_t pid, uint32_t dplane_pid)
535 {
536 /*
537 * BPF_JUMP instructions and where you jump to are based upon
538 * 0 as being the next statement. So count from 0. Writing
539 * this down because every time I look at this I have to
540 * re-remember it.
541 */
542 struct sock_filter filter[] = {
543 /*
544 * Logic:
545 * if (nlmsg_pid == pid ||
546 * nlmsg_pid == dplane_pid) {
547 * if (the incoming nlmsg_type ==
548 * RTM_NEWADDR || RTM_DELADDR || RTM_NEWNETCONF ||
549 * RTM_DELNETCONF)
550 * keep this message
551 * else
552 * skip this message
553 * } else
554 * keep this netlink message
555 */
556 /*
557 * 0: Load the nlmsg_pid into the BPF register
558 */
559 BPF_STMT(BPF_LD | BPF_ABS | BPF_W,
560 offsetof(struct nlmsghdr, nlmsg_pid)),
561 /*
562 * 1: Compare to pid
563 */
564 BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, htonl(pid), 1, 0),
565 /*
566 * 2: Compare to dplane pid
567 */
568 BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, htonl(dplane_pid), 0, 6),
569 /*
570 * 3: Load the nlmsg_type into BPF register
571 */
572 BPF_STMT(BPF_LD | BPF_ABS | BPF_H,
573 offsetof(struct nlmsghdr, nlmsg_type)),
574 /*
575 * 4: Compare to RTM_NEWADDR
576 */
577 BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, htons(RTM_NEWADDR), 4, 0),
578 /*
579 * 5: Compare to RTM_DELADDR
580 */
581 BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, htons(RTM_DELADDR), 3, 0),
582 /*
583 * 6: Compare to RTM_NEWNETCONF
584 */
585 BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, htons(RTM_NEWNETCONF), 2,
586 0),
587 /*
588 * 7: Compare to RTM_DELNETCONF
589 */
590 BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, htons(RTM_DELNETCONF), 1,
591 0),
592 /*
593 * 8: This is the end state of we want to skip the
594 * message
595 */
596 BPF_STMT(BPF_RET | BPF_K, 0),
597 /* 9: This is the end state of we want to keep
598 * the message
599 */
600 BPF_STMT(BPF_RET | BPF_K, 0xffff),
601 };
602
603 struct sock_fprog prog = {
604 .len = array_size(filter), .filter = filter,
605 };
606
607 if (setsockopt(sock, SOL_SOCKET, SO_ATTACH_FILTER, &prog, sizeof(prog))
608 < 0)
609 flog_err_sys(EC_LIB_SOCKET, "Can't install socket filter: %s",
610 safe_strerror(errno));
611 }
612
613 void netlink_parse_rtattr_flags(struct rtattr **tb, int max, struct rtattr *rta,
614 int len, unsigned short flags)
615 {
616 unsigned short type;
617
618 memset(tb, 0, sizeof(struct rtattr *) * (max + 1));
619 while (RTA_OK(rta, len)) {
620 type = rta->rta_type & ~flags;
621 if ((type <= max) && (!tb[type]))
622 tb[type] = rta;
623 rta = RTA_NEXT(rta, len);
624 }
625 }
626
627 void netlink_parse_rtattr(struct rtattr **tb, int max, struct rtattr *rta,
628 int len)
629 {
630 memset(tb, 0, sizeof(struct rtattr *) * (max + 1));
631 while (RTA_OK(rta, len)) {
632 if (rta->rta_type <= max)
633 tb[rta->rta_type] = rta;
634 rta = RTA_NEXT(rta, len);
635 }
636 }
637
638 /**
639 * netlink_parse_rtattr_nested() - Parses a nested route attribute
640 * @tb: Pointer to array for storing rtattr in.
641 * @max: Max number to store.
642 * @rta: Pointer to rtattr to look for nested items in.
643 */
644 void netlink_parse_rtattr_nested(struct rtattr **tb, int max,
645 struct rtattr *rta)
646 {
647 netlink_parse_rtattr(tb, max, RTA_DATA(rta), RTA_PAYLOAD(rta));
648 }
649
650 bool nl_addraw_l(struct nlmsghdr *n, unsigned int maxlen, const void *data,
651 unsigned int len)
652 {
653 if (NLMSG_ALIGN(n->nlmsg_len) + NLMSG_ALIGN(len) > maxlen) {
654 zlog_err("ERROR message exceeded bound of %d", maxlen);
655 return false;
656 }
657
658 memcpy(NLMSG_TAIL(n), data, len);
659 memset((uint8_t *)NLMSG_TAIL(n) + len, 0, NLMSG_ALIGN(len) - len);
660 n->nlmsg_len = NLMSG_ALIGN(n->nlmsg_len) + NLMSG_ALIGN(len);
661
662 return true;
663 }
664
665 bool nl_attr_put(struct nlmsghdr *n, unsigned int maxlen, int type,
666 const void *data, unsigned int alen)
667 {
668 int len;
669 struct rtattr *rta;
670
671 len = RTA_LENGTH(alen);
672
673 if (NLMSG_ALIGN(n->nlmsg_len) + RTA_ALIGN(len) > maxlen)
674 return false;
675
676 rta = (struct rtattr *)(((char *)n) + NLMSG_ALIGN(n->nlmsg_len));
677 rta->rta_type = type;
678 rta->rta_len = len;
679
680 if (data)
681 memcpy(RTA_DATA(rta), data, alen);
682 else
683 assert(alen == 0);
684
685 n->nlmsg_len = NLMSG_ALIGN(n->nlmsg_len) + RTA_ALIGN(len);
686
687 return true;
688 }
689
690 bool nl_attr_put8(struct nlmsghdr *n, unsigned int maxlen, int type,
691 uint8_t data)
692 {
693 return nl_attr_put(n, maxlen, type, &data, sizeof(uint8_t));
694 }
695
696 bool nl_attr_put16(struct nlmsghdr *n, unsigned int maxlen, int type,
697 uint16_t data)
698 {
699 return nl_attr_put(n, maxlen, type, &data, sizeof(uint16_t));
700 }
701
702 bool nl_attr_put32(struct nlmsghdr *n, unsigned int maxlen, int type,
703 uint32_t data)
704 {
705 return nl_attr_put(n, maxlen, type, &data, sizeof(uint32_t));
706 }
707
708 struct rtattr *nl_attr_nest(struct nlmsghdr *n, unsigned int maxlen, int type)
709 {
710 struct rtattr *nest = NLMSG_TAIL(n);
711
712 if (!nl_attr_put(n, maxlen, type, NULL, 0))
713 return NULL;
714
715 nest->rta_type |= NLA_F_NESTED;
716 return nest;
717 }
718
719 int nl_attr_nest_end(struct nlmsghdr *n, struct rtattr *nest)
720 {
721 nest->rta_len = (uint8_t *)NLMSG_TAIL(n) - (uint8_t *)nest;
722 return n->nlmsg_len;
723 }
724
725 struct rtnexthop *nl_attr_rtnh(struct nlmsghdr *n, unsigned int maxlen)
726 {
727 struct rtnexthop *rtnh = (struct rtnexthop *)NLMSG_TAIL(n);
728
729 if (NLMSG_ALIGN(n->nlmsg_len) + RTNH_ALIGN(sizeof(struct rtnexthop))
730 > maxlen)
731 return NULL;
732
733 memset(rtnh, 0, sizeof(struct rtnexthop));
734 n->nlmsg_len =
735 NLMSG_ALIGN(n->nlmsg_len) + RTA_ALIGN(sizeof(struct rtnexthop));
736
737 return rtnh;
738 }
739
740 void nl_attr_rtnh_end(struct nlmsghdr *n, struct rtnexthop *rtnh)
741 {
742 rtnh->rtnh_len = (uint8_t *)NLMSG_TAIL(n) - (uint8_t *)rtnh;
743 }
744
745 bool nl_rta_put(struct rtattr *rta, unsigned int maxlen, int type,
746 const void *data, int alen)
747 {
748 struct rtattr *subrta;
749 int len = RTA_LENGTH(alen);
750
751 if (RTA_ALIGN(rta->rta_len) + RTA_ALIGN(len) > maxlen) {
752 zlog_err("ERROR max allowed bound %d exceeded for rtattr",
753 maxlen);
754 return false;
755 }
756 subrta = (struct rtattr *)(((char *)rta) + RTA_ALIGN(rta->rta_len));
757 subrta->rta_type = type;
758 subrta->rta_len = len;
759 if (alen)
760 memcpy(RTA_DATA(subrta), data, alen);
761 rta->rta_len = NLMSG_ALIGN(rta->rta_len) + RTA_ALIGN(len);
762
763 return true;
764 }
765
766 bool nl_rta_put16(struct rtattr *rta, unsigned int maxlen, int type,
767 uint16_t data)
768 {
769 return nl_rta_put(rta, maxlen, type, &data, sizeof(uint16_t));
770 }
771
772 bool nl_rta_put64(struct rtattr *rta, unsigned int maxlen, int type,
773 uint64_t data)
774 {
775 return nl_rta_put(rta, maxlen, type, &data, sizeof(uint64_t));
776 }
777
778 struct rtattr *nl_rta_nest(struct rtattr *rta, unsigned int maxlen, int type)
779 {
780 struct rtattr *nest = RTA_TAIL(rta);
781
782 if (nl_rta_put(rta, maxlen, type, NULL, 0))
783 return NULL;
784
785 nest->rta_type |= NLA_F_NESTED;
786
787 return nest;
788 }
789
790 int nl_rta_nest_end(struct rtattr *rta, struct rtattr *nest)
791 {
792 nest->rta_len = (uint8_t *)RTA_TAIL(rta) - (uint8_t *)nest;
793
794 return rta->rta_len;
795 }
796
797 const char *nl_msg_type_to_str(uint16_t msg_type)
798 {
799 return lookup_msg(nlmsg_str, msg_type, "");
800 }
801
802 const char *nl_rtproto_to_str(uint8_t rtproto)
803 {
804 return lookup_msg(rtproto_str, rtproto, "");
805 }
806
807 const char *nl_family_to_str(uint8_t family)
808 {
809 return lookup_msg(family_str, family, "");
810 }
811
812 const char *nl_rttype_to_str(uint8_t rttype)
813 {
814 return lookup_msg(rttype_str, rttype, "");
815 }
816
817 #define NLA_OK(nla, len) \
818 ((len) >= (int)sizeof(struct nlattr) \
819 && (nla)->nla_len >= sizeof(struct nlattr) \
820 && (nla)->nla_len <= (len))
821 #define NLA_NEXT(nla, attrlen) \
822 ((attrlen) -= NLA_ALIGN((nla)->nla_len), \
823 (struct nlattr *)(((char *)(nla)) + NLA_ALIGN((nla)->nla_len)))
824 #define NLA_LENGTH(len) (NLA_ALIGN(sizeof(struct nlattr)) + (len))
825 #define NLA_DATA(nla) ((struct nlattr *)(((char *)(nla)) + NLA_LENGTH(0)))
826
827 #define ERR_NLA(err, inner_len) \
828 ((struct nlattr *)(((char *)(err)) \
829 + NLMSG_ALIGN(sizeof(struct nlmsgerr)) \
830 + NLMSG_ALIGN((inner_len))))
831
832 static void netlink_parse_nlattr(struct nlattr **tb, int max,
833 struct nlattr *nla, int len)
834 {
835 while (NLA_OK(nla, len)) {
836 if (nla->nla_type <= max)
837 tb[nla->nla_type] = nla;
838 nla = NLA_NEXT(nla, len);
839 }
840 }
841
842 static void netlink_parse_extended_ack(struct nlmsghdr *h)
843 {
844 struct nlattr *tb[NLMSGERR_ATTR_MAX + 1] = {};
845 const struct nlmsgerr *err = (const struct nlmsgerr *)NLMSG_DATA(h);
846 const struct nlmsghdr *err_nlh = NULL;
847 /* Length not including nlmsghdr */
848 uint32_t len = 0;
849 /* Inner error netlink message length */
850 uint32_t inner_len = 0;
851 const char *msg = NULL;
852 uint32_t off = 0;
853
854 if (!(h->nlmsg_flags & NLM_F_CAPPED))
855 inner_len = (uint32_t)NLMSG_PAYLOAD(&err->msg, 0);
856
857 len = (uint32_t)(NLMSG_PAYLOAD(h, sizeof(struct nlmsgerr)) - inner_len);
858
859 netlink_parse_nlattr(tb, NLMSGERR_ATTR_MAX, ERR_NLA(err, inner_len),
860 len);
861
862 if (tb[NLMSGERR_ATTR_MSG])
863 msg = (const char *)NLA_DATA(tb[NLMSGERR_ATTR_MSG]);
864
865 if (tb[NLMSGERR_ATTR_OFFS]) {
866 off = *(uint32_t *)NLA_DATA(tb[NLMSGERR_ATTR_OFFS]);
867
868 if (off > h->nlmsg_len) {
869 zlog_err("Invalid offset for NLMSGERR_ATTR_OFFS");
870 } else if (!(h->nlmsg_flags & NLM_F_CAPPED)) {
871 /*
872 * Header of failed message
873 * we are not doing anything currently with it
874 * but noticing it for later.
875 */
876 err_nlh = &err->msg;
877 zlog_debug("%s: Received %s extended Ack", __func__,
878 nl_msg_type_to_str(err_nlh->nlmsg_type));
879 }
880 }
881
882 if (msg && *msg != '\0') {
883 bool is_err = !!err->error;
884
885 if (is_err)
886 zlog_err("Extended Error: %s", msg);
887 else
888 flog_warn(EC_ZEBRA_NETLINK_EXTENDED_WARNING,
889 "Extended Warning: %s", msg);
890 }
891 }
892
893 /*
894 * netlink_send_msg - send a netlink message of a certain size.
895 *
896 * Returns -1 on error. Otherwise, it returns the number of bytes sent.
897 */
898 static ssize_t netlink_send_msg(const struct nlsock *nl, void *buf,
899 size_t buflen)
900 {
901 struct sockaddr_nl snl = {};
902 struct iovec iov = {};
903 struct msghdr msg = {};
904 ssize_t status;
905 int save_errno = 0;
906
907 iov.iov_base = buf;
908 iov.iov_len = buflen;
909 msg.msg_name = &snl;
910 msg.msg_namelen = sizeof(snl);
911 msg.msg_iov = &iov;
912 msg.msg_iovlen = 1;
913
914 snl.nl_family = AF_NETLINK;
915
916 /* Send message to netlink interface. */
917 frr_with_privs(&zserv_privs) {
918 status = sendmsg(nl->sock, &msg, 0);
919 save_errno = errno;
920 }
921
922 if (IS_ZEBRA_DEBUG_KERNEL_MSGDUMP_SEND) {
923 zlog_debug("%s: >> netlink message dump [sent]", __func__);
924 #ifdef NETLINK_DEBUG
925 nl_dump(buf, buflen);
926 #else
927 zlog_hexdump(buf, buflen);
928 #endif /* NETLINK_DEBUG */
929 }
930
931 if (status == -1) {
932 flog_err_sys(EC_LIB_SOCKET, "%s error: %s", __func__,
933 safe_strerror(save_errno));
934 return -1;
935 }
936
937 return status;
938 }
939
940 /*
941 * netlink_recv_msg - receive a netlink message.
942 *
943 * Returns -1 on error, 0 if read would block or the number of bytes received.
944 */
945 static int netlink_recv_msg(struct nlsock *nl, struct msghdr *msg)
946 {
947 struct iovec iov;
948 int status;
949
950 iov.iov_base = nl->buf;
951 iov.iov_len = nl->buflen;
952 msg->msg_iov = &iov;
953 msg->msg_iovlen = 1;
954
955 do {
956 int bytes;
957
958 bytes = recv(nl->sock, NULL, 0, MSG_PEEK | MSG_TRUNC);
959
960 if (bytes >= 0 && (size_t)bytes > nl->buflen) {
961 nl->buf = XREALLOC(MTYPE_NL_BUF, nl->buf, bytes);
962 nl->buflen = bytes;
963 iov.iov_base = nl->buf;
964 iov.iov_len = nl->buflen;
965 }
966
967 status = recvmsg(nl->sock, msg, 0);
968 } while (status == -1 && errno == EINTR);
969
970 if (status == -1) {
971 if (errno == EWOULDBLOCK || errno == EAGAIN)
972 return 0;
973 flog_err(EC_ZEBRA_RECVMSG_OVERRUN, "%s recvmsg overrun: %s",
974 nl->name, safe_strerror(errno));
975 /*
976 * In this case we are screwed. There is no good way to recover
977 * zebra at this point.
978 */
979 exit(-1);
980 }
981
982 if (status == 0) {
983 flog_err_sys(EC_LIB_SOCKET, "%s EOF", nl->name);
984 return -1;
985 }
986
987 if (msg->msg_namelen != sizeof(struct sockaddr_nl)) {
988 flog_err(EC_ZEBRA_NETLINK_LENGTH_ERROR,
989 "%s sender address length error: length %d", nl->name,
990 msg->msg_namelen);
991 return -1;
992 }
993
994 if (IS_ZEBRA_DEBUG_KERNEL_MSGDUMP_RECV) {
995 zlog_debug("%s: << netlink message dump [recv]", __func__);
996 #ifdef NETLINK_DEBUG
997 nl_dump(nl->buf, status);
998 #else
999 zlog_hexdump(nl->buf, status);
1000 #endif /* NETLINK_DEBUG */
1001 }
1002
1003 return status;
1004 }
1005
1006 /*
1007 * netlink_parse_error - parse a netlink error message
1008 *
1009 * Returns 1 if this message is acknowledgement, 0 if this error should be
1010 * ignored, -1 otherwise.
1011 */
1012 static int netlink_parse_error(const struct nlsock *nl, struct nlmsghdr *h,
1013 bool is_cmd, bool startup)
1014 {
1015 struct nlmsgerr *err = (struct nlmsgerr *)NLMSG_DATA(h);
1016 int errnum = err->error;
1017 int msg_type = err->msg.nlmsg_type;
1018
1019 if (h->nlmsg_len < NLMSG_LENGTH(sizeof(struct nlmsgerr))) {
1020 flog_err(EC_ZEBRA_NETLINK_LENGTH_ERROR,
1021 "%s error: message truncated", nl->name);
1022 return -1;
1023 }
1024
1025 /*
1026 * Parse the extended information before we actually handle it. At this
1027 * point in time we do not do anything other than report the issue.
1028 */
1029 if (h->nlmsg_flags & NLM_F_ACK_TLVS)
1030 netlink_parse_extended_ack(h);
1031
1032 /* If the error field is zero, then this is an ACK. */
1033 if (err->error == 0) {
1034 if (IS_ZEBRA_DEBUG_KERNEL) {
1035 zlog_debug("%s: %s ACK: type=%s(%u), seq=%u, pid=%u",
1036 __func__, nl->name,
1037 nl_msg_type_to_str(err->msg.nlmsg_type),
1038 err->msg.nlmsg_type, err->msg.nlmsg_seq,
1039 err->msg.nlmsg_pid);
1040 }
1041
1042 return 1;
1043 }
1044
1045 /*
1046 * Deal with errors that occur because of races in link handling
1047 * or types are not supported in kernel.
1048 */
1049 if (is_cmd &&
1050 ((msg_type == RTM_DELROUTE &&
1051 (-errnum == ENODEV || -errnum == ESRCH)) ||
1052 (msg_type == RTM_NEWROUTE &&
1053 (-errnum == ENETDOWN || -errnum == EEXIST)) ||
1054 ((msg_type == RTM_NEWTUNNEL || msg_type == RTM_DELTUNNEL ||
1055 msg_type == RTM_GETTUNNEL) &&
1056 (-errnum == EOPNOTSUPP)))) {
1057 if (IS_ZEBRA_DEBUG_KERNEL)
1058 zlog_debug("%s: error: %s type=%s(%u), seq=%u, pid=%u",
1059 nl->name, safe_strerror(-errnum),
1060 nl_msg_type_to_str(msg_type), msg_type,
1061 err->msg.nlmsg_seq, err->msg.nlmsg_pid);
1062 return 0;
1063 }
1064
1065 /*
1066 * We see RTM_DELNEIGH when shutting down an interface with an IPv4
1067 * link-local. The kernel should have already deleted the neighbor so
1068 * do not log these as an error.
1069 */
1070 if (msg_type == RTM_DELNEIGH
1071 || (is_cmd && msg_type == RTM_NEWROUTE
1072 && (-errnum == ESRCH || -errnum == ENETUNREACH))) {
1073 /*
1074 * This is known to happen in some situations, don't log as
1075 * error.
1076 */
1077 if (IS_ZEBRA_DEBUG_KERNEL)
1078 zlog_debug("%s error: %s, type=%s(%u), seq=%u, pid=%u",
1079 nl->name, safe_strerror(-errnum),
1080 nl_msg_type_to_str(msg_type), msg_type,
1081 err->msg.nlmsg_seq, err->msg.nlmsg_pid);
1082 } else {
1083 if ((msg_type != RTM_GETNEXTHOP) || !startup)
1084 flog_err(EC_ZEBRA_UNEXPECTED_MESSAGE,
1085 "%s error: %s, type=%s(%u), seq=%u, pid=%u",
1086 nl->name, safe_strerror(-errnum),
1087 nl_msg_type_to_str(msg_type), msg_type,
1088 err->msg.nlmsg_seq, err->msg.nlmsg_pid);
1089 }
1090
1091 return -1;
1092 }
1093
1094 /*
1095 * netlink_parse_info
1096 *
1097 * Receive message from netlink interface and pass those information
1098 * to the given function.
1099 *
1100 * filter -> Function to call to read the results
1101 * nl -> netlink socket information
1102 * zns -> The zebra namespace data
1103 * count -> How many we should read in, 0 means as much as possible
1104 * startup -> Are we reading in under startup conditions? passed to
1105 * the filter.
1106 */
1107 int netlink_parse_info(int (*filter)(struct nlmsghdr *, ns_id_t, int),
1108 struct nlsock *nl, const struct zebra_dplane_info *zns,
1109 int count, bool startup)
1110 {
1111 int status;
1112 int ret = 0;
1113 int error;
1114 int read_in = 0;
1115
1116 while (1) {
1117 struct sockaddr_nl snl;
1118 struct msghdr msg = {.msg_name = (void *)&snl,
1119 .msg_namelen = sizeof(snl)};
1120 struct nlmsghdr *h;
1121
1122 if (count && read_in >= count)
1123 return 0;
1124
1125 status = netlink_recv_msg(nl, &msg);
1126 if (status == -1)
1127 return -1;
1128 else if (status == 0)
1129 break;
1130
1131 read_in++;
1132 for (h = (struct nlmsghdr *)nl->buf;
1133 (status >= 0 && NLMSG_OK(h, (unsigned int)status));
1134 h = NLMSG_NEXT(h, status)) {
1135 /* Finish of reading. */
1136 if (h->nlmsg_type == NLMSG_DONE)
1137 return ret;
1138
1139 /* Error handling. */
1140 if (h->nlmsg_type == NLMSG_ERROR) {
1141 int err = netlink_parse_error(
1142 nl, h, zns->is_cmd, startup);
1143
1144 if (err == 1) {
1145 if (!(h->nlmsg_flags & NLM_F_MULTI))
1146 return 0;
1147 continue;
1148 } else
1149 return err;
1150 }
1151
1152 /*
1153 * What is the right thing to do? The kernel
1154 * is telling us that the dump request was interrupted
1155 * and we more than likely are out of luck and have
1156 * missed data from the kernel. At this point in time
1157 * lets just note that this is happening.
1158 */
1159 if (h->nlmsg_flags & NLM_F_DUMP_INTR)
1160 flog_err(
1161 EC_ZEBRA_NETLINK_BAD_SEQUENCE,
1162 "netlink recvmsg: The Dump request was interrupted");
1163
1164 /* OK we got netlink message. */
1165 if (IS_ZEBRA_DEBUG_KERNEL)
1166 zlog_debug(
1167 "%s: %s type %s(%u), len=%d, seq=%u, pid=%u",
1168 __func__, nl->name,
1169 nl_msg_type_to_str(h->nlmsg_type),
1170 h->nlmsg_type, h->nlmsg_len,
1171 h->nlmsg_seq, h->nlmsg_pid);
1172
1173
1174 /*
1175 * Ignore messages that maybe sent from
1176 * other actors besides the kernel
1177 */
1178 if (snl.nl_pid != 0) {
1179 zlog_debug("Ignoring message from pid %u",
1180 snl.nl_pid);
1181 continue;
1182 }
1183
1184 error = (*filter)(h, zns->ns_id, startup);
1185 if (error < 0) {
1186 zlog_debug("%s filter function error",
1187 nl->name);
1188 ret = error;
1189 }
1190 }
1191
1192 /* After error care. */
1193 if (msg.msg_flags & MSG_TRUNC) {
1194 flog_err(EC_ZEBRA_NETLINK_LENGTH_ERROR,
1195 "%s error: message truncated", nl->name);
1196 continue;
1197 }
1198 if (status) {
1199 flog_err(EC_ZEBRA_NETLINK_LENGTH_ERROR,
1200 "%s error: data remnant size %d", nl->name,
1201 status);
1202 return -1;
1203 }
1204 }
1205 return ret;
1206 }
1207
1208 /*
1209 * netlink_talk_info
1210 *
1211 * sendmsg() to netlink socket then recvmsg().
1212 * Calls netlink_parse_info to parse returned data
1213 *
1214 * filter -> The filter to read final results from kernel
1215 * nlmsghdr -> The data to send to the kernel
1216 * dp_info -> The dataplane and netlink socket information
1217 * startup -> Are we reading in under startup conditions
1218 * This is passed through eventually to filter.
1219 */
1220 static int netlink_talk_info(int (*filter)(struct nlmsghdr *, ns_id_t,
1221 int startup),
1222 struct nlmsghdr *n,
1223 struct zebra_dplane_info *dp_info, bool startup)
1224 {
1225 struct nlsock *nl;
1226
1227 nl = kernel_netlink_nlsock_lookup(dp_info->sock);
1228 n->nlmsg_seq = dp_info->seq;
1229 n->nlmsg_pid = nl->snl.nl_pid;
1230
1231 if (IS_ZEBRA_DEBUG_KERNEL)
1232 zlog_debug(
1233 "netlink_talk: %s type %s(%u), len=%d seq=%u flags 0x%x",
1234 nl->name, nl_msg_type_to_str(n->nlmsg_type),
1235 n->nlmsg_type, n->nlmsg_len, n->nlmsg_seq,
1236 n->nlmsg_flags);
1237
1238 if (netlink_send_msg(nl, n, n->nlmsg_len) == -1)
1239 return -1;
1240
1241 /*
1242 * Get reply from netlink socket.
1243 * The reply should either be an acknowlegement or an error.
1244 */
1245 return netlink_parse_info(filter, nl, dp_info, 0, startup);
1246 }
1247
1248 /*
1249 * Synchronous version of netlink_talk_info. Converts args to suit the
1250 * common version, which is suitable for both sync and async use.
1251 */
1252 int netlink_talk(int (*filter)(struct nlmsghdr *, ns_id_t, int startup),
1253 struct nlmsghdr *n, struct nlsock *nl, struct zebra_ns *zns,
1254 bool startup)
1255 {
1256 struct zebra_dplane_info dp_info;
1257
1258 /* Increment sequence number before capturing snapshot of ns socket
1259 * info.
1260 */
1261 nl->seq++;
1262
1263 /* Capture info in intermediate info struct */
1264 zebra_dplane_info_from_zns(&dp_info, zns, (nl == &(zns->netlink_cmd)));
1265
1266 return netlink_talk_info(filter, n, &dp_info, startup);
1267 }
1268
1269 /* Issue request message to kernel via netlink socket. GET messages
1270 * are issued through this interface.
1271 */
1272 int netlink_request(struct nlsock *nl, void *req)
1273 {
1274 struct nlmsghdr *n = (struct nlmsghdr *)req;
1275
1276 /* Check netlink socket. */
1277 if (nl->sock < 0) {
1278 flog_err_sys(EC_LIB_SOCKET, "%s socket isn't active.",
1279 nl->name);
1280 return -1;
1281 }
1282
1283 /* Fill common fields for all requests. */
1284 n->nlmsg_pid = nl->snl.nl_pid;
1285 n->nlmsg_seq = ++nl->seq;
1286
1287 if (netlink_send_msg(nl, req, n->nlmsg_len) == -1)
1288 return -1;
1289
1290 return 0;
1291 }
1292
1293 static int nl_batch_read_resp(struct nl_batch *bth)
1294 {
1295 struct nlmsghdr *h;
1296 struct sockaddr_nl snl;
1297 struct msghdr msg = {};
1298 int status, seq;
1299 struct nlsock *nl;
1300 struct zebra_dplane_ctx *ctx;
1301 bool ignore_msg;
1302
1303 nl = kernel_netlink_nlsock_lookup(bth->zns->sock);
1304
1305 msg.msg_name = (void *)&snl;
1306 msg.msg_namelen = sizeof(snl);
1307
1308 /*
1309 * The responses are not batched, so we need to read and process one
1310 * message at a time.
1311 */
1312 while (true) {
1313 status = netlink_recv_msg(nl, &msg);
1314 /*
1315 * status == -1 is a full on failure somewhere
1316 * since we don't know where the problem happened
1317 * we must mark all as failed
1318 *
1319 * Else we mark everything as worked
1320 *
1321 */
1322 if (status == -1 || status == 0) {
1323 while ((ctx = dplane_ctx_dequeue(&(bth->ctx_list))) !=
1324 NULL) {
1325 if (status == -1)
1326 dplane_ctx_set_status(
1327 ctx,
1328 ZEBRA_DPLANE_REQUEST_FAILURE);
1329 dplane_ctx_enqueue_tail(bth->ctx_out_q, ctx);
1330 }
1331 return status;
1332 }
1333
1334 h = (struct nlmsghdr *)nl->buf;
1335 ignore_msg = false;
1336 seq = h->nlmsg_seq;
1337 /*
1338 * Find the corresponding context object. Received responses are
1339 * in the same order as requests we sent, so we can simply
1340 * iterate over the context list and match responses with
1341 * requests at same time.
1342 */
1343 while (true) {
1344 ctx = dplane_ctx_get_head(&(bth->ctx_list));
1345 if (ctx == NULL) {
1346 /*
1347 * This is a situation where we have gotten
1348 * into a bad spot. We need to know that
1349 * this happens( does it? )
1350 */
1351 zlog_err(
1352 "%s:WARNING Received netlink Response for an error and no Contexts to associate with it",
1353 __func__);
1354 break;
1355 }
1356
1357 /*
1358 * 'update' context objects take two consecutive
1359 * sequence numbers.
1360 */
1361 if (dplane_ctx_is_update(ctx) &&
1362 dplane_ctx_get_ns(ctx)->seq + 1 == seq) {
1363 /*
1364 * This is the situation where we get a response
1365 * to a message that should be ignored.
1366 */
1367 ignore_msg = true;
1368 break;
1369 }
1370
1371 ctx = dplane_ctx_dequeue(&(bth->ctx_list));
1372 dplane_ctx_enqueue_tail(bth->ctx_out_q, ctx);
1373
1374 /* We have found corresponding context object. */
1375 if (dplane_ctx_get_ns(ctx)->seq == seq)
1376 break;
1377
1378 if (dplane_ctx_get_ns(ctx)->seq > seq)
1379 zlog_warn(
1380 "%s:WARNING Received %u is less than any context on the queue ctx->seq %u",
1381 __func__, seq,
1382 dplane_ctx_get_ns(ctx)->seq);
1383 }
1384
1385 if (ignore_msg) {
1386 /*
1387 * If we ignore the message due to an update
1388 * above we should still fricking decode the
1389 * message for our operator to understand
1390 * what is going on
1391 */
1392 int err = netlink_parse_error(nl, h, bth->zns->is_cmd,
1393 false);
1394
1395 zlog_debug("%s: netlink error message seq=%d %d",
1396 __func__, h->nlmsg_seq, err);
1397 continue;
1398 }
1399
1400 /*
1401 * We received a message with the sequence number that isn't
1402 * associated with any dplane context object.
1403 */
1404 if (ctx == NULL) {
1405 if (IS_ZEBRA_DEBUG_KERNEL)
1406 zlog_debug(
1407 "%s: skipping unassociated response, seq number %d NS %u",
1408 __func__, h->nlmsg_seq,
1409 bth->zns->ns_id);
1410 continue;
1411 }
1412
1413 if (h->nlmsg_type == NLMSG_ERROR) {
1414 int err = netlink_parse_error(nl, h, bth->zns->is_cmd,
1415 false);
1416
1417 if (err == -1)
1418 dplane_ctx_set_status(
1419 ctx, ZEBRA_DPLANE_REQUEST_FAILURE);
1420
1421 if (IS_ZEBRA_DEBUG_KERNEL)
1422 zlog_debug("%s: netlink error message seq=%d ",
1423 __func__, h->nlmsg_seq);
1424 continue;
1425 }
1426
1427 /*
1428 * If we get here then we did not receive neither the ack nor
1429 * the error and instead received some other message in an
1430 * unexpected way.
1431 */
1432 if (IS_ZEBRA_DEBUG_KERNEL)
1433 zlog_debug("%s: ignoring message type 0x%04x(%s) NS %u",
1434 __func__, h->nlmsg_type,
1435 nl_msg_type_to_str(h->nlmsg_type),
1436 bth->zns->ns_id);
1437 }
1438
1439 return 0;
1440 }
1441
1442 static void nl_batch_reset(struct nl_batch *bth)
1443 {
1444 bth->buf_head = bth->buf;
1445 bth->curlen = 0;
1446 bth->msgcnt = 0;
1447 bth->zns = NULL;
1448
1449 TAILQ_INIT(&(bth->ctx_list));
1450 }
1451
1452 static void nl_batch_init(struct nl_batch *bth, struct dplane_ctx_q *ctx_out_q)
1453 {
1454 /*
1455 * If the size of the buffer has changed, free and then allocate a new
1456 * one.
1457 */
1458 size_t bufsize =
1459 atomic_load_explicit(&nl_batch_bufsize, memory_order_relaxed);
1460 if (bufsize != nl_batch_tx_bufsize) {
1461 if (nl_batch_tx_buf)
1462 XFREE(MTYPE_NL_BUF, nl_batch_tx_buf);
1463
1464 nl_batch_tx_buf = XCALLOC(MTYPE_NL_BUF, bufsize);
1465 nl_batch_tx_bufsize = bufsize;
1466 }
1467
1468 bth->buf = nl_batch_tx_buf;
1469 bth->bufsiz = bufsize;
1470 bth->limit = atomic_load_explicit(&nl_batch_send_threshold,
1471 memory_order_relaxed);
1472
1473 bth->ctx_out_q = ctx_out_q;
1474
1475 nl_batch_reset(bth);
1476 }
1477
1478 static void nl_batch_send(struct nl_batch *bth)
1479 {
1480 struct zebra_dplane_ctx *ctx;
1481 bool err = false;
1482
1483 if (bth->curlen != 0 && bth->zns != NULL) {
1484 struct nlsock *nl =
1485 kernel_netlink_nlsock_lookup(bth->zns->sock);
1486
1487 if (IS_ZEBRA_DEBUG_KERNEL)
1488 zlog_debug("%s: %s, batch size=%zu, msg cnt=%zu",
1489 __func__, nl->name, bth->curlen,
1490 bth->msgcnt);
1491
1492 if (netlink_send_msg(nl, bth->buf, bth->curlen) == -1)
1493 err = true;
1494
1495 if (!err) {
1496 if (nl_batch_read_resp(bth) == -1)
1497 err = true;
1498 }
1499 }
1500
1501 /* Move remaining contexts to the outbound queue. */
1502 while (true) {
1503 ctx = dplane_ctx_dequeue(&(bth->ctx_list));
1504 if (ctx == NULL)
1505 break;
1506
1507 if (err)
1508 dplane_ctx_set_status(ctx,
1509 ZEBRA_DPLANE_REQUEST_FAILURE);
1510
1511 dplane_ctx_enqueue_tail(bth->ctx_out_q, ctx);
1512 }
1513
1514 nl_batch_reset(bth);
1515 }
1516
1517 enum netlink_msg_status netlink_batch_add_msg(
1518 struct nl_batch *bth, struct zebra_dplane_ctx *ctx,
1519 ssize_t (*msg_encoder)(struct zebra_dplane_ctx *, void *, size_t),
1520 bool ignore_res)
1521 {
1522 int seq;
1523 ssize_t size;
1524 struct nlmsghdr *msgh;
1525 struct nlsock *nl;
1526
1527 size = (*msg_encoder)(ctx, bth->buf_head, bth->bufsiz - bth->curlen);
1528
1529 /*
1530 * If there was an error while encoding the message (other than buffer
1531 * overflow) then return an error.
1532 */
1533 if (size < 0)
1534 return FRR_NETLINK_ERROR;
1535
1536 /*
1537 * If the message doesn't fit entirely in the buffer then send the batch
1538 * and retry.
1539 */
1540 if (size == 0) {
1541 nl_batch_send(bth);
1542 size = (*msg_encoder)(ctx, bth->buf_head,
1543 bth->bufsiz - bth->curlen);
1544 /*
1545 * If the message doesn't fit in the empty buffer then just
1546 * return an error.
1547 */
1548 if (size <= 0)
1549 return FRR_NETLINK_ERROR;
1550 }
1551
1552 seq = dplane_ctx_get_ns(ctx)->seq;
1553 nl = kernel_netlink_nlsock_lookup(dplane_ctx_get_ns_sock(ctx));
1554
1555 if (ignore_res)
1556 seq++;
1557
1558 msgh = (struct nlmsghdr *)bth->buf_head;
1559 msgh->nlmsg_seq = seq;
1560 msgh->nlmsg_pid = nl->snl.nl_pid;
1561
1562 bth->zns = dplane_ctx_get_ns(ctx);
1563 bth->buf_head = ((char *)bth->buf_head) + size;
1564 bth->curlen += size;
1565 bth->msgcnt++;
1566
1567 return FRR_NETLINK_QUEUED;
1568 }
1569
1570 static enum netlink_msg_status nl_put_msg(struct nl_batch *bth,
1571 struct zebra_dplane_ctx *ctx)
1572 {
1573 if (dplane_ctx_is_skip_kernel(ctx))
1574 return FRR_NETLINK_SUCCESS;
1575
1576 switch (dplane_ctx_get_op(ctx)) {
1577
1578 case DPLANE_OP_ROUTE_INSTALL:
1579 case DPLANE_OP_ROUTE_UPDATE:
1580 case DPLANE_OP_ROUTE_DELETE:
1581 return netlink_put_route_update_msg(bth, ctx);
1582
1583 case DPLANE_OP_NH_INSTALL:
1584 case DPLANE_OP_NH_UPDATE:
1585 case DPLANE_OP_NH_DELETE:
1586 return netlink_put_nexthop_update_msg(bth, ctx);
1587
1588 case DPLANE_OP_LSP_INSTALL:
1589 case DPLANE_OP_LSP_UPDATE:
1590 case DPLANE_OP_LSP_DELETE:
1591 return netlink_put_lsp_update_msg(bth, ctx);
1592
1593 case DPLANE_OP_PW_INSTALL:
1594 case DPLANE_OP_PW_UNINSTALL:
1595 return netlink_put_pw_update_msg(bth, ctx);
1596
1597 case DPLANE_OP_ADDR_INSTALL:
1598 case DPLANE_OP_ADDR_UNINSTALL:
1599 return netlink_put_address_update_msg(bth, ctx);
1600
1601 case DPLANE_OP_MAC_INSTALL:
1602 case DPLANE_OP_MAC_DELETE:
1603 return netlink_put_mac_update_msg(bth, ctx);
1604
1605 case DPLANE_OP_NEIGH_INSTALL:
1606 case DPLANE_OP_NEIGH_UPDATE:
1607 case DPLANE_OP_NEIGH_DELETE:
1608 case DPLANE_OP_VTEP_ADD:
1609 case DPLANE_OP_VTEP_DELETE:
1610 case DPLANE_OP_NEIGH_DISCOVER:
1611 case DPLANE_OP_NEIGH_IP_INSTALL:
1612 case DPLANE_OP_NEIGH_IP_DELETE:
1613 case DPLANE_OP_NEIGH_TABLE_UPDATE:
1614 return netlink_put_neigh_update_msg(bth, ctx);
1615
1616 case DPLANE_OP_RULE_ADD:
1617 case DPLANE_OP_RULE_DELETE:
1618 case DPLANE_OP_RULE_UPDATE:
1619 return netlink_put_rule_update_msg(bth, ctx);
1620
1621 case DPLANE_OP_SYS_ROUTE_ADD:
1622 case DPLANE_OP_SYS_ROUTE_DELETE:
1623 case DPLANE_OP_ROUTE_NOTIFY:
1624 case DPLANE_OP_LSP_NOTIFY:
1625 case DPLANE_OP_BR_PORT_UPDATE:
1626 return FRR_NETLINK_SUCCESS;
1627
1628 case DPLANE_OP_IPTABLE_ADD:
1629 case DPLANE_OP_IPTABLE_DELETE:
1630 case DPLANE_OP_IPSET_ADD:
1631 case DPLANE_OP_IPSET_DELETE:
1632 case DPLANE_OP_IPSET_ENTRY_ADD:
1633 case DPLANE_OP_IPSET_ENTRY_DELETE:
1634 return FRR_NETLINK_ERROR;
1635
1636 case DPLANE_OP_GRE_SET:
1637 return netlink_put_gre_set_msg(bth, ctx);
1638
1639 case DPLANE_OP_INTF_ADDR_ADD:
1640 case DPLANE_OP_INTF_ADDR_DEL:
1641 case DPLANE_OP_NONE:
1642 return FRR_NETLINK_ERROR;
1643
1644 case DPLANE_OP_INTF_NETCONFIG:
1645 return netlink_put_intf_netconfig(bth, ctx);
1646
1647 case DPLANE_OP_INTF_INSTALL:
1648 case DPLANE_OP_INTF_UPDATE:
1649 case DPLANE_OP_INTF_DELETE:
1650 return netlink_put_intf_update_msg(bth, ctx);
1651
1652 case DPLANE_OP_TC_QDISC_INSTALL:
1653 case DPLANE_OP_TC_QDISC_UNINSTALL:
1654 return netlink_put_tc_qdisc_update_msg(bth, ctx);
1655 case DPLANE_OP_TC_CLASS_ADD:
1656 case DPLANE_OP_TC_CLASS_DELETE:
1657 case DPLANE_OP_TC_CLASS_UPDATE:
1658 return netlink_put_tc_class_update_msg(bth, ctx);
1659 case DPLANE_OP_TC_FILTER_ADD:
1660 case DPLANE_OP_TC_FILTER_DELETE:
1661 case DPLANE_OP_TC_FILTER_UPDATE:
1662 return netlink_put_tc_filter_update_msg(bth, ctx);
1663 }
1664
1665 return FRR_NETLINK_ERROR;
1666 }
1667
1668 void kernel_update_multi(struct dplane_ctx_q *ctx_list)
1669 {
1670 struct nl_batch batch;
1671 struct zebra_dplane_ctx *ctx;
1672 struct dplane_ctx_q handled_list;
1673 enum netlink_msg_status res;
1674
1675 TAILQ_INIT(&handled_list);
1676 nl_batch_init(&batch, &handled_list);
1677
1678 while (true) {
1679 ctx = dplane_ctx_dequeue(ctx_list);
1680 if (ctx == NULL)
1681 break;
1682
1683 if (batch.zns != NULL
1684 && batch.zns->ns_id != dplane_ctx_get_ns(ctx)->ns_id)
1685 nl_batch_send(&batch);
1686
1687 /*
1688 * Assume all messages will succeed and then mark only the ones
1689 * that failed.
1690 */
1691 dplane_ctx_set_status(ctx, ZEBRA_DPLANE_REQUEST_SUCCESS);
1692
1693 res = nl_put_msg(&batch, ctx);
1694
1695 dplane_ctx_enqueue_tail(&(batch.ctx_list), ctx);
1696 if (res == FRR_NETLINK_ERROR)
1697 dplane_ctx_set_status(ctx,
1698 ZEBRA_DPLANE_REQUEST_FAILURE);
1699
1700 if (batch.curlen > batch.limit)
1701 nl_batch_send(&batch);
1702 }
1703
1704 nl_batch_send(&batch);
1705
1706 TAILQ_INIT(ctx_list);
1707 dplane_ctx_list_append(ctx_list, &handled_list);
1708 }
1709
1710 struct nlsock *kernel_netlink_nlsock_lookup(int sock)
1711 {
1712 struct nlsock lookup, *retval;
1713
1714 lookup.sock = sock;
1715
1716 NLSOCK_LOCK();
1717 retval = hash_lookup(nlsock_hash, &lookup);
1718 NLSOCK_UNLOCK();
1719
1720 return retval;
1721 }
1722
1723 /* Insert nlsock entry into hash */
1724 static void kernel_netlink_nlsock_insert(struct nlsock *nls)
1725 {
1726 NLSOCK_LOCK();
1727 (void)hash_get(nlsock_hash, nls, hash_alloc_intern);
1728 NLSOCK_UNLOCK();
1729 }
1730
1731 /* Remove nlsock entry from hash */
1732 static void kernel_netlink_nlsock_remove(struct nlsock *nls)
1733 {
1734 NLSOCK_LOCK();
1735 (void)hash_release(nlsock_hash, nls);
1736 NLSOCK_UNLOCK();
1737 }
1738
1739 static uint32_t kernel_netlink_nlsock_key(const void *arg)
1740 {
1741 const struct nlsock *nl = arg;
1742
1743 return nl->sock;
1744 }
1745
1746 static bool kernel_netlink_nlsock_hash_equal(const void *arg1, const void *arg2)
1747 {
1748 const struct nlsock *nl1 = arg1;
1749 const struct nlsock *nl2 = arg2;
1750
1751 if (nl1->sock == nl2->sock)
1752 return true;
1753
1754 return false;
1755 }
1756
1757 /* Exported interface function. This function simply calls
1758 netlink_socket (). */
1759 void kernel_init(struct zebra_ns *zns)
1760 {
1761 uint32_t groups, dplane_groups, ext_groups;
1762 #if defined SOL_NETLINK
1763 int one, ret;
1764 #endif
1765
1766 /*
1767 * Initialize netlink sockets
1768 *
1769 * If RTMGRP_XXX exists use that, but at some point
1770 * I think the kernel developers realized that
1771 * keeping track of all the different values would
1772 * lead to confusion, so we need to convert the
1773 * RTNLGRP_XXX to a bit position for ourself
1774 */
1775 groups = RTMGRP_LINK |
1776 RTMGRP_IPV4_ROUTE |
1777 RTMGRP_IPV4_IFADDR |
1778 RTMGRP_IPV6_ROUTE |
1779 RTMGRP_IPV6_IFADDR |
1780 RTMGRP_IPV4_MROUTE |
1781 RTMGRP_NEIGH |
1782 ((uint32_t) 1 << (RTNLGRP_IPV4_RULE - 1)) |
1783 ((uint32_t) 1 << (RTNLGRP_IPV6_RULE - 1)) |
1784 ((uint32_t) 1 << (RTNLGRP_NEXTHOP - 1)) |
1785 ((uint32_t) 1 << (RTNLGRP_TC - 1));
1786
1787 dplane_groups = (RTMGRP_LINK |
1788 RTMGRP_IPV4_IFADDR |
1789 RTMGRP_IPV6_IFADDR |
1790 ((uint32_t) 1 << (RTNLGRP_IPV4_NETCONF - 1)) |
1791 ((uint32_t) 1 << (RTNLGRP_IPV6_NETCONF - 1)) |
1792 ((uint32_t) 1 << (RTNLGRP_MPLS_NETCONF - 1)));
1793
1794 /* Use setsockopt for > 31 group */
1795 ext_groups = RTNLGRP_TUNNEL;
1796
1797 snprintf(zns->netlink.name, sizeof(zns->netlink.name),
1798 "netlink-listen (NS %u)", zns->ns_id);
1799 zns->netlink.sock = -1;
1800 if (netlink_socket(&zns->netlink, groups, &ext_groups, 1, zns->ns_id) <
1801 0) {
1802 zlog_err("Failure to create %s socket",
1803 zns->netlink.name);
1804 exit(-1);
1805 }
1806
1807 kernel_netlink_nlsock_insert(&zns->netlink);
1808
1809 snprintf(zns->netlink_cmd.name, sizeof(zns->netlink_cmd.name),
1810 "netlink-cmd (NS %u)", zns->ns_id);
1811 zns->netlink_cmd.sock = -1;
1812 if (netlink_socket(&zns->netlink_cmd, 0, 0, 0, zns->ns_id) < 0) {
1813 zlog_err("Failure to create %s socket",
1814 zns->netlink_cmd.name);
1815 exit(-1);
1816 }
1817
1818 kernel_netlink_nlsock_insert(&zns->netlink_cmd);
1819
1820 /* Outbound socket for dplane programming of the host OS. */
1821 snprintf(zns->netlink_dplane_out.name,
1822 sizeof(zns->netlink_dplane_out.name), "netlink-dp (NS %u)",
1823 zns->ns_id);
1824 zns->netlink_dplane_out.sock = -1;
1825 if (netlink_socket(&zns->netlink_dplane_out, 0, 0, 0, zns->ns_id) < 0) {
1826 zlog_err("Failure to create %s socket",
1827 zns->netlink_dplane_out.name);
1828 exit(-1);
1829 }
1830
1831 kernel_netlink_nlsock_insert(&zns->netlink_dplane_out);
1832
1833 /* Inbound socket for OS events coming to the dplane. */
1834 snprintf(zns->netlink_dplane_in.name,
1835 sizeof(zns->netlink_dplane_in.name), "netlink-dp-in (NS %u)",
1836 zns->ns_id);
1837 zns->netlink_dplane_in.sock = -1;
1838 if (netlink_socket(&zns->netlink_dplane_in, dplane_groups, 0, 0,
1839 zns->ns_id) < 0) {
1840 zlog_err("Failure to create %s socket",
1841 zns->netlink_dplane_in.name);
1842 exit(-1);
1843 }
1844
1845 kernel_netlink_nlsock_insert(&zns->netlink_dplane_in);
1846
1847 /*
1848 * SOL_NETLINK is not available on all platforms yet
1849 * apparently. It's in bits/socket.h which I am not
1850 * sure that we want to pull into our build system.
1851 */
1852 #if defined SOL_NETLINK
1853 /*
1854 * Let's tell the kernel that we want to receive extended
1855 * ACKS over our command socket(s)
1856 */
1857 one = 1;
1858 ret = setsockopt(zns->netlink_cmd.sock, SOL_NETLINK, NETLINK_EXT_ACK,
1859 &one, sizeof(one));
1860
1861 if (ret < 0)
1862 zlog_notice("Registration for extended cmd ACK failed : %d %s",
1863 errno, safe_strerror(errno));
1864
1865 one = 1;
1866 ret = setsockopt(zns->netlink_dplane_out.sock, SOL_NETLINK,
1867 NETLINK_EXT_ACK, &one, sizeof(one));
1868
1869 if (ret < 0)
1870 zlog_notice("Registration for extended dp ACK failed : %d %s",
1871 errno, safe_strerror(errno));
1872
1873 /*
1874 * Trim off the payload of the original netlink message in the
1875 * acknowledgment. This option is available since Linux 4.2, so if
1876 * setsockopt fails, ignore the error.
1877 */
1878 one = 1;
1879 ret = setsockopt(zns->netlink_dplane_out.sock, SOL_NETLINK,
1880 NETLINK_CAP_ACK, &one, sizeof(one));
1881 if (ret < 0)
1882 zlog_notice(
1883 "Registration for reduced ACK packet size failed, probably running an early kernel");
1884 #endif
1885
1886 /* Register kernel socket. */
1887 if (fcntl(zns->netlink.sock, F_SETFL, O_NONBLOCK) < 0)
1888 flog_err_sys(EC_LIB_SOCKET, "Can't set %s socket flags: %s",
1889 zns->netlink.name, safe_strerror(errno));
1890
1891 if (fcntl(zns->netlink_cmd.sock, F_SETFL, O_NONBLOCK) < 0)
1892 zlog_err("Can't set %s socket error: %s(%d)",
1893 zns->netlink_cmd.name, safe_strerror(errno), errno);
1894
1895 if (fcntl(zns->netlink_dplane_out.sock, F_SETFL, O_NONBLOCK) < 0)
1896 zlog_err("Can't set %s socket error: %s(%d)",
1897 zns->netlink_dplane_out.name, safe_strerror(errno),
1898 errno);
1899
1900 if (fcntl(zns->netlink_dplane_in.sock, F_SETFL, O_NONBLOCK) < 0)
1901 zlog_err("Can't set %s socket error: %s(%d)",
1902 zns->netlink_dplane_in.name, safe_strerror(errno),
1903 errno);
1904
1905 /* Set receive buffer size if it's set from command line */
1906 if (rcvbufsize) {
1907 netlink_recvbuf(&zns->netlink, rcvbufsize);
1908 netlink_recvbuf(&zns->netlink_cmd, rcvbufsize);
1909 netlink_recvbuf(&zns->netlink_dplane_out, rcvbufsize);
1910 netlink_recvbuf(&zns->netlink_dplane_in, rcvbufsize);
1911 }
1912
1913 /* Set filter for inbound sockets, to exclude events we've generated
1914 * ourselves.
1915 */
1916 netlink_install_filter(zns->netlink.sock, zns->netlink_cmd.snl.nl_pid,
1917 zns->netlink_dplane_out.snl.nl_pid);
1918
1919 netlink_install_filter(zns->netlink_dplane_in.sock,
1920 zns->netlink_cmd.snl.nl_pid,
1921 zns->netlink_dplane_out.snl.nl_pid);
1922
1923 zns->t_netlink = NULL;
1924
1925 thread_add_read(zrouter.master, kernel_read, zns,
1926 zns->netlink.sock, &zns->t_netlink);
1927
1928 rt_netlink_init();
1929 }
1930
1931 /* Helper to clean up an nlsock */
1932 static void kernel_nlsock_fini(struct nlsock *nls)
1933 {
1934 if (nls && nls->sock >= 0) {
1935 kernel_netlink_nlsock_remove(nls);
1936 close(nls->sock);
1937 nls->sock = -1;
1938 XFREE(MTYPE_NL_BUF, nls->buf);
1939 nls->buflen = 0;
1940 }
1941 }
1942
1943 void kernel_terminate(struct zebra_ns *zns, bool complete)
1944 {
1945 THREAD_OFF(zns->t_netlink);
1946
1947 kernel_nlsock_fini(&zns->netlink);
1948
1949 kernel_nlsock_fini(&zns->netlink_cmd);
1950
1951 kernel_nlsock_fini(&zns->netlink_dplane_in);
1952
1953 /* During zebra shutdown, we need to leave the dataplane socket
1954 * around until all work is done.
1955 */
1956 if (complete)
1957 kernel_nlsock_fini(&zns->netlink_dplane_out);
1958 }
1959
1960 /*
1961 * Global init for platform-/OS-specific things
1962 */
1963 void kernel_router_init(void)
1964 {
1965 /* Init nlsock hash and lock */
1966 pthread_mutex_init(&nlsock_mutex, NULL);
1967 nlsock_hash = hash_create_size(8, kernel_netlink_nlsock_key,
1968 kernel_netlink_nlsock_hash_equal,
1969 "Netlink Socket Hash");
1970 }
1971
1972 /*
1973 * Global deinit for platform-/OS-specific things
1974 */
1975 void kernel_router_terminate(void)
1976 {
1977 pthread_mutex_destroy(&nlsock_mutex);
1978
1979 hash_free(nlsock_hash);
1980 nlsock_hash = NULL;
1981 }
1982
1983 #endif /* HAVE_NETLINK */