]> git.proxmox.com Git - mirror_frr.git/blob - zebra/rt_netlink.c
zebra: Re-organize/expose nhg_connected
[mirror_frr.git] / zebra / rt_netlink.c
1 /* Kernel routing table updates using netlink over GNU/Linux system.
2 * Copyright (C) 1997, 98, 99 Kunihiro Ishiguro
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; see the file COPYING; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include <zebra.h>
22
23 #ifdef HAVE_NETLINK
24
25 #include <net/if_arp.h>
26 #include <linux/lwtunnel.h>
27 #include <linux/mpls_iptunnel.h>
28 #include <linux/neighbour.h>
29 #include <linux/rtnetlink.h>
30 #include <linux/nexthop.h>
31
32 /* Hack for GNU libc version 2. */
33 #ifndef MSG_TRUNC
34 #define MSG_TRUNC 0x20
35 #endif /* MSG_TRUNC */
36
37 #include "linklist.h"
38 #include "if.h"
39 #include "log.h"
40 #include "prefix.h"
41 #include "connected.h"
42 #include "table.h"
43 #include "memory.h"
44 #include "zebra_memory.h"
45 #include "rib.h"
46 #include "thread.h"
47 #include "privs.h"
48 #include "nexthop.h"
49 #include "vrf.h"
50 #include "vty.h"
51 #include "mpls.h"
52 #include "vxlan.h"
53
54 #include "zebra/zapi_msg.h"
55 #include "zebra/zebra_ns.h"
56 #include "zebra/zebra_vrf.h"
57 #include "zebra/rt.h"
58 #include "zebra/redistribute.h"
59 #include "zebra/interface.h"
60 #include "zebra/debug.h"
61 #include "zebra/rtadv.h"
62 #include "zebra/zebra_ptm.h"
63 #include "zebra/zebra_mpls.h"
64 #include "zebra/kernel_netlink.h"
65 #include "zebra/rt_netlink.h"
66 #include "zebra/zebra_nhg.h"
67 #include "zebra/zebra_mroute.h"
68 #include "zebra/zebra_vxlan.h"
69 #include "zebra/zebra_errors.h"
70
71 #ifndef AF_MPLS
72 #define AF_MPLS 28
73 #endif
74
75 static vlanid_t filter_vlan = 0;
76
77 struct gw_family_t {
78 uint16_t filler;
79 uint16_t family;
80 union g_addr gate;
81 };
82
83 char ipv4_ll_buf[16] = "169.254.0.1";
84 struct in_addr ipv4_ll;
85
86 /*
87 * The ipv4_ll data structure is used for all 5549
88 * additions to the kernel. Let's figure out the
89 * correct value one time instead for every
90 * install/remove of a 5549 type route
91 */
92 void rt_netlink_init(void)
93 {
94 inet_pton(AF_INET, ipv4_ll_buf, &ipv4_ll);
95 }
96
97 /*
98 * Mapping from dataplane neighbor flags to netlink flags
99 */
100 static uint8_t neigh_flags_to_netlink(uint8_t dplane_flags)
101 {
102 uint8_t flags = 0;
103
104 if (dplane_flags & DPLANE_NTF_EXT_LEARNED)
105 flags |= NTF_EXT_LEARNED;
106 if (dplane_flags & DPLANE_NTF_ROUTER)
107 flags |= NTF_ROUTER;
108
109 return flags;
110 }
111
112 /*
113 * Mapping from dataplane neighbor state to netlink state
114 */
115 static uint16_t neigh_state_to_netlink(uint16_t dplane_state)
116 {
117 uint16_t state = 0;
118
119 if (dplane_state & DPLANE_NUD_REACHABLE)
120 state |= NUD_REACHABLE;
121 if (dplane_state & DPLANE_NUD_STALE)
122 state |= NUD_STALE;
123 if (dplane_state & DPLANE_NUD_NOARP)
124 state |= NUD_NOARP;
125 if (dplane_state & DPLANE_NUD_PROBE)
126 state |= NUD_PROBE;
127
128 return state;
129 }
130
131
132 static inline int is_selfroute(int proto)
133 {
134 if ((proto == RTPROT_BGP) || (proto == RTPROT_OSPF)
135 || (proto == RTPROT_ZSTATIC) || (proto == RTPROT_ZEBRA)
136 || (proto == RTPROT_ISIS) || (proto == RTPROT_RIPNG)
137 || (proto == RTPROT_NHRP) || (proto == RTPROT_EIGRP)
138 || (proto == RTPROT_LDP) || (proto == RTPROT_BABEL)
139 || (proto == RTPROT_RIP) || (proto == RTPROT_SHARP)
140 || (proto == RTPROT_PBR) || (proto == RTPROT_OPENFABRIC)) {
141 return 1;
142 }
143
144 return 0;
145 }
146
147 static inline int zebra2proto(int proto)
148 {
149 switch (proto) {
150 case ZEBRA_ROUTE_BABEL:
151 proto = RTPROT_BABEL;
152 break;
153 case ZEBRA_ROUTE_BGP:
154 proto = RTPROT_BGP;
155 break;
156 case ZEBRA_ROUTE_OSPF:
157 case ZEBRA_ROUTE_OSPF6:
158 proto = RTPROT_OSPF;
159 break;
160 case ZEBRA_ROUTE_STATIC:
161 proto = RTPROT_ZSTATIC;
162 break;
163 case ZEBRA_ROUTE_ISIS:
164 proto = RTPROT_ISIS;
165 break;
166 case ZEBRA_ROUTE_RIP:
167 proto = RTPROT_RIP;
168 break;
169 case ZEBRA_ROUTE_RIPNG:
170 proto = RTPROT_RIPNG;
171 break;
172 case ZEBRA_ROUTE_NHRP:
173 proto = RTPROT_NHRP;
174 break;
175 case ZEBRA_ROUTE_EIGRP:
176 proto = RTPROT_EIGRP;
177 break;
178 case ZEBRA_ROUTE_LDP:
179 proto = RTPROT_LDP;
180 break;
181 case ZEBRA_ROUTE_SHARP:
182 proto = RTPROT_SHARP;
183 break;
184 case ZEBRA_ROUTE_PBR:
185 proto = RTPROT_PBR;
186 break;
187 case ZEBRA_ROUTE_OPENFABRIC:
188 proto = RTPROT_OPENFABRIC;
189 break;
190 case ZEBRA_ROUTE_TABLE:
191 proto = RTPROT_ZEBRA;
192 break;
193 default:
194 /*
195 * When a user adds a new protocol this will show up
196 * to let them know to do something about it. This
197 * is intentionally a warn because we should see
198 * this as part of development of a new protocol
199 */
200 zlog_debug(
201 "%s: Please add this protocol(%d) to proper rt_netlink.c handling",
202 __PRETTY_FUNCTION__, proto);
203 proto = RTPROT_ZEBRA;
204 break;
205 }
206
207 return proto;
208 }
209
210 static inline int proto2zebra(int proto, int family)
211 {
212 switch (proto) {
213 case RTPROT_BABEL:
214 proto = ZEBRA_ROUTE_BABEL;
215 break;
216 case RTPROT_BGP:
217 proto = ZEBRA_ROUTE_BGP;
218 break;
219 case RTPROT_OSPF:
220 proto = (family == AFI_IP) ? ZEBRA_ROUTE_OSPF
221 : ZEBRA_ROUTE_OSPF6;
222 break;
223 case RTPROT_ISIS:
224 proto = ZEBRA_ROUTE_ISIS;
225 break;
226 case RTPROT_RIP:
227 proto = ZEBRA_ROUTE_RIP;
228 break;
229 case RTPROT_RIPNG:
230 proto = ZEBRA_ROUTE_RIPNG;
231 break;
232 case RTPROT_NHRP:
233 proto = ZEBRA_ROUTE_NHRP;
234 break;
235 case RTPROT_EIGRP:
236 proto = ZEBRA_ROUTE_EIGRP;
237 break;
238 case RTPROT_LDP:
239 proto = ZEBRA_ROUTE_LDP;
240 break;
241 case RTPROT_STATIC:
242 case RTPROT_ZSTATIC:
243 proto = ZEBRA_ROUTE_STATIC;
244 break;
245 case RTPROT_SHARP:
246 proto = ZEBRA_ROUTE_SHARP;
247 break;
248 case RTPROT_PBR:
249 proto = ZEBRA_ROUTE_PBR;
250 break;
251 case RTPROT_OPENFABRIC:
252 proto = ZEBRA_ROUTE_OPENFABRIC;
253 break;
254 default:
255 /*
256 * When a user adds a new protocol this will show up
257 * to let them know to do something about it. This
258 * is intentionally a warn because we should see
259 * this as part of development of a new protocol
260 */
261 zlog_debug(
262 "%s: Please add this protocol(%d) to proper rt_netlink.c handling",
263 __PRETTY_FUNCTION__, proto);
264 proto = ZEBRA_ROUTE_KERNEL;
265 break;
266 }
267 return proto;
268 }
269
270 /*
271 Pending: create an efficient table_id (in a tree/hash) based lookup)
272 */
273 static vrf_id_t vrf_lookup_by_table(uint32_t table_id, ns_id_t ns_id)
274 {
275 struct vrf *vrf;
276 struct zebra_vrf *zvrf;
277
278 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id) {
279 zvrf = vrf->info;
280 if (zvrf == NULL)
281 continue;
282 /* case vrf with netns : match the netnsid */
283 if (vrf_is_backend_netns()) {
284 if (ns_id == zvrf_id(zvrf))
285 return zvrf_id(zvrf);
286 } else {
287 /* VRF is VRF_BACKEND_VRF_LITE */
288 if (zvrf->table_id != table_id)
289 continue;
290 return zvrf_id(zvrf);
291 }
292 }
293
294 return VRF_DEFAULT;
295 }
296
297 /**
298 * @parse_encap_mpls() - Parses encapsulated mpls attributes
299 * @tb: Pointer to rtattr to look for nested items in.
300 * @labels: Pointer to store labels in.
301 *
302 * Return: Number of mpls labels found.
303 */
304 static int parse_encap_mpls(struct rtattr *tb, mpls_label_t *labels)
305 {
306 struct rtattr *tb_encap[MPLS_IPTUNNEL_MAX + 1] = {0};
307 mpls_lse_t *lses = NULL;
308 int num_labels = 0;
309 uint32_t ttl = 0;
310 uint32_t bos = 0;
311 uint32_t exp = 0;
312 mpls_label_t label = 0;
313
314 netlink_parse_rtattr_nested(tb_encap, MPLS_IPTUNNEL_MAX, tb);
315 lses = (mpls_lse_t *)RTA_DATA(tb_encap[MPLS_IPTUNNEL_DST]);
316 while (!bos && num_labels < MPLS_MAX_LABELS) {
317 mpls_lse_decode(lses[num_labels], &label, &ttl, &exp, &bos);
318 labels[num_labels++] = label;
319 }
320
321 return num_labels;
322 }
323
324 static struct nexthop
325 parse_nexthop_unicast(ns_id_t ns_id, struct rtmsg *rtm, struct rtattr **tb,
326 enum blackhole_type bh_type, int index, void *prefsrc,
327 void *gate, afi_t afi, vrf_id_t vrf_id)
328 {
329 struct interface *ifp = NULL;
330 struct nexthop nh = {0};
331 mpls_label_t labels[MPLS_MAX_LABELS] = {0};
332 int num_labels = 0;
333
334 vrf_id_t nh_vrf_id = vrf_id;
335 size_t sz = (afi == AFI_IP) ? 4 : 16;
336
337 if (bh_type == BLACKHOLE_UNSPEC) {
338 if (index && !gate)
339 nh.type = NEXTHOP_TYPE_IFINDEX;
340 else if (index && gate)
341 nh.type = (afi == AFI_IP) ? NEXTHOP_TYPE_IPV4_IFINDEX
342 : NEXTHOP_TYPE_IPV6_IFINDEX;
343 else if (!index && gate)
344 nh.type = (afi == AFI_IP) ? NEXTHOP_TYPE_IPV4
345 : NEXTHOP_TYPE_IPV6;
346 else {
347 nh.type = NEXTHOP_TYPE_BLACKHOLE;
348 nh.bh_type = bh_type;
349 }
350 } else {
351 nh.type = NEXTHOP_TYPE_BLACKHOLE;
352 nh.bh_type = bh_type;
353 }
354 nh.ifindex = index;
355 if (prefsrc)
356 memcpy(&nh.src, prefsrc, sz);
357 if (gate)
358 memcpy(&nh.gate, gate, sz);
359
360 if (index) {
361 ifp = if_lookup_by_index_per_ns(zebra_ns_lookup(ns_id), index);
362 if (ifp)
363 nh_vrf_id = ifp->vrf_id;
364 }
365 nh.vrf_id = nh_vrf_id;
366
367 if (tb[RTA_ENCAP] && tb[RTA_ENCAP_TYPE]
368 && *(uint16_t *)RTA_DATA(tb[RTA_ENCAP_TYPE])
369 == LWTUNNEL_ENCAP_MPLS) {
370 num_labels = parse_encap_mpls(tb[RTA_ENCAP], labels);
371 }
372
373 if (rtm->rtm_flags & RTNH_F_ONLINK)
374 SET_FLAG(nh.flags, NEXTHOP_FLAG_ONLINK);
375
376 if (num_labels)
377 nexthop_add_labels(&nh, ZEBRA_LSP_STATIC, num_labels, labels);
378
379 return nh;
380 }
381
382 static uint8_t parse_multipath_nexthops_unicast(ns_id_t ns_id,
383 struct route_entry *re,
384 struct rtmsg *rtm,
385 struct rtnexthop *rtnh,
386 struct rtattr **tb,
387 void *prefsrc, vrf_id_t vrf_id)
388 {
389 void *gate = NULL;
390 struct interface *ifp = NULL;
391 int index = 0;
392 /* MPLS labels */
393 mpls_label_t labels[MPLS_MAX_LABELS] = {0};
394 int num_labels = 0;
395 struct rtattr *rtnh_tb[RTA_MAX + 1] = {};
396
397 int len = RTA_PAYLOAD(tb[RTA_MULTIPATH]);
398 vrf_id_t nh_vrf_id = vrf_id;
399
400 re->ng = nexthop_group_new();
401
402 for (;;) {
403 struct nexthop *nh = NULL;
404
405 if (len < (int)sizeof(*rtnh) || rtnh->rtnh_len > len)
406 break;
407
408 index = rtnh->rtnh_ifindex;
409 if (index) {
410 /*
411 * Yes we are looking this up
412 * for every nexthop and just
413 * using the last one looked
414 * up right now
415 */
416 ifp = if_lookup_by_index_per_ns(zebra_ns_lookup(ns_id),
417 index);
418 if (ifp)
419 nh_vrf_id = ifp->vrf_id;
420 else {
421 flog_warn(
422 EC_ZEBRA_UNKNOWN_INTERFACE,
423 "%s: Unknown interface %u specified, defaulting to VRF_DEFAULT",
424 __PRETTY_FUNCTION__, index);
425 nh_vrf_id = VRF_DEFAULT;
426 }
427 } else
428 nh_vrf_id = vrf_id;
429
430 if (rtnh->rtnh_len > sizeof(*rtnh)) {
431 memset(rtnh_tb, 0, sizeof(rtnh_tb));
432
433 netlink_parse_rtattr(rtnh_tb, RTA_MAX, RTNH_DATA(rtnh),
434 rtnh->rtnh_len - sizeof(*rtnh));
435 if (rtnh_tb[RTA_GATEWAY])
436 gate = RTA_DATA(rtnh_tb[RTA_GATEWAY]);
437 if (rtnh_tb[RTA_ENCAP] && rtnh_tb[RTA_ENCAP_TYPE]
438 && *(uint16_t *)RTA_DATA(rtnh_tb[RTA_ENCAP_TYPE])
439 == LWTUNNEL_ENCAP_MPLS) {
440 num_labels = parse_encap_mpls(
441 rtnh_tb[RTA_ENCAP], labels);
442 }
443 }
444
445 if (gate) {
446 if (rtm->rtm_family == AF_INET) {
447 if (index)
448 nh = route_entry_nexthop_ipv4_ifindex_add(
449 re, gate, prefsrc, index,
450 nh_vrf_id);
451 else
452 nh = route_entry_nexthop_ipv4_add(
453 re, gate, prefsrc, nh_vrf_id);
454 } else if (rtm->rtm_family == AF_INET6) {
455 if (index)
456 nh = route_entry_nexthop_ipv6_ifindex_add(
457 re, gate, index, nh_vrf_id);
458 else
459 nh = route_entry_nexthop_ipv6_add(
460 re, gate, nh_vrf_id);
461 }
462 } else
463 nh = route_entry_nexthop_ifindex_add(re, index,
464 nh_vrf_id);
465
466 if (nh) {
467 if (num_labels)
468 nexthop_add_labels(nh, ZEBRA_LSP_STATIC,
469 num_labels, labels);
470
471 if (rtnh->rtnh_flags & RTNH_F_ONLINK)
472 SET_FLAG(nh->flags, NEXTHOP_FLAG_ONLINK);
473 }
474
475 if (rtnh->rtnh_len == 0)
476 break;
477
478 len -= NLMSG_ALIGN(rtnh->rtnh_len);
479 rtnh = RTNH_NEXT(rtnh);
480 }
481
482 uint8_t nhop_num = nexthop_group_nexthop_num(re->ng);
483
484 if (!nhop_num)
485 nexthop_group_delete(&re->ng);
486
487 return nhop_num;
488 }
489
490 /* Looking up routing table by netlink interface. */
491 static int netlink_route_change_read_unicast(struct nlmsghdr *h, ns_id_t ns_id,
492 int startup)
493 {
494 int len;
495 struct rtmsg *rtm;
496 struct rtattr *tb[RTA_MAX + 1];
497 uint8_t flags = 0;
498 struct prefix p;
499 struct prefix_ipv6 src_p = {};
500 vrf_id_t vrf_id;
501
502 char anyaddr[16] = {0};
503
504 int proto = ZEBRA_ROUTE_KERNEL;
505 int index = 0;
506 int table;
507 int metric = 0;
508 uint32_t mtu = 0;
509 uint8_t distance = 0;
510 route_tag_t tag = 0;
511 uint32_t nhe_id = 0;
512
513 void *dest = NULL;
514 void *gate = NULL;
515 void *prefsrc = NULL; /* IPv4 preferred source host address */
516 void *src = NULL; /* IPv6 srcdest source prefix */
517 enum blackhole_type bh_type = BLACKHOLE_UNSPEC;
518
519 rtm = NLMSG_DATA(h);
520
521 if (startup && h->nlmsg_type != RTM_NEWROUTE)
522 return 0;
523 switch (rtm->rtm_type) {
524 case RTN_UNICAST:
525 break;
526 case RTN_BLACKHOLE:
527 bh_type = BLACKHOLE_NULL;
528 break;
529 case RTN_UNREACHABLE:
530 bh_type = BLACKHOLE_REJECT;
531 break;
532 case RTN_PROHIBIT:
533 bh_type = BLACKHOLE_ADMINPROHIB;
534 break;
535 default:
536 if (IS_ZEBRA_DEBUG_KERNEL)
537 zlog_debug("Route rtm_type: %s(%d) intentionally ignoring",
538 nl_rttype_to_str(rtm->rtm_type),
539 rtm->rtm_type);
540 return 0;
541 }
542
543 len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct rtmsg));
544 if (len < 0) {
545 zlog_err("%s: Message received from netlink is of a broken size %d %zu",
546 __PRETTY_FUNCTION__, h->nlmsg_len,
547 (size_t)NLMSG_LENGTH(sizeof(struct rtmsg)));
548 return -1;
549 }
550
551 memset(tb, 0, sizeof tb);
552 netlink_parse_rtattr(tb, RTA_MAX, RTM_RTA(rtm), len);
553
554 if (rtm->rtm_flags & RTM_F_CLONED)
555 return 0;
556 if (rtm->rtm_protocol == RTPROT_REDIRECT)
557 return 0;
558 if (rtm->rtm_protocol == RTPROT_KERNEL)
559 return 0;
560
561 if (!startup && is_selfroute(rtm->rtm_protocol)
562 && h->nlmsg_type == RTM_NEWROUTE) {
563 if (IS_ZEBRA_DEBUG_KERNEL)
564 zlog_debug("Route type: %d Received that we think we have originated, ignoring",
565 rtm->rtm_protocol);
566 return 0;
567 }
568
569 /* We don't care about change notifications for the MPLS table. */
570 /* TODO: Revisit this. */
571 if (rtm->rtm_family == AF_MPLS)
572 return 0;
573
574 /* Table corresponding to route. */
575 if (tb[RTA_TABLE])
576 table = *(int *)RTA_DATA(tb[RTA_TABLE]);
577 else
578 table = rtm->rtm_table;
579
580 /* Map to VRF */
581 vrf_id = vrf_lookup_by_table(table, ns_id);
582 if (vrf_id == VRF_DEFAULT) {
583 if (!is_zebra_valid_kernel_table(table)
584 && !is_zebra_main_routing_table(table))
585 return 0;
586 }
587
588 /* Route which inserted by Zebra. */
589 if (is_selfroute(rtm->rtm_protocol)) {
590 flags |= ZEBRA_FLAG_SELFROUTE;
591 proto = proto2zebra(rtm->rtm_protocol, rtm->rtm_family);
592 }
593 if (tb[RTA_OIF])
594 index = *(int *)RTA_DATA(tb[RTA_OIF]);
595
596 if (tb[RTA_DST])
597 dest = RTA_DATA(tb[RTA_DST]);
598 else
599 dest = anyaddr;
600
601 if (tb[RTA_SRC])
602 src = RTA_DATA(tb[RTA_SRC]);
603 else
604 src = anyaddr;
605
606 if (tb[RTA_PREFSRC])
607 prefsrc = RTA_DATA(tb[RTA_PREFSRC]);
608
609 if (tb[RTA_GATEWAY])
610 gate = RTA_DATA(tb[RTA_GATEWAY]);
611
612 if (tb[RTA_NH_ID])
613 nhe_id = *(uint32_t *)RTA_DATA(tb[RTA_NH_ID]);
614
615 if (tb[RTA_PRIORITY])
616 metric = *(int *)RTA_DATA(tb[RTA_PRIORITY]);
617
618 #if defined(SUPPORT_REALMS)
619 if (tb[RTA_FLOW])
620 tag = *(uint32_t *)RTA_DATA(tb[RTA_FLOW]);
621 #endif
622
623 if (tb[RTA_METRICS]) {
624 struct rtattr *mxrta[RTAX_MAX + 1];
625
626 memset(mxrta, 0, sizeof mxrta);
627 netlink_parse_rtattr(mxrta, RTAX_MAX, RTA_DATA(tb[RTA_METRICS]),
628 RTA_PAYLOAD(tb[RTA_METRICS]));
629
630 if (mxrta[RTAX_MTU])
631 mtu = *(uint32_t *)RTA_DATA(mxrta[RTAX_MTU]);
632 }
633
634 if (rtm->rtm_family == AF_INET) {
635 p.family = AF_INET;
636 if (rtm->rtm_dst_len > IPV4_MAX_BITLEN) {
637 zlog_err(
638 "Invalid destination prefix length: %u received from kernel route change",
639 rtm->rtm_dst_len);
640 return -1;
641 }
642 memcpy(&p.u.prefix4, dest, 4);
643 p.prefixlen = rtm->rtm_dst_len;
644
645 if (rtm->rtm_src_len != 0) {
646 char buf[PREFIX_STRLEN];
647 flog_warn(
648 EC_ZEBRA_UNSUPPORTED_V4_SRCDEST,
649 "unsupported IPv4 sourcedest route (dest %s vrf %u)",
650 prefix2str(&p, buf, sizeof(buf)), vrf_id);
651 return 0;
652 }
653
654 /* Force debug below to not display anything for source */
655 src_p.prefixlen = 0;
656 } else if (rtm->rtm_family == AF_INET6) {
657 p.family = AF_INET6;
658 if (rtm->rtm_dst_len > IPV6_MAX_BITLEN) {
659 zlog_err(
660 "Invalid destination prefix length: %u received from kernel route change",
661 rtm->rtm_dst_len);
662 return -1;
663 }
664 memcpy(&p.u.prefix6, dest, 16);
665 p.prefixlen = rtm->rtm_dst_len;
666
667 src_p.family = AF_INET6;
668 if (rtm->rtm_src_len > IPV6_MAX_BITLEN) {
669 zlog_err(
670 "Invalid source prefix length: %u received from kernel route change",
671 rtm->rtm_src_len);
672 return -1;
673 }
674 memcpy(&src_p.prefix, src, 16);
675 src_p.prefixlen = rtm->rtm_src_len;
676 }
677
678 /*
679 * For ZEBRA_ROUTE_KERNEL types:
680 *
681 * The metric/priority of the route received from the kernel
682 * is a 32 bit number. We are going to interpret the high
683 * order byte as the Admin Distance and the low order 3 bytes
684 * as the metric.
685 *
686 * This will allow us to do two things:
687 * 1) Allow the creation of kernel routes that can be
688 * overridden by zebra.
689 * 2) Allow the old behavior for 'most' kernel route types
690 * if a user enters 'ip route ...' v4 routes get a metric
691 * of 0 and v6 routes get a metric of 1024. Both of these
692 * values will end up with a admin distance of 0, which
693 * will cause them to win for the purposes of zebra.
694 */
695 if (proto == ZEBRA_ROUTE_KERNEL) {
696 distance = (metric >> 24) & 0xFF;
697 metric = (metric & 0x00FFFFFF);
698 }
699
700 if (IS_ZEBRA_DEBUG_KERNEL) {
701 char buf[PREFIX_STRLEN];
702 char buf2[PREFIX_STRLEN];
703 zlog_debug("%s %s%s%s vrf %u(%u) metric: %d Admin Distance: %d",
704 nl_msg_type_to_str(h->nlmsg_type),
705 prefix2str(&p, buf, sizeof(buf)),
706 src_p.prefixlen ? " from " : "",
707 src_p.prefixlen
708 ? prefix2str(&src_p, buf2, sizeof(buf2))
709 : "",
710 vrf_id, table, metric, distance);
711 }
712
713 afi_t afi = AFI_IP;
714 if (rtm->rtm_family == AF_INET6)
715 afi = AFI_IP6;
716
717 if (h->nlmsg_type == RTM_NEWROUTE) {
718
719 if (!tb[RTA_MULTIPATH]) {
720 struct nexthop nh = {0};
721
722 if (!nhe_id) {
723 nh = parse_nexthop_unicast(
724 ns_id, rtm, tb, bh_type, index, prefsrc,
725 gate, afi, vrf_id);
726 }
727 rib_add(afi, SAFI_UNICAST, vrf_id, proto, 0, flags, &p,
728 &src_p, &nh, nhe_id, table, metric, mtu,
729 distance, tag);
730 } else {
731 /* This is a multipath route */
732 struct route_entry *re;
733 struct rtnexthop *rtnh =
734 (struct rtnexthop *)RTA_DATA(tb[RTA_MULTIPATH]);
735
736 re = XCALLOC(MTYPE_RE, sizeof(struct route_entry));
737 re->type = proto;
738 re->distance = distance;
739 re->flags = flags;
740 re->metric = metric;
741 re->mtu = mtu;
742 re->vrf_id = vrf_id;
743 re->table = table;
744 re->uptime = monotime(NULL);
745 re->tag = tag;
746 re->nhe_id = nhe_id;
747
748 if (!nhe_id) {
749 uint8_t nhop_num =
750 parse_multipath_nexthops_unicast(
751 ns_id, re, rtm, rtnh, tb,
752 prefsrc, vrf_id);
753
754 zserv_nexthop_num_warn(
755 __func__, (const struct prefix *)&p,
756 nhop_num);
757 }
758
759 if (nhe_id || re->ng)
760 rib_add_multipath(afi, SAFI_UNICAST, &p,
761 &src_p, re);
762 else
763 XFREE(MTYPE_RE, re);
764 }
765 } else {
766 // TODO: Use nhe_id here as well
767 if (!tb[RTA_MULTIPATH]) {
768 struct nexthop nh;
769 size_t sz = (afi == AFI_IP) ? 4 : 16;
770
771 memset(&nh, 0, sizeof(nh));
772 if (bh_type == BLACKHOLE_UNSPEC) {
773 if (index && !gate)
774 nh.type = NEXTHOP_TYPE_IFINDEX;
775 else if (index && gate)
776 nh.type =
777 (afi == AFI_IP)
778 ? NEXTHOP_TYPE_IPV4_IFINDEX
779 : NEXTHOP_TYPE_IPV6_IFINDEX;
780 else if (!index && gate)
781 nh.type = (afi == AFI_IP)
782 ? NEXTHOP_TYPE_IPV4
783 : NEXTHOP_TYPE_IPV6;
784 else {
785 nh.type = NEXTHOP_TYPE_BLACKHOLE;
786 nh.bh_type = BLACKHOLE_UNSPEC;
787 }
788 } else {
789 nh.type = NEXTHOP_TYPE_BLACKHOLE;
790 nh.bh_type = bh_type;
791 }
792 nh.ifindex = index;
793 if (gate)
794 memcpy(&nh.gate, gate, sz);
795 rib_delete(afi, SAFI_UNICAST, vrf_id, proto, 0, flags,
796 &p, &src_p, &nh, table, metric, distance,
797 true);
798 } else {
799 /* XXX: need to compare the entire list of nexthops
800 * here for NLM_F_APPEND stupidity */
801 rib_delete(afi, SAFI_UNICAST, vrf_id, proto, 0, flags,
802 &p, &src_p, NULL, table, metric, distance,
803 true);
804 }
805 }
806
807 return 0;
808 }
809
810 static struct mcast_route_data *mroute = NULL;
811
812 static int netlink_route_change_read_multicast(struct nlmsghdr *h,
813 ns_id_t ns_id, int startup)
814 {
815 int len;
816 struct rtmsg *rtm;
817 struct rtattr *tb[RTA_MAX + 1];
818 struct mcast_route_data *m;
819 struct mcast_route_data mr;
820 int iif = 0;
821 int count;
822 int oif[256];
823 int oif_count = 0;
824 char sbuf[40];
825 char gbuf[40];
826 char oif_list[256] = "\0";
827 vrf_id_t vrf;
828 int table;
829
830 if (mroute)
831 m = mroute;
832 else {
833 memset(&mr, 0, sizeof(mr));
834 m = &mr;
835 }
836
837 rtm = NLMSG_DATA(h);
838
839 len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct rtmsg));
840
841 memset(tb, 0, sizeof tb);
842 netlink_parse_rtattr(tb, RTA_MAX, RTM_RTA(rtm), len);
843
844 if (tb[RTA_TABLE])
845 table = *(int *)RTA_DATA(tb[RTA_TABLE]);
846 else
847 table = rtm->rtm_table;
848
849 vrf = vrf_lookup_by_table(table, ns_id);
850
851 if (tb[RTA_IIF])
852 iif = *(int *)RTA_DATA(tb[RTA_IIF]);
853
854 if (tb[RTA_SRC])
855 m->sg.src = *(struct in_addr *)RTA_DATA(tb[RTA_SRC]);
856
857 if (tb[RTA_DST])
858 m->sg.grp = *(struct in_addr *)RTA_DATA(tb[RTA_DST]);
859
860 if (tb[RTA_EXPIRES])
861 m->lastused = *(unsigned long long *)RTA_DATA(tb[RTA_EXPIRES]);
862
863 if (tb[RTA_MULTIPATH]) {
864 struct rtnexthop *rtnh =
865 (struct rtnexthop *)RTA_DATA(tb[RTA_MULTIPATH]);
866
867 len = RTA_PAYLOAD(tb[RTA_MULTIPATH]);
868 for (;;) {
869 if (len < (int)sizeof(*rtnh) || rtnh->rtnh_len > len)
870 break;
871
872 oif[oif_count] = rtnh->rtnh_ifindex;
873 oif_count++;
874
875 if (rtnh->rtnh_len == 0)
876 break;
877
878 len -= NLMSG_ALIGN(rtnh->rtnh_len);
879 rtnh = RTNH_NEXT(rtnh);
880 }
881 }
882
883 if (IS_ZEBRA_DEBUG_KERNEL) {
884 struct interface *ifp = NULL;
885 struct zebra_vrf *zvrf = NULL;
886
887 strlcpy(sbuf, inet_ntoa(m->sg.src), sizeof(sbuf));
888 strlcpy(gbuf, inet_ntoa(m->sg.grp), sizeof(gbuf));
889 for (count = 0; count < oif_count; count++) {
890 ifp = if_lookup_by_index(oif[count], vrf);
891 char temp[256];
892
893 sprintf(temp, "%s(%d) ", ifp ? ifp->name : "Unknown",
894 oif[count]);
895 strlcat(oif_list, temp, sizeof(oif_list));
896 }
897 zvrf = zebra_vrf_lookup_by_id(vrf);
898 ifp = if_lookup_by_index(iif, vrf);
899 zlog_debug(
900 "MCAST VRF: %s(%d) %s (%s,%s) IIF: %s(%d) OIF: %s jiffies: %lld",
901 (zvrf ? zvrf->vrf->name : "Unknown"), vrf,
902 nl_msg_type_to_str(h->nlmsg_type), sbuf, gbuf,
903 ifp ? ifp->name : "Unknown", iif, oif_list,
904 m->lastused);
905 }
906 return 0;
907 }
908
909 int netlink_route_change(struct nlmsghdr *h, ns_id_t ns_id, int startup)
910 {
911 int len;
912 struct rtmsg *rtm;
913
914 rtm = NLMSG_DATA(h);
915
916 if (!(h->nlmsg_type == RTM_NEWROUTE || h->nlmsg_type == RTM_DELROUTE)) {
917 /* If this is not route add/delete message print warning. */
918 zlog_debug("Kernel message: %s NS %u",
919 nl_msg_type_to_str(h->nlmsg_type), ns_id);
920 return 0;
921 }
922
923 if (!(rtm->rtm_family == AF_INET ||
924 rtm->rtm_family == AF_INET6 ||
925 rtm->rtm_family == RTNL_FAMILY_IPMR )) {
926 flog_warn(
927 EC_ZEBRA_UNKNOWN_FAMILY,
928 "Invalid address family: %u received from kernel route change: %s",
929 rtm->rtm_family, nl_msg_type_to_str(h->nlmsg_type));
930 return 0;
931 }
932
933 /* Connected route. */
934 if (IS_ZEBRA_DEBUG_KERNEL)
935 zlog_debug("%s %s %s proto %s NS %u",
936 nl_msg_type_to_str(h->nlmsg_type),
937 nl_family_to_str(rtm->rtm_family),
938 nl_rttype_to_str(rtm->rtm_type),
939 nl_rtproto_to_str(rtm->rtm_protocol), ns_id);
940
941
942 len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct rtmsg));
943 if (len < 0) {
944 zlog_err("%s: Message received from netlink is of a broken size: %d %zu",
945 __PRETTY_FUNCTION__,
946 h->nlmsg_len,
947 (size_t)NLMSG_LENGTH(sizeof(struct rtmsg)));
948 return -1;
949 }
950
951 if (rtm->rtm_type == RTN_MULTICAST)
952 netlink_route_change_read_multicast(h, ns_id, startup);
953 else
954 netlink_route_change_read_unicast(h, ns_id, startup);
955 return 0;
956 }
957
958 /* Request for specific route information from the kernel */
959 static int netlink_request_route(struct zebra_ns *zns, int family, int type)
960 {
961 struct {
962 struct nlmsghdr n;
963 struct rtmsg rtm;
964 } req;
965
966 /* Form the request, specifying filter (rtattr) if needed. */
967 memset(&req, 0, sizeof(req));
968 req.n.nlmsg_type = type;
969 req.n.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST;
970 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct rtmsg));
971 req.rtm.rtm_family = family;
972
973 return netlink_request(&zns->netlink_cmd, &req.n);
974 }
975
976 /* Routing table read function using netlink interface. Only called
977 bootstrap time. */
978 int netlink_route_read(struct zebra_ns *zns)
979 {
980 int ret;
981 struct zebra_dplane_info dp_info;
982
983 zebra_dplane_info_from_zns(&dp_info, zns, true /*is_cmd*/);
984
985 /* Get IPv4 routing table. */
986 ret = netlink_request_route(zns, AF_INET, RTM_GETROUTE);
987 if (ret < 0)
988 return ret;
989 ret = netlink_parse_info(netlink_route_change_read_unicast,
990 &zns->netlink_cmd, &dp_info, 0, 1);
991 if (ret < 0)
992 return ret;
993
994 /* Get IPv6 routing table. */
995 ret = netlink_request_route(zns, AF_INET6, RTM_GETROUTE);
996 if (ret < 0)
997 return ret;
998 ret = netlink_parse_info(netlink_route_change_read_unicast,
999 &zns->netlink_cmd, &dp_info, 0, 1);
1000 if (ret < 0)
1001 return ret;
1002
1003 return 0;
1004 }
1005
1006 static void _netlink_route_nl_add_gateway_info(uint8_t route_family,
1007 uint8_t gw_family,
1008 struct nlmsghdr *nlmsg,
1009 size_t req_size, int bytelen,
1010 const struct nexthop *nexthop)
1011 {
1012 if (route_family == AF_MPLS) {
1013 struct gw_family_t gw_fam;
1014
1015 gw_fam.family = gw_family;
1016 if (gw_family == AF_INET)
1017 memcpy(&gw_fam.gate.ipv4, &nexthop->gate.ipv4, bytelen);
1018 else
1019 memcpy(&gw_fam.gate.ipv6, &nexthop->gate.ipv6, bytelen);
1020 addattr_l(nlmsg, req_size, RTA_VIA, &gw_fam.family,
1021 bytelen + 2);
1022 } else {
1023 if (gw_family == AF_INET)
1024 addattr_l(nlmsg, req_size, RTA_GATEWAY,
1025 &nexthop->gate.ipv4, bytelen);
1026 else
1027 addattr_l(nlmsg, req_size, RTA_GATEWAY,
1028 &nexthop->gate.ipv6, bytelen);
1029 }
1030 }
1031
1032 static void _netlink_route_rta_add_gateway_info(uint8_t route_family,
1033 uint8_t gw_family,
1034 struct rtattr *rta,
1035 struct rtnexthop *rtnh,
1036 size_t req_size, int bytelen,
1037 const struct nexthop *nexthop)
1038 {
1039 if (route_family == AF_MPLS) {
1040 struct gw_family_t gw_fam;
1041
1042 gw_fam.family = gw_family;
1043 if (gw_family == AF_INET)
1044 memcpy(&gw_fam.gate.ipv4, &nexthop->gate.ipv4, bytelen);
1045 else
1046 memcpy(&gw_fam.gate.ipv6, &nexthop->gate.ipv6, bytelen);
1047 rta_addattr_l(rta, req_size, RTA_VIA, &gw_fam.family,
1048 bytelen + 2);
1049 rtnh->rtnh_len += RTA_LENGTH(bytelen + 2);
1050 } else {
1051 if (gw_family == AF_INET)
1052 rta_addattr_l(rta, req_size, RTA_GATEWAY,
1053 &nexthop->gate.ipv4, bytelen);
1054 else
1055 rta_addattr_l(rta, req_size, RTA_GATEWAY,
1056 &nexthop->gate.ipv6, bytelen);
1057 rtnh->rtnh_len += sizeof(struct rtattr) + bytelen;
1058 }
1059 }
1060
1061 /* This function takes a nexthop as argument and adds
1062 * the appropriate netlink attributes to an existing
1063 * netlink message.
1064 *
1065 * @param routedesc: Human readable description of route type
1066 * (direct/recursive, single-/multipath)
1067 * @param bytelen: Length of addresses in bytes.
1068 * @param nexthop: Nexthop information
1069 * @param nlmsg: nlmsghdr structure to fill in.
1070 * @param req_size: The size allocated for the message.
1071 */
1072 static void _netlink_route_build_singlepath(const char *routedesc, int bytelen,
1073 const struct nexthop *nexthop,
1074 struct nlmsghdr *nlmsg,
1075 struct rtmsg *rtmsg,
1076 size_t req_size, int cmd)
1077 {
1078 struct mpls_label_stack *nh_label;
1079 mpls_lse_t out_lse[MPLS_MAX_LABELS];
1080 int num_labels = 0;
1081 char label_buf[256];
1082
1083 /*
1084 * label_buf is *only* currently used within debugging.
1085 * As such when we assign it we are guarding it inside
1086 * a debug test. If you want to change this make sure
1087 * you fix this assumption
1088 */
1089 label_buf[0] = '\0';
1090
1091 assert(nexthop);
1092 char label_buf1[20];
1093
1094 nh_label = nexthop->nh_label;
1095
1096 for (int i = 0; nh_label && i < nh_label->num_labels; i++) {
1097 if (nh_label->label[i] == MPLS_LABEL_IMPLICIT_NULL)
1098 continue;
1099
1100 if (IS_ZEBRA_DEBUG_KERNEL) {
1101 if (!num_labels)
1102 sprintf(label_buf, "label %u",
1103 nh_label->label[i]);
1104 else {
1105 sprintf(label_buf1, "/%u", nh_label->label[i]);
1106 strlcat(label_buf, label_buf1,
1107 sizeof(label_buf));
1108 }
1109 }
1110
1111 out_lse[num_labels] =
1112 mpls_lse_encode(nh_label->label[i], 0, 0, 0);
1113 num_labels++;
1114 }
1115
1116 if (num_labels) {
1117 /* Set the BoS bit */
1118 out_lse[num_labels - 1] |= htonl(1 << MPLS_LS_S_SHIFT);
1119
1120 if (rtmsg->rtm_family == AF_MPLS)
1121 addattr_l(nlmsg, req_size, RTA_NEWDST, &out_lse,
1122 num_labels * sizeof(mpls_lse_t));
1123 else {
1124 struct rtattr *nest;
1125 uint16_t encap = LWTUNNEL_ENCAP_MPLS;
1126
1127 addattr_l(nlmsg, req_size, RTA_ENCAP_TYPE, &encap,
1128 sizeof(uint16_t));
1129 nest = addattr_nest(nlmsg, req_size, RTA_ENCAP);
1130 addattr_l(nlmsg, req_size, MPLS_IPTUNNEL_DST, &out_lse,
1131 num_labels * sizeof(mpls_lse_t));
1132 addattr_nest_end(nlmsg, nest);
1133 }
1134 }
1135
1136 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK))
1137 rtmsg->rtm_flags |= RTNH_F_ONLINK;
1138
1139 if (rtmsg->rtm_family == AF_INET
1140 && (nexthop->type == NEXTHOP_TYPE_IPV6
1141 || nexthop->type == NEXTHOP_TYPE_IPV6_IFINDEX)) {
1142 rtmsg->rtm_flags |= RTNH_F_ONLINK;
1143 addattr_l(nlmsg, req_size, RTA_GATEWAY, &ipv4_ll, 4);
1144 addattr32(nlmsg, req_size, RTA_OIF, nexthop->ifindex);
1145
1146 if (nexthop->rmap_src.ipv4.s_addr && (cmd == RTM_NEWROUTE))
1147 addattr_l(nlmsg, req_size, RTA_PREFSRC,
1148 &nexthop->rmap_src.ipv4, bytelen);
1149 else if (nexthop->src.ipv4.s_addr && (cmd == RTM_NEWROUTE))
1150 addattr_l(nlmsg, req_size, RTA_PREFSRC,
1151 &nexthop->src.ipv4, bytelen);
1152
1153 if (IS_ZEBRA_DEBUG_KERNEL)
1154 zlog_debug(
1155 " 5549: _netlink_route_build_singlepath() (%s): "
1156 "nexthop via %s %s if %u(%u)",
1157 routedesc, ipv4_ll_buf, label_buf,
1158 nexthop->ifindex, nexthop->vrf_id);
1159 return;
1160 }
1161
1162 if (nexthop->type == NEXTHOP_TYPE_IPV4
1163 || nexthop->type == NEXTHOP_TYPE_IPV4_IFINDEX) {
1164 /* Send deletes to the kernel without specifying the next-hop */
1165 if (cmd != RTM_DELROUTE)
1166 _netlink_route_nl_add_gateway_info(
1167 rtmsg->rtm_family, AF_INET, nlmsg, req_size,
1168 bytelen, nexthop);
1169
1170 if (cmd == RTM_NEWROUTE) {
1171 if (nexthop->rmap_src.ipv4.s_addr)
1172 addattr_l(nlmsg, req_size, RTA_PREFSRC,
1173 &nexthop->rmap_src.ipv4, bytelen);
1174 else if (nexthop->src.ipv4.s_addr)
1175 addattr_l(nlmsg, req_size, RTA_PREFSRC,
1176 &nexthop->src.ipv4, bytelen);
1177 }
1178
1179 if (IS_ZEBRA_DEBUG_KERNEL)
1180 zlog_debug(
1181 "netlink_route_multipath() (%s): "
1182 "nexthop via %s %s if %u(%u)",
1183 routedesc, inet_ntoa(nexthop->gate.ipv4),
1184 label_buf, nexthop->ifindex, nexthop->vrf_id);
1185 }
1186
1187 if (nexthop->type == NEXTHOP_TYPE_IPV6
1188 || nexthop->type == NEXTHOP_TYPE_IPV6_IFINDEX) {
1189 _netlink_route_nl_add_gateway_info(rtmsg->rtm_family, AF_INET6,
1190 nlmsg, req_size, bytelen,
1191 nexthop);
1192
1193 if (cmd == RTM_NEWROUTE) {
1194 if (!IN6_IS_ADDR_UNSPECIFIED(&nexthop->rmap_src.ipv6))
1195 addattr_l(nlmsg, req_size, RTA_PREFSRC,
1196 &nexthop->rmap_src.ipv6, bytelen);
1197 else if (!IN6_IS_ADDR_UNSPECIFIED(&nexthop->src.ipv6))
1198 addattr_l(nlmsg, req_size, RTA_PREFSRC,
1199 &nexthop->src.ipv6, bytelen);
1200 }
1201
1202 if (IS_ZEBRA_DEBUG_KERNEL)
1203 zlog_debug(
1204 "netlink_route_multipath() (%s): "
1205 "nexthop via %s %s if %u(%u)",
1206 routedesc, inet6_ntoa(nexthop->gate.ipv6),
1207 label_buf, nexthop->ifindex, nexthop->vrf_id);
1208 }
1209
1210 /*
1211 * We have the ifindex so we should always send it
1212 * This is especially useful if we are doing route
1213 * leaking.
1214 */
1215 if (nexthop->type != NEXTHOP_TYPE_BLACKHOLE)
1216 addattr32(nlmsg, req_size, RTA_OIF, nexthop->ifindex);
1217
1218 if (nexthop->type == NEXTHOP_TYPE_IFINDEX) {
1219 if (cmd == RTM_NEWROUTE) {
1220 if (nexthop->rmap_src.ipv4.s_addr)
1221 addattr_l(nlmsg, req_size, RTA_PREFSRC,
1222 &nexthop->rmap_src.ipv4, bytelen);
1223 else if (nexthop->src.ipv4.s_addr)
1224 addattr_l(nlmsg, req_size, RTA_PREFSRC,
1225 &nexthop->src.ipv4, bytelen);
1226 }
1227
1228 if (IS_ZEBRA_DEBUG_KERNEL)
1229 zlog_debug(
1230 "netlink_route_multipath() (%s): "
1231 "nexthop via if %u(%u)",
1232 routedesc, nexthop->ifindex, nexthop->vrf_id);
1233 }
1234 }
1235
1236 /* This function takes a nexthop as argument and
1237 * appends to the given rtattr/rtnexthop pair the
1238 * representation of the nexthop. If the nexthop
1239 * defines a preferred source, the src parameter
1240 * will be modified to point to that src, otherwise
1241 * it will be kept unmodified.
1242 *
1243 * @param routedesc: Human readable description of route type
1244 * (direct/recursive, single-/multipath)
1245 * @param bytelen: Length of addresses in bytes.
1246 * @param nexthop: Nexthop information
1247 * @param rta: rtnetlink attribute structure
1248 * @param rtnh: pointer to an rtnetlink nexthop structure
1249 * @param src: pointer pointing to a location where
1250 * the prefsrc should be stored.
1251 */
1252 static void _netlink_route_build_multipath(const char *routedesc, int bytelen,
1253 const struct nexthop *nexthop,
1254 struct rtattr *rta,
1255 struct rtnexthop *rtnh,
1256 struct rtmsg *rtmsg,
1257 const union g_addr **src)
1258 {
1259 struct mpls_label_stack *nh_label;
1260 mpls_lse_t out_lse[MPLS_MAX_LABELS];
1261 int num_labels = 0;
1262 char label_buf[256];
1263
1264 rtnh->rtnh_len = sizeof(*rtnh);
1265 rtnh->rtnh_flags = 0;
1266 rtnh->rtnh_hops = 0;
1267 rta->rta_len += rtnh->rtnh_len;
1268
1269 /*
1270 * label_buf is *only* currently used within debugging.
1271 * As such when we assign it we are guarding it inside
1272 * a debug test. If you want to change this make sure
1273 * you fix this assumption
1274 */
1275 label_buf[0] = '\0';
1276
1277 assert(nexthop);
1278 char label_buf1[20];
1279
1280 nh_label = nexthop->nh_label;
1281
1282 for (int i = 0; nh_label && i < nh_label->num_labels; i++) {
1283 if (nh_label->label[i] == MPLS_LABEL_IMPLICIT_NULL)
1284 continue;
1285
1286 if (IS_ZEBRA_DEBUG_KERNEL) {
1287 if (!num_labels)
1288 sprintf(label_buf, "label %u",
1289 nh_label->label[i]);
1290 else {
1291 sprintf(label_buf1, "/%u", nh_label->label[i]);
1292 strlcat(label_buf, label_buf1,
1293 sizeof(label_buf));
1294 }
1295 }
1296
1297 out_lse[num_labels] =
1298 mpls_lse_encode(nh_label->label[i], 0, 0, 0);
1299 num_labels++;
1300 }
1301
1302 if (num_labels) {
1303 /* Set the BoS bit */
1304 out_lse[num_labels - 1] |= htonl(1 << MPLS_LS_S_SHIFT);
1305
1306 if (rtmsg->rtm_family == AF_MPLS) {
1307 rta_addattr_l(rta, NL_PKT_BUF_SIZE, RTA_NEWDST,
1308 &out_lse,
1309 num_labels * sizeof(mpls_lse_t));
1310 rtnh->rtnh_len +=
1311 RTA_LENGTH(num_labels * sizeof(mpls_lse_t));
1312 } else {
1313 struct rtattr *nest;
1314 uint16_t encap = LWTUNNEL_ENCAP_MPLS;
1315 int len = rta->rta_len;
1316
1317 rta_addattr_l(rta, NL_PKT_BUF_SIZE, RTA_ENCAP_TYPE,
1318 &encap, sizeof(uint16_t));
1319 nest = rta_nest(rta, NL_PKT_BUF_SIZE, RTA_ENCAP);
1320 rta_addattr_l(rta, NL_PKT_BUF_SIZE, MPLS_IPTUNNEL_DST,
1321 &out_lse,
1322 num_labels * sizeof(mpls_lse_t));
1323 rta_nest_end(rta, nest);
1324 rtnh->rtnh_len += rta->rta_len - len;
1325 }
1326 }
1327
1328 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK))
1329 rtnh->rtnh_flags |= RTNH_F_ONLINK;
1330
1331 if (rtmsg->rtm_family == AF_INET
1332 && (nexthop->type == NEXTHOP_TYPE_IPV6
1333 || nexthop->type == NEXTHOP_TYPE_IPV6_IFINDEX)) {
1334 bytelen = 4;
1335 rtnh->rtnh_flags |= RTNH_F_ONLINK;
1336 rta_addattr_l(rta, NL_PKT_BUF_SIZE, RTA_GATEWAY, &ipv4_ll,
1337 bytelen);
1338 rtnh->rtnh_len += sizeof(struct rtattr) + bytelen;
1339 rtnh->rtnh_ifindex = nexthop->ifindex;
1340
1341 if (nexthop->rmap_src.ipv4.s_addr)
1342 *src = &nexthop->rmap_src;
1343 else if (nexthop->src.ipv4.s_addr)
1344 *src = &nexthop->src;
1345
1346 if (IS_ZEBRA_DEBUG_KERNEL)
1347 zlog_debug(
1348 " 5549: netlink_route_build_multipath() (%s): "
1349 "nexthop via %s %s if %u",
1350 routedesc, ipv4_ll_buf, label_buf,
1351 nexthop->ifindex);
1352 return;
1353 }
1354
1355 if (nexthop->type == NEXTHOP_TYPE_IPV4
1356 || nexthop->type == NEXTHOP_TYPE_IPV4_IFINDEX) {
1357 _netlink_route_rta_add_gateway_info(rtmsg->rtm_family, AF_INET,
1358 rta, rtnh, NL_PKT_BUF_SIZE,
1359 bytelen, nexthop);
1360 if (nexthop->rmap_src.ipv4.s_addr)
1361 *src = &nexthop->rmap_src;
1362 else if (nexthop->src.ipv4.s_addr)
1363 *src = &nexthop->src;
1364
1365 if (IS_ZEBRA_DEBUG_KERNEL)
1366 zlog_debug(
1367 "netlink_route_multipath() (%s): "
1368 "nexthop via %s %s if %u",
1369 routedesc, inet_ntoa(nexthop->gate.ipv4),
1370 label_buf, nexthop->ifindex);
1371 }
1372 if (nexthop->type == NEXTHOP_TYPE_IPV6
1373 || nexthop->type == NEXTHOP_TYPE_IPV6_IFINDEX) {
1374 _netlink_route_rta_add_gateway_info(rtmsg->rtm_family, AF_INET6,
1375 rta, rtnh, NL_PKT_BUF_SIZE,
1376 bytelen, nexthop);
1377
1378 if (!IN6_IS_ADDR_UNSPECIFIED(&nexthop->rmap_src.ipv6))
1379 *src = &nexthop->rmap_src;
1380 else if (!IN6_IS_ADDR_UNSPECIFIED(&nexthop->src.ipv6))
1381 *src = &nexthop->src;
1382
1383 if (IS_ZEBRA_DEBUG_KERNEL)
1384 zlog_debug(
1385 "netlink_route_multipath() (%s): "
1386 "nexthop via %s %s if %u",
1387 routedesc, inet6_ntoa(nexthop->gate.ipv6),
1388 label_buf, nexthop->ifindex);
1389 }
1390
1391 /*
1392 * We have figured out the ifindex so we should always send it
1393 * This is especially useful if we are doing route
1394 * leaking.
1395 */
1396 if (nexthop->type != NEXTHOP_TYPE_BLACKHOLE)
1397 rtnh->rtnh_ifindex = nexthop->ifindex;
1398
1399 /* ifindex */
1400 if (nexthop->type == NEXTHOP_TYPE_IFINDEX) {
1401 if (nexthop->rmap_src.ipv4.s_addr)
1402 *src = &nexthop->rmap_src;
1403 else if (nexthop->src.ipv4.s_addr)
1404 *src = &nexthop->src;
1405
1406 if (IS_ZEBRA_DEBUG_KERNEL)
1407 zlog_debug(
1408 "netlink_route_multipath() (%s): "
1409 "nexthop via if %u",
1410 routedesc, nexthop->ifindex);
1411 }
1412 }
1413
1414 static inline void _netlink_mpls_build_singlepath(const char *routedesc,
1415 const zebra_nhlfe_t *nhlfe,
1416 struct nlmsghdr *nlmsg,
1417 struct rtmsg *rtmsg,
1418 size_t req_size, int cmd)
1419 {
1420 int bytelen;
1421 uint8_t family;
1422
1423 family = NHLFE_FAMILY(nhlfe);
1424 bytelen = (family == AF_INET ? 4 : 16);
1425 _netlink_route_build_singlepath(routedesc, bytelen, nhlfe->nexthop,
1426 nlmsg, rtmsg, req_size, cmd);
1427 }
1428
1429
1430 static inline void
1431 _netlink_mpls_build_multipath(const char *routedesc, const zebra_nhlfe_t *nhlfe,
1432 struct rtattr *rta, struct rtnexthop *rtnh,
1433 struct rtmsg *rtmsg, const union g_addr **src)
1434 {
1435 int bytelen;
1436 uint8_t family;
1437
1438 family = NHLFE_FAMILY(nhlfe);
1439 bytelen = (family == AF_INET ? 4 : 16);
1440 _netlink_route_build_multipath(routedesc, bytelen, nhlfe->nexthop, rta,
1441 rtnh, rtmsg, src);
1442 }
1443
1444
1445 /* Log debug information for netlink_route_multipath
1446 * if debug logging is enabled.
1447 *
1448 * @param cmd: Netlink command which is to be processed
1449 * @param p: Prefix for which the change is due
1450 * @param family: Address family which the change concerns
1451 * @param zvrf: The vrf we are in
1452 * @param tableid: The table we are working on
1453 */
1454 static void _netlink_route_debug(int cmd, const struct prefix *p,
1455 int family, vrf_id_t vrfid,
1456 uint32_t tableid)
1457 {
1458 if (IS_ZEBRA_DEBUG_KERNEL) {
1459 char buf[PREFIX_STRLEN];
1460 zlog_debug(
1461 "netlink_route_multipath(): %s %s vrf %u(%u)",
1462 nl_msg_type_to_str(cmd),
1463 prefix2str(p, buf, sizeof(buf)),
1464 vrfid, tableid);
1465 }
1466 }
1467
1468 static void _netlink_nexthop_debug(int cmd, uint32_t id)
1469 {
1470 if (IS_ZEBRA_DEBUG_KERNEL)
1471 zlog_debug("netlink_nexthop(): %s, id=%u",
1472 nl_msg_type_to_str(cmd), id);
1473 }
1474
1475 static void _netlink_mpls_debug(int cmd, uint32_t label, const char *routedesc)
1476 {
1477 if (IS_ZEBRA_DEBUG_KERNEL)
1478 zlog_debug("netlink_mpls_multipath() (%s): %s %u/20", routedesc,
1479 nl_msg_type_to_str(cmd), label);
1480 }
1481
1482 static int netlink_neigh_update(int cmd, int ifindex, uint32_t addr, char *lla,
1483 int llalen, ns_id_t ns_id)
1484 {
1485 uint8_t protocol = RTPROT_ZEBRA;
1486 struct {
1487 struct nlmsghdr n;
1488 struct ndmsg ndm;
1489 char buf[256];
1490 } req;
1491
1492 struct zebra_ns *zns = zebra_ns_lookup(ns_id);
1493
1494 memset(&req, 0, sizeof(req));
1495
1496 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ndmsg));
1497 req.n.nlmsg_flags = NLM_F_CREATE | NLM_F_REQUEST;
1498 req.n.nlmsg_type = cmd; // RTM_NEWNEIGH or RTM_DELNEIGH
1499 req.n.nlmsg_pid = zns->netlink_cmd.snl.nl_pid;
1500
1501 req.ndm.ndm_family = AF_INET;
1502 req.ndm.ndm_state = NUD_PERMANENT;
1503 req.ndm.ndm_ifindex = ifindex;
1504 req.ndm.ndm_type = RTN_UNICAST;
1505
1506 addattr_l(&req.n, sizeof(req),
1507 NDA_PROTOCOL, &protocol, sizeof(protocol));
1508 addattr_l(&req.n, sizeof(req), NDA_DST, &addr, 4);
1509 addattr_l(&req.n, sizeof(req), NDA_LLADDR, lla, llalen);
1510
1511 return netlink_talk(netlink_talk_filter, &req.n, &zns->netlink_cmd, zns,
1512 0);
1513 }
1514
1515 /*
1516 * Routing table change via netlink interface, using a dataplane context object
1517 */
1518 static int netlink_route_multipath(int cmd, struct zebra_dplane_ctx *ctx)
1519 {
1520 int bytelen;
1521 struct nexthop *nexthop = NULL;
1522 unsigned int nexthop_num;
1523 int family;
1524 const char *routedesc;
1525 int setsrc = 0;
1526 union g_addr src;
1527 const struct prefix *p, *src_p;
1528 uint32_t table_id;
1529
1530 struct {
1531 struct nlmsghdr n;
1532 struct rtmsg r;
1533 char buf[NL_PKT_BUF_SIZE];
1534 } req;
1535
1536 p = dplane_ctx_get_dest(ctx);
1537 src_p = dplane_ctx_get_src(ctx);
1538
1539 family = PREFIX_FAMILY(p);
1540
1541 memset(&req, 0, sizeof(req) - NL_PKT_BUF_SIZE);
1542
1543 bytelen = (family == AF_INET ? 4 : 16);
1544
1545 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct rtmsg));
1546 req.n.nlmsg_flags = NLM_F_CREATE | NLM_F_REQUEST;
1547
1548 if ((cmd == RTM_NEWROUTE) &&
1549 ((p->family == AF_INET) || v6_rr_semantics))
1550 req.n.nlmsg_flags |= NLM_F_REPLACE;
1551
1552 req.n.nlmsg_type = cmd;
1553
1554 req.n.nlmsg_pid = dplane_ctx_get_ns(ctx)->nls.snl.nl_pid;
1555
1556 req.r.rtm_family = family;
1557 req.r.rtm_dst_len = p->prefixlen;
1558 req.r.rtm_src_len = src_p ? src_p->prefixlen : 0;
1559 req.r.rtm_scope = RT_SCOPE_UNIVERSE;
1560
1561 if (cmd == RTM_DELROUTE)
1562 req.r.rtm_protocol = zebra2proto(dplane_ctx_get_old_type(ctx));
1563 else
1564 req.r.rtm_protocol = zebra2proto(dplane_ctx_get_type(ctx));
1565
1566 /*
1567 * blackhole routes are not RTN_UNICAST, they are
1568 * RTN_ BLACKHOLE|UNREACHABLE|PROHIBIT
1569 * so setting this value as a RTN_UNICAST would
1570 * cause the route lookup of just the prefix
1571 * to fail. So no need to specify this for
1572 * the RTM_DELROUTE case
1573 */
1574 if (cmd != RTM_DELROUTE)
1575 req.r.rtm_type = RTN_UNICAST;
1576
1577 addattr_l(&req.n, sizeof(req), RTA_DST, &p->u.prefix, bytelen);
1578 if (src_p)
1579 addattr_l(&req.n, sizeof(req), RTA_SRC, &src_p->u.prefix,
1580 bytelen);
1581
1582 /* Metric. */
1583 /* Hardcode the metric for all routes coming from zebra. Metric isn't
1584 * used
1585 * either by the kernel or by zebra. Its purely for calculating best
1586 * path(s)
1587 * by the routing protocol and for communicating with protocol peers.
1588 */
1589 addattr32(&req.n, sizeof(req), RTA_PRIORITY, NL_DEFAULT_ROUTE_METRIC);
1590
1591 #if defined(SUPPORT_REALMS)
1592 {
1593 route_tag_t tag;
1594
1595 if (cmd == RTM_DELROUTE)
1596 tag = dplane_ctx_get_old_tag(ctx);
1597 else
1598 tag = dplane_ctx_get_tag(ctx);
1599
1600 if (tag > 0 && tag <= 255)
1601 addattr32(&req.n, sizeof(req), RTA_FLOW, tag);
1602 }
1603 #endif
1604 /* Table corresponding to this route. */
1605 table_id = dplane_ctx_get_table(ctx);
1606 if (table_id < 256)
1607 req.r.rtm_table = table_id;
1608 else {
1609 req.r.rtm_table = RT_TABLE_UNSPEC;
1610 addattr32(&req.n, sizeof(req), RTA_TABLE, table_id);
1611 }
1612
1613 _netlink_route_debug(cmd, p, family, dplane_ctx_get_vrf(ctx), table_id);
1614
1615 /*
1616 * If we are not updating the route and we have received
1617 * a route delete, then all we need to fill in is the
1618 * prefix information to tell the kernel to schwack
1619 * it.
1620 */
1621 if (cmd == RTM_DELROUTE)
1622 goto skip;
1623
1624 if (dplane_ctx_get_mtu(ctx) || dplane_ctx_get_nh_mtu(ctx)) {
1625 char buf[NL_PKT_BUF_SIZE];
1626 struct rtattr *rta = (void *)buf;
1627 uint32_t mtu = dplane_ctx_get_mtu(ctx);
1628 uint32_t nexthop_mtu = dplane_ctx_get_nh_mtu(ctx);
1629
1630 if (!mtu || (nexthop_mtu && nexthop_mtu < mtu))
1631 mtu = nexthop_mtu;
1632 rta->rta_type = RTA_METRICS;
1633 rta->rta_len = RTA_LENGTH(0);
1634 rta_addattr_l(rta, NL_PKT_BUF_SIZE,
1635 RTAX_MTU, &mtu, sizeof(mtu));
1636 addattr_l(&req.n, NL_PKT_BUF_SIZE, RTA_METRICS, RTA_DATA(rta),
1637 RTA_PAYLOAD(rta));
1638 }
1639
1640 /* Count overall nexthops so we can decide whether to use singlepath
1641 * or multipath case.
1642 */
1643 nexthop_num = 0;
1644 for (ALL_NEXTHOPS_PTR(dplane_ctx_get_ng(ctx), nexthop)) {
1645 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE))
1646 continue;
1647 if (cmd == RTM_NEWROUTE && !NEXTHOP_IS_ACTIVE(nexthop->flags))
1648 continue;
1649
1650 nexthop_num++;
1651 }
1652
1653 /* Singlepath case. */
1654 if (nexthop_num == 1) {
1655 nexthop_num = 0;
1656 for (ALL_NEXTHOPS_PTR(dplane_ctx_get_ng(ctx), nexthop)) {
1657 /*
1658 * So we want to cover 2 types of blackhole
1659 * routes here:
1660 * 1) A normal blackhole route( ala from a static
1661 * install.
1662 * 2) A recursively resolved blackhole route
1663 */
1664 if (nexthop->type == NEXTHOP_TYPE_BLACKHOLE) {
1665 switch (nexthop->bh_type) {
1666 case BLACKHOLE_ADMINPROHIB:
1667 req.r.rtm_type = RTN_PROHIBIT;
1668 break;
1669 case BLACKHOLE_REJECT:
1670 req.r.rtm_type = RTN_UNREACHABLE;
1671 break;
1672 default:
1673 req.r.rtm_type = RTN_BLACKHOLE;
1674 break;
1675 }
1676 goto skip;
1677 }
1678 if (CHECK_FLAG(nexthop->flags,
1679 NEXTHOP_FLAG_RECURSIVE)) {
1680
1681 if (setsrc)
1682 continue;
1683
1684 if (family == AF_INET) {
1685 if (nexthop->rmap_src.ipv4.s_addr
1686 != 0) {
1687 src.ipv4 =
1688 nexthop->rmap_src.ipv4;
1689 setsrc = 1;
1690 } else if (nexthop->src.ipv4.s_addr
1691 != 0) {
1692 src.ipv4 =
1693 nexthop->src.ipv4;
1694 setsrc = 1;
1695 }
1696 } else if (family == AF_INET6) {
1697 if (!IN6_IS_ADDR_UNSPECIFIED(
1698 &nexthop->rmap_src.ipv6)) {
1699 src.ipv6 =
1700 nexthop->rmap_src.ipv6;
1701 setsrc = 1;
1702 } else if (
1703 !IN6_IS_ADDR_UNSPECIFIED(
1704 &nexthop->src.ipv6)) {
1705 src.ipv6 =
1706 nexthop->src.ipv6;
1707 setsrc = 1;
1708 }
1709 }
1710 continue;
1711 }
1712
1713 if ((cmd == RTM_NEWROUTE
1714 && NEXTHOP_IS_ACTIVE(nexthop->flags))) {
1715 routedesc = nexthop->rparent
1716 ? "recursive, single-path"
1717 : "single-path";
1718
1719 _netlink_route_build_singlepath(
1720 routedesc, bytelen, nexthop, &req.n,
1721 &req.r, sizeof(req), cmd);
1722 nexthop_num++;
1723 break;
1724 }
1725 }
1726 if (setsrc && (cmd == RTM_NEWROUTE)) {
1727 if (family == AF_INET)
1728 addattr_l(&req.n, sizeof(req), RTA_PREFSRC,
1729 &src.ipv4, bytelen);
1730 else if (family == AF_INET6)
1731 addattr_l(&req.n, sizeof(req), RTA_PREFSRC,
1732 &src.ipv6, bytelen);
1733 }
1734 } else { /* Multipath case */
1735 char buf[NL_PKT_BUF_SIZE];
1736 struct rtattr *rta = (void *)buf;
1737 struct rtnexthop *rtnh;
1738 const union g_addr *src1 = NULL;
1739
1740 rta->rta_type = RTA_MULTIPATH;
1741 rta->rta_len = RTA_LENGTH(0);
1742 rtnh = RTA_DATA(rta);
1743
1744 nexthop_num = 0;
1745 for (ALL_NEXTHOPS_PTR(dplane_ctx_get_ng(ctx), nexthop)) {
1746 if (CHECK_FLAG(nexthop->flags,
1747 NEXTHOP_FLAG_RECURSIVE)) {
1748 /* This only works for IPv4 now */
1749 if (setsrc)
1750 continue;
1751
1752 if (family == AF_INET) {
1753 if (nexthop->rmap_src.ipv4.s_addr
1754 != 0) {
1755 src.ipv4 =
1756 nexthop->rmap_src.ipv4;
1757 setsrc = 1;
1758 } else if (nexthop->src.ipv4.s_addr
1759 != 0) {
1760 src.ipv4 =
1761 nexthop->src.ipv4;
1762 setsrc = 1;
1763 }
1764 } else if (family == AF_INET6) {
1765 if (!IN6_IS_ADDR_UNSPECIFIED(
1766 &nexthop->rmap_src.ipv6)) {
1767 src.ipv6 =
1768 nexthop->rmap_src.ipv6;
1769 setsrc = 1;
1770 } else if (
1771 !IN6_IS_ADDR_UNSPECIFIED(
1772 &nexthop->src.ipv6)) {
1773 src.ipv6 =
1774 nexthop->src.ipv6;
1775 setsrc = 1;
1776 }
1777 }
1778
1779 continue;
1780 }
1781
1782 if ((cmd == RTM_NEWROUTE
1783 && NEXTHOP_IS_ACTIVE(nexthop->flags))) {
1784 routedesc = nexthop->rparent
1785 ? "recursive, multipath"
1786 : "multipath";
1787 nexthop_num++;
1788
1789 _netlink_route_build_multipath(
1790 routedesc, bytelen, nexthop, rta, rtnh,
1791 &req.r, &src1);
1792 rtnh = RTNH_NEXT(rtnh);
1793
1794 if (!setsrc && src1) {
1795 if (family == AF_INET)
1796 src.ipv4 = src1->ipv4;
1797 else if (family == AF_INET6)
1798 src.ipv6 = src1->ipv6;
1799
1800 setsrc = 1;
1801 }
1802 }
1803 }
1804 if (setsrc && (cmd == RTM_NEWROUTE)) {
1805 if (family == AF_INET)
1806 addattr_l(&req.n, sizeof(req), RTA_PREFSRC,
1807 &src.ipv4, bytelen);
1808 else if (family == AF_INET6)
1809 addattr_l(&req.n, sizeof(req), RTA_PREFSRC,
1810 &src.ipv6, bytelen);
1811 if (IS_ZEBRA_DEBUG_KERNEL)
1812 zlog_debug("Setting source");
1813 }
1814
1815 if (rta->rta_len > RTA_LENGTH(0))
1816 addattr_l(&req.n, NL_PKT_BUF_SIZE, RTA_MULTIPATH,
1817 RTA_DATA(rta), RTA_PAYLOAD(rta));
1818 }
1819
1820 /* If there is no useful nexthop then return. */
1821 if (nexthop_num == 0) {
1822 if (IS_ZEBRA_DEBUG_KERNEL)
1823 zlog_debug(
1824 "netlink_route_multipath(): No useful nexthop.");
1825 return 0;
1826 }
1827
1828 skip:
1829 /* Talk to netlink socket. */
1830 return netlink_talk_info(netlink_talk_filter, &req.n,
1831 dplane_ctx_get_ns(ctx), 0);
1832 }
1833
1834 int kernel_get_ipmr_sg_stats(struct zebra_vrf *zvrf, void *in)
1835 {
1836 uint32_t actual_table;
1837 int suc = 0;
1838 struct mcast_route_data *mr = (struct mcast_route_data *)in;
1839 struct {
1840 struct nlmsghdr n;
1841 struct ndmsg ndm;
1842 char buf[256];
1843 } req;
1844
1845 mroute = mr;
1846 struct zebra_ns *zns;
1847
1848 zns = zvrf->zns;
1849 memset(&req, 0, sizeof(req));
1850
1851 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ndmsg));
1852 req.n.nlmsg_flags = NLM_F_REQUEST;
1853 req.n.nlmsg_pid = zns->netlink_cmd.snl.nl_pid;
1854
1855 req.ndm.ndm_family = RTNL_FAMILY_IPMR;
1856 req.n.nlmsg_type = RTM_GETROUTE;
1857
1858 addattr_l(&req.n, sizeof(req), RTA_IIF, &mroute->ifindex, 4);
1859 addattr_l(&req.n, sizeof(req), RTA_OIF, &mroute->ifindex, 4);
1860 addattr_l(&req.n, sizeof(req), RTA_SRC, &mroute->sg.src.s_addr, 4);
1861 addattr_l(&req.n, sizeof(req), RTA_DST, &mroute->sg.grp.s_addr, 4);
1862 /*
1863 * What?
1864 *
1865 * So during the namespace cleanup we started storing
1866 * the zvrf table_id for the default table as RT_TABLE_MAIN
1867 * which is what the normal routing table for ip routing is.
1868 * This change caused this to break our lookups of sg data
1869 * because prior to this change the zvrf->table_id was 0
1870 * and when the pim multicast kernel code saw a 0,
1871 * it was auto-translated to RT_TABLE_DEFAULT. But since
1872 * we are now passing in RT_TABLE_MAIN there is no auto-translation
1873 * and the kernel goes screw you and the delicious cookies you
1874 * are trying to give me. So now we have this little hack.
1875 */
1876 actual_table = (zvrf->table_id == RT_TABLE_MAIN) ? RT_TABLE_DEFAULT :
1877 zvrf->table_id;
1878 addattr_l(&req.n, sizeof(req), RTA_TABLE, &actual_table, 4);
1879
1880 suc = netlink_talk(netlink_route_change_read_multicast, &req.n,
1881 &zns->netlink_cmd, zns, 0);
1882
1883 mroute = NULL;
1884 return suc;
1885 }
1886
1887 /**
1888 * _netlink_nexthop_build_group() - Build a nexthop_grp struct for a nlmsg
1889 *
1890 * @n: Netlink message header struct
1891 * @req_size: Size allocated for this message
1892 * @depends_info: Array of depend_info structs
1893 * @count: How many depencies there are
1894 */
1895 static void _netlink_nexthop_build_group(struct nlmsghdr *n, size_t req_size,
1896 const struct depend_info *depends_info,
1897 const uint8_t count)
1898 {
1899 struct nexthop_grp grp[count];
1900
1901 memset(grp, 0, sizeof(grp));
1902
1903 if (count) {
1904 for (int i = 0; i < count; i++) {
1905 grp[i].id = depends_info[i].id;
1906 grp[i].weight = depends_info[i].weight;
1907 }
1908 addattr_l(n, req_size, NHA_GROUP, grp, count * sizeof(*grp));
1909 }
1910 }
1911
1912 /**
1913 * netlink_nexthop() - Nexthop change via the netlink interface
1914 *
1915 * @ctx: Dataplane ctx
1916 *
1917 * Return: Result status
1918 */
1919 static int netlink_nexthop(int cmd, struct zebra_dplane_ctx *ctx)
1920 {
1921 struct {
1922 struct nlmsghdr n;
1923 struct nhmsg nhm;
1924 char buf[NL_PKT_BUF_SIZE];
1925 } req;
1926
1927 memset(&req, 0, sizeof(req));
1928
1929 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct nhmsg));
1930 req.n.nlmsg_flags = NLM_F_CREATE | NLM_F_REQUEST;
1931 req.n.nlmsg_type = cmd;
1932 req.n.nlmsg_pid = dplane_ctx_get_ns(ctx)->nls.snl.nl_pid;
1933
1934 req.nhm.nh_family = AF_UNSPEC;
1935 // TODO: Scope?
1936
1937 uint32_t id = dplane_ctx_get_nhe_id(ctx);
1938
1939 if (!id) {
1940 flog_err(
1941 EC_ZEBRA_NHG_FIB_UPDATE,
1942 "Failed trying to update a nexthop group in the kernel that does not have an ID");
1943 return -1;
1944 }
1945
1946 addattr32(&req.n, sizeof(req), NHA_ID, id);
1947
1948 if (cmd == RTM_NEWNEXTHOP) {
1949 if (dplane_ctx_get_nhe_depends_count(ctx))
1950 _netlink_nexthop_build_group(
1951 &req.n, sizeof(req),
1952 dplane_ctx_get_nhe_depends_info(ctx),
1953 dplane_ctx_get_nhe_depends_count(ctx));
1954 else {
1955 const struct nexthop *nh =
1956 dplane_ctx_get_nhe_ng(ctx)->nexthop;
1957 afi_t afi = dplane_ctx_get_nhe_afi(ctx);
1958
1959 if (afi == AFI_IP)
1960 req.nhm.nh_family = AF_INET;
1961 else if (afi == AFI_IP6)
1962 req.nhm.nh_family = AF_INET6;
1963
1964 switch (nh->type) {
1965 case NEXTHOP_TYPE_IPV4_IFINDEX:
1966 addattr_l(&req.n, sizeof(req), NHA_GATEWAY,
1967 &nh->gate.ipv4, IPV4_MAX_BYTELEN);
1968 break;
1969 case NEXTHOP_TYPE_IPV6_IFINDEX:
1970 addattr_l(&req.n, sizeof(req), NHA_GATEWAY,
1971 &nh->gate.ipv6, IPV6_MAX_BYTELEN);
1972 break;
1973 case NEXTHOP_TYPE_BLACKHOLE:
1974 // TODO: Handle this
1975 addattr_l(&req.n, sizeof(req), NHA_BLACKHOLE,
1976 NULL, 0);
1977 break;
1978 case NEXTHOP_TYPE_IFINDEX:
1979 /* Don't need anymore info for this */
1980 break;
1981 case NEXTHOP_TYPE_IPV4:
1982 case NEXTHOP_TYPE_IPV6:
1983 flog_err(
1984 EC_ZEBRA_NHG_FIB_UPDATE,
1985 "Context received for kernel nexthop update without an interface");
1986 return -1;
1987 break;
1988 }
1989
1990 addattr32(&req.n, sizeof(req), NHA_OIF, nh->ifindex);
1991 // TODO: Handle Encap
1992 }
1993
1994 req.nhm.nh_protocol = zebra2proto(dplane_ctx_get_type(ctx));
1995
1996 } else if (cmd != RTM_DELNEXTHOP) {
1997 flog_err(
1998 EC_ZEBRA_NHG_FIB_UPDATE,
1999 "Nexthop group kernel update command (%d) does not exist",
2000 cmd);
2001 return -1;
2002 }
2003
2004 _netlink_nexthop_debug(cmd, id);
2005
2006 return netlink_talk_info(netlink_talk_filter, &req.n,
2007 dplane_ctx_get_ns(ctx), 0);
2008 }
2009
2010 /**
2011 * kernel_nexthop_update() - Update/delete a nexthop from the kernel
2012 *
2013 * @ctx: Dataplane context
2014 *
2015 * Return: Dataplane result flag
2016 */
2017 enum zebra_dplane_result kernel_nexthop_update(struct zebra_dplane_ctx *ctx)
2018 {
2019 int cmd, ret = 0;
2020
2021 switch (dplane_ctx_get_op(ctx)) {
2022 case DPLANE_OP_NH_DELETE:
2023 cmd = RTM_DELNEXTHOP;
2024 break;
2025 case DPLANE_OP_NH_INSTALL:
2026 case DPLANE_OP_NH_UPDATE:
2027 cmd = RTM_NEWNEXTHOP;
2028 break;
2029 case DPLANE_OP_ROUTE_INSTALL:
2030 case DPLANE_OP_ROUTE_UPDATE:
2031 case DPLANE_OP_ROUTE_DELETE:
2032 case DPLANE_OP_ROUTE_NOTIFY:
2033 case DPLANE_OP_LSP_INSTALL:
2034 case DPLANE_OP_LSP_UPDATE:
2035 case DPLANE_OP_LSP_DELETE:
2036 case DPLANE_OP_LSP_NOTIFY:
2037 case DPLANE_OP_PW_INSTALL:
2038 case DPLANE_OP_PW_UNINSTALL:
2039 case DPLANE_OP_SYS_ROUTE_ADD:
2040 case DPLANE_OP_SYS_ROUTE_DELETE:
2041 case DPLANE_OP_ADDR_INSTALL:
2042 case DPLANE_OP_ADDR_UNINSTALL:
2043 case DPLANE_OP_MAC_INSTALL:
2044 case DPLANE_OP_MAC_DELETE:
2045 case DPLANE_OP_NONE:
2046 flog_err(
2047 EC_ZEBRA_NHG_FIB_UPDATE,
2048 "Context received for kernel nexthop update with incorrect OP code (%u)",
2049 dplane_ctx_get_op(ctx));
2050 return ZEBRA_DPLANE_REQUEST_FAILURE;
2051 break;
2052 }
2053
2054 ret = netlink_nexthop(cmd, ctx);
2055
2056 return (ret == 0 ? ZEBRA_DPLANE_REQUEST_SUCCESS
2057 : ZEBRA_DPLANE_REQUEST_FAILURE);
2058 }
2059
2060 /*
2061 * Update or delete a prefix from the kernel,
2062 * using info from a dataplane context.
2063 */
2064 enum zebra_dplane_result kernel_route_update(struct zebra_dplane_ctx *ctx)
2065 {
2066 int cmd, ret;
2067 const struct prefix *p = dplane_ctx_get_dest(ctx);
2068 struct nexthop *nexthop;
2069
2070 if (dplane_ctx_get_op(ctx) == DPLANE_OP_ROUTE_DELETE) {
2071 cmd = RTM_DELROUTE;
2072 } else if (dplane_ctx_get_op(ctx) == DPLANE_OP_ROUTE_INSTALL) {
2073 cmd = RTM_NEWROUTE;
2074 } else if (dplane_ctx_get_op(ctx) == DPLANE_OP_ROUTE_UPDATE) {
2075
2076 if (p->family == AF_INET || v6_rr_semantics) {
2077 /* Single 'replace' operation */
2078 cmd = RTM_NEWROUTE;
2079
2080 /*
2081 * With route replace semantics in place
2082 * for v4 routes and the new route is a system
2083 * route we do not install anything.
2084 * The problem here is that the new system
2085 * route should cause us to withdraw from
2086 * the kernel the old non-system route
2087 */
2088 if (RSYSTEM_ROUTE(dplane_ctx_get_type(ctx)) &&
2089 !RSYSTEM_ROUTE(dplane_ctx_get_old_type(ctx)))
2090 (void)netlink_route_multipath(RTM_DELROUTE,
2091 ctx);
2092 } else {
2093 /*
2094 * So v6 route replace semantics are not in
2095 * the kernel at this point as I understand it.
2096 * so let's do a delete then an add.
2097 * In the future once v6 route replace semantics
2098 * are in we can figure out what to do here to
2099 * allow working with old and new kernels.
2100 *
2101 * I'm also intentionally ignoring the failure case
2102 * of the route delete. If that happens yeah we're
2103 * screwed.
2104 */
2105 if (!RSYSTEM_ROUTE(dplane_ctx_get_old_type(ctx)))
2106 (void)netlink_route_multipath(RTM_DELROUTE,
2107 ctx);
2108 cmd = RTM_NEWROUTE;
2109 }
2110
2111 } else {
2112 return ZEBRA_DPLANE_REQUEST_FAILURE;
2113 }
2114
2115 if (!RSYSTEM_ROUTE(dplane_ctx_get_type(ctx)))
2116 ret = netlink_route_multipath(cmd, ctx);
2117 else
2118 ret = 0;
2119 if ((cmd == RTM_NEWROUTE) && (ret == 0)) {
2120 /* Update installed nexthops to signal which have been
2121 * installed.
2122 */
2123 for (ALL_NEXTHOPS_PTR(dplane_ctx_get_ng(ctx), nexthop)) {
2124 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE))
2125 continue;
2126
2127 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE)) {
2128 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
2129 }
2130 }
2131 }
2132
2133 return (ret == 0 ?
2134 ZEBRA_DPLANE_REQUEST_SUCCESS : ZEBRA_DPLANE_REQUEST_FAILURE);
2135 }
2136
2137 /**
2138 * netlink_nexthop_process_nh() - Parse the gatway/if info from a new nexthop
2139 *
2140 * @tb: Netlink RTA data
2141 * @family: Address family in the nhmsg
2142 * @ifp: Interface connected - this should be NULL, we fill it in
2143 * @ns_id: Namspace id
2144 *
2145 * Return: New nexthop
2146 */
2147 static struct nexthop *netlink_nexthop_process_nh(struct rtattr **tb,
2148 unsigned char family,
2149 struct interface **ifp,
2150 ns_id_t ns_id)
2151 {
2152 struct nexthop *nh = NULL;
2153 void *gate = NULL;
2154 enum nexthop_types_t type = 0;
2155 int if_index;
2156 size_t sz;
2157
2158 if_index = *(int *)RTA_DATA(tb[NHA_OIF]);
2159
2160
2161 if (tb[NHA_GATEWAY]) {
2162 switch (family) {
2163 case AF_INET:
2164 type = NEXTHOP_TYPE_IPV4_IFINDEX;
2165 sz = 4;
2166 break;
2167 case AF_INET6:
2168 type = NEXTHOP_TYPE_IPV6_IFINDEX;
2169 sz = 16;
2170 break;
2171 default:
2172 flog_warn(
2173 EC_ZEBRA_BAD_NHG_MESSAGE,
2174 "Nexthop gateway with bad address family (%d) received from kernel",
2175 family);
2176 return NULL;
2177 }
2178 gate = RTA_DATA(tb[NHA_GATEWAY]);
2179 } else {
2180 type = NEXTHOP_TYPE_IFINDEX;
2181 }
2182
2183 /* Allocate the new nexthop */
2184 nh = nexthop_new();
2185
2186 if (type)
2187 nh->type = type;
2188
2189 if (gate)
2190 memcpy(&(nh->gate), gate, sz);
2191
2192 if (if_index)
2193 nh->ifindex = if_index;
2194
2195 *ifp = if_lookup_by_index_per_ns(zebra_ns_lookup(ns_id), nh->ifindex);
2196 if (ifp) {
2197 nh->vrf_id = (*ifp)->vrf_id;
2198 } else {
2199 flog_warn(
2200 EC_ZEBRA_UNKNOWN_INTERFACE,
2201 "%s: Unknown nexthop interface %u received, defaulting to VRF_DEFAULT",
2202 __PRETTY_FUNCTION__, nh->ifindex);
2203
2204 nh->vrf_id = VRF_DEFAULT;
2205 }
2206
2207 if (tb[NHA_ENCAP] && tb[NHA_ENCAP_TYPE]) {
2208 uint16_t encap_type = *(uint16_t *)RTA_DATA(tb[NHA_ENCAP_TYPE]);
2209 int num_labels = 0;
2210 mpls_label_t labels[MPLS_MAX_LABELS] = {0};
2211
2212 if (encap_type == LWTUNNEL_ENCAP_MPLS) {
2213 num_labels = parse_encap_mpls(tb[NHA_ENCAP], labels);
2214 }
2215
2216 if (num_labels) {
2217 nexthop_add_labels(nh, ZEBRA_LSP_STATIC, num_labels,
2218 labels);
2219 }
2220 }
2221
2222 return nh;
2223 }
2224
2225 /**
2226 * netlink_nexthop_process_group() - Iterate over nhmsg nexthop group
2227 *
2228 * @tb: Netlink RTA data
2229 * @nhg_depends: Tree head of nexthops in the group
2230 * @nhg: Nexthop group struct
2231 *
2232 * Return: Count of nexthops in the group
2233 */
2234 static int netlink_nexthop_process_group(struct rtattr **tb,
2235 struct nexthop_group *nhg,
2236 struct nhg_connected_head *nhg_depends)
2237 {
2238 int count = 0;
2239 struct nexthop_grp *n_grp = NULL;
2240 struct nhg_hash_entry *depend = NULL;
2241
2242 n_grp = (struct nexthop_grp *)RTA_DATA(tb[NHA_GROUP]);
2243 count = (RTA_PAYLOAD(tb[NHA_GROUP]) / sizeof(*n_grp));
2244
2245 if (!count || (count * sizeof(*n_grp)) != RTA_PAYLOAD(tb[NHA_GROUP])) {
2246 flog_warn(EC_ZEBRA_BAD_NHG_MESSAGE,
2247 "Invalid nexthop group received from the kernel");
2248 return count;
2249 }
2250
2251 // TODO: Need type for something?
2252 zlog_debug("Nexthop group type: %d",
2253 *((uint16_t *)RTA_DATA(tb[NHA_GROUP_TYPE])));
2254
2255 nhg_connected_head_init(nhg_depends);
2256
2257 for (int i = 0; i < count; i++) {
2258 /* We do not care about nexthop_grp.weight at
2259 * this time. But we should figure out
2260 * how to adapt this to our code in
2261 * the future.
2262 */
2263 depend = zebra_nhg_lookup_id(n_grp[i].id);
2264 if (depend) {
2265 nhg_connected_head_add(nhg_depends, depend);
2266 /*
2267 * If this is a nexthop with its own group
2268 * dependencies, add them as well. Not sure its
2269 * even possible to have a group within a group
2270 * in the kernel.
2271 */
2272
2273 copy_nexthops(&nhg->nexthop, depend->nhg->nexthop,
2274 NULL);
2275 } else {
2276 flog_err(
2277 EC_ZEBRA_NHG_SYNC,
2278 "Received Nexthop Group from the kernel with a dependent Nexthop ID (%u) which we do not have in our table",
2279 n_grp[i].id);
2280 }
2281 }
2282 return count;
2283 }
2284
2285 /**
2286 * netlink_nexthop_change() - Read in change about nexthops from the kernel
2287 *
2288 * @h: Netlink message header
2289 * @ns_id: Namspace id
2290 * @startup: Are we reading under startup conditions?
2291 *
2292 * Return: Result status
2293 */
2294 int netlink_nexthop_change(struct nlmsghdr *h, ns_id_t ns_id, int startup)
2295 {
2296 int len;
2297 /* nexthop group id */
2298 uint32_t id;
2299 unsigned char family;
2300 afi_t afi = AFI_UNSPEC;
2301 vrf_id_t vrf_id = VRF_DEFAULT;
2302 struct interface *ifp = NULL;
2303 struct nhmsg *nhm = NULL;
2304 /* struct for nexthop group abstraction */
2305 struct nexthop_group *nhg = NULL;
2306 struct nexthop *nh = NULL;
2307 /* If its a group, tree head of nexthops */
2308 struct nhg_connected_head nhg_depends = {0};
2309 /* Count of nexthops in group array */
2310 int dep_count = 0;
2311 /* struct that goes into our tables */
2312 struct nhg_hash_entry *nhe = NULL;
2313 struct rtattr *tb[NHA_MAX + 1];
2314
2315
2316 nhm = NLMSG_DATA(h);
2317
2318 if (startup && h->nlmsg_type != RTM_NEWNEXTHOP)
2319 return 0;
2320
2321 len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct nhmsg));
2322 if (len < 0) {
2323 zlog_warn(
2324 "%s: Message received from netlink is of a broken size %d %zu",
2325 __PRETTY_FUNCTION__, h->nlmsg_len,
2326 (size_t)NLMSG_LENGTH(sizeof(struct nhmsg)));
2327 return -1;
2328 }
2329
2330 memset(tb, 0, sizeof(tb));
2331 netlink_parse_rtattr(tb, NHA_MAX, RTM_NHA(nhm), len);
2332
2333
2334 if (!tb[NHA_ID]) {
2335 flog_warn(
2336 EC_ZEBRA_BAD_NHG_MESSAGE,
2337 "Nexthop group without an ID received from the kernel");
2338 return -1;
2339 }
2340
2341 /* We use the ID key'd nhg table for kernel updates */
2342 id = *((uint32_t *)RTA_DATA(tb[NHA_ID]));
2343
2344 family = nhm->nh_family;
2345
2346 afi = family2afi(family);
2347
2348 if (IS_ZEBRA_DEBUG_KERNEL)
2349 zlog_debug("%s ID (%u) %s NS %u",
2350 nl_msg_type_to_str(h->nlmsg_type), id,
2351 nl_family_to_str(family), ns_id);
2352
2353
2354 nhe = zebra_nhg_lookup_id(id);
2355
2356 if (h->nlmsg_type == RTM_NEWNEXTHOP) {
2357 nhg = nexthop_group_new();
2358
2359 if (tb[NHA_GROUP]) {
2360 /**
2361 * If this is a group message its only going to have
2362 * an array of nexthop IDs associated with it
2363 */
2364 dep_count = netlink_nexthop_process_group(tb, nhg,
2365 &nhg_depends);
2366 } else {
2367 if (tb[NHA_BLACKHOLE]) {
2368 /**
2369 * This nexthop is just for blackhole-ing
2370 * traffic, it should not have an OIF, GATEWAY,
2371 * or ENCAP
2372 */
2373 nh = nexthop_new();
2374 nh->type = NEXTHOP_TYPE_BLACKHOLE;
2375 nh->bh_type = BLACKHOLE_UNSPEC;
2376 } else if (tb[NHA_OIF]) {
2377 /**
2378 * This is a true new nexthop, so we need
2379 * to parse the gateway and device info
2380 */
2381 nh = netlink_nexthop_process_nh(tb, family,
2382 &ifp, ns_id);
2383 }
2384 if (nh) {
2385 SET_FLAG(nh->flags, NEXTHOP_FLAG_ACTIVE);
2386 if (nhm->nh_flags & RTNH_F_ONLINK)
2387 SET_FLAG(nh->flags,
2388 NEXTHOP_FLAG_ONLINK);
2389 vrf_id = nh->vrf_id;
2390 nexthop_group_add_sorted(nhg, nh);
2391 } else {
2392 flog_warn(
2393 EC_ZEBRA_BAD_NHG_MESSAGE,
2394 "Invalid Nexthop message received from the kernel with ID (%u)",
2395 id);
2396 return -1;
2397 }
2398 }
2399
2400 if (!nhg->nexthop) {
2401 /* Nothing to lookup */
2402 zebra_nhg_free_group_depends(&nhg, &nhg_depends);
2403 return -1;
2404 }
2405
2406 if (nhe) {
2407 // TODO: Apparently we don't want changes
2408 // to already created one in our table.
2409 // They should be immutable...
2410 // Gotta figure that one out.
2411
2412 /* This is a change to a group we already have
2413 */
2414
2415 zebra_nhg_set_invalid(nhe);
2416 zebra_nhg_free_group_depends(&nhg, &nhg_depends);
2417
2418 } else {
2419 /* This is a new nexthop group */
2420 nhe = zebra_nhg_find(nhg, vrf_id, afi, id, &nhg_depends,
2421 true);
2422 nexthop_group_free_delete(&nhg);
2423
2424 if (!nhe) {
2425 flog_err(
2426 EC_ZEBRA_TABLE_LOOKUP_FAILED,
2427 "Zebra failed to find or create a nexthop hash entry for ID (%u) from the kernel",
2428 id);
2429 return -1;
2430 }
2431
2432 nhe->is_kernel_nh = true;
2433
2434 if (id != nhe->id) {
2435 /* Duplicate but with different ID from
2436 * the kernel */
2437
2438 /* The kernel allows duplicate nexthops
2439 * as long as they have different IDs.
2440 * We are ignoring those to prevent
2441 * syncing problems with the kernel
2442 * changes.
2443 */
2444 flog_warn(
2445 EC_ZEBRA_DUPLICATE_NHG_MESSAGE,
2446 "Nexthop Group from kernel with ID (%d) is a duplicate, ignoring",
2447 id);
2448 nhg_connected_head_free(&nhg_depends);
2449 } else {
2450 /* Add the nhe to the interface's tree
2451 * of connected nhe's
2452 */
2453 if (ifp)
2454 zebra_nhg_set_if(nhe, ifp);
2455
2456 SET_FLAG(nhe->flags, NEXTHOP_GROUP_INSTALLED);
2457 SET_FLAG(nhe->flags, NEXTHOP_GROUP_VALID);
2458 }
2459 }
2460
2461 } else if (h->nlmsg_type == RTM_DELNEXTHOP) {
2462 if (!nhe) {
2463 flog_warn(
2464 EC_ZEBRA_BAD_NHG_MESSAGE,
2465 "Kernel delete message received for nexthop group ID (%u) that we do not have in our ID table",
2466 id);
2467 return -1;
2468 }
2469
2470 zebra_nhg_set_invalid(nhe);
2471
2472 // TODO: Probably won't need this if we expect
2473 // upper level protocol to fix it.
2474 if (nhe->refcnt) {
2475 flog_err(
2476 EC_ZEBRA_NHG_SYNC,
2477 "Kernel deleted a nexthop group with ID (%u) that we are still using for a route, sending it back down",
2478 nhe->id);
2479 zebra_nhg_install_kernel(nhe);
2480 } else {
2481 zebra_nhg_release(nhe);
2482 }
2483 }
2484
2485 return 0;
2486 }
2487
2488 /**
2489 * netlink_request_nexthop() - Request nextop information from the kernel
2490 * @zns: Zebra namespace
2491 * @family: AF_* netlink family
2492 * @type: RTM_* route type
2493 *
2494 * Return: Result status
2495 */
2496 static int netlink_request_nexthop(struct zebra_ns *zns, int family, int type)
2497 {
2498 struct {
2499 struct nlmsghdr n;
2500 struct nhmsg nhm;
2501 } req;
2502
2503 /* Form the request, specifying filter (rtattr) if needed. */
2504 memset(&req, 0, sizeof(req));
2505 req.n.nlmsg_type = type;
2506 req.n.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST;
2507 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct nhmsg));
2508 req.nhm.nh_family = family;
2509
2510 return netlink_request(&zns->netlink_cmd, &req.n);
2511 }
2512
2513 /**
2514 * netlink_nexthop_read() - Nexthop read function using netlink interface
2515 *
2516 * @zns: Zebra name space
2517 *
2518 * Return: Result status
2519 * Only called at bootstrap time.
2520 */
2521 int netlink_nexthop_read(struct zebra_ns *zns)
2522 {
2523 int ret;
2524 struct zebra_dplane_info dp_info;
2525
2526 zebra_dplane_info_from_zns(&dp_info, zns, true /*is_cmd*/);
2527
2528 /* Get nexthop objects */
2529 ret = netlink_request_nexthop(zns, AF_UNSPEC, RTM_GETNEXTHOP);
2530 if (ret < 0)
2531 return ret;
2532 ret = netlink_parse_info(netlink_nexthop_change, &zns->netlink_cmd,
2533 &dp_info, 0, 1);
2534 return ret;
2535 }
2536
2537
2538 int kernel_neigh_update(int add, int ifindex, uint32_t addr, char *lla,
2539 int llalen, ns_id_t ns_id)
2540 {
2541 return netlink_neigh_update(add ? RTM_NEWNEIGH : RTM_DELNEIGH, ifindex,
2542 addr, lla, llalen, ns_id);
2543 }
2544
2545 /*
2546 * Add remote VTEP to the flood list for this VxLAN interface (VNI). This
2547 * is done by adding an FDB entry with a MAC of 00:00:00:00:00:00.
2548 */
2549 static int netlink_vxlan_flood_update_ctx(const struct zebra_dplane_ctx *ctx,
2550 int cmd)
2551 {
2552 uint8_t protocol = RTPROT_ZEBRA;
2553 struct {
2554 struct nlmsghdr n;
2555 struct ndmsg ndm;
2556 char buf[256];
2557 } req;
2558 uint8_t dst_mac[6] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0};
2559 const struct ipaddr *addr;
2560
2561 memset(&req, 0, sizeof(req));
2562
2563 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ndmsg));
2564 req.n.nlmsg_flags = NLM_F_REQUEST;
2565 if (cmd == RTM_NEWNEIGH)
2566 req.n.nlmsg_flags |= (NLM_F_CREATE | NLM_F_APPEND);
2567 req.n.nlmsg_type = cmd;
2568 req.ndm.ndm_family = PF_BRIDGE;
2569 req.ndm.ndm_state = NUD_NOARP | NUD_PERMANENT;
2570 req.ndm.ndm_flags |= NTF_SELF; // Handle by "self", not "master"
2571
2572
2573 addattr_l(&req.n, sizeof(req),
2574 NDA_PROTOCOL, &protocol, sizeof(protocol));
2575 addattr_l(&req.n, sizeof(req), NDA_LLADDR, &dst_mac, 6);
2576 req.ndm.ndm_ifindex = dplane_ctx_get_ifindex(ctx);
2577
2578 addr = dplane_ctx_neigh_get_ipaddr(ctx);
2579
2580 addattr_l(&req.n, sizeof(req), NDA_DST, &(addr->ipaddr_v4), 4);
2581
2582 return netlink_talk_info(netlink_talk_filter, &req.n,
2583 dplane_ctx_get_ns(ctx), 0);
2584 }
2585
2586 #ifndef NDA_RTA
2587 #define NDA_RTA(r) \
2588 ((struct rtattr *)(((char *)(r)) + NLMSG_ALIGN(sizeof(struct ndmsg))))
2589 #endif
2590
2591 static int netlink_macfdb_change(struct nlmsghdr *h, int len, ns_id_t ns_id)
2592 {
2593 struct ndmsg *ndm;
2594 struct interface *ifp;
2595 struct zebra_if *zif;
2596 struct rtattr *tb[NDA_MAX + 1];
2597 struct interface *br_if;
2598 struct ethaddr mac;
2599 vlanid_t vid = 0;
2600 struct prefix vtep_ip;
2601 int vid_present = 0, dst_present = 0;
2602 char buf[ETHER_ADDR_STRLEN];
2603 char vid_buf[20];
2604 char dst_buf[30];
2605 bool sticky;
2606
2607 ndm = NLMSG_DATA(h);
2608
2609 /* We only process macfdb notifications if EVPN is enabled */
2610 if (!is_evpn_enabled())
2611 return 0;
2612
2613 /* The interface should exist. */
2614 ifp = if_lookup_by_index_per_ns(zebra_ns_lookup(ns_id),
2615 ndm->ndm_ifindex);
2616 if (!ifp || !ifp->info) {
2617 if (IS_ZEBRA_DEBUG_KERNEL)
2618 zlog_debug("\t%s without associated interface: %u",
2619 __PRETTY_FUNCTION__, ndm->ndm_ifindex);
2620 return 0;
2621 }
2622
2623 /* The interface should be something we're interested in. */
2624 if (!IS_ZEBRA_IF_BRIDGE_SLAVE(ifp)) {
2625 if (IS_ZEBRA_DEBUG_KERNEL)
2626 zlog_debug("\t%s Not interested in %s, not a slave",
2627 __PRETTY_FUNCTION__, ifp->name);
2628 return 0;
2629 }
2630
2631 /* Drop "permanent" entries. */
2632 if (ndm->ndm_state & NUD_PERMANENT) {
2633 if (IS_ZEBRA_DEBUG_KERNEL)
2634 zlog_debug("\t%s Entry is PERMANENT, dropping",
2635 __PRETTY_FUNCTION__);
2636 return 0;
2637 }
2638
2639 zif = (struct zebra_if *)ifp->info;
2640 if ((br_if = zif->brslave_info.br_if) == NULL) {
2641 if (IS_ZEBRA_DEBUG_KERNEL)
2642 zlog_debug(
2643 "%s family %s IF %s(%u) brIF %u - no bridge master",
2644 nl_msg_type_to_str(h->nlmsg_type),
2645 nl_family_to_str(ndm->ndm_family), ifp->name,
2646 ndm->ndm_ifindex,
2647 zif->brslave_info.bridge_ifindex);
2648 return 0;
2649 }
2650
2651 /* Parse attributes and extract fields of interest. */
2652 memset(tb, 0, sizeof tb);
2653 netlink_parse_rtattr(tb, NDA_MAX, NDA_RTA(ndm), len);
2654
2655 if (!tb[NDA_LLADDR]) {
2656 if (IS_ZEBRA_DEBUG_KERNEL)
2657 zlog_debug("%s family %s IF %s(%u) brIF %u - no LLADDR",
2658 nl_msg_type_to_str(h->nlmsg_type),
2659 nl_family_to_str(ndm->ndm_family), ifp->name,
2660 ndm->ndm_ifindex,
2661 zif->brslave_info.bridge_ifindex);
2662 return 0;
2663 }
2664
2665 if (RTA_PAYLOAD(tb[NDA_LLADDR]) != ETH_ALEN) {
2666 if (IS_ZEBRA_DEBUG_KERNEL)
2667 zlog_debug(
2668 "%s family %s IF %s(%u) brIF %u - LLADDR is not MAC, len %lu",
2669 nl_msg_type_to_str(h->nlmsg_type),
2670 nl_family_to_str(ndm->ndm_family), ifp->name,
2671 ndm->ndm_ifindex,
2672 zif->brslave_info.bridge_ifindex,
2673 (unsigned long)RTA_PAYLOAD(tb[NDA_LLADDR]));
2674 return 0;
2675 }
2676
2677 memcpy(&mac, RTA_DATA(tb[NDA_LLADDR]), ETH_ALEN);
2678
2679 if ((NDA_VLAN <= NDA_MAX) && tb[NDA_VLAN]) {
2680 vid_present = 1;
2681 vid = *(uint16_t *)RTA_DATA(tb[NDA_VLAN]);
2682 sprintf(vid_buf, " VLAN %u", vid);
2683 }
2684
2685 if (tb[NDA_DST]) {
2686 /* TODO: Only IPv4 supported now. */
2687 dst_present = 1;
2688 vtep_ip.family = AF_INET;
2689 vtep_ip.prefixlen = IPV4_MAX_BITLEN;
2690 memcpy(&(vtep_ip.u.prefix4.s_addr), RTA_DATA(tb[NDA_DST]),
2691 IPV4_MAX_BYTELEN);
2692 sprintf(dst_buf, " dst %s", inet_ntoa(vtep_ip.u.prefix4));
2693 }
2694
2695 sticky = !!(ndm->ndm_state & NUD_NOARP);
2696
2697 if (IS_ZEBRA_DEBUG_KERNEL)
2698 zlog_debug("Rx %s family %s IF %s(%u)%s %sMAC %s%s",
2699 nl_msg_type_to_str(h->nlmsg_type),
2700 nl_family_to_str(ndm->ndm_family), ifp->name,
2701 ndm->ndm_ifindex, vid_present ? vid_buf : "",
2702 sticky ? "sticky " : "",
2703 prefix_mac2str(&mac, buf, sizeof(buf)),
2704 dst_present ? dst_buf : "");
2705
2706 if (filter_vlan && vid != filter_vlan) {
2707 if (IS_ZEBRA_DEBUG_KERNEL)
2708 zlog_debug("\tFiltered due to filter vlan: %d",
2709 filter_vlan);
2710 return 0;
2711 }
2712
2713 /* If add or update, do accordingly if learnt on a "local" interface; if
2714 * the notification is over VxLAN, this has to be related to
2715 * multi-homing,
2716 * so perform an implicit delete of any local entry (if it exists).
2717 */
2718 if (h->nlmsg_type == RTM_NEWNEIGH) {
2719 if (IS_ZEBRA_IF_VXLAN(ifp))
2720 return zebra_vxlan_check_del_local_mac(ifp, br_if, &mac,
2721 vid);
2722
2723 return zebra_vxlan_local_mac_add_update(ifp, br_if, &mac, vid,
2724 sticky);
2725 }
2726
2727 /* This is a delete notification.
2728 * 1. For a MAC over VxLan, check if it needs to be refreshed(readded)
2729 * 2. For a MAC over "local" interface, delete the mac
2730 * Note: We will get notifications from both bridge driver and VxLAN
2731 * driver.
2732 * Ignore the notification from VxLan driver as it is also generated
2733 * when mac moves from remote to local.
2734 */
2735 if (dst_present) {
2736 if (IS_ZEBRA_DEBUG_KERNEL)
2737 zlog_debug("\tNo Destination Present");
2738 return 0;
2739 }
2740
2741 if (IS_ZEBRA_IF_VXLAN(ifp))
2742 return zebra_vxlan_check_readd_remote_mac(ifp, br_if, &mac,
2743 vid);
2744
2745 return zebra_vxlan_local_mac_del(ifp, br_if, &mac, vid);
2746 }
2747
2748 static int netlink_macfdb_table(struct nlmsghdr *h, ns_id_t ns_id, int startup)
2749 {
2750 int len;
2751 struct ndmsg *ndm;
2752
2753 if (h->nlmsg_type != RTM_NEWNEIGH)
2754 return 0;
2755
2756 /* Length validity. */
2757 len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct ndmsg));
2758 if (len < 0)
2759 return -1;
2760
2761 /* We are interested only in AF_BRIDGE notifications. */
2762 ndm = NLMSG_DATA(h);
2763 if (ndm->ndm_family != AF_BRIDGE)
2764 return 0;
2765
2766 return netlink_macfdb_change(h, len, ns_id);
2767 }
2768
2769 /* Request for MAC FDB information from the kernel */
2770 static int netlink_request_macs(struct nlsock *netlink_cmd, int family,
2771 int type, ifindex_t master_ifindex)
2772 {
2773 struct {
2774 struct nlmsghdr n;
2775 struct ifinfomsg ifm;
2776 char buf[256];
2777 } req;
2778
2779 /* Form the request, specifying filter (rtattr) if needed. */
2780 memset(&req, 0, sizeof(req));
2781 req.n.nlmsg_type = type;
2782 req.n.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST;
2783 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg));
2784 req.ifm.ifi_family = family;
2785 if (master_ifindex)
2786 addattr32(&req.n, sizeof(req), IFLA_MASTER, master_ifindex);
2787
2788 return netlink_request(netlink_cmd, &req.n);
2789 }
2790
2791 /*
2792 * MAC forwarding database read using netlink interface. This is invoked
2793 * at startup.
2794 */
2795 int netlink_macfdb_read(struct zebra_ns *zns)
2796 {
2797 int ret;
2798 struct zebra_dplane_info dp_info;
2799
2800 zebra_dplane_info_from_zns(&dp_info, zns, true /*is_cmd*/);
2801
2802 /* Get bridge FDB table. */
2803 ret = netlink_request_macs(&zns->netlink_cmd, AF_BRIDGE, RTM_GETNEIGH,
2804 0);
2805 if (ret < 0)
2806 return ret;
2807 /* We are reading entire table. */
2808 filter_vlan = 0;
2809 ret = netlink_parse_info(netlink_macfdb_table, &zns->netlink_cmd,
2810 &dp_info, 0, 1);
2811
2812 return ret;
2813 }
2814
2815 /*
2816 * MAC forwarding database read using netlink interface. This is for a
2817 * specific bridge and matching specific access VLAN (if VLAN-aware bridge).
2818 */
2819 int netlink_macfdb_read_for_bridge(struct zebra_ns *zns, struct interface *ifp,
2820 struct interface *br_if)
2821 {
2822 struct zebra_if *br_zif;
2823 struct zebra_if *zif;
2824 struct zebra_l2info_vxlan *vxl;
2825 struct zebra_dplane_info dp_info;
2826 int ret = 0;
2827
2828 zebra_dplane_info_from_zns(&dp_info, zns, true /*is_cmd*/);
2829
2830 /* Save VLAN we're filtering on, if needed. */
2831 br_zif = (struct zebra_if *)br_if->info;
2832 zif = (struct zebra_if *)ifp->info;
2833 vxl = &zif->l2info.vxl;
2834 if (IS_ZEBRA_IF_BRIDGE_VLAN_AWARE(br_zif))
2835 filter_vlan = vxl->access_vlan;
2836
2837 /* Get bridge FDB table for specific bridge - we do the VLAN filtering.
2838 */
2839 ret = netlink_request_macs(&zns->netlink_cmd, AF_BRIDGE, RTM_GETNEIGH,
2840 br_if->ifindex);
2841 if (ret < 0)
2842 return ret;
2843 ret = netlink_parse_info(netlink_macfdb_table, &zns->netlink_cmd,
2844 &dp_info, 0, 0);
2845
2846 /* Reset VLAN filter. */
2847 filter_vlan = 0;
2848 return ret;
2849 }
2850
2851
2852 /* Request for MAC FDB for a specific MAC address in VLAN from the kernel */
2853 static int netlink_request_specific_mac_in_bridge(struct zebra_ns *zns,
2854 int family,
2855 int type,
2856 struct interface *br_if,
2857 struct ethaddr *mac,
2858 vlanid_t vid)
2859 {
2860 struct {
2861 struct nlmsghdr n;
2862 struct ndmsg ndm;
2863 char buf[256];
2864 } req;
2865 struct zebra_if *br_zif;
2866 char buf[ETHER_ADDR_STRLEN];
2867
2868 memset(&req, 0, sizeof(req));
2869 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ndmsg));
2870 req.n.nlmsg_type = type; /* RTM_GETNEIGH */
2871 req.n.nlmsg_flags = NLM_F_REQUEST;
2872 req.ndm.ndm_family = family; /* AF_BRIDGE */
2873 /* req.ndm.ndm_state = NUD_REACHABLE; */
2874
2875 addattr_l(&req.n, sizeof(req), NDA_LLADDR, mac, 6);
2876
2877 br_zif = (struct zebra_if *)br_if->info;
2878 if (IS_ZEBRA_IF_BRIDGE_VLAN_AWARE(br_zif) && vid > 0)
2879 addattr16(&req.n, sizeof(req), NDA_VLAN, vid);
2880
2881 addattr32(&req.n, sizeof(req), NDA_MASTER, br_if->ifindex);
2882
2883 if (IS_ZEBRA_DEBUG_KERNEL)
2884 zlog_debug("%s: Tx family %s IF %s(%u) MAC %s vid %u",
2885 __PRETTY_FUNCTION__,
2886 nl_family_to_str(req.ndm.ndm_family), br_if->name,
2887 br_if->ifindex,
2888 prefix_mac2str(mac, buf, sizeof(buf)), vid);
2889
2890 return netlink_request(&zns->netlink_cmd, &req.n);
2891 }
2892
2893 int netlink_macfdb_read_specific_mac(struct zebra_ns *zns,
2894 struct interface *br_if,
2895 struct ethaddr *mac, vlanid_t vid)
2896 {
2897 int ret = 0;
2898 struct zebra_dplane_info dp_info;
2899
2900 zebra_dplane_info_from_zns(&dp_info, zns, true /*is_cmd*/);
2901
2902 /* Get bridge FDB table for specific bridge - we do the VLAN filtering.
2903 */
2904 ret = netlink_request_specific_mac_in_bridge(zns, AF_BRIDGE,
2905 RTM_GETNEIGH,
2906 br_if, mac, vid);
2907 if (ret < 0)
2908 return ret;
2909
2910 ret = netlink_parse_info(netlink_macfdb_table, &zns->netlink_cmd,
2911 &dp_info, 1, 0);
2912
2913 return ret;
2914 }
2915
2916 /*
2917 * Netlink-specific handler for MAC updates using dataplane context object.
2918 */
2919 static enum zebra_dplane_result
2920 netlink_macfdb_update_ctx(struct zebra_dplane_ctx *ctx)
2921 {
2922 uint8_t protocol = RTPROT_ZEBRA;
2923 struct {
2924 struct nlmsghdr n;
2925 struct ndmsg ndm;
2926 char buf[256];
2927 } req;
2928 int ret;
2929 int dst_alen;
2930 int vid_present = 0;
2931 int cmd;
2932 struct in_addr vtep_ip;
2933 vlanid_t vid;
2934
2935 if (dplane_ctx_get_op(ctx) == DPLANE_OP_MAC_INSTALL)
2936 cmd = RTM_NEWNEIGH;
2937 else
2938 cmd = RTM_DELNEIGH;
2939
2940 memset(&req, 0, sizeof(req));
2941
2942 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ndmsg));
2943 req.n.nlmsg_flags = NLM_F_REQUEST;
2944 if (cmd == RTM_NEWNEIGH)
2945 req.n.nlmsg_flags |= (NLM_F_CREATE | NLM_F_REPLACE);
2946 req.n.nlmsg_type = cmd;
2947 req.ndm.ndm_family = AF_BRIDGE;
2948 req.ndm.ndm_flags |= NTF_SELF | NTF_MASTER;
2949 req.ndm.ndm_state = NUD_REACHABLE;
2950
2951 if (dplane_ctx_mac_is_sticky(ctx))
2952 req.ndm.ndm_state |= NUD_NOARP;
2953 else
2954 req.ndm.ndm_flags |= NTF_EXT_LEARNED;
2955
2956 addattr_l(&req.n, sizeof(req),
2957 NDA_PROTOCOL, &protocol, sizeof(protocol));
2958 addattr_l(&req.n, sizeof(req), NDA_LLADDR,
2959 dplane_ctx_mac_get_addr(ctx), 6);
2960 req.ndm.ndm_ifindex = dplane_ctx_get_ifindex(ctx);
2961
2962 dst_alen = 4; // TODO: hardcoded
2963 vtep_ip = *(dplane_ctx_mac_get_vtep_ip(ctx));
2964 addattr_l(&req.n, sizeof(req), NDA_DST, &vtep_ip, dst_alen);
2965
2966 vid = dplane_ctx_mac_get_vlan(ctx);
2967
2968 if (vid > 0) {
2969 addattr16(&req.n, sizeof(req), NDA_VLAN, vid);
2970 vid_present = 1;
2971 }
2972 addattr32(&req.n, sizeof(req), NDA_MASTER,
2973 dplane_ctx_mac_get_br_ifindex(ctx));
2974
2975 if (IS_ZEBRA_DEBUG_KERNEL) {
2976 char ipbuf[PREFIX_STRLEN];
2977 char buf[ETHER_ADDR_STRLEN];
2978 char dst_buf[PREFIX_STRLEN + 10];
2979 char vid_buf[20];
2980
2981 if (vid_present)
2982 snprintf(vid_buf, sizeof(vid_buf), " VLAN %u", vid);
2983 else
2984 vid_buf[0] = '\0';
2985
2986 inet_ntop(AF_INET, &vtep_ip, ipbuf, sizeof(ipbuf));
2987 snprintf(dst_buf, sizeof(dst_buf), " dst %s", ipbuf);
2988 prefix_mac2str(dplane_ctx_mac_get_addr(ctx), buf, sizeof(buf));
2989
2990 zlog_debug("Tx %s family %s IF %s(%u)%s %sMAC %s%s",
2991 nl_msg_type_to_str(cmd),
2992 nl_family_to_str(req.ndm.ndm_family),
2993 dplane_ctx_get_ifname(ctx),
2994 dplane_ctx_get_ifindex(ctx), vid_buf,
2995 dplane_ctx_mac_is_sticky(ctx) ? "sticky " : "",
2996 buf, dst_buf);
2997 }
2998
2999 ret = netlink_talk_info(netlink_talk_filter, &req.n,
3000 dplane_ctx_get_ns(ctx), 0);
3001 if (ret == 0)
3002 return ZEBRA_DPLANE_REQUEST_SUCCESS;
3003 else
3004 return ZEBRA_DPLANE_REQUEST_FAILURE;
3005 }
3006
3007 /*
3008 * In the event the kernel deletes ipv4 link-local neighbor entries created for
3009 * 5549 support, re-install them.
3010 */
3011 static void netlink_handle_5549(struct ndmsg *ndm, struct zebra_if *zif,
3012 struct interface *ifp, struct ipaddr *ip,
3013 bool handle_failed)
3014 {
3015 if (ndm->ndm_family != AF_INET)
3016 return;
3017
3018 if (!zif->v6_2_v4_ll_neigh_entry)
3019 return;
3020
3021 if (ipv4_ll.s_addr != ip->ip._v4_addr.s_addr)
3022 return;
3023
3024 if (handle_failed && ndm->ndm_state & NUD_FAILED) {
3025 zlog_info("Neighbor Entry for %s has entered a failed state, not reinstalling",
3026 ifp->name);
3027 return;
3028 }
3029
3030 if_nbr_ipv6ll_to_ipv4ll_neigh_update(ifp, &zif->v6_2_v4_ll_addr6, true);
3031 }
3032
3033 #define NUD_VALID \
3034 (NUD_PERMANENT | NUD_NOARP | NUD_REACHABLE | NUD_PROBE | NUD_STALE \
3035 | NUD_DELAY)
3036
3037 static int netlink_ipneigh_change(struct nlmsghdr *h, int len, ns_id_t ns_id)
3038 {
3039 struct ndmsg *ndm;
3040 struct interface *ifp;
3041 struct zebra_if *zif;
3042 struct rtattr *tb[NDA_MAX + 1];
3043 struct interface *link_if;
3044 struct ethaddr mac;
3045 struct ipaddr ip;
3046 char buf[ETHER_ADDR_STRLEN];
3047 char buf2[INET6_ADDRSTRLEN];
3048 int mac_present = 0;
3049 bool is_ext;
3050 bool is_router;
3051
3052 ndm = NLMSG_DATA(h);
3053
3054 /* The interface should exist. */
3055 ifp = if_lookup_by_index_per_ns(zebra_ns_lookup(ns_id),
3056 ndm->ndm_ifindex);
3057 if (!ifp || !ifp->info)
3058 return 0;
3059
3060 zif = (struct zebra_if *)ifp->info;
3061
3062 /* Parse attributes and extract fields of interest. */
3063 memset(tb, 0, sizeof tb);
3064 netlink_parse_rtattr(tb, NDA_MAX, NDA_RTA(ndm), len);
3065
3066 if (!tb[NDA_DST]) {
3067 zlog_debug("%s family %s IF %s(%u) - no DST",
3068 nl_msg_type_to_str(h->nlmsg_type),
3069 nl_family_to_str(ndm->ndm_family), ifp->name,
3070 ndm->ndm_ifindex);
3071 return 0;
3072 }
3073
3074 memset(&ip, 0, sizeof(struct ipaddr));
3075 ip.ipa_type = (ndm->ndm_family == AF_INET) ? IPADDR_V4 : IPADDR_V6;
3076 memcpy(&ip.ip.addr, RTA_DATA(tb[NDA_DST]), RTA_PAYLOAD(tb[NDA_DST]));
3077
3078 /* if kernel deletes our rfc5549 neighbor entry, re-install it */
3079 if (h->nlmsg_type == RTM_DELNEIGH && (ndm->ndm_state & NUD_PERMANENT)) {
3080 netlink_handle_5549(ndm, zif, ifp, &ip, false);
3081 if (IS_ZEBRA_DEBUG_KERNEL)
3082 zlog_debug(
3083 "\tNeighbor Entry Received is a 5549 entry, finished");
3084 return 0;
3085 }
3086
3087 /* if kernel marks our rfc5549 neighbor entry invalid, re-install it */
3088 if (h->nlmsg_type == RTM_NEWNEIGH && !(ndm->ndm_state & NUD_VALID))
3089 netlink_handle_5549(ndm, zif, ifp, &ip, true);
3090
3091 /* The neighbor is present on an SVI. From this, we locate the
3092 * underlying
3093 * bridge because we're only interested in neighbors on a VxLAN bridge.
3094 * The bridge is located based on the nature of the SVI:
3095 * (a) In the case of a VLAN-aware bridge, the SVI is a L3 VLAN
3096 * interface
3097 * and is linked to the bridge
3098 * (b) In the case of a VLAN-unaware bridge, the SVI is the bridge
3099 * inteface
3100 * itself
3101 */
3102 if (IS_ZEBRA_IF_VLAN(ifp)) {
3103 link_if = if_lookup_by_index_per_ns(zebra_ns_lookup(ns_id),
3104 zif->link_ifindex);
3105 if (!link_if)
3106 return 0;
3107 } else if (IS_ZEBRA_IF_BRIDGE(ifp))
3108 link_if = ifp;
3109 else {
3110 if (IS_ZEBRA_DEBUG_KERNEL)
3111 zlog_debug(
3112 "\tNeighbor Entry received is not on a VLAN or a BRIDGE, ignoring");
3113 return 0;
3114 }
3115
3116 memset(&mac, 0, sizeof(struct ethaddr));
3117 if (h->nlmsg_type == RTM_NEWNEIGH) {
3118 if (tb[NDA_LLADDR]) {
3119 if (RTA_PAYLOAD(tb[NDA_LLADDR]) != ETH_ALEN) {
3120 if (IS_ZEBRA_DEBUG_KERNEL)
3121 zlog_debug(
3122 "%s family %s IF %s(%u) - LLADDR is not MAC, len %lu",
3123 nl_msg_type_to_str(
3124 h->nlmsg_type),
3125 nl_family_to_str(
3126 ndm->ndm_family),
3127 ifp->name, ndm->ndm_ifindex,
3128 (unsigned long)RTA_PAYLOAD(
3129 tb[NDA_LLADDR]));
3130 return 0;
3131 }
3132
3133 mac_present = 1;
3134 memcpy(&mac, RTA_DATA(tb[NDA_LLADDR]), ETH_ALEN);
3135 }
3136
3137 is_ext = !!(ndm->ndm_flags & NTF_EXT_LEARNED);
3138 is_router = !!(ndm->ndm_flags & NTF_ROUTER);
3139
3140 if (IS_ZEBRA_DEBUG_KERNEL)
3141 zlog_debug(
3142 "Rx %s family %s IF %s(%u) IP %s MAC %s state 0x%x flags 0x%x",
3143 nl_msg_type_to_str(h->nlmsg_type),
3144 nl_family_to_str(ndm->ndm_family), ifp->name,
3145 ndm->ndm_ifindex,
3146 ipaddr2str(&ip, buf2, sizeof(buf2)),
3147 mac_present
3148 ? prefix_mac2str(&mac, buf, sizeof(buf))
3149 : "",
3150 ndm->ndm_state, ndm->ndm_flags);
3151
3152 /* If the neighbor state is valid for use, process as an add or
3153 * update
3154 * else process as a delete. Note that the delete handling may
3155 * result
3156 * in re-adding the neighbor if it is a valid "remote" neighbor.
3157 */
3158 if (ndm->ndm_state & NUD_VALID)
3159 return zebra_vxlan_handle_kernel_neigh_update(
3160 ifp, link_if, &ip, &mac, ndm->ndm_state,
3161 is_ext, is_router);
3162
3163 return zebra_vxlan_handle_kernel_neigh_del(ifp, link_if, &ip);
3164 }
3165
3166 if (IS_ZEBRA_DEBUG_KERNEL)
3167 zlog_debug("Rx %s family %s IF %s(%u) IP %s",
3168 nl_msg_type_to_str(h->nlmsg_type),
3169 nl_family_to_str(ndm->ndm_family), ifp->name,
3170 ndm->ndm_ifindex,
3171 ipaddr2str(&ip, buf2, sizeof(buf2)));
3172
3173 /* Process the delete - it may result in re-adding the neighbor if it is
3174 * a valid "remote" neighbor.
3175 */
3176 return zebra_vxlan_handle_kernel_neigh_del(ifp, link_if, &ip);
3177 }
3178
3179 static int netlink_neigh_table(struct nlmsghdr *h, ns_id_t ns_id, int startup)
3180 {
3181 int len;
3182 struct ndmsg *ndm;
3183
3184 if (h->nlmsg_type != RTM_NEWNEIGH)
3185 return 0;
3186
3187 /* Length validity. */
3188 len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct ndmsg));
3189 if (len < 0)
3190 return -1;
3191
3192 /* We are interested only in AF_INET or AF_INET6 notifications. */
3193 ndm = NLMSG_DATA(h);
3194 if (ndm->ndm_family != AF_INET && ndm->ndm_family != AF_INET6)
3195 return 0;
3196
3197 return netlink_neigh_change(h, len);
3198 }
3199
3200 /* Request for IP neighbor information from the kernel */
3201 static int netlink_request_neigh(struct nlsock *netlink_cmd, int family,
3202 int type, ifindex_t ifindex)
3203 {
3204 struct {
3205 struct nlmsghdr n;
3206 struct ndmsg ndm;
3207 char buf[256];
3208 } req;
3209
3210 /* Form the request, specifying filter (rtattr) if needed. */
3211 memset(&req, 0, sizeof(req));
3212 req.n.nlmsg_type = type;
3213 req.n.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST;
3214 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ndmsg));
3215 req.ndm.ndm_family = family;
3216 if (ifindex)
3217 addattr32(&req.n, sizeof(req), NDA_IFINDEX, ifindex);
3218
3219 return netlink_request(netlink_cmd, &req.n);
3220 }
3221
3222 /*
3223 * IP Neighbor table read using netlink interface. This is invoked
3224 * at startup.
3225 */
3226 int netlink_neigh_read(struct zebra_ns *zns)
3227 {
3228 int ret;
3229 struct zebra_dplane_info dp_info;
3230
3231 zebra_dplane_info_from_zns(&dp_info, zns, true /*is_cmd*/);
3232
3233 /* Get IP neighbor table. */
3234 ret = netlink_request_neigh(&zns->netlink_cmd, AF_UNSPEC, RTM_GETNEIGH,
3235 0);
3236 if (ret < 0)
3237 return ret;
3238 ret = netlink_parse_info(netlink_neigh_table, &zns->netlink_cmd,
3239 &dp_info, 0, 1);
3240
3241 return ret;
3242 }
3243
3244 /*
3245 * IP Neighbor table read using netlink interface. This is for a specific
3246 * VLAN device.
3247 */
3248 int netlink_neigh_read_for_vlan(struct zebra_ns *zns, struct interface *vlan_if)
3249 {
3250 int ret = 0;
3251 struct zebra_dplane_info dp_info;
3252
3253 zebra_dplane_info_from_zns(&dp_info, zns, true /*is_cmd*/);
3254
3255 ret = netlink_request_neigh(&zns->netlink_cmd, AF_UNSPEC, RTM_GETNEIGH,
3256 vlan_if->ifindex);
3257 if (ret < 0)
3258 return ret;
3259 ret = netlink_parse_info(netlink_neigh_table, &zns->netlink_cmd,
3260 &dp_info, 0, 0);
3261
3262 return ret;
3263 }
3264
3265 /*
3266 * Request for a specific IP in VLAN (SVI) device from IP Neighbor table,
3267 * read using netlink interface.
3268 */
3269 static int netlink_request_specific_neigh_in_vlan(struct zebra_ns *zns,
3270 int type, struct ipaddr *ip,
3271 ifindex_t ifindex)
3272 {
3273 struct {
3274 struct nlmsghdr n;
3275 struct ndmsg ndm;
3276 char buf[256];
3277 } req;
3278 int ipa_len;
3279
3280 /* Form the request, specifying filter (rtattr) if needed. */
3281 memset(&req, 0, sizeof(req));
3282 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ndmsg));
3283 req.n.nlmsg_flags = NLM_F_REQUEST;
3284 req.n.nlmsg_type = type; /* RTM_GETNEIGH */
3285 req.ndm.ndm_ifindex = ifindex;
3286
3287 if (IS_IPADDR_V4(ip)) {
3288 ipa_len = IPV4_MAX_BYTELEN;
3289 req.ndm.ndm_family = AF_INET;
3290
3291 } else {
3292 ipa_len = IPV6_MAX_BYTELEN;
3293 req.ndm.ndm_family = AF_INET6;
3294 }
3295
3296 addattr_l(&req.n, sizeof(req), NDA_DST, &ip->ip.addr, ipa_len);
3297
3298 return netlink_request(&zns->netlink_cmd, &req.n);
3299 }
3300
3301 int netlink_neigh_read_specific_ip(struct ipaddr *ip,
3302 struct interface *vlan_if)
3303 {
3304 int ret = 0;
3305 struct zebra_ns *zns;
3306 struct zebra_vrf *zvrf = zebra_vrf_lookup_by_id(vlan_if->vrf_id);
3307 char buf[INET6_ADDRSTRLEN];
3308 struct zebra_dplane_info dp_info;
3309
3310 zns = zvrf->zns;
3311
3312 zebra_dplane_info_from_zns(&dp_info, zns, true /*is_cmd*/);
3313
3314 if (IS_ZEBRA_DEBUG_KERNEL)
3315 zlog_debug("%s: neigh request IF %s(%u) IP %s vrf_id %u",
3316 __PRETTY_FUNCTION__, vlan_if->name,
3317 vlan_if->ifindex,
3318 ipaddr2str(ip, buf, sizeof(buf)),
3319 vlan_if->vrf_id);
3320
3321 ret = netlink_request_specific_neigh_in_vlan(zns, RTM_GETNEIGH, ip,
3322 vlan_if->ifindex);
3323 if (ret < 0)
3324 return ret;
3325
3326 ret = netlink_parse_info(netlink_neigh_table, &zns->netlink_cmd,
3327 &dp_info, 1, 0);
3328
3329 return ret;
3330 }
3331
3332 int netlink_neigh_change(struct nlmsghdr *h, ns_id_t ns_id)
3333 {
3334 int len;
3335 struct ndmsg *ndm;
3336
3337 if (!(h->nlmsg_type == RTM_NEWNEIGH || h->nlmsg_type == RTM_DELNEIGH))
3338 return 0;
3339
3340 /* Length validity. */
3341 len = h->nlmsg_len - NLMSG_LENGTH(sizeof(struct ndmsg));
3342 if (len < 0) {
3343 zlog_err("%s: Message received from netlink is of a broken size %d %zu",
3344 __PRETTY_FUNCTION__, h->nlmsg_len,
3345 (size_t)NLMSG_LENGTH(sizeof(struct ndmsg)));
3346 return -1;
3347 }
3348
3349 /* Is this a notification for the MAC FDB or IP neighbor table? */
3350 ndm = NLMSG_DATA(h);
3351 if (ndm->ndm_family == AF_BRIDGE)
3352 return netlink_macfdb_change(h, len, ns_id);
3353
3354 if (ndm->ndm_type != RTN_UNICAST)
3355 return 0;
3356
3357 if (ndm->ndm_family == AF_INET || ndm->ndm_family == AF_INET6)
3358 return netlink_ipneigh_change(h, len, ns_id);
3359 else {
3360 flog_warn(
3361 EC_ZEBRA_UNKNOWN_FAMILY,
3362 "Invalid address family: %u received from kernel neighbor change: %s",
3363 ndm->ndm_family, nl_msg_type_to_str(h->nlmsg_type));
3364 return 0;
3365 }
3366
3367 return 0;
3368 }
3369
3370 /*
3371 * Utility neighbor-update function, using info from dplane context.
3372 */
3373 static int netlink_neigh_update_ctx(const struct zebra_dplane_ctx *ctx,
3374 int cmd)
3375 {
3376 uint8_t protocol = RTPROT_ZEBRA;
3377 struct {
3378 struct nlmsghdr n;
3379 struct ndmsg ndm;
3380 char buf[256];
3381 } req;
3382 int ipa_len;
3383 char buf[INET6_ADDRSTRLEN];
3384 char buf2[ETHER_ADDR_STRLEN];
3385 const struct ipaddr *ip;
3386 const struct ethaddr *mac;
3387 uint8_t flags;
3388 uint16_t state;
3389
3390 memset(&req, 0, sizeof(req));
3391
3392 ip = dplane_ctx_neigh_get_ipaddr(ctx);
3393 mac = dplane_ctx_neigh_get_mac(ctx);
3394 if (is_zero_mac(mac))
3395 mac = NULL;
3396
3397 flags = neigh_flags_to_netlink(dplane_ctx_neigh_get_flags(ctx));
3398 state = neigh_state_to_netlink(dplane_ctx_neigh_get_state(ctx));
3399
3400 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ndmsg));
3401 req.n.nlmsg_flags = NLM_F_REQUEST;
3402 if (cmd == RTM_NEWNEIGH)
3403 req.n.nlmsg_flags |= (NLM_F_CREATE | NLM_F_REPLACE);
3404 req.n.nlmsg_type = cmd; // RTM_NEWNEIGH or RTM_DELNEIGH
3405 req.ndm.ndm_family = IS_IPADDR_V4(ip) ? AF_INET : AF_INET6;
3406 req.ndm.ndm_state = state;
3407 req.ndm.ndm_ifindex = dplane_ctx_get_ifindex(ctx);
3408 req.ndm.ndm_type = RTN_UNICAST;
3409 req.ndm.ndm_flags = flags;
3410
3411 addattr_l(&req.n, sizeof(req),
3412 NDA_PROTOCOL, &protocol, sizeof(protocol));
3413 ipa_len = IS_IPADDR_V4(ip) ? IPV4_MAX_BYTELEN : IPV6_MAX_BYTELEN;
3414 addattr_l(&req.n, sizeof(req), NDA_DST, &ip->ip.addr, ipa_len);
3415 if (mac)
3416 addattr_l(&req.n, sizeof(req), NDA_LLADDR, mac, 6);
3417
3418 if (IS_ZEBRA_DEBUG_KERNEL)
3419 zlog_debug("Tx %s family %s IF %s(%u) Neigh %s MAC %s flags 0x%x state 0x%x",
3420 nl_msg_type_to_str(cmd),
3421 nl_family_to_str(req.ndm.ndm_family),
3422 dplane_ctx_get_ifname(ctx),
3423 dplane_ctx_get_ifindex(ctx),
3424 ipaddr2str(ip, buf, sizeof(buf)),
3425 mac ? prefix_mac2str(mac, buf2, sizeof(buf2))
3426 : "null",
3427 flags, state);
3428
3429 return netlink_talk_info(netlink_talk_filter, &req.n,
3430 dplane_ctx_get_ns(ctx), 0);
3431 }
3432
3433 /*
3434 * Update MAC, using dataplane context object.
3435 */
3436 enum zebra_dplane_result kernel_mac_update_ctx(struct zebra_dplane_ctx *ctx)
3437 {
3438 return netlink_macfdb_update_ctx(ctx);
3439 }
3440
3441 enum zebra_dplane_result kernel_neigh_update_ctx(struct zebra_dplane_ctx *ctx)
3442 {
3443 int ret = -1;
3444
3445 switch (dplane_ctx_get_op(ctx)) {
3446 case DPLANE_OP_NEIGH_INSTALL:
3447 case DPLANE_OP_NEIGH_UPDATE:
3448 ret = netlink_neigh_update_ctx(ctx, RTM_NEWNEIGH);
3449 break;
3450 case DPLANE_OP_NEIGH_DELETE:
3451 ret = netlink_neigh_update_ctx(ctx, RTM_DELNEIGH);
3452 break;
3453 case DPLANE_OP_VTEP_ADD:
3454 ret = netlink_vxlan_flood_update_ctx(ctx, RTM_NEWNEIGH);
3455 break;
3456 case DPLANE_OP_VTEP_DELETE:
3457 ret = netlink_vxlan_flood_update_ctx(ctx, RTM_DELNEIGH);
3458 break;
3459 default:
3460 break;
3461 }
3462
3463 return (ret == 0 ?
3464 ZEBRA_DPLANE_REQUEST_SUCCESS : ZEBRA_DPLANE_REQUEST_FAILURE);
3465 }
3466
3467 /*
3468 * MPLS label forwarding table change via netlink interface, using dataplane
3469 * context information.
3470 */
3471 int netlink_mpls_multipath(int cmd, struct zebra_dplane_ctx *ctx)
3472 {
3473 mpls_lse_t lse;
3474 const zebra_nhlfe_t *nhlfe;
3475 struct nexthop *nexthop = NULL;
3476 unsigned int nexthop_num;
3477 const char *routedesc;
3478 int route_type;
3479
3480 struct {
3481 struct nlmsghdr n;
3482 struct rtmsg r;
3483 char buf[NL_PKT_BUF_SIZE];
3484 } req;
3485
3486 memset(&req, 0, sizeof(req) - NL_PKT_BUF_SIZE);
3487
3488 /*
3489 * Count # nexthops so we can decide whether to use singlepath
3490 * or multipath case.
3491 */
3492 nexthop_num = 0;
3493 for (nhlfe = dplane_ctx_get_nhlfe(ctx); nhlfe; nhlfe = nhlfe->next) {
3494 nexthop = nhlfe->nexthop;
3495 if (!nexthop)
3496 continue;
3497 if (cmd == RTM_NEWROUTE) {
3498 /* Count all selected NHLFEs */
3499 if (CHECK_FLAG(nhlfe->flags, NHLFE_FLAG_SELECTED)
3500 && CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE))
3501 nexthop_num++;
3502 } else { /* DEL */
3503 /* Count all installed NHLFEs */
3504 if (CHECK_FLAG(nhlfe->flags, NHLFE_FLAG_INSTALLED)
3505 && CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB))
3506 nexthop_num++;
3507 }
3508 }
3509
3510 if ((nexthop_num == 0) ||
3511 (!dplane_ctx_get_best_nhlfe(ctx) && (cmd != RTM_DELROUTE)))
3512 return 0;
3513
3514 req.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct rtmsg));
3515 req.n.nlmsg_flags = NLM_F_CREATE | NLM_F_REQUEST;
3516 req.n.nlmsg_type = cmd;
3517 req.n.nlmsg_pid = dplane_ctx_get_ns(ctx)->nls.snl.nl_pid;
3518
3519 req.r.rtm_family = AF_MPLS;
3520 req.r.rtm_table = RT_TABLE_MAIN;
3521 req.r.rtm_dst_len = MPLS_LABEL_LEN_BITS;
3522 req.r.rtm_scope = RT_SCOPE_UNIVERSE;
3523 req.r.rtm_type = RTN_UNICAST;
3524
3525 if (cmd == RTM_NEWROUTE) {
3526 /* We do a replace to handle update. */
3527 req.n.nlmsg_flags |= NLM_F_REPLACE;
3528
3529 /* set the protocol value if installing */
3530 route_type = re_type_from_lsp_type(
3531 dplane_ctx_get_best_nhlfe(ctx)->type);
3532 req.r.rtm_protocol = zebra2proto(route_type);
3533 }
3534
3535 /* Fill destination */
3536 lse = mpls_lse_encode(dplane_ctx_get_in_label(ctx), 0, 0, 1);
3537 addattr_l(&req.n, sizeof(req), RTA_DST, &lse, sizeof(mpls_lse_t));
3538
3539 /* Fill nexthops (paths) based on single-path or multipath. The paths
3540 * chosen depend on the operation.
3541 */
3542 if (nexthop_num == 1) {
3543 routedesc = "single-path";
3544 _netlink_mpls_debug(cmd, dplane_ctx_get_in_label(ctx),
3545 routedesc);
3546
3547 nexthop_num = 0;
3548 for (nhlfe = dplane_ctx_get_nhlfe(ctx);
3549 nhlfe; nhlfe = nhlfe->next) {
3550 nexthop = nhlfe->nexthop;
3551 if (!nexthop)
3552 continue;
3553
3554 if ((cmd == RTM_NEWROUTE
3555 && (CHECK_FLAG(nhlfe->flags, NHLFE_FLAG_SELECTED)
3556 && CHECK_FLAG(nexthop->flags,
3557 NEXTHOP_FLAG_ACTIVE)))
3558 || (cmd == RTM_DELROUTE
3559 && (CHECK_FLAG(nhlfe->flags,
3560 NHLFE_FLAG_INSTALLED)
3561 && CHECK_FLAG(nexthop->flags,
3562 NEXTHOP_FLAG_FIB)))) {
3563 /* Add the gateway */
3564 _netlink_mpls_build_singlepath(
3565 routedesc, nhlfe,
3566 &req.n, &req.r,
3567 sizeof(req), cmd);
3568
3569 nexthop_num++;
3570 break;
3571 }
3572 }
3573 } else { /* Multipath case */
3574 char buf[NL_PKT_BUF_SIZE];
3575 struct rtattr *rta = (void *)buf;
3576 struct rtnexthop *rtnh;
3577 const union g_addr *src1 = NULL;
3578
3579 rta->rta_type = RTA_MULTIPATH;
3580 rta->rta_len = RTA_LENGTH(0);
3581 rtnh = RTA_DATA(rta);
3582
3583 routedesc = "multipath";
3584 _netlink_mpls_debug(cmd, dplane_ctx_get_in_label(ctx),
3585 routedesc);
3586
3587 nexthop_num = 0;
3588 for (nhlfe = dplane_ctx_get_nhlfe(ctx);
3589 nhlfe; nhlfe = nhlfe->next) {
3590 nexthop = nhlfe->nexthop;
3591 if (!nexthop)
3592 continue;
3593
3594 if ((cmd == RTM_NEWROUTE
3595 && (CHECK_FLAG(nhlfe->flags, NHLFE_FLAG_SELECTED)
3596 && CHECK_FLAG(nexthop->flags,
3597 NEXTHOP_FLAG_ACTIVE)))
3598 || (cmd == RTM_DELROUTE
3599 && (CHECK_FLAG(nhlfe->flags,
3600 NHLFE_FLAG_INSTALLED)
3601 && CHECK_FLAG(nexthop->flags,
3602 NEXTHOP_FLAG_FIB)))) {
3603 nexthop_num++;
3604
3605 /* Build the multipath */
3606 _netlink_mpls_build_multipath(routedesc, nhlfe,
3607 rta, rtnh, &req.r,
3608 &src1);
3609 rtnh = RTNH_NEXT(rtnh);
3610 }
3611 }
3612
3613 /* Add the multipath */
3614 if (rta->rta_len > RTA_LENGTH(0))
3615 addattr_l(&req.n, NL_PKT_BUF_SIZE, RTA_MULTIPATH,
3616 RTA_DATA(rta), RTA_PAYLOAD(rta));
3617 }
3618
3619 /* Talk to netlink socket. */
3620 return netlink_talk_info(netlink_talk_filter, &req.n,
3621 dplane_ctx_get_ns(ctx), 0);
3622 }
3623 #endif /* HAVE_NETLINK */