]> git.proxmox.com Git - mirror_frr.git/blob - zebra/zebra_rib.c
lib, zebra: Allow protocols to use Distance as part of RR semantics
[mirror_frr.git] / zebra / zebra_rib.c
1 /* Routing Information Base.
2 * Copyright (C) 1997, 98, 99, 2001 Kunihiro Ishiguro
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; see the file COPYING; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include <zebra.h>
22
23 #include "if.h"
24 #include "prefix.h"
25 #include "table.h"
26 #include "memory.h"
27 #include "zebra_memory.h"
28 #include "command.h"
29 #include "log.h"
30 #include "log_int.h"
31 #include "sockunion.h"
32 #include "linklist.h"
33 #include "thread.h"
34 #include "workqueue.h"
35 #include "prefix.h"
36 #include "routemap.h"
37 #include "nexthop.h"
38 #include "vrf.h"
39 #include "mpls.h"
40 #include "srcdest_table.h"
41
42 #include "zebra/rib.h"
43 #include "zebra/rt.h"
44 #include "zebra/zebra_ns.h"
45 #include "zebra/zebra_vrf.h"
46 #include "zebra/redistribute.h"
47 #include "zebra/zebra_routemap.h"
48 #include "zebra/debug.h"
49 #include "zebra/zebra_rnh.h"
50 #include "zebra/interface.h"
51 #include "zebra/connected.h"
52 #include "zebra/zebra_vxlan.h"
53 #include "zebra/zapi_msg.h"
54
55 DEFINE_HOOK(rib_update, (struct route_node * rn, const char *reason),
56 (rn, reason))
57
58 /* Should we allow non Quagga processes to delete our routes */
59 extern int allow_delete;
60
61 /* Each route type's string and default distance value. */
62 static const struct {
63 int key;
64 int distance;
65 } route_info[ZEBRA_ROUTE_MAX] = {
66 [ZEBRA_ROUTE_SYSTEM] = {ZEBRA_ROUTE_SYSTEM, 0},
67 [ZEBRA_ROUTE_KERNEL] = {ZEBRA_ROUTE_KERNEL, 0},
68 [ZEBRA_ROUTE_CONNECT] = {ZEBRA_ROUTE_CONNECT, 0},
69 [ZEBRA_ROUTE_STATIC] = {ZEBRA_ROUTE_STATIC, 1},
70 [ZEBRA_ROUTE_RIP] = {ZEBRA_ROUTE_RIP, 120},
71 [ZEBRA_ROUTE_RIPNG] = {ZEBRA_ROUTE_RIPNG, 120},
72 [ZEBRA_ROUTE_OSPF] = {ZEBRA_ROUTE_OSPF, 110},
73 [ZEBRA_ROUTE_OSPF6] = {ZEBRA_ROUTE_OSPF6, 110},
74 [ZEBRA_ROUTE_ISIS] = {ZEBRA_ROUTE_ISIS, 115},
75 [ZEBRA_ROUTE_BGP] = {ZEBRA_ROUTE_BGP, 20 /* IBGP is 200. */},
76 [ZEBRA_ROUTE_PIM] = {ZEBRA_ROUTE_PIM, 255},
77 [ZEBRA_ROUTE_EIGRP] = {ZEBRA_ROUTE_EIGRP, 90},
78 [ZEBRA_ROUTE_NHRP] = {ZEBRA_ROUTE_NHRP, 10},
79 [ZEBRA_ROUTE_HSLS] = {ZEBRA_ROUTE_HSLS, 255},
80 [ZEBRA_ROUTE_OLSR] = {ZEBRA_ROUTE_OLSR, 255},
81 [ZEBRA_ROUTE_TABLE] = {ZEBRA_ROUTE_TABLE, 150},
82 [ZEBRA_ROUTE_LDP] = {ZEBRA_ROUTE_LDP, 150},
83 [ZEBRA_ROUTE_VNC] = {ZEBRA_ROUTE_VNC, 20},
84 [ZEBRA_ROUTE_VNC_DIRECT] = {ZEBRA_ROUTE_VNC_DIRECT, 20},
85 [ZEBRA_ROUTE_VNC_DIRECT_RH] = {ZEBRA_ROUTE_VNC_DIRECT_RH, 20},
86 [ZEBRA_ROUTE_BGP_DIRECT] = {ZEBRA_ROUTE_BGP_DIRECT, 20},
87 [ZEBRA_ROUTE_BGP_DIRECT_EXT] = {ZEBRA_ROUTE_BGP_DIRECT_EXT, 20},
88 [ZEBRA_ROUTE_BABEL] = {ZEBRA_ROUTE_BABEL, 100},
89 [ZEBRA_ROUTE_SHARP] = {ZEBRA_ROUTE_SHARP, 150},
90
91 /* no entry/default: 150 */
92 };
93
94 /* RPF lookup behaviour */
95 static enum multicast_mode ipv4_multicast_mode = MCAST_NO_CONFIG;
96
97
98 static void __attribute__((format(printf, 5, 6)))
99 _rnode_zlog(const char *_func, vrf_id_t vrf_id, struct route_node *rn,
100 int priority, const char *msgfmt, ...)
101 {
102 char buf[SRCDEST2STR_BUFFER + sizeof(" (MRIB)")];
103 char msgbuf[512];
104 va_list ap;
105
106 va_start(ap, msgfmt);
107 vsnprintf(msgbuf, sizeof(msgbuf), msgfmt, ap);
108 va_end(ap);
109
110 if (rn) {
111 rib_table_info_t *info = srcdest_rnode_table_info(rn);
112 srcdest_rnode2str(rn, buf, sizeof(buf));
113
114 if (info->safi == SAFI_MULTICAST)
115 strcat(buf, " (MRIB)");
116 } else {
117 snprintf(buf, sizeof(buf), "{(route_node *) NULL}");
118 }
119
120 zlog(priority, "%s: %d:%s: %s", _func, vrf_id, buf, msgbuf);
121 }
122
123 #define rnode_debug(node, vrf_id, ...) \
124 _rnode_zlog(__func__, vrf_id, node, LOG_DEBUG, __VA_ARGS__)
125 #define rnode_info(node, ...) \
126 _rnode_zlog(__func__, vrf_id, node, LOG_INFO, __VA_ARGS__)
127
128 uint8_t route_distance(int type)
129 {
130 uint8_t distance;
131
132 if ((unsigned)type >= array_size(route_info))
133 distance = 150;
134 else
135 distance = route_info[type].distance;
136
137 return distance;
138 }
139
140 int is_zebra_valid_kernel_table(uint32_t table_id)
141 {
142 #ifdef linux
143 if ((table_id == RT_TABLE_UNSPEC) || (table_id == RT_TABLE_LOCAL)
144 || (table_id == RT_TABLE_COMPAT))
145 return 0;
146 #endif
147
148 return 1;
149 }
150
151 int is_zebra_main_routing_table(uint32_t table_id)
152 {
153 if ((table_id == RT_TABLE_MAIN)
154 || (table_id == zebrad.rtm_table_default))
155 return 1;
156 return 0;
157 }
158
159 int zebra_check_addr(const struct prefix *p)
160 {
161 if (p->family == AF_INET) {
162 uint32_t addr;
163
164 addr = p->u.prefix4.s_addr;
165 addr = ntohl(addr);
166
167 if (IPV4_NET127(addr) || IN_CLASSD(addr)
168 || IPV4_LINKLOCAL(addr))
169 return 0;
170 }
171 if (p->family == AF_INET6) {
172 if (IN6_IS_ADDR_LOOPBACK(&p->u.prefix6))
173 return 0;
174 if (IN6_IS_ADDR_LINKLOCAL(&p->u.prefix6))
175 return 0;
176 }
177 return 1;
178 }
179
180 /* Add nexthop to the end of a rib node's nexthop list */
181 void route_entry_nexthop_add(struct route_entry *re, struct nexthop *nexthop)
182 {
183 nexthop_add(&re->ng.nexthop, nexthop);
184 re->nexthop_num++;
185 }
186
187
188 /**
189 * copy_nexthop - copy a nexthop to the rib structure.
190 */
191 void route_entry_copy_nexthops(struct route_entry *re, struct nexthop *nh)
192 {
193 assert(!re->ng.nexthop);
194 copy_nexthops(&re->ng.nexthop, nh, NULL);
195 for (struct nexthop *nexthop = nh; nexthop; nexthop = nexthop->next)
196 re->nexthop_num++;
197 }
198
199 /* Delete specified nexthop from the list. */
200 void route_entry_nexthop_delete(struct route_entry *re, struct nexthop *nexthop)
201 {
202 if (nexthop->next)
203 nexthop->next->prev = nexthop->prev;
204 if (nexthop->prev)
205 nexthop->prev->next = nexthop->next;
206 else
207 re->ng.nexthop = nexthop->next;
208 re->nexthop_num--;
209 }
210
211
212 struct nexthop *route_entry_nexthop_ifindex_add(struct route_entry *re,
213 ifindex_t ifindex,
214 vrf_id_t nh_vrf_id)
215 {
216 struct nexthop *nexthop;
217
218 nexthop = nexthop_new();
219 nexthop->type = NEXTHOP_TYPE_IFINDEX;
220 nexthop->ifindex = ifindex;
221 nexthop->vrf_id = nh_vrf_id;
222
223 route_entry_nexthop_add(re, nexthop);
224
225 return nexthop;
226 }
227
228 struct nexthop *route_entry_nexthop_ipv4_add(struct route_entry *re,
229 struct in_addr *ipv4,
230 struct in_addr *src,
231 vrf_id_t nh_vrf_id)
232 {
233 struct nexthop *nexthop;
234
235 nexthop = nexthop_new();
236 nexthop->type = NEXTHOP_TYPE_IPV4;
237 nexthop->vrf_id = nh_vrf_id;
238 nexthop->gate.ipv4 = *ipv4;
239 if (src)
240 nexthop->src.ipv4 = *src;
241
242 route_entry_nexthop_add(re, nexthop);
243
244 return nexthop;
245 }
246
247 struct nexthop *route_entry_nexthop_ipv4_ifindex_add(struct route_entry *re,
248 struct in_addr *ipv4,
249 struct in_addr *src,
250 ifindex_t ifindex,
251 vrf_id_t nh_vrf_id)
252 {
253 struct nexthop *nexthop;
254 struct interface *ifp;
255
256 nexthop = nexthop_new();
257 nexthop->vrf_id = nh_vrf_id;
258 nexthop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
259 nexthop->gate.ipv4 = *ipv4;
260 if (src)
261 nexthop->src.ipv4 = *src;
262 nexthop->ifindex = ifindex;
263 ifp = if_lookup_by_index(nexthop->ifindex, nh_vrf_id);
264 /*Pending: need to think if null ifp here is ok during bootup?
265 There was a crash because ifp here was coming to be NULL */
266 if (ifp)
267 if (connected_is_unnumbered(ifp)
268 || CHECK_FLAG(re->flags, ZEBRA_FLAG_EVPN_ROUTE)) {
269 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK);
270 }
271
272 route_entry_nexthop_add(re, nexthop);
273
274 return nexthop;
275 }
276
277 struct nexthop *route_entry_nexthop_ipv6_add(struct route_entry *re,
278 struct in6_addr *ipv6,
279 vrf_id_t nh_vrf_id)
280 {
281 struct nexthop *nexthop;
282
283 nexthop = nexthop_new();
284 nexthop->vrf_id = nh_vrf_id;
285 nexthop->type = NEXTHOP_TYPE_IPV6;
286 nexthop->gate.ipv6 = *ipv6;
287
288 route_entry_nexthop_add(re, nexthop);
289
290 return nexthop;
291 }
292
293 struct nexthop *route_entry_nexthop_ipv6_ifindex_add(struct route_entry *re,
294 struct in6_addr *ipv6,
295 ifindex_t ifindex,
296 vrf_id_t nh_vrf_id)
297 {
298 struct nexthop *nexthop;
299
300 nexthop = nexthop_new();
301 nexthop->vrf_id = nh_vrf_id;
302 nexthop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
303 nexthop->gate.ipv6 = *ipv6;
304 nexthop->ifindex = ifindex;
305 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_EVPN_ROUTE))
306 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK);
307
308 route_entry_nexthop_add(re, nexthop);
309
310 return nexthop;
311 }
312
313 struct nexthop *route_entry_nexthop_blackhole_add(struct route_entry *re,
314 enum blackhole_type bh_type)
315 {
316 struct nexthop *nexthop;
317
318 nexthop = nexthop_new();
319 nexthop->vrf_id = VRF_DEFAULT;
320 nexthop->type = NEXTHOP_TYPE_BLACKHOLE;
321 nexthop->bh_type = bh_type;
322
323 route_entry_nexthop_add(re, nexthop);
324
325 return nexthop;
326 }
327
328 static void nexthop_set_resolved(afi_t afi, const struct nexthop *newhop,
329 struct nexthop *nexthop)
330 {
331 struct nexthop *resolved_hop;
332
333 resolved_hop = nexthop_new();
334 SET_FLAG(resolved_hop->flags, NEXTHOP_FLAG_ACTIVE);
335
336 resolved_hop->vrf_id = nexthop->vrf_id;
337 switch (newhop->type) {
338 case NEXTHOP_TYPE_IPV4:
339 case NEXTHOP_TYPE_IPV4_IFINDEX:
340 /* If the resolving route specifies a gateway, use it */
341 resolved_hop->type = newhop->type;
342 resolved_hop->gate.ipv4 = newhop->gate.ipv4;
343
344 if (newhop->ifindex) {
345 resolved_hop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
346 resolved_hop->ifindex = newhop->ifindex;
347 if (newhop->flags & NEXTHOP_FLAG_ONLINK)
348 resolved_hop->flags |= NEXTHOP_FLAG_ONLINK;
349 }
350 break;
351 case NEXTHOP_TYPE_IPV6:
352 case NEXTHOP_TYPE_IPV6_IFINDEX:
353 resolved_hop->type = newhop->type;
354 resolved_hop->gate.ipv6 = newhop->gate.ipv6;
355
356 if (newhop->ifindex) {
357 resolved_hop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
358 resolved_hop->ifindex = newhop->ifindex;
359 }
360 break;
361 case NEXTHOP_TYPE_IFINDEX:
362 /* If the resolving route is an interface route,
363 * it means the gateway we are looking up is connected
364 * to that interface. (The actual network is _not_ onlink).
365 * Therefore, the resolved route should have the original
366 * gateway as nexthop as it is directly connected.
367 *
368 * On Linux, we have to set the onlink netlink flag because
369 * otherwise, the kernel won't accept the route.
370 */
371 resolved_hop->flags |= NEXTHOP_FLAG_ONLINK;
372 if (afi == AFI_IP) {
373 resolved_hop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
374 resolved_hop->gate.ipv4 = nexthop->gate.ipv4;
375 } else if (afi == AFI_IP6) {
376 resolved_hop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
377 resolved_hop->gate.ipv6 = nexthop->gate.ipv6;
378 }
379 resolved_hop->ifindex = newhop->ifindex;
380 break;
381 case NEXTHOP_TYPE_BLACKHOLE:
382 resolved_hop->type = NEXTHOP_TYPE_BLACKHOLE;
383 resolved_hop->bh_type = nexthop->bh_type;
384 break;
385 }
386
387 /* Copy labels of the resolved route */
388 if (newhop->nh_label)
389 nexthop_add_labels(resolved_hop, newhop->nh_label_type,
390 newhop->nh_label->num_labels,
391 &newhop->nh_label->label[0]);
392
393 resolved_hop->rparent = nexthop;
394 nexthop_add(&nexthop->resolved, resolved_hop);
395 }
396
397 /* If force flag is not set, do not modify falgs at all for uninstall
398 the route from FIB. */
399 static int nexthop_active(afi_t afi, struct route_entry *re,
400 struct nexthop *nexthop, int set,
401 struct route_node *top)
402 {
403 struct prefix p;
404 struct route_table *table;
405 struct route_node *rn;
406 struct route_entry *match = NULL;
407 int resolved;
408 struct nexthop *newhop;
409 struct interface *ifp;
410 rib_dest_t *dest;
411
412 if ((nexthop->type == NEXTHOP_TYPE_IPV4)
413 || nexthop->type == NEXTHOP_TYPE_IPV6)
414 nexthop->ifindex = 0;
415
416 if (set) {
417 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE);
418 nexthops_free(nexthop->resolved);
419 nexthop->resolved = NULL;
420 re->nexthop_mtu = 0;
421 }
422
423 /* Next hops (remote VTEPs) for EVPN routes are fully resolved. */
424 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_EVPN_RVTEP))
425 return 1;
426
427 /* Skip nexthops that have been filtered out due to route-map */
428 /* The nexthops are specific to this route and so the same */
429 /* nexthop for a different route may not have this flag set */
430 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FILTERED))
431 return 0;
432
433 /*
434 * Check to see if we should trust the passed in information
435 * for UNNUMBERED interfaces as that we won't find the GW
436 * address in the routing table.
437 */
438 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK)) {
439 ifp = if_lookup_by_index(nexthop->ifindex, nexthop->vrf_id);
440 if (ifp && connected_is_unnumbered(ifp)) {
441 if (if_is_operative(ifp))
442 return 1;
443 else
444 return 0;
445 } else
446 return 0;
447 }
448
449 /* Make lookup prefix. */
450 memset(&p, 0, sizeof(struct prefix));
451 switch (afi) {
452 case AFI_IP:
453 p.family = AF_INET;
454 p.prefixlen = IPV4_MAX_PREFIXLEN;
455 p.u.prefix4 = nexthop->gate.ipv4;
456 break;
457 case AFI_IP6:
458 p.family = AF_INET6;
459 p.prefixlen = IPV6_MAX_PREFIXLEN;
460 p.u.prefix6 = nexthop->gate.ipv6;
461 break;
462 default:
463 assert(afi != AFI_IP && afi != AFI_IP6);
464 break;
465 }
466 /* Lookup table. */
467 table = zebra_vrf_table(afi, SAFI_UNICAST, nexthop->vrf_id);
468 if (!table)
469 return 0;
470
471 rn = route_node_match(table, (struct prefix *)&p);
472 while (rn) {
473 route_unlock_node(rn);
474
475 /* Lookup should halt if we've matched against ourselves ('top',
476 * if specified) - i.e., we cannot have a nexthop NH1 is
477 * resolved by a route NH1. The exception is if the route is a
478 * host route.
479 */
480 if (top && rn == top)
481 if (((afi == AFI_IP) && (rn->p.prefixlen != 32))
482 || ((afi == AFI_IP6) && (rn->p.prefixlen != 128)))
483 return 0;
484
485 /* Pick up selected route. */
486 /* However, do not resolve over default route unless explicitly
487 * allowed. */
488 if (is_default_prefix(&rn->p)
489 && !rnh_resolve_via_default(p.family))
490 return 0;
491
492 dest = rib_dest_from_rnode(rn);
493 if (dest && dest->selected_fib
494 && !CHECK_FLAG(dest->selected_fib->status,
495 ROUTE_ENTRY_REMOVED)
496 && dest->selected_fib->type != ZEBRA_ROUTE_TABLE)
497 match = dest->selected_fib;
498
499 /* If there is no selected route or matched route is EGP, go up
500 tree. */
501 if (!match) {
502 do {
503 rn = rn->parent;
504 } while (rn && rn->info == NULL);
505 if (rn)
506 route_lock_node(rn);
507
508 continue;
509 }
510
511 if (match->type == ZEBRA_ROUTE_CONNECT) {
512 /* Directly point connected route. */
513 newhop = match->ng.nexthop;
514 if (newhop) {
515 if (nexthop->type == NEXTHOP_TYPE_IPV4
516 || nexthop->type == NEXTHOP_TYPE_IPV6)
517 nexthop->ifindex = newhop->ifindex;
518 }
519 return 1;
520 } else if (CHECK_FLAG(re->flags, ZEBRA_FLAG_ALLOW_RECURSION)) {
521 resolved = 0;
522 for (ALL_NEXTHOPS(match->ng, newhop)) {
523 if (!CHECK_FLAG(newhop->flags,
524 NEXTHOP_FLAG_FIB))
525 continue;
526 if (CHECK_FLAG(newhop->flags,
527 NEXTHOP_FLAG_RECURSIVE))
528 continue;
529
530 if (set) {
531 SET_FLAG(nexthop->flags,
532 NEXTHOP_FLAG_RECURSIVE);
533 SET_FLAG(re->status,
534 ROUTE_ENTRY_NEXTHOPS_CHANGED);
535 nexthop_set_resolved(afi, newhop,
536 nexthop);
537 }
538 resolved = 1;
539 }
540 if (resolved && set)
541 re->nexthop_mtu = match->mtu;
542 return resolved;
543 } else if (re->type == ZEBRA_ROUTE_STATIC) {
544 resolved = 0;
545 for (ALL_NEXTHOPS(match->ng, newhop)) {
546 if (!CHECK_FLAG(newhop->flags,
547 NEXTHOP_FLAG_FIB))
548 continue;
549
550 if (set) {
551 SET_FLAG(nexthop->flags,
552 NEXTHOP_FLAG_RECURSIVE);
553 nexthop_set_resolved(afi, newhop,
554 nexthop);
555 }
556 resolved = 1;
557 }
558 if (resolved && set)
559 re->nexthop_mtu = match->mtu;
560 return resolved;
561 } else {
562 return 0;
563 }
564 }
565 return 0;
566 }
567
568 struct route_entry *rib_match(afi_t afi, safi_t safi, vrf_id_t vrf_id,
569 union g_addr *addr, struct route_node **rn_out)
570 {
571 struct prefix p;
572 struct route_table *table;
573 struct route_node *rn;
574 struct route_entry *match = NULL;
575 struct nexthop *newhop;
576
577 /* Lookup table. */
578 table = zebra_vrf_table(afi, safi, vrf_id);
579 if (!table)
580 return 0;
581
582 memset(&p, 0, sizeof(struct prefix));
583 p.family = afi;
584 if (afi == AFI_IP) {
585 p.u.prefix4 = addr->ipv4;
586 p.prefixlen = IPV4_MAX_PREFIXLEN;
587 } else {
588 p.u.prefix6 = addr->ipv6;
589 p.prefixlen = IPV6_MAX_PREFIXLEN;
590 }
591
592 rn = route_node_match(table, (struct prefix *)&p);
593
594 while (rn) {
595 rib_dest_t *dest;
596
597 route_unlock_node(rn);
598
599 dest = rib_dest_from_rnode(rn);
600 if (dest && dest->selected_fib
601 && !CHECK_FLAG(dest->selected_fib->status,
602 ROUTE_ENTRY_REMOVED))
603 match = dest->selected_fib;
604
605 /* If there is no selected route or matched route is EGP, go up
606 tree. */
607 if (!match) {
608 do {
609 rn = rn->parent;
610 } while (rn && rn->info == NULL);
611 if (rn)
612 route_lock_node(rn);
613 } else {
614 if (match->type != ZEBRA_ROUTE_CONNECT) {
615 int found = 0;
616 for (ALL_NEXTHOPS(match->ng, newhop))
617 if (CHECK_FLAG(newhop->flags,
618 NEXTHOP_FLAG_FIB)) {
619 found = 1;
620 break;
621 }
622 if (!found)
623 return NULL;
624 }
625
626 if (rn_out)
627 *rn_out = rn;
628 return match;
629 }
630 }
631 return NULL;
632 }
633
634 struct route_entry *rib_match_ipv4_multicast(vrf_id_t vrf_id,
635 struct in_addr addr,
636 struct route_node **rn_out)
637 {
638 struct route_entry *re = NULL, *mre = NULL, *ure = NULL;
639 struct route_node *m_rn = NULL, *u_rn = NULL;
640 union g_addr gaddr = {.ipv4 = addr};
641
642 switch (ipv4_multicast_mode) {
643 case MCAST_MRIB_ONLY:
644 return rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr,
645 rn_out);
646 case MCAST_URIB_ONLY:
647 return rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, rn_out);
648 case MCAST_NO_CONFIG:
649 case MCAST_MIX_MRIB_FIRST:
650 re = mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr,
651 &m_rn);
652 if (!mre)
653 re = ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id,
654 &gaddr, &u_rn);
655 break;
656 case MCAST_MIX_DISTANCE:
657 mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr, &m_rn);
658 ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, &u_rn);
659 if (mre && ure)
660 re = ure->distance < mre->distance ? ure : mre;
661 else if (mre)
662 re = mre;
663 else if (ure)
664 re = ure;
665 break;
666 case MCAST_MIX_PFXLEN:
667 mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr, &m_rn);
668 ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, &u_rn);
669 if (mre && ure)
670 re = u_rn->p.prefixlen > m_rn->p.prefixlen ? ure : mre;
671 else if (mre)
672 re = mre;
673 else if (ure)
674 re = ure;
675 break;
676 }
677
678 if (rn_out)
679 *rn_out = (re == mre) ? m_rn : u_rn;
680
681 if (IS_ZEBRA_DEBUG_RIB) {
682 char buf[BUFSIZ];
683 inet_ntop(AF_INET, &addr, buf, BUFSIZ);
684
685 zlog_debug("%s: %s: vrf: %u found %s, using %s",
686 __func__, buf, vrf_id,
687 mre ? (ure ? "MRIB+URIB" : "MRIB")
688 : ure ? "URIB" : "nothing",
689 re == ure ? "URIB" : re == mre ? "MRIB" : "none");
690 }
691 return re;
692 }
693
694 void multicast_mode_ipv4_set(enum multicast_mode mode)
695 {
696 if (IS_ZEBRA_DEBUG_RIB)
697 zlog_debug("%s: multicast lookup mode set (%d)", __func__,
698 mode);
699 ipv4_multicast_mode = mode;
700 }
701
702 enum multicast_mode multicast_mode_ipv4_get(void)
703 {
704 return ipv4_multicast_mode;
705 }
706
707 struct route_entry *rib_lookup_ipv4(struct prefix_ipv4 *p, vrf_id_t vrf_id)
708 {
709 struct route_table *table;
710 struct route_node *rn;
711 struct route_entry *match = NULL;
712 struct nexthop *nexthop;
713 rib_dest_t *dest;
714
715 /* Lookup table. */
716 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
717 if (!table)
718 return 0;
719
720 rn = route_node_lookup(table, (struct prefix *)p);
721
722 /* No route for this prefix. */
723 if (!rn)
724 return NULL;
725
726 /* Unlock node. */
727 route_unlock_node(rn);
728 dest = rib_dest_from_rnode(rn);
729
730 if (dest && dest->selected_fib
731 && !CHECK_FLAG(dest->selected_fib->status, ROUTE_ENTRY_REMOVED))
732 match = dest->selected_fib;
733
734 if (!match)
735 return NULL;
736
737 if (match->type == ZEBRA_ROUTE_CONNECT)
738 return match;
739
740 for (ALL_NEXTHOPS(match->ng, nexthop))
741 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB))
742 return match;
743
744 return NULL;
745 }
746
747 /*
748 * This clone function, unlike its original rib_lookup_ipv4(), checks
749 * if specified IPv4 route record (prefix/mask -> gate) exists in
750 * the whole RIB and has ROUTE_ENTRY_SELECTED_FIB set.
751 *
752 * Return values:
753 * -1: error
754 * 0: exact match found
755 * 1: a match was found with a different gate
756 * 2: connected route found
757 * 3: no matches found
758 */
759 int rib_lookup_ipv4_route(struct prefix_ipv4 *p, union sockunion *qgate,
760 vrf_id_t vrf_id)
761 {
762 struct route_table *table;
763 struct route_node *rn;
764 struct route_entry *match = NULL;
765 struct nexthop *nexthop;
766 int nexthops_active;
767 rib_dest_t *dest;
768
769 /* Lookup table. */
770 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
771 if (!table)
772 return ZEBRA_RIB_LOOKUP_ERROR;
773
774 /* Scan the RIB table for exactly matching RIB entry. */
775 rn = route_node_lookup(table, (struct prefix *)p);
776
777 /* No route for this prefix. */
778 if (!rn)
779 return ZEBRA_RIB_NOTFOUND;
780
781 /* Unlock node. */
782 route_unlock_node(rn);
783 dest = rib_dest_from_rnode(rn);
784
785 /* Find out if a "selected" RR for the discovered RIB entry exists ever.
786 */
787 if (dest && dest->selected_fib
788 && !CHECK_FLAG(dest->selected_fib->status, ROUTE_ENTRY_REMOVED))
789 match = dest->selected_fib;
790
791 /* None such found :( */
792 if (!match)
793 return ZEBRA_RIB_NOTFOUND;
794
795 if (match->type == ZEBRA_ROUTE_CONNECT)
796 return ZEBRA_RIB_FOUND_CONNECTED;
797
798 /* Ok, we have a cood candidate, let's check it's nexthop list... */
799 nexthops_active = 0;
800 for (ALL_NEXTHOPS(match->ng, nexthop))
801 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB)) {
802 nexthops_active = 1;
803 if (nexthop->gate.ipv4.s_addr == sockunion2ip(qgate))
804 return ZEBRA_RIB_FOUND_EXACT;
805 if (IS_ZEBRA_DEBUG_RIB) {
806 char gate_buf[INET_ADDRSTRLEN],
807 qgate_buf[INET_ADDRSTRLEN];
808 inet_ntop(AF_INET, &nexthop->gate.ipv4.s_addr,
809 gate_buf, INET_ADDRSTRLEN);
810 inet_ntop(AF_INET, &sockunion2ip(qgate),
811 qgate_buf, INET_ADDRSTRLEN);
812 zlog_debug("%s: qgate == %s, %s == %s",
813 __func__, qgate_buf,
814 nexthop->rparent ? "rgate" : "gate",
815 gate_buf);
816 }
817 }
818
819 if (nexthops_active)
820 return ZEBRA_RIB_FOUND_NOGATE;
821
822 return ZEBRA_RIB_NOTFOUND;
823 }
824
825 #define RIB_SYSTEM_ROUTE(R) \
826 ((R)->type == ZEBRA_ROUTE_KERNEL || (R)->type == ZEBRA_ROUTE_CONNECT)
827
828 /* This function verifies reachability of one given nexthop, which can be
829 * numbered or unnumbered, IPv4 or IPv6. The result is unconditionally stored
830 * in nexthop->flags field. If the 4th parameter, 'set', is non-zero,
831 * nexthop->ifindex will be updated appropriately as well.
832 * An existing route map can turn (otherwise active) nexthop into inactive, but
833 * not vice versa.
834 *
835 * The return value is the final value of 'ACTIVE' flag.
836 */
837
838 static unsigned nexthop_active_check(struct route_node *rn,
839 struct route_entry *re,
840 struct nexthop *nexthop, int set)
841 {
842 struct interface *ifp;
843 route_map_result_t ret = RMAP_MATCH;
844 int family;
845 char buf[SRCDEST2STR_BUFFER];
846 const struct prefix *p, *src_p;
847 srcdest_rnode_prefixes(rn, &p, &src_p);
848
849 if (rn->p.family == AF_INET)
850 family = AFI_IP;
851 else if (rn->p.family == AF_INET6)
852 family = AFI_IP6;
853 else
854 family = 0;
855 switch (nexthop->type) {
856 case NEXTHOP_TYPE_IFINDEX:
857 ifp = if_lookup_by_index(nexthop->ifindex, nexthop->vrf_id);
858 if (ifp && if_is_operative(ifp))
859 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
860 else
861 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
862 break;
863 case NEXTHOP_TYPE_IPV4:
864 case NEXTHOP_TYPE_IPV4_IFINDEX:
865 family = AFI_IP;
866 if (nexthop_active(AFI_IP, re, nexthop, set, rn))
867 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
868 else
869 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
870 break;
871 case NEXTHOP_TYPE_IPV6:
872 family = AFI_IP6;
873 if (nexthop_active(AFI_IP6, re, nexthop, set, rn))
874 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
875 else
876 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
877 break;
878 case NEXTHOP_TYPE_IPV6_IFINDEX:
879 /* RFC 5549, v4 prefix with v6 NH */
880 if (rn->p.family != AF_INET)
881 family = AFI_IP6;
882 if (IN6_IS_ADDR_LINKLOCAL(&nexthop->gate.ipv6)) {
883 ifp = if_lookup_by_index(nexthop->ifindex,
884 nexthop->vrf_id);
885 if (ifp && if_is_operative(ifp))
886 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
887 else
888 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
889 } else {
890 if (nexthop_active(AFI_IP6, re, nexthop, set, rn))
891 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
892 else
893 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
894 }
895 break;
896 case NEXTHOP_TYPE_BLACKHOLE:
897 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
898 break;
899 default:
900 break;
901 }
902 if (!CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE))
903 return 0;
904
905 /* XXX: What exactly do those checks do? Do we support
906 * e.g. IPv4 routes with IPv6 nexthops or vice versa? */
907 if (RIB_SYSTEM_ROUTE(re) || (family == AFI_IP && p->family != AF_INET)
908 || (family == AFI_IP6 && p->family != AF_INET6))
909 return CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
910
911 /* The original code didn't determine the family correctly
912 * e.g. for NEXTHOP_TYPE_IFINDEX. Retrieve the correct afi
913 * from the rib_table_info in those cases.
914 * Possibly it may be better to use only the rib_table_info
915 * in every case.
916 */
917 if (!family) {
918 rib_table_info_t *info;
919
920 info = srcdest_rnode_table_info(rn);
921 family = info->afi;
922 }
923
924 memset(&nexthop->rmap_src.ipv6, 0, sizeof(union g_addr));
925
926 /* It'll get set if required inside */
927 ret = zebra_route_map_check(family, re->type, re->instance, p, nexthop,
928 nexthop->vrf_id, re->tag);
929 if (ret == RMAP_DENYMATCH) {
930 if (IS_ZEBRA_DEBUG_RIB) {
931 srcdest_rnode2str(rn, buf, sizeof(buf));
932 zlog_debug(
933 "%u:%s: Filtering out with NH out %s due to route map",
934 re->vrf_id, buf,
935 ifindex2ifname(nexthop->ifindex,
936 nexthop->vrf_id));
937 }
938 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
939 }
940 return CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
941 }
942
943 /* Iterate over all nexthops of the given RIB entry and refresh their
944 * ACTIVE flag. re->nexthop_active_num is updated accordingly. If any
945 * nexthop is found to toggle the ACTIVE flag, the whole re structure
946 * is flagged with ROUTE_ENTRY_CHANGED. The 4th 'set' argument is
947 * transparently passed to nexthop_active_check().
948 *
949 * Return value is the new number of active nexthops.
950 */
951
952 static int nexthop_active_update(struct route_node *rn, struct route_entry *re,
953 int set)
954 {
955 struct nexthop *nexthop;
956 union g_addr prev_src;
957 unsigned int prev_active, new_active, old_num_nh;
958 ifindex_t prev_index;
959 old_num_nh = re->nexthop_active_num;
960
961 re->nexthop_active_num = 0;
962 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
963
964 for (nexthop = re->ng.nexthop; nexthop; nexthop = nexthop->next) {
965 /* No protocol daemon provides src and so we're skipping
966 * tracking it */
967 prev_src = nexthop->rmap_src;
968 prev_active = CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
969 prev_index = nexthop->ifindex;
970 if ((new_active = nexthop_active_check(rn, re, nexthop, set)))
971 re->nexthop_active_num++;
972 /* Don't allow src setting on IPv6 addr for now */
973 if (prev_active != new_active || prev_index != nexthop->ifindex
974 || ((nexthop->type >= NEXTHOP_TYPE_IFINDEX
975 && nexthop->type < NEXTHOP_TYPE_IPV6)
976 && prev_src.ipv4.s_addr
977 != nexthop->rmap_src.ipv4.s_addr)
978 || ((nexthop->type >= NEXTHOP_TYPE_IPV6
979 && nexthop->type < NEXTHOP_TYPE_BLACKHOLE)
980 && !(IPV6_ADDR_SAME(&prev_src.ipv6,
981 &nexthop->rmap_src.ipv6)))) {
982 SET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
983 SET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
984 }
985 }
986
987 if (old_num_nh != re->nexthop_active_num)
988 SET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
989
990 if (CHECK_FLAG(re->status, ROUTE_ENTRY_CHANGED)) {
991 SET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
992 }
993
994 return re->nexthop_active_num;
995 }
996
997 /*
998 * Is this RIB labeled-unicast? It must be of type BGP and all paths
999 * (nexthops) must have a label.
1000 */
1001 int zebra_rib_labeled_unicast(struct route_entry *re)
1002 {
1003 struct nexthop *nexthop = NULL;
1004
1005 if (re->type != ZEBRA_ROUTE_BGP)
1006 return 0;
1007
1008 for (ALL_NEXTHOPS(re->ng, nexthop))
1009 if (!nexthop->nh_label || !nexthop->nh_label->num_labels)
1010 return 0;
1011
1012 return 1;
1013 }
1014
1015 void kernel_route_rib_pass_fail(struct route_node *rn, const struct prefix *p,
1016 struct route_entry *re,
1017 enum dp_results res)
1018 {
1019 struct nexthop *nexthop;
1020 char buf[PREFIX_STRLEN];
1021 rib_dest_t *dest;
1022
1023 dest = rib_dest_from_rnode(rn);
1024
1025 switch (res) {
1026 case DP_INSTALL_SUCCESS:
1027 dest->selected_fib = re;
1028 for (ALL_NEXTHOPS(re->ng, nexthop)) {
1029 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE))
1030 continue;
1031
1032 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE))
1033 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1034 else
1035 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1036 }
1037 zsend_route_notify_owner(re, p, ZAPI_ROUTE_INSTALLED);
1038 break;
1039 case DP_INSTALL_FAILURE:
1040 /*
1041 * I am not sure this is the right thing to do here
1042 * but the code always set selected_fib before
1043 * this assignment was moved here.
1044 */
1045 dest->selected_fib = re;
1046
1047 zsend_route_notify_owner(re, p, ZAPI_ROUTE_FAIL_INSTALL);
1048 zlog_warn("%u:%s: Route install failed", re->vrf_id,
1049 prefix2str(p, buf, sizeof(buf)));
1050 break;
1051 case DP_DELETE_SUCCESS:
1052 /*
1053 * The case where selected_fib is not re is
1054 * when we have received a system route
1055 * that is overriding our installed route
1056 * as such we should leave the selected_fib
1057 * pointer alone
1058 */
1059 if (dest->selected_fib == re)
1060 dest->selected_fib = NULL;
1061 for (ALL_NEXTHOPS(re->ng, nexthop))
1062 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1063
1064 zsend_route_notify_owner(re, p, ZAPI_ROUTE_REMOVED);
1065 break;
1066 case DP_DELETE_FAILURE:
1067 /*
1068 * Should we set this to NULL if the
1069 * delete fails?
1070 */
1071 dest->selected_fib = NULL;
1072 zlog_warn("%u:%s: Route Deletion failure", re->vrf_id,
1073 prefix2str(p, buf, sizeof(buf)));
1074
1075 zsend_route_notify_owner(re, p, ZAPI_ROUTE_REMOVE_FAIL);
1076 break;
1077 }
1078 }
1079
1080 /* Update flag indicates whether this is a "replace" or not. Currently, this
1081 * is only used for IPv4.
1082 */
1083 void rib_install_kernel(struct route_node *rn, struct route_entry *re,
1084 struct route_entry *old)
1085 {
1086 struct nexthop *nexthop;
1087 rib_table_info_t *info = srcdest_rnode_table_info(rn);
1088 const struct prefix *p, *src_p;
1089 struct zebra_vrf *zvrf = vrf_info_lookup(re->vrf_id);
1090
1091 srcdest_rnode_prefixes(rn, &p, &src_p);
1092
1093 if (info->safi != SAFI_UNICAST) {
1094 for (ALL_NEXTHOPS(re->ng, nexthop))
1095 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1096 return;
1097 } else {
1098 struct nexthop *prev;
1099
1100 for (ALL_NEXTHOPS(re->ng, nexthop)) {
1101 UNSET_FLAG (nexthop->flags, NEXTHOP_FLAG_DUPLICATE);
1102 for (ALL_NEXTHOPS(re->ng, prev)) {
1103 if (prev == nexthop)
1104 break;
1105 if (nexthop_same_firsthop(nexthop, prev)) {
1106 SET_FLAG(nexthop->flags,
1107 NEXTHOP_FLAG_DUPLICATE);
1108 break;
1109 }
1110 }
1111 }
1112 }
1113
1114 /*
1115 * If this is a replace to a new RE let the originator of the RE
1116 * know that they've lost
1117 */
1118 if (old && (old != re) && (old->type != re->type))
1119 zsend_route_notify_owner(old, p, ZAPI_ROUTE_BETTER_ADMIN_WON);
1120
1121 /*
1122 * Make sure we update the FPM any time we send new information to
1123 * the kernel.
1124 */
1125 hook_call(rib_update, rn, "installing in kernel");
1126 switch (kernel_route_rib(rn, p, src_p, old, re)) {
1127 case DP_REQUEST_QUEUED:
1128 zlog_err("No current known DataPlane interfaces can return this, please fix");
1129 break;
1130 case DP_REQUEST_FAILURE:
1131 zlog_err("No current known Rib Install Failure cases, please fix");
1132 break;
1133 case DP_REQUEST_SUCCESS:
1134 zvrf->installs++;
1135 break;
1136 }
1137
1138 return;
1139 }
1140
1141 /* Uninstall the route from kernel. */
1142 void rib_uninstall_kernel(struct route_node *rn, struct route_entry *re)
1143 {
1144 struct nexthop *nexthop;
1145 rib_table_info_t *info = srcdest_rnode_table_info(rn);
1146 const struct prefix *p, *src_p;
1147 struct zebra_vrf *zvrf = vrf_info_lookup(re->vrf_id);
1148
1149 srcdest_rnode_prefixes(rn, &p, &src_p);
1150
1151 if (info->safi != SAFI_UNICAST) {
1152 for (ALL_NEXTHOPS(re->ng, nexthop))
1153 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1154 return;
1155 }
1156
1157 /*
1158 * Make sure we update the FPM any time we send new information to
1159 * the kernel.
1160 */
1161 hook_call(rib_update, rn, "uninstalling from kernel");
1162 switch (kernel_route_rib(rn, p, src_p, re, NULL)) {
1163 case DP_REQUEST_QUEUED:
1164 zlog_err("No current known DataPlane interfaces can return this, please fix");
1165 break;
1166 case DP_REQUEST_FAILURE:
1167 zlog_err("No current known RIB Install Failure cases, please fix");
1168 break;
1169 case DP_REQUEST_SUCCESS:
1170 if (zvrf)
1171 zvrf->removals++;
1172 break;
1173 }
1174
1175 return;
1176 }
1177
1178 /* Uninstall the route from kernel. */
1179 static void rib_uninstall(struct route_node *rn, struct route_entry *re)
1180 {
1181 rib_table_info_t *info = srcdest_rnode_table_info(rn);
1182 rib_dest_t *dest = rib_dest_from_rnode(rn);
1183
1184 if (dest && dest->selected_fib == re) {
1185 if (info->safi == SAFI_UNICAST)
1186 hook_call(rib_update, rn, "rib_uninstall");
1187
1188 if (!RIB_SYSTEM_ROUTE(re))
1189 rib_uninstall_kernel(rn, re);
1190
1191 /* If labeled-unicast route, uninstall transit LSP. */
1192 if (zebra_rib_labeled_unicast(re))
1193 zebra_mpls_lsp_uninstall(info->zvrf, rn, re);
1194 }
1195
1196 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)) {
1197 const struct prefix *p, *src_p;
1198
1199 srcdest_rnode_prefixes(rn, &p, &src_p);
1200
1201 redistribute_delete(p, src_p, re);
1202 UNSET_FLAG(re->flags, ZEBRA_FLAG_SELECTED);
1203 }
1204 }
1205
1206 /*
1207 * rib_can_delete_dest
1208 *
1209 * Returns TRUE if the given dest can be deleted from the table.
1210 */
1211 static int rib_can_delete_dest(rib_dest_t *dest)
1212 {
1213 if (dest->routes) {
1214 return 0;
1215 }
1216
1217 /*
1218 * Don't delete the dest if we have to update the FPM about this
1219 * prefix.
1220 */
1221 if (CHECK_FLAG(dest->flags, RIB_DEST_UPDATE_FPM)
1222 || CHECK_FLAG(dest->flags, RIB_DEST_SENT_TO_FPM))
1223 return 0;
1224
1225 return 1;
1226 }
1227
1228 /*
1229 * rib_gc_dest
1230 *
1231 * Garbage collect the rib dest corresponding to the given route node
1232 * if appropriate.
1233 *
1234 * Returns TRUE if the dest was deleted, FALSE otherwise.
1235 */
1236 int rib_gc_dest(struct route_node *rn)
1237 {
1238 rib_dest_t *dest;
1239
1240 dest = rib_dest_from_rnode(rn);
1241 if (!dest)
1242 return 0;
1243
1244 if (!rib_can_delete_dest(dest))
1245 return 0;
1246
1247 if (IS_ZEBRA_DEBUG_RIB) {
1248 struct zebra_vrf *zvrf;
1249
1250 zvrf = rib_dest_vrf(dest);
1251 rnode_debug(rn, zvrf_id(zvrf), "removing dest from table");
1252 }
1253
1254 dest->rnode = NULL;
1255 XFREE(MTYPE_RIB_DEST, dest);
1256 rn->info = NULL;
1257
1258 /*
1259 * Release the one reference that we keep on the route node.
1260 */
1261 route_unlock_node(rn);
1262 return 1;
1263 }
1264
1265 static void rib_process_add_fib(struct zebra_vrf *zvrf, struct route_node *rn,
1266 struct route_entry *new)
1267 {
1268 rib_dest_t *dest = rib_dest_from_rnode(rn);
1269
1270 hook_call(rib_update, rn, "new route selected");
1271
1272 /* Update real nexthop. This may actually determine if nexthop is active
1273 * or not. */
1274 if (!nexthop_active_update(rn, new, 1)) {
1275 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1276 return;
1277 }
1278
1279 if (IS_ZEBRA_DEBUG_RIB) {
1280 char buf[SRCDEST2STR_BUFFER];
1281 srcdest_rnode2str(rn, buf, sizeof(buf));
1282 zlog_debug("%u:%s: Adding route rn %p, re %p (type %d)",
1283 zvrf_id(zvrf), buf, rn, new, new->type);
1284 }
1285
1286 /* If labeled-unicast route, install transit LSP. */
1287 if (zebra_rib_labeled_unicast(new))
1288 zebra_mpls_lsp_install(zvrf, rn, new);
1289
1290 if (!RIB_SYSTEM_ROUTE(new))
1291 rib_install_kernel(rn, new, NULL);
1292 else
1293 dest->selected_fib = new;
1294
1295 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1296 }
1297
1298 static void rib_process_del_fib(struct zebra_vrf *zvrf, struct route_node *rn,
1299 struct route_entry *old)
1300 {
1301 rib_dest_t *dest = rib_dest_from_rnode(rn);
1302 hook_call(rib_update, rn, "removing existing route");
1303
1304 /* Uninstall from kernel. */
1305 if (IS_ZEBRA_DEBUG_RIB) {
1306 char buf[SRCDEST2STR_BUFFER];
1307 srcdest_rnode2str(rn, buf, sizeof(buf));
1308 zlog_debug("%u:%s: Deleting route rn %p, re %p (type %d)",
1309 zvrf_id(zvrf), buf, rn, old, old->type);
1310 }
1311
1312 /* If labeled-unicast route, uninstall transit LSP. */
1313 if (zebra_rib_labeled_unicast(old))
1314 zebra_mpls_lsp_uninstall(zvrf, rn, old);
1315
1316 if (!RIB_SYSTEM_ROUTE(old))
1317 rib_uninstall_kernel(rn, old);
1318 else {
1319 /*
1320 * We are setting this to NULL here
1321 * because that is what we traditionally
1322 * have been doing. I am not positive
1323 * that this is the right thing to do
1324 * but let's leave the code alone
1325 * for the RIB_SYSTEM_ROUTE case
1326 */
1327 dest->selected_fib = NULL;
1328 }
1329
1330 /* Update nexthop for route, reset changed flag. */
1331 nexthop_active_update(rn, old, 1);
1332 UNSET_FLAG(old->status, ROUTE_ENTRY_CHANGED);
1333 }
1334
1335 static void rib_process_update_fib(struct zebra_vrf *zvrf,
1336 struct route_node *rn,
1337 struct route_entry *old,
1338 struct route_entry *new)
1339 {
1340 struct nexthop *nexthop = NULL;
1341 int nh_active = 0;
1342 rib_dest_t *dest = rib_dest_from_rnode(rn);
1343
1344 /*
1345 * We have to install or update if a new route has been selected or
1346 * something has changed.
1347 */
1348 if (new != old || CHECK_FLAG(new->status, ROUTE_ENTRY_CHANGED)) {
1349 hook_call(rib_update, rn, "updating existing route");
1350
1351 /* Update the nexthop; we could determine here that nexthop is
1352 * inactive. */
1353 if (nexthop_active_update(rn, new, 1))
1354 nh_active = 1;
1355
1356 /* If nexthop is active, install the selected route, if
1357 * appropriate. If
1358 * the install succeeds, cleanup flags for prior route, if
1359 * different from
1360 * newly selected.
1361 */
1362 if (nh_active) {
1363 if (IS_ZEBRA_DEBUG_RIB) {
1364 char buf[SRCDEST2STR_BUFFER];
1365 srcdest_rnode2str(rn, buf, sizeof(buf));
1366 if (new != old)
1367 zlog_debug(
1368 "%u:%s: Updating route rn %p, re %p (type %d) "
1369 "old %p (type %d)",
1370 zvrf_id(zvrf), buf, rn, new,
1371 new->type, old, old->type);
1372 else
1373 zlog_debug(
1374 "%u:%s: Updating route rn %p, re %p (type %d)",
1375 zvrf_id(zvrf), buf, rn, new,
1376 new->type);
1377 }
1378
1379 /* If labeled-unicast route, uninstall transit LSP. */
1380 if (zebra_rib_labeled_unicast(old))
1381 zebra_mpls_lsp_uninstall(zvrf, rn, old);
1382
1383 /* Non-system route should be installed. */
1384 if (!RIB_SYSTEM_ROUTE(new)) {
1385 /* If labeled-unicast route, install transit
1386 * LSP. */
1387 if (zebra_rib_labeled_unicast(new))
1388 zebra_mpls_lsp_install(zvrf, rn, new);
1389
1390 rib_install_kernel(rn, new, old);
1391 } else {
1392 /*
1393 * We do not need to install the
1394 * selected route because it
1395 * is already isntalled by
1396 * the system( ie not us )
1397 * so just mark it as winning
1398 * we do need to ensure that
1399 * if we uninstall a route
1400 * from ourselves we don't
1401 * over write this pointer
1402 */
1403 dest->selected_fib = NULL;
1404 }
1405 /* If install succeeded or system route, cleanup flags
1406 * for prior route. */
1407 if (new != old) {
1408 if (RIB_SYSTEM_ROUTE(new)) {
1409 if (!RIB_SYSTEM_ROUTE(old))
1410 rib_uninstall_kernel(rn, old);
1411 } else {
1412 for (nexthop = old->ng.nexthop; nexthop;
1413 nexthop = nexthop->next)
1414 UNSET_FLAG(nexthop->flags,
1415 NEXTHOP_FLAG_FIB);
1416 }
1417 }
1418 }
1419
1420 /*
1421 * If nexthop for selected route is not active or install
1422 * failed, we
1423 * may need to uninstall and delete for redistribution.
1424 */
1425 if (!nh_active) {
1426 if (IS_ZEBRA_DEBUG_RIB) {
1427 char buf[SRCDEST2STR_BUFFER];
1428 srcdest_rnode2str(rn, buf, sizeof(buf));
1429 if (new != old)
1430 zlog_debug(
1431 "%u:%s: Deleting route rn %p, re %p (type %d) "
1432 "old %p (type %d) - nexthop inactive",
1433 zvrf_id(zvrf), buf, rn, new,
1434 new->type, old, old->type);
1435 else
1436 zlog_debug(
1437 "%u:%s: Deleting route rn %p, re %p (type %d) - nexthop inactive",
1438 zvrf_id(zvrf), buf, rn, new,
1439 new->type);
1440 }
1441
1442 /* If labeled-unicast route, uninstall transit LSP. */
1443 if (zebra_rib_labeled_unicast(old))
1444 zebra_mpls_lsp_uninstall(zvrf, rn, old);
1445
1446 if (!RIB_SYSTEM_ROUTE(old))
1447 rib_uninstall_kernel(rn, old);
1448 else
1449 dest->selected_fib = NULL;
1450 }
1451 } else {
1452 /*
1453 * Same route selected; check if in the FIB and if not,
1454 * re-install. This
1455 * is housekeeping code to deal with race conditions in kernel
1456 * with linux
1457 * netlink reporting interface up before IPv4 or IPv6 protocol
1458 * is ready
1459 * to add routes.
1460 */
1461 if (!RIB_SYSTEM_ROUTE(new)) {
1462 bool in_fib = false;
1463
1464 for (ALL_NEXTHOPS(new->ng, nexthop))
1465 if (CHECK_FLAG(nexthop->flags,
1466 NEXTHOP_FLAG_FIB)) {
1467 in_fib = true;
1468 break;
1469 }
1470 if (!in_fib)
1471 rib_install_kernel(rn, new, NULL);
1472 }
1473 }
1474
1475 /* Update prior route. */
1476 if (new != old) {
1477 /* Set real nexthop. */
1478 nexthop_active_update(rn, old, 1);
1479 UNSET_FLAG(old->status, ROUTE_ENTRY_CHANGED);
1480 }
1481
1482 /* Clear changed flag. */
1483 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1484 }
1485
1486 /* Check if 'alternate' RIB entry is better than 'current'. */
1487 static struct route_entry *rib_choose_best(struct route_entry *current,
1488 struct route_entry *alternate)
1489 {
1490 if (current == NULL)
1491 return alternate;
1492
1493 /* filter route selection in following order:
1494 * - connected beats other types
1495 * - lower distance beats higher
1496 * - lower metric beats higher for equal distance
1497 * - last, hence oldest, route wins tie break.
1498 */
1499
1500 /* Connected routes. Pick the last connected
1501 * route of the set of lowest metric connected routes.
1502 */
1503 if (alternate->type == ZEBRA_ROUTE_CONNECT) {
1504 if (current->type != ZEBRA_ROUTE_CONNECT
1505 || alternate->metric <= current->metric)
1506 return alternate;
1507
1508 return current;
1509 }
1510
1511 if (current->type == ZEBRA_ROUTE_CONNECT)
1512 return current;
1513
1514 /* higher distance loses */
1515 if (alternate->distance < current->distance)
1516 return alternate;
1517 if (current->distance < alternate->distance)
1518 return current;
1519
1520 /* metric tie-breaks equal distance */
1521 if (alternate->metric <= current->metric)
1522 return alternate;
1523
1524 return current;
1525 }
1526
1527 /* Core function for processing routing information base. */
1528 static void rib_process(struct route_node *rn)
1529 {
1530 struct route_entry *re;
1531 struct route_entry *next;
1532 struct route_entry *old_selected = NULL;
1533 struct route_entry *new_selected = NULL;
1534 struct route_entry *old_fib = NULL;
1535 struct route_entry *new_fib = NULL;
1536 struct route_entry *best = NULL;
1537 char buf[SRCDEST2STR_BUFFER];
1538 rib_dest_t *dest;
1539 struct zebra_vrf *zvrf = NULL;
1540 const struct prefix *p, *src_p;
1541
1542 srcdest_rnode_prefixes(rn, &p, &src_p);
1543 vrf_id_t vrf_id = VRF_UNKNOWN;
1544
1545 assert(rn);
1546
1547 dest = rib_dest_from_rnode(rn);
1548 if (dest) {
1549 zvrf = rib_dest_vrf(dest);
1550 vrf_id = zvrf_id(zvrf);
1551 }
1552
1553 if (IS_ZEBRA_DEBUG_RIB)
1554 srcdest_rnode2str(rn, buf, sizeof(buf));
1555
1556 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1557 zlog_debug("%u:%s: Processing rn %p", vrf_id, buf, rn);
1558
1559 /*
1560 * we can have rn's that have a NULL info pointer
1561 * (dest). As such let's not let the deref happen
1562 * additionally we know RNODE_FOREACH_RE_SAFE
1563 * will not iterate so we are ok.
1564 */
1565 if (dest)
1566 old_fib = dest->selected_fib;
1567
1568 RNODE_FOREACH_RE_SAFE (rn, re, next) {
1569 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1570 zlog_debug(
1571 "%u:%s: Examine re %p (type %d) status %x flags %x "
1572 "dist %d metric %d",
1573 vrf_id, buf, re, re->type, re->status,
1574 re->flags, re->distance, re->metric);
1575
1576 UNSET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
1577
1578 /* Currently selected re. */
1579 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)) {
1580 assert(old_selected == NULL);
1581 old_selected = re;
1582 }
1583
1584 /* Skip deleted entries from selection */
1585 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
1586 continue;
1587
1588 /* Skip unreachable nexthop. */
1589 /* This first call to nexthop_active_update is merely to
1590 * determine if
1591 * there's any change to nexthops associated with this RIB
1592 * entry. Now,
1593 * rib_process() can be invoked due to an external event such as
1594 * link
1595 * down or due to next-hop-tracking evaluation. In the latter
1596 * case,
1597 * a decision has already been made that the NHs have changed.
1598 * So, no
1599 * need to invoke a potentially expensive call again. Further,
1600 * since
1601 * the change might be in a recursive NH which is not caught in
1602 * the nexthop_active_update() code. Thus, we might miss changes
1603 * to
1604 * recursive NHs.
1605 */
1606 if (!CHECK_FLAG(re->status, ROUTE_ENTRY_CHANGED)
1607 && !nexthop_active_update(rn, re, 0)) {
1608 if (re->type == ZEBRA_ROUTE_TABLE) {
1609 /* XXX: HERE BE DRAGONS!!!!!
1610 * In all honesty, I have not yet figured out
1611 * what this part
1612 * does or why the ROUTE_ENTRY_CHANGED test
1613 * above is correct
1614 * or why we need to delete a route here, and
1615 * also not whether
1616 * this concerns both selected and fib route, or
1617 * only selected
1618 * or only fib */
1619 /* This entry was denied by the 'ip protocol
1620 * table' route-map, we
1621 * need to delete it */
1622 if (re != old_selected) {
1623 if (IS_ZEBRA_DEBUG_RIB)
1624 zlog_debug(
1625 "%s: %u:%s: imported via import-table but denied "
1626 "by the ip protocol table route-map",
1627 __func__, vrf_id, buf);
1628 rib_unlink(rn, re);
1629 } else
1630 SET_FLAG(re->status,
1631 ROUTE_ENTRY_REMOVED);
1632 }
1633
1634 continue;
1635 }
1636
1637 /* Infinite distance. */
1638 if (re->distance == DISTANCE_INFINITY) {
1639 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1640 continue;
1641 }
1642
1643 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_FIB_OVERRIDE)) {
1644 best = rib_choose_best(new_fib, re);
1645 if (new_fib && best != new_fib)
1646 UNSET_FLAG(new_fib->status,
1647 ROUTE_ENTRY_CHANGED);
1648 new_fib = best;
1649 } else {
1650 best = rib_choose_best(new_selected, re);
1651 if (new_selected && best != new_selected)
1652 UNSET_FLAG(new_selected->status,
1653 ROUTE_ENTRY_CHANGED);
1654 new_selected = best;
1655 }
1656 if (best != re)
1657 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1658 } /* RNODE_FOREACH_RE */
1659
1660 /* If no FIB override route, use the selected route also for FIB */
1661 if (new_fib == NULL)
1662 new_fib = new_selected;
1663
1664 /* After the cycle is finished, the following pointers will be set:
1665 * old_selected --- RE entry currently having SELECTED
1666 * new_selected --- RE entry that is newly SELECTED
1667 * old_fib --- RE entry currently in kernel FIB
1668 * new_fib --- RE entry that is newly to be in kernel FIB
1669 *
1670 * new_selected will get SELECTED flag, and is going to be redistributed
1671 * the zclients. new_fib (which can be new_selected) will be installed
1672 * in kernel.
1673 */
1674
1675 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
1676 zlog_debug(
1677 "%u:%s: After processing: old_selected %p new_selected %p old_fib %p new_fib %p",
1678 vrf_id, buf, (void *)old_selected, (void *)new_selected,
1679 (void *)old_fib, (void *)new_fib);
1680 }
1681
1682 /* Buffer ROUTE_ENTRY_CHANGED here, because it will get cleared if
1683 * fib == selected */
1684 bool selected_changed = new_selected && CHECK_FLAG(new_selected->status,
1685 ROUTE_ENTRY_CHANGED);
1686
1687 /* Update fib according to selection results */
1688 if (new_fib && old_fib)
1689 rib_process_update_fib(zvrf, rn, old_fib, new_fib);
1690 else if (new_fib)
1691 rib_process_add_fib(zvrf, rn, new_fib);
1692 else if (old_fib)
1693 rib_process_del_fib(zvrf, rn, old_fib);
1694
1695 /* Redistribute SELECTED entry */
1696 if (old_selected != new_selected || selected_changed) {
1697 struct nexthop *nexthop = NULL;
1698
1699 /* Check if we have a FIB route for the destination, otherwise,
1700 * don't redistribute it */
1701 if (new_fib) {
1702 for (ALL_NEXTHOPS(new_fib->ng, nexthop)) {
1703 if (CHECK_FLAG(nexthop->flags,
1704 NEXTHOP_FLAG_FIB)) {
1705 break;
1706 }
1707 }
1708 }
1709 if (!nexthop)
1710 new_selected = NULL;
1711
1712 if (new_selected && new_selected != new_fib) {
1713 nexthop_active_update(rn, new_selected, 1);
1714 UNSET_FLAG(new_selected->status, ROUTE_ENTRY_CHANGED);
1715 }
1716
1717 if (old_selected) {
1718 if (!new_selected)
1719 redistribute_delete(p, src_p, old_selected);
1720 if (old_selected != new_selected)
1721 UNSET_FLAG(old_selected->flags,
1722 ZEBRA_FLAG_SELECTED);
1723 }
1724
1725 if (new_selected) {
1726 /* Install new or replace existing redistributed entry
1727 */
1728 SET_FLAG(new_selected->flags, ZEBRA_FLAG_SELECTED);
1729 redistribute_update(p, src_p, new_selected,
1730 old_selected);
1731 }
1732 }
1733
1734 /* Remove all RE entries queued for removal */
1735 RNODE_FOREACH_RE_SAFE (rn, re, next) {
1736 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
1737 if (IS_ZEBRA_DEBUG_RIB) {
1738 rnode_debug(rn, vrf_id, "rn %p, removing re %p",
1739 (void *)rn, (void *)re);
1740 }
1741 rib_unlink(rn, re);
1742 }
1743 }
1744
1745 /*
1746 * Check if the dest can be deleted now.
1747 */
1748 rib_gc_dest(rn);
1749 }
1750
1751 /* Take a list of route_node structs and return 1, if there was a record
1752 * picked from it and processed by rib_process(). Don't process more,
1753 * than one RN record; operate only in the specified sub-queue.
1754 */
1755 static unsigned int process_subq(struct list *subq, uint8_t qindex)
1756 {
1757 struct listnode *lnode = listhead(subq);
1758 struct route_node *rnode;
1759 rib_dest_t *dest;
1760 struct zebra_vrf *zvrf = NULL;
1761
1762 if (!lnode)
1763 return 0;
1764
1765 rnode = listgetdata(lnode);
1766 dest = rib_dest_from_rnode(rnode);
1767 if (dest)
1768 zvrf = rib_dest_vrf(dest);
1769
1770 rib_process(rnode);
1771
1772 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
1773 char buf[SRCDEST2STR_BUFFER];
1774 srcdest_rnode2str(rnode, buf, sizeof(buf));
1775 zlog_debug("%u:%s: rn %p dequeued from sub-queue %u",
1776 zvrf ? zvrf_id(zvrf) : 0, buf, rnode, qindex);
1777 }
1778
1779 if (rnode->info)
1780 UNSET_FLAG(rib_dest_from_rnode(rnode)->flags,
1781 RIB_ROUTE_QUEUED(qindex));
1782
1783 #if 0
1784 else
1785 {
1786 zlog_debug ("%s: called for route_node (%p, %d) with no ribs",
1787 __func__, rnode, rnode->lock);
1788 zlog_backtrace(LOG_DEBUG);
1789 }
1790 #endif
1791 route_unlock_node(rnode);
1792 list_delete_node(subq, lnode);
1793 return 1;
1794 }
1795
1796 /*
1797 * All meta queues have been processed. Trigger next-hop evaluation.
1798 */
1799 static void meta_queue_process_complete(struct work_queue *dummy)
1800 {
1801 struct vrf *vrf;
1802 struct zebra_vrf *zvrf;
1803
1804 /* Evaluate nexthops for those VRFs which underwent route processing.
1805 * This
1806 * should limit the evaluation to the necessary VRFs in most common
1807 * situations.
1808 */
1809 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id) {
1810 zvrf = vrf->info;
1811 if (zvrf == NULL || !(zvrf->flags & ZEBRA_VRF_RIB_SCHEDULED))
1812 continue;
1813
1814 zvrf->flags &= ~ZEBRA_VRF_RIB_SCHEDULED;
1815 zebra_evaluate_rnh(zvrf_id(zvrf), AF_INET, 0, RNH_NEXTHOP_TYPE,
1816 NULL);
1817 zebra_evaluate_rnh(zvrf_id(zvrf), AF_INET, 0,
1818 RNH_IMPORT_CHECK_TYPE, NULL);
1819 zebra_evaluate_rnh(zvrf_id(zvrf), AF_INET6, 0, RNH_NEXTHOP_TYPE,
1820 NULL);
1821 zebra_evaluate_rnh(zvrf_id(zvrf), AF_INET6, 0,
1822 RNH_IMPORT_CHECK_TYPE, NULL);
1823 }
1824
1825 /* Schedule LSPs for processing, if needed. */
1826 zvrf = vrf_info_lookup(VRF_DEFAULT);
1827 if (mpls_should_lsps_be_processed(zvrf)) {
1828 if (IS_ZEBRA_DEBUG_MPLS)
1829 zlog_debug(
1830 "%u: Scheduling all LSPs upon RIB completion",
1831 zvrf_id(zvrf));
1832 zebra_mpls_lsp_schedule(zvrf);
1833 mpls_unmark_lsps_for_processing(zvrf);
1834 }
1835 }
1836
1837 /* Dispatch the meta queue by picking, processing and unlocking the next RN from
1838 * a non-empty sub-queue with lowest priority. wq is equal to zebra->ribq and
1839 * data
1840 * is pointed to the meta queue structure.
1841 */
1842 static wq_item_status meta_queue_process(struct work_queue *dummy, void *data)
1843 {
1844 struct meta_queue *mq = data;
1845 unsigned i;
1846
1847 for (i = 0; i < MQ_SIZE; i++)
1848 if (process_subq(mq->subq[i], i)) {
1849 mq->size--;
1850 break;
1851 }
1852 return mq->size ? WQ_REQUEUE : WQ_SUCCESS;
1853 }
1854
1855 /*
1856 * Map from rib types to queue type (priority) in meta queue
1857 */
1858 static const uint8_t meta_queue_map[ZEBRA_ROUTE_MAX] = {
1859 [ZEBRA_ROUTE_SYSTEM] = 4,
1860 [ZEBRA_ROUTE_KERNEL] = 0,
1861 [ZEBRA_ROUTE_CONNECT] = 0,
1862 [ZEBRA_ROUTE_STATIC] = 1,
1863 [ZEBRA_ROUTE_RIP] = 2,
1864 [ZEBRA_ROUTE_RIPNG] = 2,
1865 [ZEBRA_ROUTE_OSPF] = 2,
1866 [ZEBRA_ROUTE_OSPF6] = 2,
1867 [ZEBRA_ROUTE_ISIS] = 2,
1868 [ZEBRA_ROUTE_BGP] = 3,
1869 [ZEBRA_ROUTE_PIM] = 4, // Shouldn't happen but for safety
1870 [ZEBRA_ROUTE_EIGRP] = 2,
1871 [ZEBRA_ROUTE_NHRP] = 2,
1872 [ZEBRA_ROUTE_HSLS] = 4,
1873 [ZEBRA_ROUTE_OLSR] = 4,
1874 [ZEBRA_ROUTE_TABLE] = 1,
1875 [ZEBRA_ROUTE_LDP] = 4,
1876 [ZEBRA_ROUTE_VNC] = 3,
1877 [ZEBRA_ROUTE_VNC_DIRECT] = 3,
1878 [ZEBRA_ROUTE_VNC_DIRECT_RH] = 3,
1879 [ZEBRA_ROUTE_BGP_DIRECT] = 3,
1880 [ZEBRA_ROUTE_BGP_DIRECT_EXT] = 3,
1881 [ZEBRA_ROUTE_BABEL] = 2,
1882 [ZEBRA_ROUTE_ALL] = 4, // Shouldn't happen but for safety
1883 };
1884
1885 /* Look into the RN and queue it into one or more priority queues,
1886 * increasing the size for each data push done.
1887 */
1888 static void rib_meta_queue_add(struct meta_queue *mq, struct route_node *rn)
1889 {
1890 struct route_entry *re;
1891
1892 RNODE_FOREACH_RE (rn, re) {
1893 uint8_t qindex = meta_queue_map[re->type];
1894 struct zebra_vrf *zvrf;
1895
1896 /* Invariant: at this point we always have rn->info set. */
1897 if (CHECK_FLAG(rib_dest_from_rnode(rn)->flags,
1898 RIB_ROUTE_QUEUED(qindex))) {
1899 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1900 rnode_debug(
1901 rn, re->vrf_id,
1902 "rn %p is already queued in sub-queue %u",
1903 (void *)rn, qindex);
1904 continue;
1905 }
1906
1907 SET_FLAG(rib_dest_from_rnode(rn)->flags,
1908 RIB_ROUTE_QUEUED(qindex));
1909 listnode_add(mq->subq[qindex], rn);
1910 route_lock_node(rn);
1911 mq->size++;
1912
1913 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1914 rnode_debug(rn, re->vrf_id,
1915 "queued rn %p into sub-queue %u",
1916 (void *)rn, qindex);
1917
1918 zvrf = zebra_vrf_lookup_by_id(re->vrf_id);
1919 if (zvrf)
1920 zvrf->flags |= ZEBRA_VRF_RIB_SCHEDULED;
1921 }
1922 }
1923
1924 /* Add route_node to work queue and schedule processing */
1925 void rib_queue_add(struct route_node *rn)
1926 {
1927 assert(rn);
1928
1929 /* Pointless to queue a route_node with no RIB entries to add or remove
1930 */
1931 if (!rnode_to_ribs(rn)) {
1932 zlog_debug("%s: called for route_node (%p, %d) with no ribs",
1933 __func__, (void *)rn, rn->lock);
1934 zlog_backtrace(LOG_DEBUG);
1935 return;
1936 }
1937
1938 if (zebrad.ribq == NULL) {
1939 zlog_err("%s: work_queue does not exist!", __func__);
1940 return;
1941 }
1942
1943 /*
1944 * The RIB queue should normally be either empty or holding the only
1945 * work_queue_item element. In the latter case this element would
1946 * hold a pointer to the meta queue structure, which must be used to
1947 * actually queue the route nodes to process. So create the MQ
1948 * holder, if necessary, then push the work into it in any case.
1949 * This semantics was introduced after 0.99.9 release.
1950 */
1951 if (work_queue_empty(zebrad.ribq))
1952 work_queue_add(zebrad.ribq, zebrad.mq);
1953
1954 rib_meta_queue_add(zebrad.mq, rn);
1955
1956 return;
1957 }
1958
1959 /* Create new meta queue.
1960 A destructor function doesn't seem to be necessary here.
1961 */
1962 static struct meta_queue *meta_queue_new(void)
1963 {
1964 struct meta_queue *new;
1965 unsigned i;
1966
1967 new = XCALLOC(MTYPE_WORK_QUEUE, sizeof(struct meta_queue));
1968 assert(new);
1969
1970 for (i = 0; i < MQ_SIZE; i++) {
1971 new->subq[i] = list_new();
1972 assert(new->subq[i]);
1973 }
1974
1975 return new;
1976 }
1977
1978 void meta_queue_free(struct meta_queue *mq)
1979 {
1980 unsigned i;
1981
1982 for (i = 0; i < MQ_SIZE; i++)
1983 list_delete_and_null(&mq->subq[i]);
1984
1985 XFREE(MTYPE_WORK_QUEUE, mq);
1986 }
1987
1988 /* initialise zebra rib work queue */
1989 static void rib_queue_init(struct zebra_t *zebra)
1990 {
1991 assert(zebra);
1992
1993 if (!(zebra->ribq =
1994 work_queue_new(zebra->master, "route_node processing"))) {
1995 zlog_err("%s: could not initialise work queue!", __func__);
1996 return;
1997 }
1998
1999 /* fill in the work queue spec */
2000 zebra->ribq->spec.workfunc = &meta_queue_process;
2001 zebra->ribq->spec.errorfunc = NULL;
2002 zebra->ribq->spec.completion_func = &meta_queue_process_complete;
2003 /* XXX: TODO: These should be runtime configurable via vty */
2004 zebra->ribq->spec.max_retries = 3;
2005 zebra->ribq->spec.hold = ZEBRA_RIB_PROCESS_HOLD_TIME;
2006
2007 if (!(zebra->mq = meta_queue_new())) {
2008 zlog_err("%s: could not initialise meta queue!", __func__);
2009 return;
2010 }
2011 return;
2012 }
2013
2014 /* RIB updates are processed via a queue of pointers to route_nodes.
2015 *
2016 * The queue length is bounded by the maximal size of the routing table,
2017 * as a route_node will not be requeued, if already queued.
2018 *
2019 * REs are submitted via rib_addnode or rib_delnode which set minimal
2020 * state, or static_install_route (when an existing RE is updated)
2021 * and then submit route_node to queue for best-path selection later.
2022 * Order of add/delete state changes are preserved for any given RE.
2023 *
2024 * Deleted REs are reaped during best-path selection.
2025 *
2026 * rib_addnode
2027 * |-> rib_link or unset ROUTE_ENTRY_REMOVE |->Update kernel with
2028 * |-------->| | best RE, if required
2029 * | |
2030 * static_install->|->rib_addqueue...... -> rib_process
2031 * | |
2032 * |-------->| |-> rib_unlink
2033 * |-> set ROUTE_ENTRY_REMOVE |
2034 * rib_delnode (RE freed)
2035 *
2036 * The 'info' pointer of a route_node points to a rib_dest_t
2037 * ('dest'). Queueing state for a route_node is kept on the dest. The
2038 * dest is created on-demand by rib_link() and is kept around at least
2039 * as long as there are ribs hanging off it (@see rib_gc_dest()).
2040 *
2041 * Refcounting (aka "locking" throughout the GNU Zebra and Quagga code):
2042 *
2043 * - route_nodes: refcounted by:
2044 * - dest attached to route_node:
2045 * - managed by: rib_link/rib_gc_dest
2046 * - route_node processing queue
2047 * - managed by: rib_addqueue, rib_process.
2048 *
2049 */
2050
2051 /* Add RE to head of the route node. */
2052 static void rib_link(struct route_node *rn, struct route_entry *re, int process)
2053 {
2054 struct route_entry *head;
2055 rib_dest_t *dest;
2056 afi_t afi;
2057 const char *rmap_name;
2058
2059 assert(re && rn);
2060
2061 dest = rib_dest_from_rnode(rn);
2062 if (!dest) {
2063 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2064 rnode_debug(rn, re->vrf_id, "rn %p adding dest", rn);
2065
2066 dest = XCALLOC(MTYPE_RIB_DEST, sizeof(rib_dest_t));
2067 route_lock_node(rn); /* rn route table reference */
2068 rn->info = dest;
2069 dest->rnode = rn;
2070 }
2071
2072 head = dest->routes;
2073 if (head) {
2074 head->prev = re;
2075 }
2076 re->next = head;
2077 dest->routes = re;
2078
2079 afi = (rn->p.family == AF_INET)
2080 ? AFI_IP
2081 : (rn->p.family == AF_INET6) ? AFI_IP6 : AFI_MAX;
2082 if (is_zebra_import_table_enabled(afi, re->table)) {
2083 rmap_name = zebra_get_import_table_route_map(afi, re->table);
2084 zebra_add_import_table_entry(rn, re, rmap_name);
2085 } else if (process)
2086 rib_queue_add(rn);
2087 }
2088
2089 static void rib_addnode(struct route_node *rn,
2090 struct route_entry *re, int process)
2091 {
2092 /* RE node has been un-removed before route-node is processed.
2093 * route_node must hence already be on the queue for processing..
2094 */
2095 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
2096 if (IS_ZEBRA_DEBUG_RIB)
2097 rnode_debug(rn, re->vrf_id, "rn %p, un-removed re %p",
2098 (void *)rn, (void *)re);
2099
2100 UNSET_FLAG(re->status, ROUTE_ENTRY_REMOVED);
2101 return;
2102 }
2103 rib_link(rn, re, process);
2104 }
2105
2106 /*
2107 * rib_unlink
2108 *
2109 * Detach a rib structure from a route_node.
2110 *
2111 * Note that a call to rib_unlink() should be followed by a call to
2112 * rib_gc_dest() at some point. This allows a rib_dest_t that is no
2113 * longer required to be deleted.
2114 */
2115 void rib_unlink(struct route_node *rn, struct route_entry *re)
2116 {
2117 rib_dest_t *dest;
2118
2119 assert(rn && re);
2120
2121 if (IS_ZEBRA_DEBUG_RIB)
2122 rnode_debug(rn, re->vrf_id, "rn %p, re %p", (void *)rn,
2123 (void *)re);
2124
2125 dest = rib_dest_from_rnode(rn);
2126
2127 if (re->next)
2128 re->next->prev = re->prev;
2129
2130 if (re->prev)
2131 re->prev->next = re->next;
2132 else {
2133 dest->routes = re->next;
2134 }
2135
2136 if (dest->selected_fib == re)
2137 dest->selected_fib = NULL;
2138
2139 nexthops_free(re->ng.nexthop);
2140 XFREE(MTYPE_RE, re);
2141 }
2142
2143 void rib_delnode(struct route_node *rn, struct route_entry *re)
2144 {
2145 afi_t afi;
2146
2147 if (IS_ZEBRA_DEBUG_RIB)
2148 rnode_debug(rn, re->vrf_id, "rn %p, re %p, removing",
2149 (void *)rn, (void *)re);
2150 SET_FLAG(re->status, ROUTE_ENTRY_REMOVED);
2151
2152 afi = (rn->p.family == AF_INET)
2153 ? AFI_IP
2154 : (rn->p.family == AF_INET6) ? AFI_IP6 : AFI_MAX;
2155 if (is_zebra_import_table_enabled(afi, re->table)) {
2156 zebra_del_import_table_entry(rn, re);
2157 /* Just clean up if non main table */
2158 if (IS_ZEBRA_DEBUG_RIB) {
2159 char buf[SRCDEST2STR_BUFFER];
2160 srcdest_rnode2str(rn, buf, sizeof(buf));
2161 zlog_debug(
2162 "%u:%s: Freeing route rn %p, re %p (type %d)",
2163 re->vrf_id, buf, rn, re, re->type);
2164 }
2165
2166 rib_unlink(rn, re);
2167 } else {
2168 rib_queue_add(rn);
2169 }
2170 }
2171
2172 /* This function dumps the contents of a given RE entry into
2173 * standard debug log. Calling function name and IP prefix in
2174 * question are passed as 1st and 2nd arguments.
2175 */
2176
2177 void _route_entry_dump(const char *func, union prefixconstptr pp,
2178 union prefixconstptr src_pp,
2179 const struct route_entry *re)
2180 {
2181 const struct prefix *p = pp.p;
2182 const struct prefix *src_p = src_pp.p;
2183 bool is_srcdst = src_p && src_p->prefixlen;
2184 char straddr[PREFIX_STRLEN];
2185 char srcaddr[PREFIX_STRLEN];
2186 struct nexthop *nexthop;
2187
2188 zlog_debug("%s: dumping RE entry %p for %s%s%s vrf %u", func,
2189 (const void *)re, prefix2str(pp, straddr, sizeof(straddr)),
2190 is_srcdst ? " from " : "",
2191 is_srcdst ? prefix2str(src_pp, srcaddr, sizeof(srcaddr))
2192 : "",
2193 re->vrf_id);
2194 zlog_debug("%s: uptime == %lu, type == %u, instance == %d, table == %d",
2195 func, (unsigned long)re->uptime, re->type, re->instance,
2196 re->table);
2197 zlog_debug(
2198 "%s: metric == %u, mtu == %u, distance == %u, flags == %u, status == %u",
2199 func, re->metric, re->mtu, re->distance, re->flags, re->status);
2200 zlog_debug("%s: nexthop_num == %u, nexthop_active_num == %u", func,
2201 re->nexthop_num, re->nexthop_active_num);
2202
2203 for (ALL_NEXTHOPS(re->ng, nexthop)) {
2204 inet_ntop(p->family, &nexthop->gate, straddr, INET6_ADDRSTRLEN);
2205 zlog_debug("%s: %s %s[%u] vrf %u with flags %s%s%s", func,
2206 (nexthop->rparent ? " NH" : "NH"), straddr,
2207 nexthop->ifindex, nexthop->vrf_id,
2208 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE)
2209 ? "ACTIVE "
2210 : ""),
2211 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB)
2212 ? "FIB "
2213 : ""),
2214 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE)
2215 ? "RECURSIVE"
2216 : ""));
2217 }
2218 zlog_debug("%s: dump complete", func);
2219 }
2220
2221 /* This is an exported helper to rtm_read() to dump the strange
2222 * RE entry found by rib_lookup_ipv4_route()
2223 */
2224
2225 void rib_lookup_and_dump(struct prefix_ipv4 *p, vrf_id_t vrf_id)
2226 {
2227 struct route_table *table;
2228 struct route_node *rn;
2229 struct route_entry *re;
2230 char prefix_buf[INET_ADDRSTRLEN];
2231
2232 /* Lookup table. */
2233 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
2234 if (!table) {
2235 zlog_err("%s:%u zebra_vrf_table() returned NULL",
2236 __func__, vrf_id);
2237 return;
2238 }
2239
2240 /* Scan the RIB table for exactly matching RE entry. */
2241 rn = route_node_lookup(table, (struct prefix *)p);
2242
2243 /* No route for this prefix. */
2244 if (!rn) {
2245 zlog_debug("%s:%u lookup failed for %s", __func__, vrf_id,
2246 prefix2str((struct prefix *)p, prefix_buf,
2247 sizeof(prefix_buf)));
2248 return;
2249 }
2250
2251 /* Unlock node. */
2252 route_unlock_node(rn);
2253
2254 /* let's go */
2255 RNODE_FOREACH_RE (rn, re) {
2256 zlog_debug("%s:%u rn %p, re %p: %s, %s",
2257 __func__, vrf_id,
2258 (void *)rn, (void *)re,
2259 (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)
2260 ? "removed"
2261 : "NOT removed"),
2262 (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)
2263 ? "selected"
2264 : "NOT selected"));
2265 route_entry_dump(p, NULL, re);
2266 }
2267 }
2268
2269 /* Check if requested address assignment will fail due to another
2270 * route being installed by zebra in FIB already. Take necessary
2271 * actions, if needed: remove such a route from FIB and deSELECT
2272 * corresponding RE entry. Then put affected RN into RIBQ head.
2273 */
2274 void rib_lookup_and_pushup(struct prefix_ipv4 *p, vrf_id_t vrf_id)
2275 {
2276 struct route_table *table;
2277 struct route_node *rn;
2278 unsigned changed = 0;
2279 rib_dest_t *dest;
2280
2281 if (NULL == (table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id))) {
2282 zlog_err("%s:%u zebra_vrf_table() returned NULL",
2283 __func__, vrf_id);
2284 return;
2285 }
2286
2287 /* No matches would be the simplest case. */
2288 if (NULL == (rn = route_node_lookup(table, (struct prefix *)p)))
2289 return;
2290
2291 /* Unlock node. */
2292 route_unlock_node(rn);
2293
2294 dest = rib_dest_from_rnode(rn);
2295 /* Check all RE entries. In case any changes have to be done, requeue
2296 * the RN into RIBQ head. If the routing message about the new connected
2297 * route (generated by the IP address we are going to assign very soon)
2298 * comes before the RIBQ is processed, the new RE entry will join
2299 * RIBQ record already on head. This is necessary for proper
2300 * revalidation
2301 * of the rest of the RE.
2302 */
2303 if (dest->selected_fib && !RIB_SYSTEM_ROUTE(dest->selected_fib)) {
2304 changed = 1;
2305 if (IS_ZEBRA_DEBUG_RIB) {
2306 char buf[PREFIX_STRLEN];
2307
2308 zlog_debug("%u:%s: freeing way for connected prefix",
2309 dest->selected_fib->vrf_id,
2310 prefix2str(&rn->p, buf, sizeof(buf)));
2311 route_entry_dump(&rn->p, NULL, dest->selected_fib);
2312 }
2313 rib_uninstall(rn, dest->selected_fib);
2314 }
2315 if (changed)
2316 rib_queue_add(rn);
2317 }
2318
2319 int rib_add_multipath(afi_t afi, safi_t safi, struct prefix *p,
2320 struct prefix_ipv6 *src_p, struct route_entry *re)
2321 {
2322 struct route_table *table;
2323 struct route_node *rn;
2324 struct route_entry *same = NULL;
2325 struct nexthop *nexthop;
2326 int ret = 0;
2327
2328 if (!re)
2329 return 0;
2330
2331 assert(!src_p || !src_p->prefixlen || afi == AFI_IP6);
2332
2333 /* Lookup table. */
2334 table = zebra_vrf_table_with_table_id(afi, safi, re->vrf_id, re->table);
2335 if (!table) {
2336 XFREE(MTYPE_RE, re);
2337 return 0;
2338 }
2339
2340 /* Make it sure prefixlen is applied to the prefix. */
2341 apply_mask(p);
2342 if (src_p)
2343 apply_mask_ipv6(src_p);
2344
2345 /* Set default distance by route type. */
2346 if (re->distance == 0) {
2347 re->distance = route_distance(re->type);
2348
2349 /* iBGP distance is 200. */
2350 if (re->type == ZEBRA_ROUTE_BGP
2351 && CHECK_FLAG(re->flags, ZEBRA_FLAG_IBGP))
2352 re->distance = 200;
2353 }
2354
2355 /* Lookup route node.*/
2356 rn = srcdest_rnode_get(table, p, src_p);
2357
2358 zlog_debug("Distance: %d", re->distance);
2359 /*
2360 * If same type of route are installed, treat it as a implicit
2361 * withdraw.
2362 * If the user has specified the No route replace semantics
2363 * for the install don't do a route replace.
2364 */
2365 RNODE_FOREACH_RE (rn, same) {
2366 if (CHECK_FLAG(same->status, ROUTE_ENTRY_REMOVED))
2367 continue;
2368
2369 if (same->type != re->type)
2370 continue;
2371 if (same->instance != re->instance)
2372 continue;
2373 if (same->type == ZEBRA_ROUTE_KERNEL
2374 && same->metric != re->metric)
2375 continue;
2376
2377 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_RR_USE_DISTANCE) &&
2378 same->distance != re->distance)
2379 continue;
2380
2381 /*
2382 * We should allow duplicate connected routes
2383 * because of IPv6 link-local routes and unnumbered
2384 * interfaces on Linux.
2385 */
2386 if (same->type != ZEBRA_ROUTE_CONNECT)
2387 break;
2388 }
2389
2390 zlog_debug("same: %p distance: %d", same, same ? same->distance : -1);
2391 /* If this route is kernel route, set FIB flag to the route. */
2392 if (RIB_SYSTEM_ROUTE(re))
2393 for (nexthop = re->ng.nexthop; nexthop; nexthop = nexthop->next)
2394 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
2395
2396 /* Link new re to node.*/
2397 if (IS_ZEBRA_DEBUG_RIB) {
2398 rnode_debug(
2399 rn, re->vrf_id,
2400 "Inserting route rn %p, re %p (type %d) existing %p",
2401 (void *)rn, (void *)re, re->type, (void *)same);
2402
2403 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2404 route_entry_dump(p, src_p, re);
2405 }
2406 rib_addnode(rn, re, 1);
2407 ret = 1;
2408
2409 /* Free implicit route.*/
2410 if (same) {
2411 rib_delnode(rn, same);
2412 ret = -1;
2413 }
2414
2415 route_unlock_node(rn);
2416 return ret;
2417 }
2418
2419 void rib_delete(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type,
2420 unsigned short instance, int flags, struct prefix *p,
2421 struct prefix_ipv6 *src_p, const struct nexthop *nh,
2422 uint32_t table_id, uint32_t metric, uint8_t distance,
2423 bool fromkernel)
2424 {
2425 struct route_table *table;
2426 struct route_node *rn;
2427 struct route_entry *re;
2428 struct route_entry *fib = NULL;
2429 struct route_entry *same = NULL;
2430 struct nexthop *rtnh;
2431 char buf2[INET6_ADDRSTRLEN];
2432 rib_dest_t *dest;
2433
2434 assert(!src_p || !src_p->prefixlen || afi == AFI_IP6);
2435
2436 /* Lookup table. */
2437 table = zebra_vrf_table_with_table_id(afi, safi, vrf_id, table_id);
2438 if (!table)
2439 return;
2440
2441 /* Apply mask. */
2442 apply_mask(p);
2443 if (src_p)
2444 apply_mask_ipv6(src_p);
2445
2446 /* Lookup route node. */
2447 rn = srcdest_rnode_lookup(table, p, src_p);
2448 if (!rn) {
2449 char dst_buf[PREFIX_STRLEN], src_buf[PREFIX_STRLEN];
2450
2451 prefix2str(p, dst_buf, sizeof(dst_buf));
2452 if (src_p && src_p->prefixlen)
2453 prefix2str(src_p, src_buf, sizeof(src_buf));
2454 else
2455 src_buf[0] = '\0';
2456
2457 if (IS_ZEBRA_DEBUG_RIB)
2458 zlog_debug("%u:%s%s%s doesn't exist in rib", vrf_id,
2459 dst_buf,
2460 (src_buf[0] != '\0') ? " from " : "",
2461 src_buf);
2462 return;
2463 }
2464
2465 dest = rib_dest_from_rnode(rn);
2466 fib = dest->selected_fib;
2467
2468 /* Lookup same type route. */
2469 RNODE_FOREACH_RE (rn, re) {
2470 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
2471 continue;
2472
2473 if (re->type != type)
2474 continue;
2475 if (re->instance != instance)
2476 continue;
2477 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_RR_USE_DISTANCE) &&
2478 distance != re->distance)
2479 continue;
2480
2481 if (re->type == ZEBRA_ROUTE_KERNEL && re->metric != metric)
2482 continue;
2483 if (re->type == ZEBRA_ROUTE_CONNECT && (rtnh = re->ng.nexthop)
2484 && rtnh->type == NEXTHOP_TYPE_IFINDEX && nh) {
2485 if (rtnh->ifindex != nh->ifindex)
2486 continue;
2487 same = re;
2488 break;
2489 }
2490 /* Make sure that the route found has the same gateway. */
2491 else {
2492 if (nh == NULL) {
2493 same = re;
2494 break;
2495 }
2496 for (ALL_NEXTHOPS(re->ng, rtnh))
2497 if (nexthop_same_no_recurse(rtnh, nh)) {
2498 same = re;
2499 break;
2500 }
2501 if (same)
2502 break;
2503 }
2504 }
2505 /* If same type of route can't be found and this message is from
2506 kernel. */
2507 if (!same) {
2508 /*
2509 * In the past(HA!) we could get here because
2510 * we were receiving a route delete from the
2511 * kernel and we're not marking the proto
2512 * as coming from it's appropriate originator.
2513 * Now that we are properly noticing the fact
2514 * that the kernel has deleted our route we
2515 * are not going to get called in this path
2516 * I am going to leave this here because
2517 * this might still work this way on non-linux
2518 * platforms as well as some weird state I have
2519 * not properly thought of yet.
2520 * If we can show that this code path is
2521 * dead then we can remove it.
2522 */
2523 if (fib && CHECK_FLAG(flags, ZEBRA_FLAG_SELFROUTE)) {
2524 if (IS_ZEBRA_DEBUG_RIB) {
2525 rnode_debug(
2526 rn, vrf_id,
2527 "rn %p, re %p (type %d) was deleted from kernel, adding",
2528 rn, fib, fib->type);
2529 }
2530 if (allow_delete) {
2531 /* Unset flags. */
2532 for (rtnh = fib->ng.nexthop; rtnh;
2533 rtnh = rtnh->next)
2534 UNSET_FLAG(rtnh->flags,
2535 NEXTHOP_FLAG_FIB);
2536
2537 /*
2538 * This is a non FRR route
2539 * as such we should mark
2540 * it as deleted
2541 */
2542 dest->selected_fib = NULL;
2543 } else {
2544 /* This means someone else, other than Zebra,
2545 * has deleted
2546 * a Zebra router from the kernel. We will add
2547 * it back */
2548 rib_install_kernel(rn, fib, NULL);
2549 }
2550 } else {
2551 if (IS_ZEBRA_DEBUG_RIB) {
2552 if (nh)
2553 rnode_debug(
2554 rn, vrf_id,
2555 "via %s ifindex %d type %d "
2556 "doesn't exist in rib",
2557 inet_ntop(afi2family(afi),
2558 &nh->gate, buf2,
2559 sizeof(buf2)),
2560 nh->ifindex, type);
2561 else
2562 rnode_debug(
2563 rn, vrf_id,
2564 "type %d doesn't exist in rib",
2565 type);
2566 }
2567 route_unlock_node(rn);
2568 return;
2569 }
2570 }
2571
2572 if (same) {
2573 if (fromkernel && CHECK_FLAG(flags, ZEBRA_FLAG_SELFROUTE)
2574 && !allow_delete) {
2575 rib_install_kernel(rn, same, NULL);
2576 route_unlock_node(rn);
2577
2578 return;
2579 }
2580
2581 if (CHECK_FLAG(flags, ZEBRA_FLAG_EVPN_ROUTE)) {
2582 struct nexthop *tmp_nh;
2583
2584 for (ALL_NEXTHOPS(re->ng, tmp_nh)) {
2585 struct ipaddr vtep_ip;
2586
2587 memset(&vtep_ip, 0, sizeof(struct ipaddr));
2588 if (afi == AFI_IP) {
2589 vtep_ip.ipa_type = IPADDR_V4;
2590 memcpy(&(vtep_ip.ipaddr_v4),
2591 &(tmp_nh->gate.ipv4),
2592 sizeof(struct in_addr));
2593 } else {
2594 vtep_ip.ipa_type = IPADDR_V6;
2595 memcpy(&(vtep_ip.ipaddr_v6),
2596 &(tmp_nh->gate.ipv6),
2597 sizeof(struct in6_addr));
2598 }
2599 zebra_vxlan_evpn_vrf_route_del(re->vrf_id,
2600 &vtep_ip, p);
2601 }
2602 }
2603 rib_delnode(rn, same);
2604 }
2605
2606 route_unlock_node(rn);
2607 return;
2608 }
2609
2610
2611 int rib_add(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type,
2612 unsigned short instance, int flags, struct prefix *p,
2613 struct prefix_ipv6 *src_p, const struct nexthop *nh,
2614 uint32_t table_id, uint32_t metric, uint32_t mtu, uint8_t distance,
2615 route_tag_t tag)
2616 {
2617 struct route_entry *re;
2618 struct nexthop *nexthop;
2619
2620 /* Allocate new route_entry structure. */
2621 re = XCALLOC(MTYPE_RE, sizeof(struct route_entry));
2622 re->type = type;
2623 re->instance = instance;
2624 re->distance = distance;
2625 re->flags = flags;
2626 re->metric = metric;
2627 re->mtu = mtu;
2628 re->table = table_id;
2629 re->vrf_id = vrf_id;
2630 re->nexthop_num = 0;
2631 re->uptime = time(NULL);
2632 re->tag = tag;
2633
2634 /* Add nexthop. */
2635 nexthop = nexthop_new();
2636 *nexthop = *nh;
2637 route_entry_nexthop_add(re, nexthop);
2638
2639 return rib_add_multipath(afi, safi, p, src_p, re);
2640 }
2641
2642 /* Schedule routes of a particular table (address-family) based on event. */
2643 static void rib_update_table(struct route_table *table,
2644 rib_update_event_t event)
2645 {
2646 struct route_node *rn;
2647 struct route_entry *re, *next;
2648
2649 /* Walk all routes and queue for processing, if appropriate for
2650 * the trigger event.
2651 */
2652 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
2653 /*
2654 * If we are looking at a route node and the node
2655 * has already been queued we don't
2656 * need to queue it up again
2657 */
2658 if (rn->info && CHECK_FLAG(rib_dest_from_rnode(rn)->flags,
2659 RIB_ROUTE_ANY_QUEUED))
2660 continue;
2661 switch (event) {
2662 case RIB_UPDATE_IF_CHANGE:
2663 /* Examine all routes that won't get processed by the
2664 * protocol or
2665 * triggered by nexthop evaluation (NHT). This would be
2666 * system,
2667 * kernel and certain static routes. Note that NHT will
2668 * get
2669 * triggered upon an interface event as connected routes
2670 * always
2671 * get queued for processing.
2672 */
2673 RNODE_FOREACH_RE_SAFE (rn, re, next) {
2674 struct nexthop *nh;
2675
2676 if (re->type != ZEBRA_ROUTE_SYSTEM
2677 && re->type != ZEBRA_ROUTE_KERNEL
2678 && re->type != ZEBRA_ROUTE_CONNECT
2679 && re->type != ZEBRA_ROUTE_STATIC)
2680 continue;
2681
2682 if (re->type != ZEBRA_ROUTE_STATIC) {
2683 rib_queue_add(rn);
2684 continue;
2685 }
2686
2687 for (nh = re->ng.nexthop; nh; nh = nh->next)
2688 if (!(nh->type == NEXTHOP_TYPE_IPV4
2689 || nh->type == NEXTHOP_TYPE_IPV6))
2690 break;
2691
2692 /* If we only have nexthops to a
2693 * gateway, NHT will
2694 * take care.
2695 */
2696 if (nh)
2697 rib_queue_add(rn);
2698 }
2699 break;
2700
2701 case RIB_UPDATE_RMAP_CHANGE:
2702 case RIB_UPDATE_OTHER:
2703 /* Right now, examine all routes. Can restrict to a
2704 * protocol in
2705 * some cases (TODO).
2706 */
2707 if (rnode_to_ribs(rn))
2708 rib_queue_add(rn);
2709 break;
2710
2711 default:
2712 break;
2713 }
2714 }
2715 }
2716
2717 /* RIB update function. */
2718 void rib_update(vrf_id_t vrf_id, rib_update_event_t event)
2719 {
2720 struct route_table *table;
2721
2722 /* Process routes of interested address-families. */
2723 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
2724 if (table)
2725 rib_update_table(table, event);
2726
2727 table = zebra_vrf_table(AFI_IP6, SAFI_UNICAST, vrf_id);
2728 if (table)
2729 rib_update_table(table, event);
2730 }
2731
2732 /* Delete self installed routes after zebra is relaunched. */
2733 void rib_sweep_table(struct route_table *table)
2734 {
2735 struct route_node *rn;
2736 struct route_entry *re;
2737 struct route_entry *next;
2738 struct nexthop *nexthop;
2739
2740 if (!table)
2741 return;
2742
2743 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
2744 RNODE_FOREACH_RE_SAFE (rn, re, next) {
2745 if (IS_ZEBRA_DEBUG_RIB)
2746 route_entry_dump(&rn->p, NULL, re);
2747
2748 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
2749 continue;
2750
2751 if (!CHECK_FLAG(re->flags, ZEBRA_FLAG_SELFROUTE))
2752 continue;
2753
2754 /*
2755 * So we are starting up and have received
2756 * routes from the kernel that we have installed
2757 * from a previous run of zebra but not cleaned
2758 * up ( say a kill -9 )
2759 * But since we haven't actually installed
2760 * them yet( we received them from the kernel )
2761 * we don't think they are active.
2762 * So let's pretend they are active to actually
2763 * remove them.
2764 * In all honesty I'm not sure if we should
2765 * mark them as active when we receive them
2766 * This is startup only so probably ok.
2767 *
2768 * If we ever decide to move rib_sweep_table
2769 * to a different spot (ie startup )
2770 * this decision needs to be revisited
2771 */
2772 for (ALL_NEXTHOPS(re->ng, nexthop))
2773 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
2774
2775 rib_uninstall_kernel(rn, re);
2776 rib_delnode(rn, re);
2777 }
2778 }
2779 }
2780
2781 /* Sweep all RIB tables. */
2782 void rib_sweep_route(void)
2783 {
2784 struct vrf *vrf;
2785 struct zebra_vrf *zvrf;
2786
2787 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id) {
2788 if ((zvrf = vrf->info) == NULL)
2789 continue;
2790
2791 rib_sweep_table(zvrf->table[AFI_IP][SAFI_UNICAST]);
2792 rib_sweep_table(zvrf->table[AFI_IP6][SAFI_UNICAST]);
2793 }
2794
2795 zebra_ns_sweep_route();
2796 }
2797
2798 /* Remove specific by protocol routes from 'table'. */
2799 unsigned long rib_score_proto_table(uint8_t proto, unsigned short instance,
2800 struct route_table *table)
2801 {
2802 struct route_node *rn;
2803 struct route_entry *re;
2804 struct route_entry *next;
2805 unsigned long n = 0;
2806
2807 if (table)
2808 for (rn = route_top(table); rn; rn = srcdest_route_next(rn))
2809 RNODE_FOREACH_RE_SAFE (rn, re, next) {
2810 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
2811 continue;
2812 if (re->type == proto
2813 && re->instance == instance) {
2814 rib_delnode(rn, re);
2815 n++;
2816 }
2817 }
2818 return n;
2819 }
2820
2821 /* Remove specific by protocol routes. */
2822 unsigned long rib_score_proto(uint8_t proto, unsigned short instance)
2823 {
2824 struct vrf *vrf;
2825 struct zebra_vrf *zvrf;
2826 unsigned long cnt = 0;
2827
2828 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id)
2829 if ((zvrf = vrf->info) != NULL)
2830 cnt += rib_score_proto_table(
2831 proto, instance,
2832 zvrf->table[AFI_IP][SAFI_UNICAST])
2833 + rib_score_proto_table(
2834 proto, instance,
2835 zvrf->table[AFI_IP6][SAFI_UNICAST]);
2836
2837 cnt += zebra_ns_score_proto(proto, instance);
2838
2839 return cnt;
2840 }
2841
2842 /* Close RIB and clean up kernel routes. */
2843 void rib_close_table(struct route_table *table)
2844 {
2845 struct route_node *rn;
2846 rib_table_info_t *info;
2847 rib_dest_t *dest;
2848
2849 if (!table)
2850 return;
2851
2852 info = table->info;
2853
2854 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
2855 dest = rib_dest_from_rnode(rn);
2856
2857 if (dest && dest->selected_fib) {
2858 if (info->safi == SAFI_UNICAST)
2859 hook_call(rib_update, rn, NULL);
2860
2861 if (!RIB_SYSTEM_ROUTE(dest->selected_fib))
2862 rib_uninstall_kernel(rn, dest->selected_fib);
2863 }
2864 }
2865 }
2866
2867 /* Routing information base initialize. */
2868 void rib_init(void)
2869 {
2870 rib_queue_init(&zebrad);
2871 }
2872
2873 /*
2874 * vrf_id_get_next
2875 *
2876 * Get the first vrf id that is greater than the given vrf id if any.
2877 *
2878 * Returns TRUE if a vrf id was found, FALSE otherwise.
2879 */
2880 static inline int vrf_id_get_next(vrf_id_t vrf_id, vrf_id_t *next_id_p)
2881 {
2882 struct vrf *vrf;
2883
2884 vrf = vrf_lookup_by_id(vrf_id);
2885 if (vrf) {
2886 vrf = RB_NEXT(vrf_id_head, vrf);
2887 if (vrf) {
2888 *next_id_p = vrf->vrf_id;
2889 return 1;
2890 }
2891 }
2892
2893 return 0;
2894 }
2895
2896 /*
2897 * rib_tables_iter_next
2898 *
2899 * Returns the next table in the iteration.
2900 */
2901 struct route_table *rib_tables_iter_next(rib_tables_iter_t *iter)
2902 {
2903 struct route_table *table;
2904
2905 /*
2906 * Array that helps us go over all AFI/SAFI combinations via one
2907 * index.
2908 */
2909 static struct {
2910 afi_t afi;
2911 safi_t safi;
2912 } afi_safis[] = {
2913 {AFI_IP, SAFI_UNICAST}, {AFI_IP, SAFI_MULTICAST},
2914 {AFI_IP, SAFI_LABELED_UNICAST}, {AFI_IP6, SAFI_UNICAST},
2915 {AFI_IP6, SAFI_MULTICAST}, {AFI_IP6, SAFI_LABELED_UNICAST},
2916 };
2917
2918 table = NULL;
2919
2920 switch (iter->state) {
2921
2922 case RIB_TABLES_ITER_S_INIT:
2923 iter->vrf_id = VRF_DEFAULT;
2924 iter->afi_safi_ix = -1;
2925
2926 /* Fall through */
2927
2928 case RIB_TABLES_ITER_S_ITERATING:
2929 iter->afi_safi_ix++;
2930 while (1) {
2931
2932 while (iter->afi_safi_ix
2933 < (int)ZEBRA_NUM_OF(afi_safis)) {
2934 table = zebra_vrf_table(
2935 afi_safis[iter->afi_safi_ix].afi,
2936 afi_safis[iter->afi_safi_ix].safi,
2937 iter->vrf_id);
2938 if (table)
2939 break;
2940
2941 iter->afi_safi_ix++;
2942 }
2943
2944 /*
2945 * Found another table in this vrf.
2946 */
2947 if (table)
2948 break;
2949
2950 /*
2951 * Done with all tables in the current vrf, go to the
2952 * next
2953 * one.
2954 */
2955 if (!vrf_id_get_next(iter->vrf_id, &iter->vrf_id))
2956 break;
2957
2958 iter->afi_safi_ix = 0;
2959 }
2960
2961 break;
2962
2963 case RIB_TABLES_ITER_S_DONE:
2964 return NULL;
2965 }
2966
2967 if (table)
2968 iter->state = RIB_TABLES_ITER_S_ITERATING;
2969 else
2970 iter->state = RIB_TABLES_ITER_S_DONE;
2971
2972 return table;
2973 }