]> git.proxmox.com Git - mirror_frr.git/blob - zebra/zebra_rib.c
zebra: Trust kernel and System routes
[mirror_frr.git] / zebra / zebra_rib.c
1 /* Routing Information Base.
2 * Copyright (C) 1997, 98, 99, 2001 Kunihiro Ishiguro
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; see the file COPYING; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include <zebra.h>
22
23 #include "command.h"
24 #include "if.h"
25 #include "linklist.h"
26 #include "log.h"
27 #include "log_int.h"
28 #include "memory.h"
29 #include "mpls.h"
30 #include "nexthop.h"
31 #include "prefix.h"
32 #include "prefix.h"
33 #include "routemap.h"
34 #include "sockunion.h"
35 #include "srcdest_table.h"
36 #include "table.h"
37 #include "thread.h"
38 #include "vrf.h"
39 #include "workqueue.h"
40
41 #include "zebra/zebra_router.h"
42 #include "zebra/connected.h"
43 #include "zebra/debug.h"
44 #include "zebra/interface.h"
45 #include "zebra/redistribute.h"
46 #include "zebra/rib.h"
47 #include "zebra/rt.h"
48 #include "zebra/zapi_msg.h"
49 #include "zebra/zebra_errors.h"
50 #include "zebra/zebra_memory.h"
51 #include "zebra/zebra_ns.h"
52 #include "zebra/zebra_rnh.h"
53 #include "zebra/zebra_routemap.h"
54 #include "zebra/zebra_vrf.h"
55 #include "zebra/zebra_vxlan.h"
56 #include "zebra/zapi_msg.h"
57 #include "zebra/zebra_dplane.h"
58
59 /*
60 * Event, list, and mutex for delivery of dataplane results
61 */
62 static pthread_mutex_t dplane_mutex;
63 static struct thread *t_dplane;
64 static struct dplane_ctx_q rib_dplane_q;
65
66 DEFINE_HOOK(rib_update, (struct route_node * rn, const char *reason),
67 (rn, reason))
68
69 /* Should we allow non Quagga processes to delete our routes */
70 extern int allow_delete;
71
72 /* Each route type's string and default distance value. */
73 static const struct {
74 int key;
75 int distance;
76 uint8_t meta_q_map;
77 } route_info[ZEBRA_ROUTE_MAX] = {
78 [ZEBRA_ROUTE_SYSTEM] = {ZEBRA_ROUTE_SYSTEM, 0, 4},
79 [ZEBRA_ROUTE_KERNEL] = {ZEBRA_ROUTE_KERNEL, 0, 0},
80 [ZEBRA_ROUTE_CONNECT] = {ZEBRA_ROUTE_CONNECT, 0, 0},
81 [ZEBRA_ROUTE_STATIC] = {ZEBRA_ROUTE_STATIC, 1, 1},
82 [ZEBRA_ROUTE_RIP] = {ZEBRA_ROUTE_RIP, 120, 2},
83 [ZEBRA_ROUTE_RIPNG] = {ZEBRA_ROUTE_RIPNG, 120, 2},
84 [ZEBRA_ROUTE_OSPF] = {ZEBRA_ROUTE_OSPF, 110, 2},
85 [ZEBRA_ROUTE_OSPF6] = {ZEBRA_ROUTE_OSPF6, 110, 2},
86 [ZEBRA_ROUTE_ISIS] = {ZEBRA_ROUTE_ISIS, 115, 2},
87 [ZEBRA_ROUTE_BGP] = {ZEBRA_ROUTE_BGP, 20 /* IBGP is 200. */, 3},
88 [ZEBRA_ROUTE_PIM] = {ZEBRA_ROUTE_PIM, 255, 4},
89 [ZEBRA_ROUTE_EIGRP] = {ZEBRA_ROUTE_EIGRP, 90, 2},
90 [ZEBRA_ROUTE_NHRP] = {ZEBRA_ROUTE_NHRP, 10, 2},
91 [ZEBRA_ROUTE_HSLS] = {ZEBRA_ROUTE_HSLS, 255, 4},
92 [ZEBRA_ROUTE_OLSR] = {ZEBRA_ROUTE_OLSR, 255, 4},
93 [ZEBRA_ROUTE_TABLE] = {ZEBRA_ROUTE_TABLE, 150, 1},
94 [ZEBRA_ROUTE_LDP] = {ZEBRA_ROUTE_LDP, 150, 4},
95 [ZEBRA_ROUTE_VNC] = {ZEBRA_ROUTE_VNC, 20, 3},
96 [ZEBRA_ROUTE_VNC_DIRECT] = {ZEBRA_ROUTE_VNC_DIRECT, 20, 3},
97 [ZEBRA_ROUTE_VNC_DIRECT_RH] = {ZEBRA_ROUTE_VNC_DIRECT_RH, 20, 3},
98 [ZEBRA_ROUTE_BGP_DIRECT] = {ZEBRA_ROUTE_BGP_DIRECT, 20, 3},
99 [ZEBRA_ROUTE_BGP_DIRECT_EXT] = {ZEBRA_ROUTE_BGP_DIRECT_EXT, 20, 3},
100 [ZEBRA_ROUTE_BABEL] = {ZEBRA_ROUTE_BABEL, 100, 2},
101 [ZEBRA_ROUTE_SHARP] = {ZEBRA_ROUTE_SHARP, 150, 4},
102
103 /* no entry/default: 150 */
104 };
105
106 /* RPF lookup behaviour */
107 static enum multicast_mode ipv4_multicast_mode = MCAST_NO_CONFIG;
108
109
110 static void __attribute__((format(printf, 5, 6)))
111 _rnode_zlog(const char *_func, vrf_id_t vrf_id, struct route_node *rn,
112 int priority, const char *msgfmt, ...)
113 {
114 char buf[SRCDEST2STR_BUFFER + sizeof(" (MRIB)")];
115 char msgbuf[512];
116 va_list ap;
117
118 va_start(ap, msgfmt);
119 vsnprintf(msgbuf, sizeof(msgbuf), msgfmt, ap);
120 va_end(ap);
121
122 if (rn) {
123 rib_table_info_t *info = srcdest_rnode_table_info(rn);
124 srcdest_rnode2str(rn, buf, sizeof(buf));
125
126 if (info->safi == SAFI_MULTICAST)
127 strcat(buf, " (MRIB)");
128 } else {
129 snprintf(buf, sizeof(buf), "{(route_node *) NULL}");
130 }
131
132 zlog(priority, "%s: %d:%s: %s", _func, vrf_id, buf, msgbuf);
133 }
134
135 #define rnode_debug(node, vrf_id, ...) \
136 _rnode_zlog(__func__, vrf_id, node, LOG_DEBUG, __VA_ARGS__)
137 #define rnode_info(node, ...) \
138 _rnode_zlog(__func__, vrf_id, node, LOG_INFO, __VA_ARGS__)
139
140 uint8_t route_distance(int type)
141 {
142 uint8_t distance;
143
144 if ((unsigned)type >= array_size(route_info))
145 distance = 150;
146 else
147 distance = route_info[type].distance;
148
149 return distance;
150 }
151
152 int is_zebra_valid_kernel_table(uint32_t table_id)
153 {
154 #ifdef linux
155 if ((table_id == RT_TABLE_UNSPEC) || (table_id == RT_TABLE_LOCAL)
156 || (table_id == RT_TABLE_COMPAT))
157 return 0;
158 #endif
159
160 return 1;
161 }
162
163 int is_zebra_main_routing_table(uint32_t table_id)
164 {
165 if ((table_id == RT_TABLE_MAIN)
166 || (table_id == zebrad.rtm_table_default))
167 return 1;
168 return 0;
169 }
170
171 int zebra_check_addr(const struct prefix *p)
172 {
173 if (p->family == AF_INET) {
174 uint32_t addr;
175
176 addr = p->u.prefix4.s_addr;
177 addr = ntohl(addr);
178
179 if (IPV4_NET127(addr) || IN_CLASSD(addr)
180 || IPV4_LINKLOCAL(addr))
181 return 0;
182 }
183 if (p->family == AF_INET6) {
184 if (IN6_IS_ADDR_LOOPBACK(&p->u.prefix6))
185 return 0;
186 if (IN6_IS_ADDR_LINKLOCAL(&p->u.prefix6))
187 return 0;
188 }
189 return 1;
190 }
191
192 /* Add nexthop to the end of a rib node's nexthop list */
193 void route_entry_nexthop_add(struct route_entry *re, struct nexthop *nexthop)
194 {
195 nexthop_add(&re->ng.nexthop, nexthop);
196 re->nexthop_num++;
197 }
198
199
200 /**
201 * copy_nexthop - copy a nexthop to the rib structure.
202 */
203 void route_entry_copy_nexthops(struct route_entry *re, struct nexthop *nh)
204 {
205 assert(!re->ng.nexthop);
206 copy_nexthops(&re->ng.nexthop, nh, NULL);
207 for (struct nexthop *nexthop = nh; nexthop; nexthop = nexthop->next)
208 re->nexthop_num++;
209 }
210
211 /* Delete specified nexthop from the list. */
212 void route_entry_nexthop_delete(struct route_entry *re, struct nexthop *nexthop)
213 {
214 if (nexthop->next)
215 nexthop->next->prev = nexthop->prev;
216 if (nexthop->prev)
217 nexthop->prev->next = nexthop->next;
218 else
219 re->ng.nexthop = nexthop->next;
220 re->nexthop_num--;
221 }
222
223
224 struct nexthop *route_entry_nexthop_ifindex_add(struct route_entry *re,
225 ifindex_t ifindex,
226 vrf_id_t nh_vrf_id)
227 {
228 struct nexthop *nexthop;
229
230 nexthop = nexthop_new();
231 nexthop->type = NEXTHOP_TYPE_IFINDEX;
232 nexthop->ifindex = ifindex;
233 nexthop->vrf_id = nh_vrf_id;
234
235 route_entry_nexthop_add(re, nexthop);
236
237 return nexthop;
238 }
239
240 struct nexthop *route_entry_nexthop_ipv4_add(struct route_entry *re,
241 struct in_addr *ipv4,
242 struct in_addr *src,
243 vrf_id_t nh_vrf_id)
244 {
245 struct nexthop *nexthop;
246
247 nexthop = nexthop_new();
248 nexthop->type = NEXTHOP_TYPE_IPV4;
249 nexthop->vrf_id = nh_vrf_id;
250 nexthop->gate.ipv4 = *ipv4;
251 if (src)
252 nexthop->src.ipv4 = *src;
253
254 route_entry_nexthop_add(re, nexthop);
255
256 return nexthop;
257 }
258
259 struct nexthop *route_entry_nexthop_ipv4_ifindex_add(struct route_entry *re,
260 struct in_addr *ipv4,
261 struct in_addr *src,
262 ifindex_t ifindex,
263 vrf_id_t nh_vrf_id)
264 {
265 struct nexthop *nexthop;
266 struct interface *ifp;
267
268 nexthop = nexthop_new();
269 nexthop->vrf_id = nh_vrf_id;
270 nexthop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
271 nexthop->gate.ipv4 = *ipv4;
272 if (src)
273 nexthop->src.ipv4 = *src;
274 nexthop->ifindex = ifindex;
275 ifp = if_lookup_by_index(nexthop->ifindex, nh_vrf_id);
276 /*Pending: need to think if null ifp here is ok during bootup?
277 There was a crash because ifp here was coming to be NULL */
278 if (ifp)
279 if (connected_is_unnumbered(ifp)
280 || CHECK_FLAG(re->flags, ZEBRA_FLAG_EVPN_ROUTE)) {
281 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK);
282 }
283
284 route_entry_nexthop_add(re, nexthop);
285
286 return nexthop;
287 }
288
289 struct nexthop *route_entry_nexthop_ipv6_add(struct route_entry *re,
290 struct in6_addr *ipv6,
291 vrf_id_t nh_vrf_id)
292 {
293 struct nexthop *nexthop;
294
295 nexthop = nexthop_new();
296 nexthop->vrf_id = nh_vrf_id;
297 nexthop->type = NEXTHOP_TYPE_IPV6;
298 nexthop->gate.ipv6 = *ipv6;
299
300 route_entry_nexthop_add(re, nexthop);
301
302 return nexthop;
303 }
304
305 struct nexthop *route_entry_nexthop_ipv6_ifindex_add(struct route_entry *re,
306 struct in6_addr *ipv6,
307 ifindex_t ifindex,
308 vrf_id_t nh_vrf_id)
309 {
310 struct nexthop *nexthop;
311
312 nexthop = nexthop_new();
313 nexthop->vrf_id = nh_vrf_id;
314 nexthop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
315 nexthop->gate.ipv6 = *ipv6;
316 nexthop->ifindex = ifindex;
317 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_EVPN_ROUTE))
318 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK);
319
320 route_entry_nexthop_add(re, nexthop);
321
322 return nexthop;
323 }
324
325 struct nexthop *route_entry_nexthop_blackhole_add(struct route_entry *re,
326 enum blackhole_type bh_type)
327 {
328 struct nexthop *nexthop;
329
330 nexthop = nexthop_new();
331 nexthop->vrf_id = VRF_DEFAULT;
332 nexthop->type = NEXTHOP_TYPE_BLACKHOLE;
333 nexthop->bh_type = bh_type;
334
335 route_entry_nexthop_add(re, nexthop);
336
337 return nexthop;
338 }
339
340 static void nexthop_set_resolved(afi_t afi, const struct nexthop *newhop,
341 struct nexthop *nexthop)
342 {
343 struct nexthop *resolved_hop;
344
345 resolved_hop = nexthop_new();
346 SET_FLAG(resolved_hop->flags, NEXTHOP_FLAG_ACTIVE);
347
348 resolved_hop->vrf_id = nexthop->vrf_id;
349 switch (newhop->type) {
350 case NEXTHOP_TYPE_IPV4:
351 case NEXTHOP_TYPE_IPV4_IFINDEX:
352 /* If the resolving route specifies a gateway, use it */
353 resolved_hop->type = newhop->type;
354 resolved_hop->gate.ipv4 = newhop->gate.ipv4;
355
356 if (newhop->ifindex) {
357 resolved_hop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
358 resolved_hop->ifindex = newhop->ifindex;
359 }
360 break;
361 case NEXTHOP_TYPE_IPV6:
362 case NEXTHOP_TYPE_IPV6_IFINDEX:
363 resolved_hop->type = newhop->type;
364 resolved_hop->gate.ipv6 = newhop->gate.ipv6;
365
366 if (newhop->ifindex) {
367 resolved_hop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
368 resolved_hop->ifindex = newhop->ifindex;
369 }
370 break;
371 case NEXTHOP_TYPE_IFINDEX:
372 /* If the resolving route is an interface route,
373 * it means the gateway we are looking up is connected
374 * to that interface. (The actual network is _not_ onlink).
375 * Therefore, the resolved route should have the original
376 * gateway as nexthop as it is directly connected.
377 *
378 * On Linux, we have to set the onlink netlink flag because
379 * otherwise, the kernel won't accept the route.
380 */
381 resolved_hop->flags |= NEXTHOP_FLAG_ONLINK;
382 if (afi == AFI_IP) {
383 resolved_hop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
384 resolved_hop->gate.ipv4 = nexthop->gate.ipv4;
385 } else if (afi == AFI_IP6) {
386 resolved_hop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
387 resolved_hop->gate.ipv6 = nexthop->gate.ipv6;
388 }
389 resolved_hop->ifindex = newhop->ifindex;
390 break;
391 case NEXTHOP_TYPE_BLACKHOLE:
392 resolved_hop->type = NEXTHOP_TYPE_BLACKHOLE;
393 resolved_hop->bh_type = nexthop->bh_type;
394 break;
395 }
396
397 if (newhop->flags & NEXTHOP_FLAG_ONLINK)
398 resolved_hop->flags |= NEXTHOP_FLAG_ONLINK;
399
400 /* Copy labels of the resolved route */
401 if (newhop->nh_label)
402 nexthop_add_labels(resolved_hop, newhop->nh_label_type,
403 newhop->nh_label->num_labels,
404 &newhop->nh_label->label[0]);
405
406 resolved_hop->rparent = nexthop;
407 nexthop_add(&nexthop->resolved, resolved_hop);
408 }
409
410 /* If force flag is not set, do not modify falgs at all for uninstall
411 the route from FIB. */
412 static int nexthop_active(afi_t afi, struct route_entry *re,
413 struct nexthop *nexthop, bool set,
414 struct route_node *top)
415 {
416 struct prefix p;
417 struct route_table *table;
418 struct route_node *rn;
419 struct route_entry *match = NULL;
420 int resolved;
421 struct nexthop *newhop;
422 struct interface *ifp;
423 rib_dest_t *dest;
424
425 if ((nexthop->type == NEXTHOP_TYPE_IPV4)
426 || nexthop->type == NEXTHOP_TYPE_IPV6)
427 nexthop->ifindex = 0;
428
429 if (set) {
430 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE);
431 nexthops_free(nexthop->resolved);
432 nexthop->resolved = NULL;
433 re->nexthop_mtu = 0;
434 }
435
436 /* Next hops (remote VTEPs) for EVPN routes are fully resolved. */
437 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_EVPN_RVTEP))
438 return 1;
439
440 /*
441 * If the kernel has sent us a route, then
442 * by golly gee whiz it's a good route.
443 */
444 if (re->type == ZEBRA_ROUTE_KERNEL ||
445 re->type == ZEBRA_ROUTE_SYSTEM)
446 return 1;
447
448 /* Skip nexthops that have been filtered out due to route-map */
449 /* The nexthops are specific to this route and so the same */
450 /* nexthop for a different route may not have this flag set */
451 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FILTERED)) {
452 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
453 zlog_debug("\t%s: Nexthop Filtered",
454 __PRETTY_FUNCTION__);
455 return 0;
456 }
457
458 /*
459 * Check to see if we should trust the passed in information
460 * for UNNUMBERED interfaces as that we won't find the GW
461 * address in the routing table.
462 */
463 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK)) {
464 ifp = if_lookup_by_index(nexthop->ifindex, nexthop->vrf_id);
465 if (!ifp) {
466 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
467 zlog_debug(
468 "\t%s: Onlink and interface: %u[%u] does not exist",
469 __PRETTY_FUNCTION__, nexthop->ifindex,
470 nexthop->vrf_id);
471 return 0;
472 }
473 if (connected_is_unnumbered(ifp)) {
474 if (if_is_operative(ifp))
475 return 1;
476 else {
477 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
478 zlog_debug(
479 "\t%s: Onlink and interface %s is not operative",
480 __PRETTY_FUNCTION__, ifp->name);
481 return 0;
482 }
483 }
484 if (!if_is_operative(ifp)) {
485 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
486 zlog_debug(
487 "\t%s: Interface %s is not unnumbered",
488 __PRETTY_FUNCTION__,
489 ifp ? ifp->name : "Unknown");
490 return 0;
491 }
492 }
493
494 /* Make lookup prefix. */
495 memset(&p, 0, sizeof(struct prefix));
496 switch (afi) {
497 case AFI_IP:
498 p.family = AF_INET;
499 p.prefixlen = IPV4_MAX_PREFIXLEN;
500 p.u.prefix4 = nexthop->gate.ipv4;
501 break;
502 case AFI_IP6:
503 p.family = AF_INET6;
504 p.prefixlen = IPV6_MAX_PREFIXLEN;
505 p.u.prefix6 = nexthop->gate.ipv6;
506 break;
507 default:
508 assert(afi != AFI_IP && afi != AFI_IP6);
509 break;
510 }
511 /* Lookup table. */
512 table = zebra_vrf_table(afi, SAFI_UNICAST, nexthop->vrf_id);
513 if (!table) {
514 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
515 zlog_debug("\t%s: Table not found",
516 __PRETTY_FUNCTION__);
517 return 0;
518 }
519
520 rn = route_node_match(table, (struct prefix *)&p);
521 while (rn) {
522 route_unlock_node(rn);
523
524 /* Lookup should halt if we've matched against ourselves ('top',
525 * if specified) - i.e., we cannot have a nexthop NH1 is
526 * resolved by a route NH1. The exception is if the route is a
527 * host route.
528 */
529 if (top && rn == top)
530 if (((afi == AFI_IP) && (rn->p.prefixlen != 32))
531 || ((afi == AFI_IP6) && (rn->p.prefixlen != 128))) {
532 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
533 zlog_debug(
534 "\t%s: Matched against ourself and prefix length is not max bit length",
535 __PRETTY_FUNCTION__);
536 return 0;
537 }
538
539 /* Pick up selected route. */
540 /* However, do not resolve over default route unless explicitly
541 * allowed. */
542 if (is_default_prefix(&rn->p)
543 && !rnh_resolve_via_default(p.family)) {
544 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
545 zlog_debug(
546 "\t:%s: Resolved against default route",
547 __PRETTY_FUNCTION__);
548 return 0;
549 }
550
551 dest = rib_dest_from_rnode(rn);
552 if (dest && dest->selected_fib
553 && !CHECK_FLAG(dest->selected_fib->status,
554 ROUTE_ENTRY_REMOVED)
555 && dest->selected_fib->type != ZEBRA_ROUTE_TABLE)
556 match = dest->selected_fib;
557
558 /* If there is no selected route or matched route is EGP, go up
559 tree. */
560 if (!match) {
561 do {
562 rn = rn->parent;
563 } while (rn && rn->info == NULL);
564 if (rn)
565 route_lock_node(rn);
566
567 continue;
568 }
569
570 if (match->type == ZEBRA_ROUTE_CONNECT) {
571 /* Directly point connected route. */
572 newhop = match->ng.nexthop;
573 if (newhop) {
574 if (nexthop->type == NEXTHOP_TYPE_IPV4
575 || nexthop->type == NEXTHOP_TYPE_IPV6)
576 nexthop->ifindex = newhop->ifindex;
577 }
578 return 1;
579 } else if (CHECK_FLAG(re->flags, ZEBRA_FLAG_ALLOW_RECURSION)) {
580 resolved = 0;
581 for (ALL_NEXTHOPS(match->ng, newhop)) {
582 if (!CHECK_FLAG(match->status,
583 ROUTE_ENTRY_INSTALLED))
584 continue;
585 if (CHECK_FLAG(newhop->flags,
586 NEXTHOP_FLAG_RECURSIVE))
587 continue;
588
589 if (set) {
590 SET_FLAG(nexthop->flags,
591 NEXTHOP_FLAG_RECURSIVE);
592 SET_FLAG(re->status,
593 ROUTE_ENTRY_NEXTHOPS_CHANGED);
594 nexthop_set_resolved(afi, newhop,
595 nexthop);
596 }
597 resolved = 1;
598 }
599 if (resolved && set)
600 re->nexthop_mtu = match->mtu;
601 if (!resolved && IS_ZEBRA_DEBUG_RIB_DETAILED)
602 zlog_debug("\t%s: Recursion failed to find",
603 __PRETTY_FUNCTION__);
604 return resolved;
605 } else if (re->type == ZEBRA_ROUTE_STATIC) {
606 resolved = 0;
607 for (ALL_NEXTHOPS(match->ng, newhop)) {
608 if (!CHECK_FLAG(match->status,
609 ROUTE_ENTRY_INSTALLED))
610 continue;
611
612 if (set) {
613 SET_FLAG(nexthop->flags,
614 NEXTHOP_FLAG_RECURSIVE);
615 nexthop_set_resolved(afi, newhop,
616 nexthop);
617 }
618 resolved = 1;
619 }
620 if (resolved && set)
621 re->nexthop_mtu = match->mtu;
622
623 if (!resolved && IS_ZEBRA_DEBUG_RIB_DETAILED)
624 zlog_debug(
625 "\t%s: Static route unable to resolve",
626 __PRETTY_FUNCTION__);
627 return resolved;
628 } else {
629 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
630 zlog_debug("\t%s: Route Type %s has not turned on recursion",
631 __PRETTY_FUNCTION__,
632 zebra_route_string(re->type));
633 if (re->type == ZEBRA_ROUTE_BGP &&
634 !CHECK_FLAG(re->flags, ZEBRA_FLAG_IBGP))
635 zlog_debug("\tEBGP: see \"disable-ebgp-connected-route-check\" or \"disable-connected-check\"");
636 }
637 return 0;
638 }
639 }
640 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
641 zlog_debug("\t%s: Nexthop did not lookup in table",
642 __PRETTY_FUNCTION__);
643 return 0;
644 }
645
646 struct route_entry *rib_match(afi_t afi, safi_t safi, vrf_id_t vrf_id,
647 union g_addr *addr, struct route_node **rn_out)
648 {
649 struct prefix p;
650 struct route_table *table;
651 struct route_node *rn;
652 struct route_entry *match = NULL;
653
654 /* Lookup table. */
655 table = zebra_vrf_table(afi, safi, vrf_id);
656 if (!table)
657 return 0;
658
659 memset(&p, 0, sizeof(struct prefix));
660 p.family = afi;
661 if (afi == AFI_IP) {
662 p.u.prefix4 = addr->ipv4;
663 p.prefixlen = IPV4_MAX_PREFIXLEN;
664 } else {
665 p.u.prefix6 = addr->ipv6;
666 p.prefixlen = IPV6_MAX_PREFIXLEN;
667 }
668
669 rn = route_node_match(table, (struct prefix *)&p);
670
671 while (rn) {
672 rib_dest_t *dest;
673
674 route_unlock_node(rn);
675
676 dest = rib_dest_from_rnode(rn);
677 if (dest && dest->selected_fib
678 && !CHECK_FLAG(dest->selected_fib->status,
679 ROUTE_ENTRY_REMOVED))
680 match = dest->selected_fib;
681
682 /* If there is no selected route or matched route is EGP, go up
683 tree. */
684 if (!match) {
685 do {
686 rn = rn->parent;
687 } while (rn && rn->info == NULL);
688 if (rn)
689 route_lock_node(rn);
690 } else {
691 if (match->type != ZEBRA_ROUTE_CONNECT) {
692 if (!CHECK_FLAG(match->status,
693 ROUTE_ENTRY_INSTALLED))
694 return NULL;
695 }
696
697 if (rn_out)
698 *rn_out = rn;
699 return match;
700 }
701 }
702 return NULL;
703 }
704
705 struct route_entry *rib_match_ipv4_multicast(vrf_id_t vrf_id,
706 struct in_addr addr,
707 struct route_node **rn_out)
708 {
709 struct route_entry *re = NULL, *mre = NULL, *ure = NULL;
710 struct route_node *m_rn = NULL, *u_rn = NULL;
711 union g_addr gaddr = {.ipv4 = addr};
712
713 switch (ipv4_multicast_mode) {
714 case MCAST_MRIB_ONLY:
715 return rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr,
716 rn_out);
717 case MCAST_URIB_ONLY:
718 return rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, rn_out);
719 case MCAST_NO_CONFIG:
720 case MCAST_MIX_MRIB_FIRST:
721 re = mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr,
722 &m_rn);
723 if (!mre)
724 re = ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id,
725 &gaddr, &u_rn);
726 break;
727 case MCAST_MIX_DISTANCE:
728 mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr, &m_rn);
729 ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, &u_rn);
730 if (mre && ure)
731 re = ure->distance < mre->distance ? ure : mre;
732 else if (mre)
733 re = mre;
734 else if (ure)
735 re = ure;
736 break;
737 case MCAST_MIX_PFXLEN:
738 mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr, &m_rn);
739 ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, &u_rn);
740 if (mre && ure)
741 re = u_rn->p.prefixlen > m_rn->p.prefixlen ? ure : mre;
742 else if (mre)
743 re = mre;
744 else if (ure)
745 re = ure;
746 break;
747 }
748
749 if (rn_out)
750 *rn_out = (re == mre) ? m_rn : u_rn;
751
752 if (IS_ZEBRA_DEBUG_RIB) {
753 char buf[BUFSIZ];
754 inet_ntop(AF_INET, &addr, buf, BUFSIZ);
755
756 zlog_debug("%s: %s: vrf: %u found %s, using %s",
757 __func__, buf, vrf_id,
758 mre ? (ure ? "MRIB+URIB" : "MRIB")
759 : ure ? "URIB" : "nothing",
760 re == ure ? "URIB" : re == mre ? "MRIB" : "none");
761 }
762 return re;
763 }
764
765 void multicast_mode_ipv4_set(enum multicast_mode mode)
766 {
767 if (IS_ZEBRA_DEBUG_RIB)
768 zlog_debug("%s: multicast lookup mode set (%d)", __func__,
769 mode);
770 ipv4_multicast_mode = mode;
771 }
772
773 enum multicast_mode multicast_mode_ipv4_get(void)
774 {
775 return ipv4_multicast_mode;
776 }
777
778 struct route_entry *rib_lookup_ipv4(struct prefix_ipv4 *p, vrf_id_t vrf_id)
779 {
780 struct route_table *table;
781 struct route_node *rn;
782 struct route_entry *match = NULL;
783 rib_dest_t *dest;
784
785 /* Lookup table. */
786 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
787 if (!table)
788 return 0;
789
790 rn = route_node_lookup(table, (struct prefix *)p);
791
792 /* No route for this prefix. */
793 if (!rn)
794 return NULL;
795
796 /* Unlock node. */
797 route_unlock_node(rn);
798 dest = rib_dest_from_rnode(rn);
799
800 if (dest && dest->selected_fib
801 && !CHECK_FLAG(dest->selected_fib->status, ROUTE_ENTRY_REMOVED))
802 match = dest->selected_fib;
803
804 if (!match)
805 return NULL;
806
807 if (match->type == ZEBRA_ROUTE_CONNECT)
808 return match;
809
810 if (CHECK_FLAG(match->status, ROUTE_ENTRY_INSTALLED))
811 return match;
812
813 return NULL;
814 }
815
816 #define RIB_SYSTEM_ROUTE(R) \
817 ((R)->type == ZEBRA_ROUTE_KERNEL || (R)->type == ZEBRA_ROUTE_CONNECT)
818
819 #define RIB_KERNEL_ROUTE(R) \
820 ((R)->type == ZEBRA_ROUTE_KERNEL)
821
822 /* This function verifies reachability of one given nexthop, which can be
823 * numbered or unnumbered, IPv4 or IPv6. The result is unconditionally stored
824 * in nexthop->flags field. If the 4th parameter, 'set', is non-zero,
825 * nexthop->ifindex will be updated appropriately as well.
826 * An existing route map can turn (otherwise active) nexthop into inactive, but
827 * not vice versa.
828 *
829 * The return value is the final value of 'ACTIVE' flag.
830 */
831
832 static unsigned nexthop_active_check(struct route_node *rn,
833 struct route_entry *re,
834 struct nexthop *nexthop, bool set)
835 {
836 struct interface *ifp;
837 route_map_result_t ret = RMAP_MATCH;
838 int family;
839 char buf[SRCDEST2STR_BUFFER];
840 const struct prefix *p, *src_p;
841 struct zebra_vrf *zvrf;
842
843 srcdest_rnode_prefixes(rn, &p, &src_p);
844
845 if (rn->p.family == AF_INET)
846 family = AFI_IP;
847 else if (rn->p.family == AF_INET6)
848 family = AFI_IP6;
849 else
850 family = 0;
851 switch (nexthop->type) {
852 case NEXTHOP_TYPE_IFINDEX:
853 ifp = if_lookup_by_index(nexthop->ifindex, nexthop->vrf_id);
854 if (ifp && if_is_operative(ifp))
855 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
856 else
857 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
858 break;
859 case NEXTHOP_TYPE_IPV4:
860 case NEXTHOP_TYPE_IPV4_IFINDEX:
861 family = AFI_IP;
862 if (nexthop_active(AFI_IP, re, nexthop, set, rn))
863 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
864 else
865 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
866 break;
867 case NEXTHOP_TYPE_IPV6:
868 family = AFI_IP6;
869 if (nexthop_active(AFI_IP6, re, nexthop, set, rn))
870 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
871 else
872 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
873 break;
874 case NEXTHOP_TYPE_IPV6_IFINDEX:
875 /* RFC 5549, v4 prefix with v6 NH */
876 if (rn->p.family != AF_INET)
877 family = AFI_IP6;
878 if (IN6_IS_ADDR_LINKLOCAL(&nexthop->gate.ipv6)) {
879 ifp = if_lookup_by_index(nexthop->ifindex,
880 nexthop->vrf_id);
881 if (ifp && if_is_operative(ifp))
882 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
883 else
884 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
885 } else {
886 if (nexthop_active(AFI_IP6, re, nexthop, set, rn))
887 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
888 else
889 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
890 }
891 break;
892 case NEXTHOP_TYPE_BLACKHOLE:
893 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
894 break;
895 default:
896 break;
897 }
898 if (!CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE)) {
899 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
900 zlog_debug("\t%s: Unable to find a active nexthop",
901 __PRETTY_FUNCTION__);
902 return 0;
903 }
904
905 /* XXX: What exactly do those checks do? Do we support
906 * e.g. IPv4 routes with IPv6 nexthops or vice versa?
907 */
908 if (RIB_SYSTEM_ROUTE(re) || (family == AFI_IP && p->family != AF_INET)
909 || (family == AFI_IP6 && p->family != AF_INET6))
910 return CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
911
912 /* The original code didn't determine the family correctly
913 * e.g. for NEXTHOP_TYPE_IFINDEX. Retrieve the correct afi
914 * from the rib_table_info in those cases.
915 * Possibly it may be better to use only the rib_table_info
916 * in every case.
917 */
918 if (!family) {
919 rib_table_info_t *info;
920
921 info = srcdest_rnode_table_info(rn);
922 family = info->afi;
923 }
924
925 memset(&nexthop->rmap_src.ipv6, 0, sizeof(union g_addr));
926
927 zvrf = zebra_vrf_lookup_by_id(nexthop->vrf_id);
928 if (!zvrf) {
929 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
930 zlog_debug("\t%s: zvrf is NULL", __PRETTY_FUNCTION__);
931 return CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
932 }
933
934 /* It'll get set if required inside */
935 ret = zebra_route_map_check(family, re->type, re->instance, p,
936 nexthop, zvrf, re->tag);
937 if (ret == RMAP_DENYMATCH) {
938 if (IS_ZEBRA_DEBUG_RIB) {
939 srcdest_rnode2str(rn, buf, sizeof(buf));
940 zlog_debug(
941 "%u:%s: Filtering out with NH out %s due to route map",
942 re->vrf_id, buf,
943 ifindex2ifname(nexthop->ifindex,
944 nexthop->vrf_id));
945 }
946 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
947 }
948 return CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
949 }
950
951 /* Iterate over all nexthops of the given RIB entry and refresh their
952 * ACTIVE flag. re->nexthop_active_num is updated accordingly. If any
953 * nexthop is found to toggle the ACTIVE flag, the whole re structure
954 * is flagged with ROUTE_ENTRY_CHANGED. The 4th 'set' argument is
955 * transparently passed to nexthop_active_check().
956 *
957 * Return value is the new number of active nexthops.
958 */
959
960 static int nexthop_active_update(struct route_node *rn, struct route_entry *re,
961 bool set)
962 {
963 struct nexthop *nexthop;
964 union g_addr prev_src;
965 unsigned int prev_active, new_active, old_num_nh;
966 ifindex_t prev_index;
967
968 old_num_nh = re->nexthop_active_num;
969
970 re->nexthop_active_num = 0;
971 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
972
973 for (nexthop = re->ng.nexthop; nexthop; nexthop = nexthop->next) {
974 /* No protocol daemon provides src and so we're skipping
975 * tracking it */
976 prev_src = nexthop->rmap_src;
977 prev_active = CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
978 prev_index = nexthop->ifindex;
979 /*
980 * We need to respect the multipath_num here
981 * as that what we should be able to install from
982 * a multipath perpsective should not be a data plane
983 * decision point.
984 */
985 new_active = nexthop_active_check(rn, re, nexthop, set);
986 if (new_active && re->nexthop_active_num >= multipath_num) {
987 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
988 new_active = 0;
989 }
990 if (new_active)
991 re->nexthop_active_num++;
992 /* Don't allow src setting on IPv6 addr for now */
993 if (prev_active != new_active || prev_index != nexthop->ifindex
994 || ((nexthop->type >= NEXTHOP_TYPE_IFINDEX
995 && nexthop->type < NEXTHOP_TYPE_IPV6)
996 && prev_src.ipv4.s_addr
997 != nexthop->rmap_src.ipv4.s_addr)
998 || ((nexthop->type >= NEXTHOP_TYPE_IPV6
999 && nexthop->type < NEXTHOP_TYPE_BLACKHOLE)
1000 && !(IPV6_ADDR_SAME(&prev_src.ipv6,
1001 &nexthop->rmap_src.ipv6)))) {
1002 SET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1003 SET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
1004 }
1005 }
1006
1007 if (old_num_nh != re->nexthop_active_num)
1008 SET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1009
1010 if (CHECK_FLAG(re->status, ROUTE_ENTRY_CHANGED)) {
1011 SET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
1012 }
1013
1014 return re->nexthop_active_num;
1015 }
1016
1017 /*
1018 * Is this RIB labeled-unicast? It must be of type BGP and all paths
1019 * (nexthops) must have a label.
1020 */
1021 int zebra_rib_labeled_unicast(struct route_entry *re)
1022 {
1023 struct nexthop *nexthop = NULL;
1024
1025 if (re->type != ZEBRA_ROUTE_BGP)
1026 return 0;
1027
1028 for (ALL_NEXTHOPS(re->ng, nexthop))
1029 if (!nexthop->nh_label || !nexthop->nh_label->num_labels)
1030 return 0;
1031
1032 return 1;
1033 }
1034
1035 /* Update flag indicates whether this is a "replace" or not. Currently, this
1036 * is only used for IPv4.
1037 */
1038 void rib_install_kernel(struct route_node *rn, struct route_entry *re,
1039 struct route_entry *old)
1040 {
1041 struct nexthop *nexthop;
1042 rib_table_info_t *info = srcdest_rnode_table_info(rn);
1043 struct zebra_vrf *zvrf = vrf_info_lookup(re->vrf_id);
1044 const struct prefix *p, *src_p;
1045 enum zebra_dplane_result ret;
1046
1047 rib_dest_t *dest = rib_dest_from_rnode(rn);
1048
1049 srcdest_rnode_prefixes(rn, &p, &src_p);
1050
1051 if (info->safi != SAFI_UNICAST) {
1052 for (ALL_NEXTHOPS(re->ng, nexthop))
1053 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1054 return;
1055 } else {
1056 struct nexthop *prev;
1057
1058 for (ALL_NEXTHOPS(re->ng, nexthop)) {
1059 UNSET_FLAG (nexthop->flags, NEXTHOP_FLAG_DUPLICATE);
1060 for (ALL_NEXTHOPS(re->ng, prev)) {
1061 if (prev == nexthop)
1062 break;
1063 if (nexthop_same_firsthop(nexthop, prev)) {
1064 SET_FLAG(nexthop->flags,
1065 NEXTHOP_FLAG_DUPLICATE);
1066 break;
1067 }
1068 }
1069 }
1070 }
1071
1072 /*
1073 * If this is a replace to a new RE let the originator of the RE
1074 * know that they've lost
1075 */
1076 if (old && (old != re) && (old->type != re->type))
1077 zsend_route_notify_owner(old, p, ZAPI_ROUTE_BETTER_ADMIN_WON);
1078
1079 /* Update fib selection */
1080 dest->selected_fib = re;
1081
1082 /*
1083 * Make sure we update the FPM any time we send new information to
1084 * the kernel.
1085 */
1086 hook_call(rib_update, rn, "installing in kernel");
1087
1088 /* Send add or update */
1089 if (old && (old != re))
1090 ret = dplane_route_update(rn, re, old);
1091 else
1092 ret = dplane_route_add(rn, re);
1093
1094 switch (ret) {
1095 case ZEBRA_DPLANE_REQUEST_QUEUED:
1096 SET_FLAG(re->status, ROUTE_ENTRY_QUEUED);
1097 if (old)
1098 SET_FLAG(old->status, ROUTE_ENTRY_QUEUED);
1099 if (zvrf)
1100 zvrf->installs_queued++;
1101 break;
1102 case ZEBRA_DPLANE_REQUEST_FAILURE:
1103 {
1104 char str[SRCDEST2STR_BUFFER];
1105
1106 srcdest_rnode2str(rn, str, sizeof(str));
1107 flog_err(EC_ZEBRA_DP_INSTALL_FAIL,
1108 "%u:%s: Failed to enqueue dataplane install",
1109 re->vrf_id, str);
1110 break;
1111 }
1112 case ZEBRA_DPLANE_REQUEST_SUCCESS:
1113 if (zvrf)
1114 zvrf->installs++;
1115 break;
1116 }
1117
1118 return;
1119 }
1120
1121 /* Uninstall the route from kernel. */
1122 void rib_uninstall_kernel(struct route_node *rn, struct route_entry *re)
1123 {
1124 struct nexthop *nexthop;
1125 rib_table_info_t *info = srcdest_rnode_table_info(rn);
1126 struct zebra_vrf *zvrf = vrf_info_lookup(re->vrf_id);
1127
1128 if (info->safi != SAFI_UNICAST) {
1129 UNSET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
1130 for (ALL_NEXTHOPS(re->ng, nexthop))
1131 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1132 return;
1133 }
1134
1135 /*
1136 * Make sure we update the FPM any time we send new information to
1137 * the dataplane.
1138 */
1139 hook_call(rib_update, rn, "uninstalling from kernel");
1140
1141 switch (dplane_route_delete(rn, re)) {
1142 case ZEBRA_DPLANE_REQUEST_QUEUED:
1143 if (zvrf)
1144 zvrf->removals_queued++;
1145 break;
1146 case ZEBRA_DPLANE_REQUEST_FAILURE:
1147 {
1148 char str[SRCDEST2STR_BUFFER];
1149
1150 srcdest_rnode2str(rn, str, sizeof(str));
1151 flog_err(EC_ZEBRA_DP_INSTALL_FAIL,
1152 "%u:%s: Failed to enqueue dataplane uninstall",
1153 re->vrf_id, str);
1154 break;
1155 }
1156 case ZEBRA_DPLANE_REQUEST_SUCCESS:
1157 if (zvrf)
1158 zvrf->removals++;
1159 break;
1160 }
1161
1162 return;
1163 }
1164
1165 /* Uninstall the route from kernel. */
1166 static void rib_uninstall(struct route_node *rn, struct route_entry *re)
1167 {
1168 rib_table_info_t *info = srcdest_rnode_table_info(rn);
1169 rib_dest_t *dest = rib_dest_from_rnode(rn);
1170 struct nexthop *nexthop;
1171
1172 if (dest && dest->selected_fib == re) {
1173 if (info->safi == SAFI_UNICAST)
1174 hook_call(rib_update, rn, "rib_uninstall");
1175
1176 /* If labeled-unicast route, uninstall transit LSP. */
1177 if (zebra_rib_labeled_unicast(re))
1178 zebra_mpls_lsp_uninstall(info->zvrf, rn, re);
1179
1180 if (!RIB_SYSTEM_ROUTE(re))
1181 rib_uninstall_kernel(rn, re);
1182 else
1183 UNSET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
1184
1185 dest->selected_fib = NULL;
1186
1187 for (ALL_NEXTHOPS(re->ng, nexthop))
1188 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1189 }
1190
1191 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)) {
1192 const struct prefix *p, *src_p;
1193
1194 srcdest_rnode_prefixes(rn, &p, &src_p);
1195
1196 redistribute_delete(p, src_p, re);
1197 UNSET_FLAG(re->flags, ZEBRA_FLAG_SELECTED);
1198 }
1199 }
1200
1201 /*
1202 * rib_can_delete_dest
1203 *
1204 * Returns TRUE if the given dest can be deleted from the table.
1205 */
1206 static int rib_can_delete_dest(rib_dest_t *dest)
1207 {
1208 if (dest->routes) {
1209 return 0;
1210 }
1211
1212 /*
1213 * Don't delete the dest if we have to update the FPM about this
1214 * prefix.
1215 */
1216 if (CHECK_FLAG(dest->flags, RIB_DEST_UPDATE_FPM)
1217 || CHECK_FLAG(dest->flags, RIB_DEST_SENT_TO_FPM))
1218 return 0;
1219
1220 return 1;
1221 }
1222
1223 /*
1224 * rib_gc_dest
1225 *
1226 * Garbage collect the rib dest corresponding to the given route node
1227 * if appropriate.
1228 *
1229 * Returns TRUE if the dest was deleted, FALSE otherwise.
1230 */
1231 int rib_gc_dest(struct route_node *rn)
1232 {
1233 rib_dest_t *dest;
1234
1235 dest = rib_dest_from_rnode(rn);
1236 if (!dest)
1237 return 0;
1238
1239 if (!rib_can_delete_dest(dest))
1240 return 0;
1241
1242 if (IS_ZEBRA_DEBUG_RIB) {
1243 struct zebra_vrf *zvrf;
1244
1245 zvrf = rib_dest_vrf(dest);
1246 rnode_debug(rn, zvrf_id(zvrf), "removing dest from table");
1247 }
1248
1249 dest->rnode = NULL;
1250 XFREE(MTYPE_RIB_DEST, dest);
1251 rn->info = NULL;
1252
1253 /*
1254 * Release the one reference that we keep on the route node.
1255 */
1256 route_unlock_node(rn);
1257 return 1;
1258 }
1259
1260 static void rib_process_add_fib(struct zebra_vrf *zvrf, struct route_node *rn,
1261 struct route_entry *new)
1262 {
1263 rib_dest_t *dest = rib_dest_from_rnode(rn);
1264
1265 hook_call(rib_update, rn, "new route selected");
1266
1267 /* Update real nexthop. This may actually determine if nexthop is active
1268 * or not. */
1269 if (!nexthop_active_update(rn, new, true)) {
1270 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1271 return;
1272 }
1273
1274 if (IS_ZEBRA_DEBUG_RIB) {
1275 char buf[SRCDEST2STR_BUFFER];
1276 srcdest_rnode2str(rn, buf, sizeof(buf));
1277 zlog_debug("%u:%s: Adding route rn %p, re %p (%s)",
1278 zvrf_id(zvrf), buf, rn, new,
1279 zebra_route_string(new->type));
1280 }
1281
1282 /* If labeled-unicast route, install transit LSP. */
1283 if (zebra_rib_labeled_unicast(new))
1284 zebra_mpls_lsp_install(zvrf, rn, new);
1285
1286 if (!RIB_SYSTEM_ROUTE(new))
1287 rib_install_kernel(rn, new, NULL);
1288 else
1289 dest->selected_fib = new;
1290
1291 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1292 }
1293
1294 static void rib_process_del_fib(struct zebra_vrf *zvrf, struct route_node *rn,
1295 struct route_entry *old)
1296 {
1297 rib_dest_t *dest = rib_dest_from_rnode(rn);
1298 hook_call(rib_update, rn, "removing existing route");
1299
1300 /* Uninstall from kernel. */
1301 if (IS_ZEBRA_DEBUG_RIB) {
1302 char buf[SRCDEST2STR_BUFFER];
1303 srcdest_rnode2str(rn, buf, sizeof(buf));
1304 zlog_debug("%u:%s: Deleting route rn %p, re %p (%s)",
1305 zvrf_id(zvrf), buf, rn, old,
1306 zebra_route_string(old->type));
1307 }
1308
1309 /* If labeled-unicast route, uninstall transit LSP. */
1310 if (zebra_rib_labeled_unicast(old))
1311 zebra_mpls_lsp_uninstall(zvrf, rn, old);
1312
1313 if (!RIB_SYSTEM_ROUTE(old))
1314 rib_uninstall_kernel(rn, old);
1315 else {
1316 UNSET_FLAG(old->status, ROUTE_ENTRY_INSTALLED);
1317 /*
1318 * We are setting this to NULL here
1319 * because that is what we traditionally
1320 * have been doing. I am not positive
1321 * that this is the right thing to do
1322 * but let's leave the code alone
1323 * for the RIB_SYSTEM_ROUTE case
1324 */
1325 dest->selected_fib = NULL;
1326 }
1327
1328 /* Update nexthop for route, reset changed flag. */
1329 /* Note: this code also handles the Linux case when an interface goes
1330 * down, causing the kernel to delete routes without sending DELROUTE
1331 * notifications
1332 */
1333 if (!nexthop_active_update(rn, old, true) &&
1334 (RIB_KERNEL_ROUTE(old)))
1335 SET_FLAG(old->status, ROUTE_ENTRY_REMOVED);
1336 else
1337 UNSET_FLAG(old->status, ROUTE_ENTRY_CHANGED);
1338 }
1339
1340 static void rib_process_update_fib(struct zebra_vrf *zvrf,
1341 struct route_node *rn,
1342 struct route_entry *old,
1343 struct route_entry *new)
1344 {
1345 struct nexthop *nexthop = NULL;
1346 int nh_active = 0;
1347 rib_dest_t *dest = rib_dest_from_rnode(rn);
1348
1349 /*
1350 * We have to install or update if a new route has been selected or
1351 * something has changed.
1352 */
1353 if (new != old || CHECK_FLAG(new->status, ROUTE_ENTRY_CHANGED)) {
1354 hook_call(rib_update, rn, "updating existing route");
1355
1356 /* Update the nexthop; we could determine here that nexthop is
1357 * inactive. */
1358 if (nexthop_active_update(rn, new, true))
1359 nh_active = 1;
1360
1361 /* If nexthop is active, install the selected route, if
1362 * appropriate. If
1363 * the install succeeds, cleanup flags for prior route, if
1364 * different from
1365 * newly selected.
1366 */
1367 if (nh_active) {
1368 if (IS_ZEBRA_DEBUG_RIB) {
1369 char buf[SRCDEST2STR_BUFFER];
1370 srcdest_rnode2str(rn, buf, sizeof(buf));
1371 if (new != old)
1372 zlog_debug(
1373 "%u:%s: Updating route rn %p, re %p (%s) old %p (%s)",
1374 zvrf_id(zvrf), buf, rn, new,
1375 zebra_route_string(new->type),
1376 old,
1377 zebra_route_string(old->type));
1378 else
1379 zlog_debug(
1380 "%u:%s: Updating route rn %p, re %p (%s)",
1381 zvrf_id(zvrf), buf, rn, new,
1382 zebra_route_string(new->type));
1383 }
1384
1385 /* If labeled-unicast route, uninstall transit LSP. */
1386 if (zebra_rib_labeled_unicast(old))
1387 zebra_mpls_lsp_uninstall(zvrf, rn, old);
1388
1389 /* Non-system route should be installed. */
1390 if (!RIB_SYSTEM_ROUTE(new)) {
1391 /* If labeled-unicast route, install transit
1392 * LSP. */
1393 if (zebra_rib_labeled_unicast(new))
1394 zebra_mpls_lsp_install(zvrf, rn, new);
1395
1396 rib_install_kernel(rn, new, old);
1397 } else {
1398 UNSET_FLAG(new->status, ROUTE_ENTRY_INSTALLED);
1399 /*
1400 * We do not need to install the
1401 * selected route because it
1402 * is already isntalled by
1403 * the system( ie not us )
1404 * so just mark it as winning
1405 * we do need to ensure that
1406 * if we uninstall a route
1407 * from ourselves we don't
1408 * over write this pointer
1409 */
1410 dest->selected_fib = NULL;
1411 }
1412 /* If install succeeded or system route, cleanup flags
1413 * for prior route. */
1414 if (new != old) {
1415 if (RIB_SYSTEM_ROUTE(new)) {
1416 if (!RIB_SYSTEM_ROUTE(old))
1417 rib_uninstall_kernel(rn, old);
1418 else
1419 UNSET_FLAG(
1420 old->status,
1421 ROUTE_ENTRY_INSTALLED);
1422 } else {
1423 UNSET_FLAG(old->status,
1424 ROUTE_ENTRY_INSTALLED);
1425 for (nexthop = old->ng.nexthop; nexthop;
1426 nexthop = nexthop->next)
1427 UNSET_FLAG(nexthop->flags,
1428 NEXTHOP_FLAG_FIB);
1429 }
1430 }
1431 }
1432
1433 /*
1434 * If nexthop for selected route is not active or install
1435 * failed, we
1436 * may need to uninstall and delete for redistribution.
1437 */
1438 if (!nh_active) {
1439 if (IS_ZEBRA_DEBUG_RIB) {
1440 char buf[SRCDEST2STR_BUFFER];
1441 srcdest_rnode2str(rn, buf, sizeof(buf));
1442 if (new != old)
1443 zlog_debug(
1444 "%u:%s: Deleting route rn %p, re %p (%s) old %p (%s) - nexthop inactive",
1445 zvrf_id(zvrf), buf, rn, new,
1446 zebra_route_string(new->type),
1447 old,
1448 zebra_route_string(old->type));
1449 else
1450 zlog_debug(
1451 "%u:%s: Deleting route rn %p, re %p (%s) - nexthop inactive",
1452 zvrf_id(zvrf), buf, rn, new,
1453 zebra_route_string(new->type));
1454 }
1455
1456 /* If labeled-unicast route, uninstall transit LSP. */
1457 if (zebra_rib_labeled_unicast(old))
1458 zebra_mpls_lsp_uninstall(zvrf, rn, old);
1459
1460 if (!RIB_SYSTEM_ROUTE(old))
1461 rib_uninstall_kernel(rn, old);
1462 else {
1463 UNSET_FLAG(old->status, ROUTE_ENTRY_INSTALLED);
1464 dest->selected_fib = NULL;
1465 }
1466 }
1467 } else {
1468 /*
1469 * Same route selected; check if in the FIB and if not,
1470 * re-install. This
1471 * is housekeeping code to deal with race conditions in kernel
1472 * with linux
1473 * netlink reporting interface up before IPv4 or IPv6 protocol
1474 * is ready
1475 * to add routes.
1476 */
1477 if (!RIB_SYSTEM_ROUTE(new)
1478 && !CHECK_FLAG(new->status, ROUTE_ENTRY_INSTALLED))
1479 rib_install_kernel(rn, new, NULL);
1480 }
1481
1482 /* Update prior route. */
1483 if (new != old) {
1484 /* Set real nexthop. */
1485 nexthop_active_update(rn, old, true);
1486 UNSET_FLAG(old->status, ROUTE_ENTRY_CHANGED);
1487 }
1488
1489 /* Clear changed flag. */
1490 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1491 }
1492
1493 /* Check if 'alternate' RIB entry is better than 'current'. */
1494 static struct route_entry *rib_choose_best(struct route_entry *current,
1495 struct route_entry *alternate)
1496 {
1497 if (current == NULL)
1498 return alternate;
1499
1500 /* filter route selection in following order:
1501 * - connected beats other types
1502 * - if both connected, loopback or vrf wins
1503 * - lower distance beats higher
1504 * - lower metric beats higher for equal distance
1505 * - last, hence oldest, route wins tie break.
1506 */
1507
1508 /* Connected routes. Check to see if either are a vrf
1509 * or loopback interface. If not, pick the last connected
1510 * route of the set of lowest metric connected routes.
1511 */
1512 if (alternate->type == ZEBRA_ROUTE_CONNECT) {
1513 if (current->type != ZEBRA_ROUTE_CONNECT)
1514 return alternate;
1515
1516 /* both are connected. are either loop or vrf? */
1517 struct nexthop *nexthop = NULL;
1518
1519 for (ALL_NEXTHOPS(alternate->ng, nexthop)) {
1520 if (if_is_loopback_or_vrf(if_lookup_by_index(
1521 nexthop->ifindex, alternate->vrf_id)))
1522 return alternate;
1523 }
1524
1525 for (ALL_NEXTHOPS(current->ng, nexthop)) {
1526 if (if_is_loopback_or_vrf(if_lookup_by_index(
1527 nexthop->ifindex, current->vrf_id)))
1528 return current;
1529 }
1530
1531 /* Neither are loop or vrf so pick best metric */
1532 if (alternate->metric <= current->metric)
1533 return alternate;
1534
1535 return current;
1536 }
1537
1538 if (current->type == ZEBRA_ROUTE_CONNECT)
1539 return current;
1540
1541 /* higher distance loses */
1542 if (alternate->distance < current->distance)
1543 return alternate;
1544 if (current->distance < alternate->distance)
1545 return current;
1546
1547 /* metric tie-breaks equal distance */
1548 if (alternate->metric <= current->metric)
1549 return alternate;
1550
1551 return current;
1552 }
1553
1554 /* Core function for processing routing information base. */
1555 static void rib_process(struct route_node *rn)
1556 {
1557 struct route_entry *re;
1558 struct route_entry *next;
1559 struct route_entry *old_selected = NULL;
1560 struct route_entry *new_selected = NULL;
1561 struct route_entry *old_fib = NULL;
1562 struct route_entry *new_fib = NULL;
1563 struct route_entry *best = NULL;
1564 char buf[SRCDEST2STR_BUFFER];
1565 rib_dest_t *dest;
1566 struct zebra_vrf *zvrf = NULL;
1567 const struct prefix *p, *src_p;
1568
1569 srcdest_rnode_prefixes(rn, &p, &src_p);
1570 vrf_id_t vrf_id = VRF_UNKNOWN;
1571
1572 assert(rn);
1573
1574 dest = rib_dest_from_rnode(rn);
1575 if (dest) {
1576 zvrf = rib_dest_vrf(dest);
1577 vrf_id = zvrf_id(zvrf);
1578 }
1579
1580 if (IS_ZEBRA_DEBUG_RIB)
1581 srcdest_rnode2str(rn, buf, sizeof(buf));
1582
1583 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1584 zlog_debug("%u:%s: Processing rn %p", vrf_id, buf, rn);
1585
1586 /*
1587 * we can have rn's that have a NULL info pointer
1588 * (dest). As such let's not let the deref happen
1589 * additionally we know RNODE_FOREACH_RE_SAFE
1590 * will not iterate so we are ok.
1591 */
1592 if (dest)
1593 old_fib = dest->selected_fib;
1594
1595 RNODE_FOREACH_RE_SAFE (rn, re, next) {
1596 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1597 zlog_debug(
1598 "%u:%s: Examine re %p (%s) status %x flags %x dist %d metric %d",
1599 vrf_id, buf, re, zebra_route_string(re->type),
1600 re->status, re->flags, re->distance,
1601 re->metric);
1602
1603 UNSET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
1604
1605 /* Currently selected re. */
1606 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)) {
1607 assert(old_selected == NULL);
1608 old_selected = re;
1609 }
1610
1611 /* Skip deleted entries from selection */
1612 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
1613 continue;
1614
1615 /* Skip unreachable nexthop. */
1616 /* This first call to nexthop_active_update is merely to
1617 * determine if
1618 * there's any change to nexthops associated with this RIB
1619 * entry. Now,
1620 * rib_process() can be invoked due to an external event such as
1621 * link
1622 * down or due to next-hop-tracking evaluation. In the latter
1623 * case,
1624 * a decision has already been made that the NHs have changed.
1625 * So, no
1626 * need to invoke a potentially expensive call again. Further,
1627 * since
1628 * the change might be in a recursive NH which is not caught in
1629 * the nexthop_active_update() code. Thus, we might miss changes
1630 * to
1631 * recursive NHs.
1632 */
1633 if (!CHECK_FLAG(re->status, ROUTE_ENTRY_CHANGED)
1634 && !nexthop_active_update(rn, re, false)) {
1635 if (re->type == ZEBRA_ROUTE_TABLE) {
1636 /* XXX: HERE BE DRAGONS!!!!!
1637 * In all honesty, I have not yet figured out
1638 * what this part
1639 * does or why the ROUTE_ENTRY_CHANGED test
1640 * above is correct
1641 * or why we need to delete a route here, and
1642 * also not whether
1643 * this concerns both selected and fib route, or
1644 * only selected
1645 * or only fib */
1646 /* This entry was denied by the 'ip protocol
1647 * table' route-map, we
1648 * need to delete it */
1649 if (re != old_selected) {
1650 if (IS_ZEBRA_DEBUG_RIB)
1651 zlog_debug(
1652 "%s: %u:%s: imported via import-table but denied "
1653 "by the ip protocol table route-map",
1654 __func__, vrf_id, buf);
1655 rib_unlink(rn, re);
1656 } else
1657 SET_FLAG(re->status,
1658 ROUTE_ENTRY_REMOVED);
1659 }
1660
1661 continue;
1662 }
1663
1664 /* Infinite distance. */
1665 if (re->distance == DISTANCE_INFINITY) {
1666 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1667 continue;
1668 }
1669
1670 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_FIB_OVERRIDE)) {
1671 best = rib_choose_best(new_fib, re);
1672 if (new_fib && best != new_fib)
1673 UNSET_FLAG(new_fib->status,
1674 ROUTE_ENTRY_CHANGED);
1675 new_fib = best;
1676 } else {
1677 best = rib_choose_best(new_selected, re);
1678 if (new_selected && best != new_selected)
1679 UNSET_FLAG(new_selected->status,
1680 ROUTE_ENTRY_CHANGED);
1681 new_selected = best;
1682 }
1683 if (best != re)
1684 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1685 } /* RNODE_FOREACH_RE */
1686
1687 /* If no FIB override route, use the selected route also for FIB */
1688 if (new_fib == NULL)
1689 new_fib = new_selected;
1690
1691 /* After the cycle is finished, the following pointers will be set:
1692 * old_selected --- RE entry currently having SELECTED
1693 * new_selected --- RE entry that is newly SELECTED
1694 * old_fib --- RE entry currently in kernel FIB
1695 * new_fib --- RE entry that is newly to be in kernel FIB
1696 *
1697 * new_selected will get SELECTED flag, and is going to be redistributed
1698 * the zclients. new_fib (which can be new_selected) will be installed
1699 * in kernel.
1700 */
1701
1702 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
1703 zlog_debug(
1704 "%u:%s: After processing: old_selected %p new_selected %p old_fib %p new_fib %p",
1705 vrf_id, buf, (void *)old_selected, (void *)new_selected,
1706 (void *)old_fib, (void *)new_fib);
1707 }
1708
1709 /* Buffer ROUTE_ENTRY_CHANGED here, because it will get cleared if
1710 * fib == selected */
1711 bool selected_changed = new_selected && CHECK_FLAG(new_selected->status,
1712 ROUTE_ENTRY_CHANGED);
1713
1714 /* Update fib according to selection results */
1715 if (new_fib && old_fib)
1716 rib_process_update_fib(zvrf, rn, old_fib, new_fib);
1717 else if (new_fib)
1718 rib_process_add_fib(zvrf, rn, new_fib);
1719 else if (old_fib)
1720 rib_process_del_fib(zvrf, rn, old_fib);
1721
1722 /* Update SELECTED entry */
1723 if (old_selected != new_selected || selected_changed) {
1724
1725 if (new_selected && new_selected != new_fib) {
1726 nexthop_active_update(rn, new_selected, true);
1727 UNSET_FLAG(new_selected->status, ROUTE_ENTRY_CHANGED);
1728 }
1729
1730 if (new_selected) {
1731 SET_FLAG(new_selected->flags, ZEBRA_FLAG_SELECTED);
1732
1733 /* Special case: new route is system route, so
1734 * dataplane update will not be done - ensure we
1735 * redistribute the route.
1736 */
1737 if (RIB_SYSTEM_ROUTE(new_selected))
1738 redistribute_update(p, src_p, new_selected,
1739 old_selected);
1740 }
1741
1742 if (old_selected) {
1743 if (!new_selected)
1744 redistribute_delete(p, src_p, old_selected);
1745 if (old_selected != new_selected)
1746 UNSET_FLAG(old_selected->flags,
1747 ZEBRA_FLAG_SELECTED);
1748 }
1749 }
1750
1751 /* Remove all RE entries queued for removal */
1752 RNODE_FOREACH_RE_SAFE (rn, re, next) {
1753 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
1754 if (IS_ZEBRA_DEBUG_RIB) {
1755 rnode_debug(rn, vrf_id, "rn %p, removing re %p",
1756 (void *)rn, (void *)re);
1757 }
1758 rib_unlink(rn, re);
1759 }
1760 }
1761
1762 /*
1763 * Check if the dest can be deleted now.
1764 */
1765 rib_gc_dest(rn);
1766 }
1767
1768 /*
1769 * Utility to match route with dplane context data
1770 */
1771 static bool rib_route_match_ctx(const struct route_entry *re,
1772 const struct zebra_dplane_ctx *ctx,
1773 bool is_update)
1774 {
1775 bool result = false;
1776
1777 if (is_update) {
1778 /*
1779 * In 'update' case, we test info about the 'previous' or
1780 * 'old' route
1781 */
1782 if ((re->type == dplane_ctx_get_old_type(ctx)) &&
1783 (re->instance == dplane_ctx_get_old_instance(ctx))) {
1784 result = true;
1785
1786 /* TODO -- we're using this extra test, but it's not
1787 * exactly clear why.
1788 */
1789 if (re->type == ZEBRA_ROUTE_STATIC &&
1790 (re->distance != dplane_ctx_get_old_distance(ctx) ||
1791 re->tag != dplane_ctx_get_old_tag(ctx))) {
1792 result = false;
1793 }
1794 }
1795
1796 } else {
1797 /*
1798 * Ordinary, single-route case using primary context info
1799 */
1800 if ((dplane_ctx_get_op(ctx) != DPLANE_OP_ROUTE_DELETE) &&
1801 CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
1802 /* Skip route that's been deleted */
1803 goto done;
1804 }
1805
1806 if ((re->type == dplane_ctx_get_type(ctx)) &&
1807 (re->instance == dplane_ctx_get_instance(ctx))) {
1808 result = true;
1809
1810 /* TODO -- we're using this extra test, but it's not
1811 * exactly clear why.
1812 */
1813 if (re->type == ZEBRA_ROUTE_STATIC &&
1814 (re->distance != dplane_ctx_get_distance(ctx) ||
1815 re->tag != dplane_ctx_get_tag(ctx))) {
1816 result = false;
1817 }
1818 }
1819 }
1820
1821 done:
1822
1823 return (result);
1824 }
1825
1826 /*
1827 * Route-update results processing after async dataplane update.
1828 */
1829 static void rib_process_result(struct zebra_dplane_ctx *ctx)
1830 {
1831 struct route_table *table = NULL;
1832 struct zebra_vrf *zvrf = NULL;
1833 struct route_node *rn = NULL;
1834 struct route_entry *re = NULL, *old_re = NULL, *rib;
1835 bool is_update = false;
1836 struct nexthop *nexthop, *ctx_nexthop;
1837 char dest_str[PREFIX_STRLEN] = "";
1838 enum dplane_op_e op;
1839 enum zebra_dplane_result status;
1840 const struct prefix *dest_pfx, *src_pfx;
1841
1842 /* Locate rn and re(s) from ctx */
1843
1844 table = zebra_vrf_table_with_table_id(dplane_ctx_get_afi(ctx),
1845 dplane_ctx_get_safi(ctx),
1846 dplane_ctx_get_vrf(ctx),
1847 dplane_ctx_get_table(ctx));
1848 if (table == NULL) {
1849 if (IS_ZEBRA_DEBUG_DPLANE) {
1850 zlog_debug("Failed to process dplane results: no table for afi %d, safi %d, vrf %u",
1851 dplane_ctx_get_afi(ctx),
1852 dplane_ctx_get_safi(ctx),
1853 dplane_ctx_get_vrf(ctx));
1854 }
1855 goto done;
1856 }
1857
1858 zvrf = vrf_info_lookup(dplane_ctx_get_vrf(ctx));
1859
1860 dest_pfx = dplane_ctx_get_dest(ctx);
1861
1862 /* Note well: only capturing the prefix string if debug is enabled here;
1863 * unconditional log messages will have to generate the string.
1864 */
1865 if (IS_ZEBRA_DEBUG_DPLANE)
1866 prefix2str(dest_pfx, dest_str, sizeof(dest_str));
1867
1868 src_pfx = dplane_ctx_get_src(ctx);
1869 rn = srcdest_rnode_get(table, dplane_ctx_get_dest(ctx),
1870 src_pfx ? (struct prefix_ipv6 *)src_pfx : NULL);
1871 if (rn == NULL) {
1872 if (IS_ZEBRA_DEBUG_DPLANE) {
1873 zlog_debug("Failed to process dplane results: no route for %u:%s",
1874 dplane_ctx_get_vrf(ctx), dest_str);
1875 }
1876 goto done;
1877 }
1878
1879 srcdest_rnode_prefixes(rn, &dest_pfx, &src_pfx);
1880
1881 op = dplane_ctx_get_op(ctx);
1882 status = dplane_ctx_get_status(ctx);
1883
1884 if (IS_ZEBRA_DEBUG_DPLANE_DETAIL)
1885 zlog_debug("%u:%s Processing dplane ctx %p, op %s result %s",
1886 dplane_ctx_get_vrf(ctx), dest_str, ctx,
1887 dplane_op2str(op), dplane_res2str(status));
1888
1889 /*
1890 * Update is a bit of a special case, where we may have both old and new
1891 * routes to post-process.
1892 */
1893 is_update = dplane_ctx_is_update(ctx);
1894
1895 /*
1896 * Take a pass through the routes, look for matches with the context
1897 * info.
1898 */
1899 RNODE_FOREACH_RE(rn, rib) {
1900
1901 if (re == NULL) {
1902 if (rib_route_match_ctx(rib, ctx, false))
1903 re = rib;
1904 }
1905
1906 /* Check for old route match */
1907 if (is_update && (old_re == NULL)) {
1908 if (rib_route_match_ctx(rib, ctx, true /*is_update*/))
1909 old_re = rib;
1910 }
1911
1912 /* Have we found the routes we need to work on? */
1913 if (re && ((!is_update || old_re)))
1914 break;
1915 }
1916
1917 /*
1918 * Check sequence number(s) to detect stale results before continuing
1919 */
1920 if (re) {
1921 if (re->dplane_sequence != dplane_ctx_get_seq(ctx)) {
1922 if (IS_ZEBRA_DEBUG_DPLANE_DETAIL)
1923 zlog_debug("%u:%s Stale dplane result for re %p",
1924 dplane_ctx_get_vrf(ctx),
1925 dest_str, re);
1926 } else
1927 UNSET_FLAG(re->status, ROUTE_ENTRY_QUEUED);
1928 }
1929
1930 if (old_re) {
1931 if (old_re->dplane_sequence != dplane_ctx_get_old_seq(ctx)) {
1932 if (IS_ZEBRA_DEBUG_DPLANE_DETAIL)
1933 zlog_debug("%u:%s Stale dplane result for old_re %p",
1934 dplane_ctx_get_vrf(ctx),
1935 dest_str, old_re);
1936 } else
1937 UNSET_FLAG(re->status, ROUTE_ENTRY_QUEUED);
1938 }
1939
1940 switch (op) {
1941 case DPLANE_OP_ROUTE_INSTALL:
1942 case DPLANE_OP_ROUTE_UPDATE:
1943 if (status == ZEBRA_DPLANE_REQUEST_SUCCESS) {
1944 if (re) {
1945 UNSET_FLAG(re->status, ROUTE_ENTRY_FAILED);
1946 SET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
1947 }
1948 if (old_re) {
1949 UNSET_FLAG(old_re->status, ROUTE_ENTRY_FAILED);
1950 UNSET_FLAG(old_re->status,
1951 ROUTE_ENTRY_INSTALLED);
1952 }
1953 /* Update zebra nexthop FIB flag for each
1954 * nexthop that was installed.
1955 */
1956 for (ALL_NEXTHOPS_PTR(dplane_ctx_get_ng(ctx),
1957 ctx_nexthop)) {
1958
1959 if (!re)
1960 continue;
1961
1962 for (ALL_NEXTHOPS(re->ng, nexthop)) {
1963 if (nexthop_same(ctx_nexthop, nexthop))
1964 break;
1965 }
1966
1967 if (nexthop == NULL)
1968 continue;
1969
1970 if (CHECK_FLAG(nexthop->flags,
1971 NEXTHOP_FLAG_RECURSIVE))
1972 continue;
1973
1974 if (CHECK_FLAG(ctx_nexthop->flags,
1975 NEXTHOP_FLAG_FIB))
1976 SET_FLAG(nexthop->flags,
1977 NEXTHOP_FLAG_FIB);
1978 else
1979 UNSET_FLAG(nexthop->flags,
1980 NEXTHOP_FLAG_FIB);
1981 }
1982
1983 if (zvrf) {
1984 zvrf->installs++;
1985 /* Set flag for nexthop tracking processing */
1986 zvrf->flags |= ZEBRA_VRF_RIB_SCHEDULED;
1987 }
1988
1989 /* Redistribute */
1990 /*
1991 * TODO -- still calling the redist api using the
1992 * route_entries, and there's a corner-case here:
1993 * if there's no client for the 'new' route, a redist
1994 * deleting the 'old' route will be sent. But if the
1995 * 'old' context info was stale, 'old_re' will be
1996 * NULL here and that delete will not be sent.
1997 */
1998 if (re)
1999 redistribute_update(dest_pfx, src_pfx,
2000 re, old_re);
2001
2002 /* Notify route owner */
2003 zsend_route_notify_owner_ctx(ctx, ZAPI_ROUTE_INSTALLED);
2004
2005 } else {
2006 if (re)
2007 SET_FLAG(re->status, ROUTE_ENTRY_FAILED);
2008 if (old_re)
2009 SET_FLAG(old_re->status, ROUTE_ENTRY_FAILED);
2010 if (re)
2011 zsend_route_notify_owner(re, dest_pfx,
2012 ZAPI_ROUTE_FAIL_INSTALL);
2013
2014 zlog_warn("%u:%s: Route install failed",
2015 dplane_ctx_get_vrf(ctx),
2016 prefix2str(dest_pfx,
2017 dest_str, sizeof(dest_str)));
2018 }
2019 break;
2020 case DPLANE_OP_ROUTE_DELETE:
2021 if (re)
2022 SET_FLAG(re->status, ROUTE_ENTRY_FAILED);
2023 /*
2024 * In the delete case, the zebra core datastructs were
2025 * updated (or removed) at the time the delete was issued,
2026 * so we're just notifying the route owner.
2027 */
2028 if (status == ZEBRA_DPLANE_REQUEST_SUCCESS) {
2029 if (re) {
2030 UNSET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
2031 UNSET_FLAG(re->status, ROUTE_ENTRY_FAILED);
2032 }
2033 zsend_route_notify_owner_ctx(ctx, ZAPI_ROUTE_REMOVED);
2034
2035 if (zvrf)
2036 zvrf->removals++;
2037 } else {
2038 if (re)
2039 SET_FLAG(re->status, ROUTE_ENTRY_FAILED);
2040 zsend_route_notify_owner_ctx(ctx,
2041 ZAPI_ROUTE_REMOVE_FAIL);
2042
2043 zlog_warn("%u:%s: Route Deletion failure",
2044 dplane_ctx_get_vrf(ctx),
2045 prefix2str(dest_pfx,
2046 dest_str, sizeof(dest_str)));
2047 }
2048 break;
2049 default:
2050 break;
2051 }
2052 done:
2053
2054 /* Return context to dataplane module */
2055 dplane_ctx_fini(&ctx);
2056 }
2057
2058 /* Take a list of route_node structs and return 1, if there was a record
2059 * picked from it and processed by rib_process(). Don't process more,
2060 * than one RN record; operate only in the specified sub-queue.
2061 */
2062 static unsigned int process_subq(struct list *subq, uint8_t qindex)
2063 {
2064 struct listnode *lnode = listhead(subq);
2065 struct route_node *rnode;
2066 rib_dest_t *dest;
2067 struct zebra_vrf *zvrf = NULL;
2068
2069 if (!lnode)
2070 return 0;
2071
2072 rnode = listgetdata(lnode);
2073 dest = rib_dest_from_rnode(rnode);
2074 if (dest)
2075 zvrf = rib_dest_vrf(dest);
2076
2077 rib_process(rnode);
2078
2079 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
2080 char buf[SRCDEST2STR_BUFFER];
2081 srcdest_rnode2str(rnode, buf, sizeof(buf));
2082 zlog_debug("%u:%s: rn %p dequeued from sub-queue %u",
2083 zvrf ? zvrf_id(zvrf) : 0, buf, rnode, qindex);
2084 }
2085
2086 if (rnode->info)
2087 UNSET_FLAG(rib_dest_from_rnode(rnode)->flags,
2088 RIB_ROUTE_QUEUED(qindex));
2089
2090 #if 0
2091 else
2092 {
2093 zlog_debug ("%s: called for route_node (%p, %d) with no ribs",
2094 __func__, rnode, rnode->lock);
2095 zlog_backtrace(LOG_DEBUG);
2096 }
2097 #endif
2098 route_unlock_node(rnode);
2099 list_delete_node(subq, lnode);
2100 return 1;
2101 }
2102
2103 /*
2104 * Perform next-hop tracking processing after RIB updates.
2105 */
2106 static void do_nht_processing(void)
2107 {
2108 struct vrf *vrf;
2109 struct zebra_vrf *zvrf;
2110
2111 /* Evaluate nexthops for those VRFs which underwent route processing.
2112 * This
2113 * should limit the evaluation to the necessary VRFs in most common
2114 * situations.
2115 */
2116 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id) {
2117 zvrf = vrf->info;
2118 if (zvrf == NULL || !(zvrf->flags & ZEBRA_VRF_RIB_SCHEDULED))
2119 continue;
2120
2121 if (IS_ZEBRA_DEBUG_RIB_DETAILED || IS_ZEBRA_DEBUG_NHT)
2122 zlog_debug("NHT processing check for zvrf %s",
2123 zvrf_name(zvrf));
2124
2125 zvrf->flags &= ~ZEBRA_VRF_RIB_SCHEDULED;
2126 zebra_evaluate_rnh(zvrf, AFI_IP, 0, RNH_NEXTHOP_TYPE, NULL);
2127 zebra_evaluate_rnh(zvrf, AFI_IP, 0, RNH_IMPORT_CHECK_TYPE,
2128 NULL);
2129 zebra_evaluate_rnh(zvrf, AFI_IP6, 0, RNH_NEXTHOP_TYPE, NULL);
2130 zebra_evaluate_rnh(zvrf, AFI_IP6, 0, RNH_IMPORT_CHECK_TYPE,
2131 NULL);
2132 }
2133
2134 /* Schedule LSPs for processing, if needed. */
2135 zvrf = vrf_info_lookup(VRF_DEFAULT);
2136 if (mpls_should_lsps_be_processed(zvrf)) {
2137 if (IS_ZEBRA_DEBUG_MPLS)
2138 zlog_debug(
2139 "%u: Scheduling all LSPs upon RIB completion",
2140 zvrf_id(zvrf));
2141 zebra_mpls_lsp_schedule(zvrf);
2142 mpls_unmark_lsps_for_processing(zvrf);
2143 }
2144 }
2145
2146 /*
2147 * All meta queues have been processed. Trigger next-hop evaluation.
2148 */
2149 static void meta_queue_process_complete(struct work_queue *dummy)
2150 {
2151 do_nht_processing();
2152 }
2153
2154 /* Dispatch the meta queue by picking, processing and unlocking the next RN from
2155 * a non-empty sub-queue with lowest priority. wq is equal to zebra->ribq and
2156 * data
2157 * is pointed to the meta queue structure.
2158 */
2159 static wq_item_status meta_queue_process(struct work_queue *dummy, void *data)
2160 {
2161 struct meta_queue *mq = data;
2162 unsigned i;
2163 uint32_t queue_len, queue_limit;
2164
2165 /* Ensure there's room for more dataplane updates */
2166 queue_limit = dplane_get_in_queue_limit();
2167 queue_len = dplane_get_in_queue_len();
2168 if (queue_len > queue_limit) {
2169 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2170 zlog_debug("rib queue: dplane queue len %u, limit %u, retrying",
2171 queue_len, queue_limit);
2172
2173 /* Ensure that the meta-queue is actually enqueued */
2174 if (work_queue_empty(zebrad.ribq))
2175 work_queue_add(zebrad.ribq, zebrad.mq);
2176
2177 return WQ_QUEUE_BLOCKED;
2178 }
2179
2180 for (i = 0; i < MQ_SIZE; i++)
2181 if (process_subq(mq->subq[i], i)) {
2182 mq->size--;
2183 break;
2184 }
2185 return mq->size ? WQ_REQUEUE : WQ_SUCCESS;
2186 }
2187
2188
2189 /*
2190 * Look into the RN and queue it into the highest priority queue
2191 * at this point in time for processing.
2192 *
2193 * We will enqueue a route node only once per invocation.
2194 *
2195 * There are two possibilities here that should be kept in mind.
2196 * If the original invocation has not been pulled off for processing
2197 * yet, A subsuquent invocation can have a route entry with a better
2198 * meta queue index value and we can have a situation where
2199 * we might have the same node enqueued 2 times. Not necessarily
2200 * an optimal situation but it should be ok.
2201 *
2202 * The other possibility is that the original invocation has not
2203 * been pulled off for processing yet, A subsusquent invocation
2204 * doesn't have a route_entry with a better meta-queue and the
2205 * original metaqueue index value will win and we'll end up with
2206 * the route node enqueued once.
2207 */
2208 static void rib_meta_queue_add(struct meta_queue *mq, struct route_node *rn)
2209 {
2210 struct route_entry *re = NULL, *curr_re = NULL;
2211 uint8_t qindex = MQ_SIZE, curr_qindex = MQ_SIZE;
2212 struct zebra_vrf *zvrf;
2213
2214 RNODE_FOREACH_RE (rn, curr_re) {
2215 curr_qindex = route_info[curr_re->type].meta_q_map;
2216
2217 if (curr_qindex <= qindex) {
2218 re = curr_re;
2219 qindex = curr_qindex;
2220 }
2221 }
2222
2223 if (!re)
2224 return;
2225
2226 /* Invariant: at this point we always have rn->info set. */
2227 if (CHECK_FLAG(rib_dest_from_rnode(rn)->flags,
2228 RIB_ROUTE_QUEUED(qindex))) {
2229 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2230 rnode_debug(rn, re->vrf_id,
2231 "rn %p is already queued in sub-queue %u",
2232 (void *)rn, qindex);
2233 return;
2234 }
2235
2236 SET_FLAG(rib_dest_from_rnode(rn)->flags, RIB_ROUTE_QUEUED(qindex));
2237 listnode_add(mq->subq[qindex], rn);
2238 route_lock_node(rn);
2239 mq->size++;
2240
2241 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2242 rnode_debug(rn, re->vrf_id, "queued rn %p into sub-queue %u",
2243 (void *)rn, qindex);
2244
2245 zvrf = zebra_vrf_lookup_by_id(re->vrf_id);
2246 if (zvrf)
2247 zvrf->flags |= ZEBRA_VRF_RIB_SCHEDULED;
2248 }
2249
2250 /* Add route_node to work queue and schedule processing */
2251 void rib_queue_add(struct route_node *rn)
2252 {
2253 assert(rn);
2254
2255 /* Pointless to queue a route_node with no RIB entries to add or remove
2256 */
2257 if (!rnode_to_ribs(rn)) {
2258 zlog_debug("%s: called for route_node (%p, %d) with no ribs",
2259 __func__, (void *)rn, rn->lock);
2260 zlog_backtrace(LOG_DEBUG);
2261 return;
2262 }
2263
2264 if (zebrad.ribq == NULL) {
2265 flog_err(EC_ZEBRA_WQ_NONEXISTENT,
2266 "%s: work_queue does not exist!", __func__);
2267 return;
2268 }
2269
2270 /*
2271 * The RIB queue should normally be either empty or holding the only
2272 * work_queue_item element. In the latter case this element would
2273 * hold a pointer to the meta queue structure, which must be used to
2274 * actually queue the route nodes to process. So create the MQ
2275 * holder, if necessary, then push the work into it in any case.
2276 * This semantics was introduced after 0.99.9 release.
2277 */
2278 if (work_queue_empty(zebrad.ribq))
2279 work_queue_add(zebrad.ribq, zebrad.mq);
2280
2281 rib_meta_queue_add(zebrad.mq, rn);
2282
2283 return;
2284 }
2285
2286 /* Create new meta queue.
2287 A destructor function doesn't seem to be necessary here.
2288 */
2289 static struct meta_queue *meta_queue_new(void)
2290 {
2291 struct meta_queue *new;
2292 unsigned i;
2293
2294 new = XCALLOC(MTYPE_WORK_QUEUE, sizeof(struct meta_queue));
2295
2296 for (i = 0; i < MQ_SIZE; i++) {
2297 new->subq[i] = list_new();
2298 assert(new->subq[i]);
2299 }
2300
2301 return new;
2302 }
2303
2304 void meta_queue_free(struct meta_queue *mq)
2305 {
2306 unsigned i;
2307
2308 for (i = 0; i < MQ_SIZE; i++)
2309 list_delete(&mq->subq[i]);
2310
2311 XFREE(MTYPE_WORK_QUEUE, mq);
2312 }
2313
2314 /* initialise zebra rib work queue */
2315 static void rib_queue_init(struct zebra_t *zebra)
2316 {
2317 assert(zebra);
2318
2319 if (!(zebra->ribq =
2320 work_queue_new(zebra->master, "route_node processing"))) {
2321 flog_err(EC_ZEBRA_WQ_NONEXISTENT,
2322 "%s: could not initialise work queue!", __func__);
2323 return;
2324 }
2325
2326 /* fill in the work queue spec */
2327 zebra->ribq->spec.workfunc = &meta_queue_process;
2328 zebra->ribq->spec.errorfunc = NULL;
2329 zebra->ribq->spec.completion_func = &meta_queue_process_complete;
2330 /* XXX: TODO: These should be runtime configurable via vty */
2331 zebra->ribq->spec.max_retries = 3;
2332 zebra->ribq->spec.hold = ZEBRA_RIB_PROCESS_HOLD_TIME;
2333 zebra->ribq->spec.retry = ZEBRA_RIB_PROCESS_RETRY_TIME;
2334
2335 if (!(zebra->mq = meta_queue_new())) {
2336 flog_err(EC_ZEBRA_WQ_NONEXISTENT,
2337 "%s: could not initialise meta queue!", __func__);
2338 return;
2339 }
2340 return;
2341 }
2342
2343 /* RIB updates are processed via a queue of pointers to route_nodes.
2344 *
2345 * The queue length is bounded by the maximal size of the routing table,
2346 * as a route_node will not be requeued, if already queued.
2347 *
2348 * REs are submitted via rib_addnode or rib_delnode which set minimal
2349 * state, or static_install_route (when an existing RE is updated)
2350 * and then submit route_node to queue for best-path selection later.
2351 * Order of add/delete state changes are preserved for any given RE.
2352 *
2353 * Deleted REs are reaped during best-path selection.
2354 *
2355 * rib_addnode
2356 * |-> rib_link or unset ROUTE_ENTRY_REMOVE |->Update kernel with
2357 * |-------->| | best RE, if required
2358 * | |
2359 * static_install->|->rib_addqueue...... -> rib_process
2360 * | |
2361 * |-------->| |-> rib_unlink
2362 * |-> set ROUTE_ENTRY_REMOVE |
2363 * rib_delnode (RE freed)
2364 *
2365 * The 'info' pointer of a route_node points to a rib_dest_t
2366 * ('dest'). Queueing state for a route_node is kept on the dest. The
2367 * dest is created on-demand by rib_link() and is kept around at least
2368 * as long as there are ribs hanging off it (@see rib_gc_dest()).
2369 *
2370 * Refcounting (aka "locking" throughout the GNU Zebra and Quagga code):
2371 *
2372 * - route_nodes: refcounted by:
2373 * - dest attached to route_node:
2374 * - managed by: rib_link/rib_gc_dest
2375 * - route_node processing queue
2376 * - managed by: rib_addqueue, rib_process.
2377 *
2378 */
2379
2380 /* Add RE to head of the route node. */
2381 static void rib_link(struct route_node *rn, struct route_entry *re, int process)
2382 {
2383 struct route_entry *head;
2384 rib_dest_t *dest;
2385 afi_t afi;
2386 const char *rmap_name;
2387
2388 assert(re && rn);
2389
2390 dest = rib_dest_from_rnode(rn);
2391 if (!dest) {
2392 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2393 rnode_debug(rn, re->vrf_id, "rn %p adding dest", rn);
2394
2395 dest = XCALLOC(MTYPE_RIB_DEST, sizeof(rib_dest_t));
2396 route_lock_node(rn); /* rn route table reference */
2397 rn->info = dest;
2398 dest->rnode = rn;
2399 }
2400
2401 head = dest->routes;
2402 if (head) {
2403 head->prev = re;
2404 }
2405 re->next = head;
2406 dest->routes = re;
2407
2408 afi = (rn->p.family == AF_INET)
2409 ? AFI_IP
2410 : (rn->p.family == AF_INET6) ? AFI_IP6 : AFI_MAX;
2411 if (is_zebra_import_table_enabled(afi, re->table)) {
2412 rmap_name = zebra_get_import_table_route_map(afi, re->table);
2413 zebra_add_import_table_entry(rn, re, rmap_name);
2414 } else if (process)
2415 rib_queue_add(rn);
2416 }
2417
2418 static void rib_addnode(struct route_node *rn,
2419 struct route_entry *re, int process)
2420 {
2421 /* RE node has been un-removed before route-node is processed.
2422 * route_node must hence already be on the queue for processing..
2423 */
2424 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
2425 if (IS_ZEBRA_DEBUG_RIB)
2426 rnode_debug(rn, re->vrf_id, "rn %p, un-removed re %p",
2427 (void *)rn, (void *)re);
2428
2429 UNSET_FLAG(re->status, ROUTE_ENTRY_REMOVED);
2430 return;
2431 }
2432 rib_link(rn, re, process);
2433 }
2434
2435 /*
2436 * rib_unlink
2437 *
2438 * Detach a rib structure from a route_node.
2439 *
2440 * Note that a call to rib_unlink() should be followed by a call to
2441 * rib_gc_dest() at some point. This allows a rib_dest_t that is no
2442 * longer required to be deleted.
2443 */
2444 void rib_unlink(struct route_node *rn, struct route_entry *re)
2445 {
2446 rib_dest_t *dest;
2447
2448 assert(rn && re);
2449
2450 if (IS_ZEBRA_DEBUG_RIB)
2451 rnode_debug(rn, re->vrf_id, "rn %p, re %p", (void *)rn,
2452 (void *)re);
2453
2454 dest = rib_dest_from_rnode(rn);
2455
2456 if (re->next)
2457 re->next->prev = re->prev;
2458
2459 if (re->prev)
2460 re->prev->next = re->next;
2461 else {
2462 dest->routes = re->next;
2463 }
2464
2465 if (dest->selected_fib == re)
2466 dest->selected_fib = NULL;
2467
2468 nexthops_free(re->ng.nexthop);
2469 XFREE(MTYPE_RE, re);
2470 }
2471
2472 void rib_delnode(struct route_node *rn, struct route_entry *re)
2473 {
2474 afi_t afi;
2475
2476 if (IS_ZEBRA_DEBUG_RIB)
2477 rnode_debug(rn, re->vrf_id, "rn %p, re %p, removing",
2478 (void *)rn, (void *)re);
2479 SET_FLAG(re->status, ROUTE_ENTRY_REMOVED);
2480
2481 afi = (rn->p.family == AF_INET)
2482 ? AFI_IP
2483 : (rn->p.family == AF_INET6) ? AFI_IP6 : AFI_MAX;
2484 if (is_zebra_import_table_enabled(afi, re->table)) {
2485 zebra_del_import_table_entry(rn, re);
2486 /* Just clean up if non main table */
2487 if (IS_ZEBRA_DEBUG_RIB) {
2488 char buf[SRCDEST2STR_BUFFER];
2489 srcdest_rnode2str(rn, buf, sizeof(buf));
2490 zlog_debug("%u:%s: Freeing route rn %p, re %p (%s)",
2491 re->vrf_id, buf, rn, re,
2492 zebra_route_string(re->type));
2493 }
2494
2495 rib_unlink(rn, re);
2496 } else {
2497 rib_queue_add(rn);
2498 }
2499 }
2500
2501 /* This function dumps the contents of a given RE entry into
2502 * standard debug log. Calling function name and IP prefix in
2503 * question are passed as 1st and 2nd arguments.
2504 */
2505
2506 void _route_entry_dump(const char *func, union prefixconstptr pp,
2507 union prefixconstptr src_pp,
2508 const struct route_entry *re)
2509 {
2510 const struct prefix *src_p = src_pp.p;
2511 bool is_srcdst = src_p && src_p->prefixlen;
2512 char straddr[PREFIX_STRLEN];
2513 char srcaddr[PREFIX_STRLEN];
2514 struct nexthop *nexthop;
2515
2516 zlog_debug("%s: dumping RE entry %p for %s%s%s vrf %u", func,
2517 (const void *)re, prefix2str(pp, straddr, sizeof(straddr)),
2518 is_srcdst ? " from " : "",
2519 is_srcdst ? prefix2str(src_pp, srcaddr, sizeof(srcaddr))
2520 : "",
2521 re->vrf_id);
2522 zlog_debug("%s: uptime == %lu, type == %u, instance == %d, table == %d",
2523 func, (unsigned long)re->uptime, re->type, re->instance,
2524 re->table);
2525 zlog_debug(
2526 "%s: metric == %u, mtu == %u, distance == %u, flags == %u, status == %u",
2527 func, re->metric, re->mtu, re->distance, re->flags, re->status);
2528 zlog_debug("%s: nexthop_num == %u, nexthop_active_num == %u", func,
2529 re->nexthop_num, re->nexthop_active_num);
2530
2531 for (ALL_NEXTHOPS(re->ng, nexthop)) {
2532 struct interface *ifp;
2533 struct vrf *vrf = vrf_lookup_by_id(nexthop->vrf_id);
2534
2535 switch (nexthop->type) {
2536 case NEXTHOP_TYPE_BLACKHOLE:
2537 sprintf(straddr, "Blackhole");
2538 break;
2539 case NEXTHOP_TYPE_IFINDEX:
2540 ifp = if_lookup_by_index(nexthop->ifindex,
2541 nexthop->vrf_id);
2542 sprintf(straddr, "%s", ifp ? ifp->name : "Unknown");
2543 break;
2544 case NEXTHOP_TYPE_IPV4:
2545 /* fallthrough */
2546 case NEXTHOP_TYPE_IPV4_IFINDEX:
2547 inet_ntop(AF_INET, &nexthop->gate, straddr,
2548 INET6_ADDRSTRLEN);
2549 break;
2550 case NEXTHOP_TYPE_IPV6:
2551 case NEXTHOP_TYPE_IPV6_IFINDEX:
2552 inet_ntop(AF_INET6, &nexthop->gate, straddr,
2553 INET6_ADDRSTRLEN);
2554 break;
2555 }
2556 zlog_debug("%s: %s %s[%u] vrf %s(%u) with flags %s%s%s", func,
2557 (nexthop->rparent ? " NH" : "NH"), straddr,
2558 nexthop->ifindex, vrf ? vrf->name : "Unknown",
2559 nexthop->vrf_id,
2560 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE)
2561 ? "ACTIVE "
2562 : ""),
2563 (CHECK_FLAG(re->status, ROUTE_ENTRY_INSTALLED)
2564 ? "FIB "
2565 : ""),
2566 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE)
2567 ? "RECURSIVE"
2568 : ""));
2569 }
2570 zlog_debug("%s: dump complete", func);
2571 }
2572
2573 /* This is an exported helper to rtm_read() to dump the strange
2574 * RE entry found by rib_lookup_ipv4_route()
2575 */
2576
2577 void rib_lookup_and_dump(struct prefix_ipv4 *p, vrf_id_t vrf_id)
2578 {
2579 struct route_table *table;
2580 struct route_node *rn;
2581 struct route_entry *re;
2582 char prefix_buf[INET_ADDRSTRLEN];
2583
2584 /* Lookup table. */
2585 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
2586 if (!table) {
2587 flog_err(EC_ZEBRA_TABLE_LOOKUP_FAILED,
2588 "%s:%u zebra_vrf_table() returned NULL", __func__,
2589 vrf_id);
2590 return;
2591 }
2592
2593 /* Scan the RIB table for exactly matching RE entry. */
2594 rn = route_node_lookup(table, (struct prefix *)p);
2595
2596 /* No route for this prefix. */
2597 if (!rn) {
2598 zlog_debug("%s:%u lookup failed for %s", __func__, vrf_id,
2599 prefix2str((struct prefix *)p, prefix_buf,
2600 sizeof(prefix_buf)));
2601 return;
2602 }
2603
2604 /* Unlock node. */
2605 route_unlock_node(rn);
2606
2607 /* let's go */
2608 RNODE_FOREACH_RE (rn, re) {
2609 zlog_debug("%s:%u rn %p, re %p: %s, %s",
2610 __func__, vrf_id,
2611 (void *)rn, (void *)re,
2612 (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)
2613 ? "removed"
2614 : "NOT removed"),
2615 (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)
2616 ? "selected"
2617 : "NOT selected"));
2618 route_entry_dump(p, NULL, re);
2619 }
2620 }
2621
2622 /* Check if requested address assignment will fail due to another
2623 * route being installed by zebra in FIB already. Take necessary
2624 * actions, if needed: remove such a route from FIB and deSELECT
2625 * corresponding RE entry. Then put affected RN into RIBQ head.
2626 */
2627 void rib_lookup_and_pushup(struct prefix_ipv4 *p, vrf_id_t vrf_id)
2628 {
2629 struct route_table *table;
2630 struct route_node *rn;
2631 unsigned changed = 0;
2632 rib_dest_t *dest;
2633
2634 if (NULL == (table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id))) {
2635 flog_err(EC_ZEBRA_TABLE_LOOKUP_FAILED,
2636 "%s:%u zebra_vrf_table() returned NULL", __func__,
2637 vrf_id);
2638 return;
2639 }
2640
2641 /* No matches would be the simplest case. */
2642 if (NULL == (rn = route_node_lookup(table, (struct prefix *)p)))
2643 return;
2644
2645 /* Unlock node. */
2646 route_unlock_node(rn);
2647
2648 dest = rib_dest_from_rnode(rn);
2649 /* Check all RE entries. In case any changes have to be done, requeue
2650 * the RN into RIBQ head. If the routing message about the new connected
2651 * route (generated by the IP address we are going to assign very soon)
2652 * comes before the RIBQ is processed, the new RE entry will join
2653 * RIBQ record already on head. This is necessary for proper
2654 * revalidation
2655 * of the rest of the RE.
2656 */
2657 if (dest->selected_fib && !RIB_SYSTEM_ROUTE(dest->selected_fib)) {
2658 changed = 1;
2659 if (IS_ZEBRA_DEBUG_RIB) {
2660 char buf[PREFIX_STRLEN];
2661
2662 zlog_debug("%u:%s: freeing way for connected prefix",
2663 dest->selected_fib->vrf_id,
2664 prefix2str(&rn->p, buf, sizeof(buf)));
2665 route_entry_dump(&rn->p, NULL, dest->selected_fib);
2666 }
2667 rib_uninstall(rn, dest->selected_fib);
2668 }
2669 if (changed)
2670 rib_queue_add(rn);
2671 }
2672
2673 int rib_add_multipath(afi_t afi, safi_t safi, struct prefix *p,
2674 struct prefix_ipv6 *src_p, struct route_entry *re)
2675 {
2676 struct route_table *table;
2677 struct route_node *rn;
2678 struct route_entry *same = NULL;
2679 struct nexthop *nexthop;
2680 int ret = 0;
2681
2682 if (!re)
2683 return 0;
2684
2685 assert(!src_p || !src_p->prefixlen || afi == AFI_IP6);
2686
2687 /* Lookup table. */
2688 table = zebra_vrf_table_with_table_id(afi, safi, re->vrf_id, re->table);
2689 if (!table) {
2690 XFREE(MTYPE_RE, re);
2691 return 0;
2692 }
2693
2694 /* Make it sure prefixlen is applied to the prefix. */
2695 apply_mask(p);
2696 if (src_p)
2697 apply_mask_ipv6(src_p);
2698
2699 /* Set default distance by route type. */
2700 if (re->distance == 0) {
2701 re->distance = route_distance(re->type);
2702
2703 /* iBGP distance is 200. */
2704 if (re->type == ZEBRA_ROUTE_BGP
2705 && CHECK_FLAG(re->flags, ZEBRA_FLAG_IBGP))
2706 re->distance = 200;
2707 }
2708
2709 /* Lookup route node.*/
2710 rn = srcdest_rnode_get(table, p, src_p);
2711
2712 /*
2713 * If same type of route are installed, treat it as a implicit
2714 * withdraw.
2715 * If the user has specified the No route replace semantics
2716 * for the install don't do a route replace.
2717 */
2718 RNODE_FOREACH_RE (rn, same) {
2719 if (CHECK_FLAG(same->status, ROUTE_ENTRY_REMOVED))
2720 continue;
2721
2722 if (same->type != re->type)
2723 continue;
2724 if (same->instance != re->instance)
2725 continue;
2726 if (same->type == ZEBRA_ROUTE_KERNEL
2727 && same->metric != re->metric)
2728 continue;
2729
2730 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_RR_USE_DISTANCE) &&
2731 same->distance != re->distance)
2732 continue;
2733
2734 /*
2735 * We should allow duplicate connected routes
2736 * because of IPv6 link-local routes and unnumbered
2737 * interfaces on Linux.
2738 */
2739 if (same->type != ZEBRA_ROUTE_CONNECT)
2740 break;
2741 }
2742
2743 /* If this route is kernel route, set FIB flag to the route. */
2744 if (RIB_SYSTEM_ROUTE(re)) {
2745 SET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
2746 for (nexthop = re->ng.nexthop; nexthop; nexthop = nexthop->next)
2747 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
2748 }
2749
2750 /* Link new re to node.*/
2751 if (IS_ZEBRA_DEBUG_RIB) {
2752 rnode_debug(rn, re->vrf_id,
2753 "Inserting route rn %p, re %p (%s) existing %p",
2754 rn, re, zebra_route_string(re->type), same);
2755
2756 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2757 route_entry_dump(p, src_p, re);
2758 }
2759 rib_addnode(rn, re, 1);
2760 ret = 1;
2761
2762 /* Free implicit route.*/
2763 if (same) {
2764 rib_delnode(rn, same);
2765 ret = -1;
2766 }
2767
2768 route_unlock_node(rn);
2769 return ret;
2770 }
2771
2772 void rib_delete(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type,
2773 unsigned short instance, int flags, struct prefix *p,
2774 struct prefix_ipv6 *src_p, const struct nexthop *nh,
2775 uint32_t table_id, uint32_t metric, uint8_t distance,
2776 bool fromkernel)
2777 {
2778 struct route_table *table;
2779 struct route_node *rn;
2780 struct route_entry *re;
2781 struct route_entry *fib = NULL;
2782 struct route_entry *same = NULL;
2783 struct nexthop *rtnh;
2784 char buf2[INET6_ADDRSTRLEN];
2785 rib_dest_t *dest;
2786
2787 assert(!src_p || !src_p->prefixlen || afi == AFI_IP6);
2788
2789 /* Lookup table. */
2790 table = zebra_vrf_table_with_table_id(afi, safi, vrf_id, table_id);
2791 if (!table)
2792 return;
2793
2794 /* Apply mask. */
2795 apply_mask(p);
2796 if (src_p)
2797 apply_mask_ipv6(src_p);
2798
2799 /* Lookup route node. */
2800 rn = srcdest_rnode_lookup(table, p, src_p);
2801 if (!rn) {
2802 char dst_buf[PREFIX_STRLEN], src_buf[PREFIX_STRLEN];
2803
2804 prefix2str(p, dst_buf, sizeof(dst_buf));
2805 if (src_p && src_p->prefixlen)
2806 prefix2str(src_p, src_buf, sizeof(src_buf));
2807 else
2808 src_buf[0] = '\0';
2809
2810 if (IS_ZEBRA_DEBUG_RIB)
2811 zlog_debug("%u:%s%s%s doesn't exist in rib", vrf_id,
2812 dst_buf,
2813 (src_buf[0] != '\0') ? " from " : "",
2814 src_buf);
2815 return;
2816 }
2817
2818 dest = rib_dest_from_rnode(rn);
2819 fib = dest->selected_fib;
2820
2821 /* Lookup same type route. */
2822 RNODE_FOREACH_RE (rn, re) {
2823 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
2824 continue;
2825
2826 if (re->type != type)
2827 continue;
2828 if (re->instance != instance)
2829 continue;
2830 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_RR_USE_DISTANCE) &&
2831 distance != re->distance)
2832 continue;
2833
2834 if (re->type == ZEBRA_ROUTE_KERNEL && re->metric != metric)
2835 continue;
2836 if (re->type == ZEBRA_ROUTE_CONNECT && (rtnh = re->ng.nexthop)
2837 && rtnh->type == NEXTHOP_TYPE_IFINDEX && nh) {
2838 if (rtnh->ifindex != nh->ifindex)
2839 continue;
2840 same = re;
2841 break;
2842 }
2843 /* Make sure that the route found has the same gateway. */
2844 else {
2845 if (nh == NULL) {
2846 same = re;
2847 break;
2848 }
2849 for (ALL_NEXTHOPS(re->ng, rtnh))
2850 if (nexthop_same_no_recurse(rtnh, nh)) {
2851 same = re;
2852 break;
2853 }
2854 if (same)
2855 break;
2856 }
2857 }
2858 /* If same type of route can't be found and this message is from
2859 kernel. */
2860 if (!same) {
2861 /*
2862 * In the past(HA!) we could get here because
2863 * we were receiving a route delete from the
2864 * kernel and we're not marking the proto
2865 * as coming from it's appropriate originator.
2866 * Now that we are properly noticing the fact
2867 * that the kernel has deleted our route we
2868 * are not going to get called in this path
2869 * I am going to leave this here because
2870 * this might still work this way on non-linux
2871 * platforms as well as some weird state I have
2872 * not properly thought of yet.
2873 * If we can show that this code path is
2874 * dead then we can remove it.
2875 */
2876 if (fib && CHECK_FLAG(flags, ZEBRA_FLAG_SELFROUTE)) {
2877 if (IS_ZEBRA_DEBUG_RIB) {
2878 rnode_debug(rn, vrf_id,
2879 "rn %p, re %p (%s) was deleted from kernel, adding",
2880 rn, fib,
2881 zebra_route_string(fib->type));
2882 }
2883 if (allow_delete) {
2884 UNSET_FLAG(fib->status, ROUTE_ENTRY_INSTALLED);
2885 /* Unset flags. */
2886 for (rtnh = fib->ng.nexthop; rtnh;
2887 rtnh = rtnh->next)
2888 UNSET_FLAG(rtnh->flags,
2889 NEXTHOP_FLAG_FIB);
2890
2891 /*
2892 * This is a non FRR route
2893 * as such we should mark
2894 * it as deleted
2895 */
2896 dest->selected_fib = NULL;
2897 } else {
2898 /* This means someone else, other than Zebra,
2899 * has deleted
2900 * a Zebra router from the kernel. We will add
2901 * it back */
2902 rib_install_kernel(rn, fib, NULL);
2903 }
2904 } else {
2905 if (IS_ZEBRA_DEBUG_RIB) {
2906 if (nh)
2907 rnode_debug(
2908 rn, vrf_id,
2909 "via %s ifindex %d type %d "
2910 "doesn't exist in rib",
2911 inet_ntop(afi2family(afi),
2912 &nh->gate, buf2,
2913 sizeof(buf2)),
2914 nh->ifindex, type);
2915 else
2916 rnode_debug(
2917 rn, vrf_id,
2918 "type %d doesn't exist in rib",
2919 type);
2920 }
2921 route_unlock_node(rn);
2922 return;
2923 }
2924 }
2925
2926 if (same) {
2927 if (fromkernel && CHECK_FLAG(flags, ZEBRA_FLAG_SELFROUTE)
2928 && !allow_delete) {
2929 rib_install_kernel(rn, same, NULL);
2930 route_unlock_node(rn);
2931
2932 return;
2933 }
2934
2935 if (CHECK_FLAG(flags, ZEBRA_FLAG_EVPN_ROUTE)) {
2936 struct nexthop *tmp_nh;
2937
2938 for (ALL_NEXTHOPS(re->ng, tmp_nh)) {
2939 struct ipaddr vtep_ip;
2940
2941 memset(&vtep_ip, 0, sizeof(struct ipaddr));
2942 if (afi == AFI_IP) {
2943 vtep_ip.ipa_type = IPADDR_V4;
2944 memcpy(&(vtep_ip.ipaddr_v4),
2945 &(tmp_nh->gate.ipv4),
2946 sizeof(struct in_addr));
2947 } else {
2948 vtep_ip.ipa_type = IPADDR_V6;
2949 memcpy(&(vtep_ip.ipaddr_v6),
2950 &(tmp_nh->gate.ipv6),
2951 sizeof(struct in6_addr));
2952 }
2953 zebra_vxlan_evpn_vrf_route_del(re->vrf_id,
2954 &vtep_ip, p);
2955 }
2956 }
2957 rib_delnode(rn, same);
2958 }
2959
2960 route_unlock_node(rn);
2961 return;
2962 }
2963
2964
2965 int rib_add(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type,
2966 unsigned short instance, int flags, struct prefix *p,
2967 struct prefix_ipv6 *src_p, const struct nexthop *nh,
2968 uint32_t table_id, uint32_t metric, uint32_t mtu, uint8_t distance,
2969 route_tag_t tag)
2970 {
2971 struct route_entry *re;
2972 struct nexthop *nexthop;
2973
2974 /* Allocate new route_entry structure. */
2975 re = XCALLOC(MTYPE_RE, sizeof(struct route_entry));
2976 re->type = type;
2977 re->instance = instance;
2978 re->distance = distance;
2979 re->flags = flags;
2980 re->metric = metric;
2981 re->mtu = mtu;
2982 re->table = table_id;
2983 re->vrf_id = vrf_id;
2984 re->nexthop_num = 0;
2985 re->uptime = time(NULL);
2986 re->tag = tag;
2987
2988 /* Add nexthop. */
2989 nexthop = nexthop_new();
2990 *nexthop = *nh;
2991 route_entry_nexthop_add(re, nexthop);
2992
2993 return rib_add_multipath(afi, safi, p, src_p, re);
2994 }
2995
2996 /* Schedule routes of a particular table (address-family) based on event. */
2997 void rib_update_table(struct route_table *table, rib_update_event_t event)
2998 {
2999 struct route_node *rn;
3000 struct route_entry *re, *next;
3001
3002 /* Walk all routes and queue for processing, if appropriate for
3003 * the trigger event.
3004 */
3005 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
3006 /*
3007 * If we are looking at a route node and the node
3008 * has already been queued we don't
3009 * need to queue it up again
3010 */
3011 if (rn->info && CHECK_FLAG(rib_dest_from_rnode(rn)->flags,
3012 RIB_ROUTE_ANY_QUEUED))
3013 continue;
3014 switch (event) {
3015 case RIB_UPDATE_IF_CHANGE:
3016 /* Examine all routes that won't get processed by the
3017 * protocol or
3018 * triggered by nexthop evaluation (NHT). This would be
3019 * system,
3020 * kernel and certain static routes. Note that NHT will
3021 * get
3022 * triggered upon an interface event as connected routes
3023 * always
3024 * get queued for processing.
3025 */
3026 RNODE_FOREACH_RE_SAFE (rn, re, next) {
3027 struct nexthop *nh;
3028
3029 if (re->type != ZEBRA_ROUTE_SYSTEM
3030 && re->type != ZEBRA_ROUTE_KERNEL
3031 && re->type != ZEBRA_ROUTE_CONNECT
3032 && re->type != ZEBRA_ROUTE_STATIC)
3033 continue;
3034
3035 if (re->type != ZEBRA_ROUTE_STATIC) {
3036 rib_queue_add(rn);
3037 continue;
3038 }
3039
3040 for (nh = re->ng.nexthop; nh; nh = nh->next)
3041 if (!(nh->type == NEXTHOP_TYPE_IPV4
3042 || nh->type == NEXTHOP_TYPE_IPV6))
3043 break;
3044
3045 /* If we only have nexthops to a
3046 * gateway, NHT will
3047 * take care.
3048 */
3049 if (nh)
3050 rib_queue_add(rn);
3051 }
3052 break;
3053
3054 case RIB_UPDATE_RMAP_CHANGE:
3055 case RIB_UPDATE_OTHER:
3056 /* Right now, examine all routes. Can restrict to a
3057 * protocol in
3058 * some cases (TODO).
3059 */
3060 if (rnode_to_ribs(rn))
3061 rib_queue_add(rn);
3062 break;
3063
3064 default:
3065 break;
3066 }
3067 }
3068 }
3069
3070 /* RIB update function. */
3071 void rib_update(vrf_id_t vrf_id, rib_update_event_t event)
3072 {
3073 struct route_table *table;
3074
3075 /* Process routes of interested address-families. */
3076 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
3077 if (table) {
3078 if (IS_ZEBRA_DEBUG_EVENT)
3079 zlog_debug("%s : AFI_IP event %d", __func__, event);
3080 rib_update_table(table, event);
3081 }
3082
3083 table = zebra_vrf_table(AFI_IP6, SAFI_UNICAST, vrf_id);
3084 if (table) {
3085 if (IS_ZEBRA_DEBUG_EVENT)
3086 zlog_debug("%s : AFI_IP6 event %d", __func__, event);
3087 rib_update_table(table, event);
3088 }
3089 }
3090
3091 /* Delete self installed routes after zebra is relaunched. */
3092 void rib_sweep_table(struct route_table *table)
3093 {
3094 struct route_node *rn;
3095 struct route_entry *re;
3096 struct route_entry *next;
3097 struct nexthop *nexthop;
3098
3099 if (!table)
3100 return;
3101
3102 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
3103 RNODE_FOREACH_RE_SAFE (rn, re, next) {
3104 if (IS_ZEBRA_DEBUG_RIB)
3105 route_entry_dump(&rn->p, NULL, re);
3106
3107 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
3108 continue;
3109
3110 if (!CHECK_FLAG(re->flags, ZEBRA_FLAG_SELFROUTE))
3111 continue;
3112
3113 /*
3114 * So we are starting up and have received
3115 * routes from the kernel that we have installed
3116 * from a previous run of zebra but not cleaned
3117 * up ( say a kill -9 )
3118 * But since we haven't actually installed
3119 * them yet( we received them from the kernel )
3120 * we don't think they are active.
3121 * So let's pretend they are active to actually
3122 * remove them.
3123 * In all honesty I'm not sure if we should
3124 * mark them as active when we receive them
3125 * This is startup only so probably ok.
3126 *
3127 * If we ever decide to move rib_sweep_table
3128 * to a different spot (ie startup )
3129 * this decision needs to be revisited
3130 */
3131 SET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
3132 for (ALL_NEXTHOPS(re->ng, nexthop))
3133 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
3134
3135 rib_uninstall_kernel(rn, re);
3136 rib_delnode(rn, re);
3137 }
3138 }
3139 }
3140
3141 /* Sweep all RIB tables. */
3142 void rib_sweep_route(void)
3143 {
3144 struct vrf *vrf;
3145 struct zebra_vrf *zvrf;
3146
3147 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id) {
3148 if ((zvrf = vrf->info) == NULL)
3149 continue;
3150
3151 rib_sweep_table(zvrf->table[AFI_IP][SAFI_UNICAST]);
3152 rib_sweep_table(zvrf->table[AFI_IP6][SAFI_UNICAST]);
3153 }
3154
3155 zebra_router_sweep_route();
3156 }
3157
3158 /* Remove specific by protocol routes from 'table'. */
3159 unsigned long rib_score_proto_table(uint8_t proto, unsigned short instance,
3160 struct route_table *table)
3161 {
3162 struct route_node *rn;
3163 struct route_entry *re;
3164 struct route_entry *next;
3165 unsigned long n = 0;
3166
3167 if (table)
3168 for (rn = route_top(table); rn; rn = srcdest_route_next(rn))
3169 RNODE_FOREACH_RE_SAFE (rn, re, next) {
3170 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
3171 continue;
3172 if (re->type == proto
3173 && re->instance == instance) {
3174 rib_delnode(rn, re);
3175 n++;
3176 }
3177 }
3178 return n;
3179 }
3180
3181 /* Remove specific by protocol routes. */
3182 unsigned long rib_score_proto(uint8_t proto, unsigned short instance)
3183 {
3184 struct vrf *vrf;
3185 struct zebra_vrf *zvrf;
3186 unsigned long cnt = 0;
3187
3188 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id)
3189 if ((zvrf = vrf->info) != NULL)
3190 cnt += rib_score_proto_table(
3191 proto, instance,
3192 zvrf->table[AFI_IP][SAFI_UNICAST])
3193 + rib_score_proto_table(
3194 proto, instance,
3195 zvrf->table[AFI_IP6][SAFI_UNICAST]);
3196
3197 cnt += zebra_router_score_proto(proto, instance);
3198
3199 return cnt;
3200 }
3201
3202 /* Close RIB and clean up kernel routes. */
3203 void rib_close_table(struct route_table *table)
3204 {
3205 struct route_node *rn;
3206 rib_table_info_t *info;
3207 rib_dest_t *dest;
3208
3209 if (!table)
3210 return;
3211
3212 info = route_table_get_info(table);
3213
3214 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
3215 dest = rib_dest_from_rnode(rn);
3216
3217 if (dest && dest->selected_fib) {
3218 if (info->safi == SAFI_UNICAST)
3219 hook_call(rib_update, rn, NULL);
3220
3221 if (!RIB_SYSTEM_ROUTE(dest->selected_fib)) {
3222 rib_uninstall_kernel(rn, dest->selected_fib);
3223 dest->selected_fib = NULL;
3224 }
3225 }
3226 }
3227 }
3228
3229 /*
3230 * Handle results from the dataplane system. Dequeue update context
3231 * structs, dispatch to appropriate internal handlers.
3232 */
3233 static int rib_process_dplane_results(struct thread *thread)
3234 {
3235 struct zebra_dplane_ctx *ctx;
3236 struct dplane_ctx_q ctxlist;
3237
3238 /* Dequeue a list of completed updates with one lock/unlock cycle */
3239
3240 /* TODO -- dequeue a list with one lock/unlock cycle? */
3241
3242 do {
3243 TAILQ_INIT(&ctxlist);
3244
3245 /* Take lock controlling queue of results */
3246 pthread_mutex_lock(&dplane_mutex);
3247 {
3248 /* Dequeue list of context structs */
3249 dplane_ctx_list_append(&ctxlist, &rib_dplane_q);
3250 }
3251 pthread_mutex_unlock(&dplane_mutex);
3252
3253 /* Dequeue context block */
3254 ctx = dplane_ctx_dequeue(&ctxlist);
3255
3256 /* If we've emptied the results queue, we're done */
3257 if (ctx == NULL)
3258 break;
3259
3260 while (ctx) {
3261 switch (dplane_ctx_get_op(ctx)) {
3262 case DPLANE_OP_ROUTE_INSTALL:
3263 case DPLANE_OP_ROUTE_UPDATE:
3264 case DPLANE_OP_ROUTE_DELETE:
3265 rib_process_result(ctx);
3266 break;
3267
3268 case DPLANE_OP_LSP_INSTALL:
3269 case DPLANE_OP_LSP_UPDATE:
3270 case DPLANE_OP_LSP_DELETE:
3271 zebra_mpls_lsp_dplane_result(ctx);
3272 break;
3273
3274 default:
3275 /* Don't expect this: just return the struct? */
3276 dplane_ctx_fini(&ctx);
3277 break;
3278 } /* Dispatch by op code */
3279
3280 ctx = dplane_ctx_dequeue(&ctxlist);
3281 }
3282
3283 } while (1);
3284
3285 /* Check for nexthop tracking processing after finishing with results */
3286 do_nht_processing();
3287
3288 return 0;
3289 }
3290
3291 /*
3292 * Results are returned from the dataplane subsystem, in the context of
3293 * the dataplane pthread. We enqueue the results here for processing by
3294 * the main thread later.
3295 */
3296 static int rib_dplane_results(struct dplane_ctx_q *ctxlist)
3297 {
3298 /* Take lock controlling queue of results */
3299 pthread_mutex_lock(&dplane_mutex);
3300 {
3301 /* Enqueue context blocks */
3302 dplane_ctx_list_append(&rib_dplane_q, ctxlist);
3303 }
3304 pthread_mutex_unlock(&dplane_mutex);
3305
3306 /* Ensure event is signalled to zebra main pthread */
3307 thread_add_event(zebrad.master, rib_process_dplane_results, NULL, 0,
3308 &t_dplane);
3309
3310 return 0;
3311 }
3312
3313 /* Routing information base initialize. */
3314 void rib_init(void)
3315 {
3316 rib_queue_init(&zebrad);
3317
3318 /* Init dataplane, and register for results */
3319 pthread_mutex_init(&dplane_mutex, NULL);
3320 TAILQ_INIT(&rib_dplane_q);
3321 zebra_dplane_init(rib_dplane_results);
3322 }
3323
3324 /*
3325 * vrf_id_get_next
3326 *
3327 * Get the first vrf id that is greater than the given vrf id if any.
3328 *
3329 * Returns TRUE if a vrf id was found, FALSE otherwise.
3330 */
3331 static inline int vrf_id_get_next(vrf_id_t vrf_id, vrf_id_t *next_id_p)
3332 {
3333 struct vrf *vrf;
3334
3335 vrf = vrf_lookup_by_id(vrf_id);
3336 if (vrf) {
3337 vrf = RB_NEXT(vrf_id_head, vrf);
3338 if (vrf) {
3339 *next_id_p = vrf->vrf_id;
3340 return 1;
3341 }
3342 }
3343
3344 return 0;
3345 }
3346
3347 /*
3348 * rib_tables_iter_next
3349 *
3350 * Returns the next table in the iteration.
3351 */
3352 struct route_table *rib_tables_iter_next(rib_tables_iter_t *iter)
3353 {
3354 struct route_table *table;
3355
3356 /*
3357 * Array that helps us go over all AFI/SAFI combinations via one
3358 * index.
3359 */
3360 static struct {
3361 afi_t afi;
3362 safi_t safi;
3363 } afi_safis[] = {
3364 {AFI_IP, SAFI_UNICAST}, {AFI_IP, SAFI_MULTICAST},
3365 {AFI_IP, SAFI_LABELED_UNICAST}, {AFI_IP6, SAFI_UNICAST},
3366 {AFI_IP6, SAFI_MULTICAST}, {AFI_IP6, SAFI_LABELED_UNICAST},
3367 };
3368
3369 table = NULL;
3370
3371 switch (iter->state) {
3372
3373 case RIB_TABLES_ITER_S_INIT:
3374 iter->vrf_id = VRF_DEFAULT;
3375 iter->afi_safi_ix = -1;
3376
3377 /* Fall through */
3378
3379 case RIB_TABLES_ITER_S_ITERATING:
3380 iter->afi_safi_ix++;
3381 while (1) {
3382
3383 while (iter->afi_safi_ix
3384 < (int)ZEBRA_NUM_OF(afi_safis)) {
3385 table = zebra_vrf_table(
3386 afi_safis[iter->afi_safi_ix].afi,
3387 afi_safis[iter->afi_safi_ix].safi,
3388 iter->vrf_id);
3389 if (table)
3390 break;
3391
3392 iter->afi_safi_ix++;
3393 }
3394
3395 /*
3396 * Found another table in this vrf.
3397 */
3398 if (table)
3399 break;
3400
3401 /*
3402 * Done with all tables in the current vrf, go to the
3403 * next
3404 * one.
3405 */
3406 if (!vrf_id_get_next(iter->vrf_id, &iter->vrf_id))
3407 break;
3408
3409 iter->afi_safi_ix = 0;
3410 }
3411
3412 break;
3413
3414 case RIB_TABLES_ITER_S_DONE:
3415 return NULL;
3416 }
3417
3418 if (table)
3419 iter->state = RIB_TABLES_ITER_S_ITERATING;
3420 else
3421 iter->state = RIB_TABLES_ITER_S_DONE;
3422
3423 return table;
3424 }