]> git.proxmox.com Git - mirror_frr.git/blob - zebra/zebra_rib.c
zebra: flog_warn conversion
[mirror_frr.git] / zebra / zebra_rib.c
1 /* Routing Information Base.
2 * Copyright (C) 1997, 98, 99, 2001 Kunihiro Ishiguro
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; see the file COPYING; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include <zebra.h>
22
23 #include "command.h"
24 #include "if.h"
25 #include "linklist.h"
26 #include "log.h"
27 #include "log_int.h"
28 #include "memory.h"
29 #include "mpls.h"
30 #include "nexthop.h"
31 #include "prefix.h"
32 #include "prefix.h"
33 #include "routemap.h"
34 #include "sockunion.h"
35 #include "srcdest_table.h"
36 #include "table.h"
37 #include "thread.h"
38 #include "vrf.h"
39 #include "workqueue.h"
40
41 #include "zebra/connected.h"
42 #include "zebra/debug.h"
43 #include "zebra/interface.h"
44 #include "zebra/redistribute.h"
45 #include "zebra/rib.h"
46 #include "zebra/rt.h"
47 #include "zebra/zapi_msg.h"
48 #include "zebra/zebra_errors.h"
49 #include "zebra/zebra_memory.h"
50 #include "zebra/zebra_ns.h"
51 #include "zebra/zebra_rnh.h"
52 #include "zebra/zebra_routemap.h"
53 #include "zebra/zebra_vrf.h"
54 #include "zebra/zebra_vxlan.h"
55
56 DEFINE_HOOK(rib_update, (struct route_node * rn, const char *reason),
57 (rn, reason))
58
59 /* Should we allow non Quagga processes to delete our routes */
60 extern int allow_delete;
61
62 /* Each route type's string and default distance value. */
63 static const struct {
64 int key;
65 int distance;
66 } route_info[ZEBRA_ROUTE_MAX] = {
67 [ZEBRA_ROUTE_SYSTEM] = {ZEBRA_ROUTE_SYSTEM, 0},
68 [ZEBRA_ROUTE_KERNEL] = {ZEBRA_ROUTE_KERNEL, 0},
69 [ZEBRA_ROUTE_CONNECT] = {ZEBRA_ROUTE_CONNECT, 0},
70 [ZEBRA_ROUTE_STATIC] = {ZEBRA_ROUTE_STATIC, 1},
71 [ZEBRA_ROUTE_RIP] = {ZEBRA_ROUTE_RIP, 120},
72 [ZEBRA_ROUTE_RIPNG] = {ZEBRA_ROUTE_RIPNG, 120},
73 [ZEBRA_ROUTE_OSPF] = {ZEBRA_ROUTE_OSPF, 110},
74 [ZEBRA_ROUTE_OSPF6] = {ZEBRA_ROUTE_OSPF6, 110},
75 [ZEBRA_ROUTE_ISIS] = {ZEBRA_ROUTE_ISIS, 115},
76 [ZEBRA_ROUTE_BGP] = {ZEBRA_ROUTE_BGP, 20 /* IBGP is 200. */},
77 [ZEBRA_ROUTE_PIM] = {ZEBRA_ROUTE_PIM, 255},
78 [ZEBRA_ROUTE_EIGRP] = {ZEBRA_ROUTE_EIGRP, 90},
79 [ZEBRA_ROUTE_NHRP] = {ZEBRA_ROUTE_NHRP, 10},
80 [ZEBRA_ROUTE_HSLS] = {ZEBRA_ROUTE_HSLS, 255},
81 [ZEBRA_ROUTE_OLSR] = {ZEBRA_ROUTE_OLSR, 255},
82 [ZEBRA_ROUTE_TABLE] = {ZEBRA_ROUTE_TABLE, 150},
83 [ZEBRA_ROUTE_LDP] = {ZEBRA_ROUTE_LDP, 150},
84 [ZEBRA_ROUTE_VNC] = {ZEBRA_ROUTE_VNC, 20},
85 [ZEBRA_ROUTE_VNC_DIRECT] = {ZEBRA_ROUTE_VNC_DIRECT, 20},
86 [ZEBRA_ROUTE_VNC_DIRECT_RH] = {ZEBRA_ROUTE_VNC_DIRECT_RH, 20},
87 [ZEBRA_ROUTE_BGP_DIRECT] = {ZEBRA_ROUTE_BGP_DIRECT, 20},
88 [ZEBRA_ROUTE_BGP_DIRECT_EXT] = {ZEBRA_ROUTE_BGP_DIRECT_EXT, 20},
89 [ZEBRA_ROUTE_BABEL] = {ZEBRA_ROUTE_BABEL, 100},
90 [ZEBRA_ROUTE_SHARP] = {ZEBRA_ROUTE_SHARP, 150},
91
92 /* no entry/default: 150 */
93 };
94
95 /* RPF lookup behaviour */
96 static enum multicast_mode ipv4_multicast_mode = MCAST_NO_CONFIG;
97
98
99 static void __attribute__((format(printf, 5, 6)))
100 _rnode_zlog(const char *_func, vrf_id_t vrf_id, struct route_node *rn,
101 int priority, const char *msgfmt, ...)
102 {
103 char buf[SRCDEST2STR_BUFFER + sizeof(" (MRIB)")];
104 char msgbuf[512];
105 va_list ap;
106
107 va_start(ap, msgfmt);
108 vsnprintf(msgbuf, sizeof(msgbuf), msgfmt, ap);
109 va_end(ap);
110
111 if (rn) {
112 rib_table_info_t *info = srcdest_rnode_table_info(rn);
113 srcdest_rnode2str(rn, buf, sizeof(buf));
114
115 if (info->safi == SAFI_MULTICAST)
116 strcat(buf, " (MRIB)");
117 } else {
118 snprintf(buf, sizeof(buf), "{(route_node *) NULL}");
119 }
120
121 zlog(priority, "%s: %d:%s: %s", _func, vrf_id, buf, msgbuf);
122 }
123
124 #define rnode_debug(node, vrf_id, ...) \
125 _rnode_zlog(__func__, vrf_id, node, LOG_DEBUG, __VA_ARGS__)
126 #define rnode_info(node, ...) \
127 _rnode_zlog(__func__, vrf_id, node, LOG_INFO, __VA_ARGS__)
128
129 uint8_t route_distance(int type)
130 {
131 uint8_t distance;
132
133 if ((unsigned)type >= array_size(route_info))
134 distance = 150;
135 else
136 distance = route_info[type].distance;
137
138 return distance;
139 }
140
141 int is_zebra_valid_kernel_table(uint32_t table_id)
142 {
143 #ifdef linux
144 if ((table_id == RT_TABLE_UNSPEC) || (table_id == RT_TABLE_LOCAL)
145 || (table_id == RT_TABLE_COMPAT))
146 return 0;
147 #endif
148
149 return 1;
150 }
151
152 int is_zebra_main_routing_table(uint32_t table_id)
153 {
154 if ((table_id == RT_TABLE_MAIN)
155 || (table_id == zebrad.rtm_table_default))
156 return 1;
157 return 0;
158 }
159
160 int zebra_check_addr(const struct prefix *p)
161 {
162 if (p->family == AF_INET) {
163 uint32_t addr;
164
165 addr = p->u.prefix4.s_addr;
166 addr = ntohl(addr);
167
168 if (IPV4_NET127(addr) || IN_CLASSD(addr)
169 || IPV4_LINKLOCAL(addr))
170 return 0;
171 }
172 if (p->family == AF_INET6) {
173 if (IN6_IS_ADDR_LOOPBACK(&p->u.prefix6))
174 return 0;
175 if (IN6_IS_ADDR_LINKLOCAL(&p->u.prefix6))
176 return 0;
177 }
178 return 1;
179 }
180
181 /* Add nexthop to the end of a rib node's nexthop list */
182 void route_entry_nexthop_add(struct route_entry *re, struct nexthop *nexthop)
183 {
184 nexthop_add(&re->ng.nexthop, nexthop);
185 re->nexthop_num++;
186 }
187
188
189 /**
190 * copy_nexthop - copy a nexthop to the rib structure.
191 */
192 void route_entry_copy_nexthops(struct route_entry *re, struct nexthop *nh)
193 {
194 assert(!re->ng.nexthop);
195 copy_nexthops(&re->ng.nexthop, nh, NULL);
196 for (struct nexthop *nexthop = nh; nexthop; nexthop = nexthop->next)
197 re->nexthop_num++;
198 }
199
200 /* Delete specified nexthop from the list. */
201 void route_entry_nexthop_delete(struct route_entry *re, struct nexthop *nexthop)
202 {
203 if (nexthop->next)
204 nexthop->next->prev = nexthop->prev;
205 if (nexthop->prev)
206 nexthop->prev->next = nexthop->next;
207 else
208 re->ng.nexthop = nexthop->next;
209 re->nexthop_num--;
210 }
211
212
213 struct nexthop *route_entry_nexthop_ifindex_add(struct route_entry *re,
214 ifindex_t ifindex,
215 vrf_id_t nh_vrf_id)
216 {
217 struct nexthop *nexthop;
218
219 nexthop = nexthop_new();
220 nexthop->type = NEXTHOP_TYPE_IFINDEX;
221 nexthop->ifindex = ifindex;
222 nexthop->vrf_id = nh_vrf_id;
223
224 route_entry_nexthop_add(re, nexthop);
225
226 return nexthop;
227 }
228
229 struct nexthop *route_entry_nexthop_ipv4_add(struct route_entry *re,
230 struct in_addr *ipv4,
231 struct in_addr *src,
232 vrf_id_t nh_vrf_id)
233 {
234 struct nexthop *nexthop;
235
236 nexthop = nexthop_new();
237 nexthop->type = NEXTHOP_TYPE_IPV4;
238 nexthop->vrf_id = nh_vrf_id;
239 nexthop->gate.ipv4 = *ipv4;
240 if (src)
241 nexthop->src.ipv4 = *src;
242
243 route_entry_nexthop_add(re, nexthop);
244
245 return nexthop;
246 }
247
248 struct nexthop *route_entry_nexthop_ipv4_ifindex_add(struct route_entry *re,
249 struct in_addr *ipv4,
250 struct in_addr *src,
251 ifindex_t ifindex,
252 vrf_id_t nh_vrf_id)
253 {
254 struct nexthop *nexthop;
255 struct interface *ifp;
256
257 nexthop = nexthop_new();
258 nexthop->vrf_id = nh_vrf_id;
259 nexthop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
260 nexthop->gate.ipv4 = *ipv4;
261 if (src)
262 nexthop->src.ipv4 = *src;
263 nexthop->ifindex = ifindex;
264 ifp = if_lookup_by_index(nexthop->ifindex, nh_vrf_id);
265 /*Pending: need to think if null ifp here is ok during bootup?
266 There was a crash because ifp here was coming to be NULL */
267 if (ifp)
268 if (connected_is_unnumbered(ifp)
269 || CHECK_FLAG(re->flags, ZEBRA_FLAG_EVPN_ROUTE)) {
270 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK);
271 }
272
273 route_entry_nexthop_add(re, nexthop);
274
275 return nexthop;
276 }
277
278 struct nexthop *route_entry_nexthop_ipv6_add(struct route_entry *re,
279 struct in6_addr *ipv6,
280 vrf_id_t nh_vrf_id)
281 {
282 struct nexthop *nexthop;
283
284 nexthop = nexthop_new();
285 nexthop->vrf_id = nh_vrf_id;
286 nexthop->type = NEXTHOP_TYPE_IPV6;
287 nexthop->gate.ipv6 = *ipv6;
288
289 route_entry_nexthop_add(re, nexthop);
290
291 return nexthop;
292 }
293
294 struct nexthop *route_entry_nexthop_ipv6_ifindex_add(struct route_entry *re,
295 struct in6_addr *ipv6,
296 ifindex_t ifindex,
297 vrf_id_t nh_vrf_id)
298 {
299 struct nexthop *nexthop;
300
301 nexthop = nexthop_new();
302 nexthop->vrf_id = nh_vrf_id;
303 nexthop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
304 nexthop->gate.ipv6 = *ipv6;
305 nexthop->ifindex = ifindex;
306 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_EVPN_ROUTE))
307 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK);
308
309 route_entry_nexthop_add(re, nexthop);
310
311 return nexthop;
312 }
313
314 struct nexthop *route_entry_nexthop_blackhole_add(struct route_entry *re,
315 enum blackhole_type bh_type)
316 {
317 struct nexthop *nexthop;
318
319 nexthop = nexthop_new();
320 nexthop->vrf_id = VRF_DEFAULT;
321 nexthop->type = NEXTHOP_TYPE_BLACKHOLE;
322 nexthop->bh_type = bh_type;
323
324 route_entry_nexthop_add(re, nexthop);
325
326 return nexthop;
327 }
328
329 static void nexthop_set_resolved(afi_t afi, const struct nexthop *newhop,
330 struct nexthop *nexthop)
331 {
332 struct nexthop *resolved_hop;
333
334 resolved_hop = nexthop_new();
335 SET_FLAG(resolved_hop->flags, NEXTHOP_FLAG_ACTIVE);
336
337 resolved_hop->vrf_id = nexthop->vrf_id;
338 switch (newhop->type) {
339 case NEXTHOP_TYPE_IPV4:
340 case NEXTHOP_TYPE_IPV4_IFINDEX:
341 /* If the resolving route specifies a gateway, use it */
342 resolved_hop->type = newhop->type;
343 resolved_hop->gate.ipv4 = newhop->gate.ipv4;
344
345 if (newhop->ifindex) {
346 resolved_hop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
347 resolved_hop->ifindex = newhop->ifindex;
348 if (newhop->flags & NEXTHOP_FLAG_ONLINK)
349 resolved_hop->flags |= NEXTHOP_FLAG_ONLINK;
350 }
351 break;
352 case NEXTHOP_TYPE_IPV6:
353 case NEXTHOP_TYPE_IPV6_IFINDEX:
354 resolved_hop->type = newhop->type;
355 resolved_hop->gate.ipv6 = newhop->gate.ipv6;
356
357 if (newhop->ifindex) {
358 resolved_hop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
359 resolved_hop->ifindex = newhop->ifindex;
360 }
361 break;
362 case NEXTHOP_TYPE_IFINDEX:
363 /* If the resolving route is an interface route,
364 * it means the gateway we are looking up is connected
365 * to that interface. (The actual network is _not_ onlink).
366 * Therefore, the resolved route should have the original
367 * gateway as nexthop as it is directly connected.
368 *
369 * On Linux, we have to set the onlink netlink flag because
370 * otherwise, the kernel won't accept the route.
371 */
372 resolved_hop->flags |= NEXTHOP_FLAG_ONLINK;
373 if (afi == AFI_IP) {
374 resolved_hop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
375 resolved_hop->gate.ipv4 = nexthop->gate.ipv4;
376 } else if (afi == AFI_IP6) {
377 resolved_hop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
378 resolved_hop->gate.ipv6 = nexthop->gate.ipv6;
379 }
380 resolved_hop->ifindex = newhop->ifindex;
381 break;
382 case NEXTHOP_TYPE_BLACKHOLE:
383 resolved_hop->type = NEXTHOP_TYPE_BLACKHOLE;
384 resolved_hop->bh_type = nexthop->bh_type;
385 break;
386 }
387
388 /* Copy labels of the resolved route */
389 if (newhop->nh_label)
390 nexthop_add_labels(resolved_hop, newhop->nh_label_type,
391 newhop->nh_label->num_labels,
392 &newhop->nh_label->label[0]);
393
394 resolved_hop->rparent = nexthop;
395 nexthop_add(&nexthop->resolved, resolved_hop);
396 }
397
398 /* If force flag is not set, do not modify falgs at all for uninstall
399 the route from FIB. */
400 static int nexthop_active(afi_t afi, struct route_entry *re,
401 struct nexthop *nexthop, int set,
402 struct route_node *top)
403 {
404 struct prefix p;
405 struct route_table *table;
406 struct route_node *rn;
407 struct route_entry *match = NULL;
408 int resolved;
409 struct nexthop *newhop;
410 struct interface *ifp;
411 rib_dest_t *dest;
412
413 if ((nexthop->type == NEXTHOP_TYPE_IPV4)
414 || nexthop->type == NEXTHOP_TYPE_IPV6)
415 nexthop->ifindex = 0;
416
417 if (set) {
418 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE);
419 nexthops_free(nexthop->resolved);
420 nexthop->resolved = NULL;
421 re->nexthop_mtu = 0;
422 }
423
424 /* Next hops (remote VTEPs) for EVPN routes are fully resolved. */
425 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_EVPN_RVTEP))
426 return 1;
427
428 /* Skip nexthops that have been filtered out due to route-map */
429 /* The nexthops are specific to this route and so the same */
430 /* nexthop for a different route may not have this flag set */
431 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FILTERED))
432 return 0;
433
434 /*
435 * Check to see if we should trust the passed in information
436 * for UNNUMBERED interfaces as that we won't find the GW
437 * address in the routing table.
438 */
439 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK)) {
440 ifp = if_lookup_by_index(nexthop->ifindex, nexthop->vrf_id);
441 if (ifp && connected_is_unnumbered(ifp)) {
442 if (if_is_operative(ifp))
443 return 1;
444 else
445 return 0;
446 } else
447 return 0;
448 }
449
450 /* Make lookup prefix. */
451 memset(&p, 0, sizeof(struct prefix));
452 switch (afi) {
453 case AFI_IP:
454 p.family = AF_INET;
455 p.prefixlen = IPV4_MAX_PREFIXLEN;
456 p.u.prefix4 = nexthop->gate.ipv4;
457 break;
458 case AFI_IP6:
459 p.family = AF_INET6;
460 p.prefixlen = IPV6_MAX_PREFIXLEN;
461 p.u.prefix6 = nexthop->gate.ipv6;
462 break;
463 default:
464 assert(afi != AFI_IP && afi != AFI_IP6);
465 break;
466 }
467 /* Lookup table. */
468 table = zebra_vrf_table(afi, SAFI_UNICAST, nexthop->vrf_id);
469 if (!table)
470 return 0;
471
472 rn = route_node_match(table, (struct prefix *)&p);
473 while (rn) {
474 route_unlock_node(rn);
475
476 /* Lookup should halt if we've matched against ourselves ('top',
477 * if specified) - i.e., we cannot have a nexthop NH1 is
478 * resolved by a route NH1. The exception is if the route is a
479 * host route.
480 */
481 if (top && rn == top)
482 if (((afi == AFI_IP) && (rn->p.prefixlen != 32))
483 || ((afi == AFI_IP6) && (rn->p.prefixlen != 128)))
484 return 0;
485
486 /* Pick up selected route. */
487 /* However, do not resolve over default route unless explicitly
488 * allowed. */
489 if (is_default_prefix(&rn->p)
490 && !rnh_resolve_via_default(p.family))
491 return 0;
492
493 dest = rib_dest_from_rnode(rn);
494 if (dest && dest->selected_fib
495 && !CHECK_FLAG(dest->selected_fib->status,
496 ROUTE_ENTRY_REMOVED)
497 && dest->selected_fib->type != ZEBRA_ROUTE_TABLE)
498 match = dest->selected_fib;
499
500 /* If there is no selected route or matched route is EGP, go up
501 tree. */
502 if (!match) {
503 do {
504 rn = rn->parent;
505 } while (rn && rn->info == NULL);
506 if (rn)
507 route_lock_node(rn);
508
509 continue;
510 }
511
512 if (match->type == ZEBRA_ROUTE_CONNECT) {
513 /* Directly point connected route. */
514 newhop = match->ng.nexthop;
515 if (newhop) {
516 if (nexthop->type == NEXTHOP_TYPE_IPV4
517 || nexthop->type == NEXTHOP_TYPE_IPV6)
518 nexthop->ifindex = newhop->ifindex;
519 }
520 return 1;
521 } else if (CHECK_FLAG(re->flags, ZEBRA_FLAG_ALLOW_RECURSION)) {
522 resolved = 0;
523 for (ALL_NEXTHOPS(match->ng, newhop)) {
524 if (!CHECK_FLAG(newhop->flags,
525 NEXTHOP_FLAG_FIB))
526 continue;
527 if (CHECK_FLAG(newhop->flags,
528 NEXTHOP_FLAG_RECURSIVE))
529 continue;
530
531 if (set) {
532 SET_FLAG(nexthop->flags,
533 NEXTHOP_FLAG_RECURSIVE);
534 SET_FLAG(re->status,
535 ROUTE_ENTRY_NEXTHOPS_CHANGED);
536 nexthop_set_resolved(afi, newhop,
537 nexthop);
538 }
539 resolved = 1;
540 }
541 if (resolved && set)
542 re->nexthop_mtu = match->mtu;
543 return resolved;
544 } else if (re->type == ZEBRA_ROUTE_STATIC) {
545 resolved = 0;
546 for (ALL_NEXTHOPS(match->ng, newhop)) {
547 if (!CHECK_FLAG(newhop->flags,
548 NEXTHOP_FLAG_FIB))
549 continue;
550
551 if (set) {
552 SET_FLAG(nexthop->flags,
553 NEXTHOP_FLAG_RECURSIVE);
554 nexthop_set_resolved(afi, newhop,
555 nexthop);
556 }
557 resolved = 1;
558 }
559 if (resolved && set)
560 re->nexthop_mtu = match->mtu;
561 return resolved;
562 } else {
563 return 0;
564 }
565 }
566 return 0;
567 }
568
569 struct route_entry *rib_match(afi_t afi, safi_t safi, vrf_id_t vrf_id,
570 union g_addr *addr, struct route_node **rn_out)
571 {
572 struct prefix p;
573 struct route_table *table;
574 struct route_node *rn;
575 struct route_entry *match = NULL;
576 struct nexthop *newhop;
577
578 /* Lookup table. */
579 table = zebra_vrf_table(afi, safi, vrf_id);
580 if (!table)
581 return 0;
582
583 memset(&p, 0, sizeof(struct prefix));
584 p.family = afi;
585 if (afi == AFI_IP) {
586 p.u.prefix4 = addr->ipv4;
587 p.prefixlen = IPV4_MAX_PREFIXLEN;
588 } else {
589 p.u.prefix6 = addr->ipv6;
590 p.prefixlen = IPV6_MAX_PREFIXLEN;
591 }
592
593 rn = route_node_match(table, (struct prefix *)&p);
594
595 while (rn) {
596 rib_dest_t *dest;
597
598 route_unlock_node(rn);
599
600 dest = rib_dest_from_rnode(rn);
601 if (dest && dest->selected_fib
602 && !CHECK_FLAG(dest->selected_fib->status,
603 ROUTE_ENTRY_REMOVED))
604 match = dest->selected_fib;
605
606 /* If there is no selected route or matched route is EGP, go up
607 tree. */
608 if (!match) {
609 do {
610 rn = rn->parent;
611 } while (rn && rn->info == NULL);
612 if (rn)
613 route_lock_node(rn);
614 } else {
615 if (match->type != ZEBRA_ROUTE_CONNECT) {
616 int found = 0;
617 for (ALL_NEXTHOPS(match->ng, newhop))
618 if (CHECK_FLAG(newhop->flags,
619 NEXTHOP_FLAG_FIB)) {
620 found = 1;
621 break;
622 }
623 if (!found)
624 return NULL;
625 }
626
627 if (rn_out)
628 *rn_out = rn;
629 return match;
630 }
631 }
632 return NULL;
633 }
634
635 struct route_entry *rib_match_ipv4_multicast(vrf_id_t vrf_id,
636 struct in_addr addr,
637 struct route_node **rn_out)
638 {
639 struct route_entry *re = NULL, *mre = NULL, *ure = NULL;
640 struct route_node *m_rn = NULL, *u_rn = NULL;
641 union g_addr gaddr = {.ipv4 = addr};
642
643 switch (ipv4_multicast_mode) {
644 case MCAST_MRIB_ONLY:
645 return rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr,
646 rn_out);
647 case MCAST_URIB_ONLY:
648 return rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, rn_out);
649 case MCAST_NO_CONFIG:
650 case MCAST_MIX_MRIB_FIRST:
651 re = mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr,
652 &m_rn);
653 if (!mre)
654 re = ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id,
655 &gaddr, &u_rn);
656 break;
657 case MCAST_MIX_DISTANCE:
658 mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr, &m_rn);
659 ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, &u_rn);
660 if (mre && ure)
661 re = ure->distance < mre->distance ? ure : mre;
662 else if (mre)
663 re = mre;
664 else if (ure)
665 re = ure;
666 break;
667 case MCAST_MIX_PFXLEN:
668 mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr, &m_rn);
669 ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, &u_rn);
670 if (mre && ure)
671 re = u_rn->p.prefixlen > m_rn->p.prefixlen ? ure : mre;
672 else if (mre)
673 re = mre;
674 else if (ure)
675 re = ure;
676 break;
677 }
678
679 if (rn_out)
680 *rn_out = (re == mre) ? m_rn : u_rn;
681
682 if (IS_ZEBRA_DEBUG_RIB) {
683 char buf[BUFSIZ];
684 inet_ntop(AF_INET, &addr, buf, BUFSIZ);
685
686 zlog_debug("%s: %s: vrf: %u found %s, using %s",
687 __func__, buf, vrf_id,
688 mre ? (ure ? "MRIB+URIB" : "MRIB")
689 : ure ? "URIB" : "nothing",
690 re == ure ? "URIB" : re == mre ? "MRIB" : "none");
691 }
692 return re;
693 }
694
695 void multicast_mode_ipv4_set(enum multicast_mode mode)
696 {
697 if (IS_ZEBRA_DEBUG_RIB)
698 zlog_debug("%s: multicast lookup mode set (%d)", __func__,
699 mode);
700 ipv4_multicast_mode = mode;
701 }
702
703 enum multicast_mode multicast_mode_ipv4_get(void)
704 {
705 return ipv4_multicast_mode;
706 }
707
708 struct route_entry *rib_lookup_ipv4(struct prefix_ipv4 *p, vrf_id_t vrf_id)
709 {
710 struct route_table *table;
711 struct route_node *rn;
712 struct route_entry *match = NULL;
713 struct nexthop *nexthop;
714 rib_dest_t *dest;
715
716 /* Lookup table. */
717 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
718 if (!table)
719 return 0;
720
721 rn = route_node_lookup(table, (struct prefix *)p);
722
723 /* No route for this prefix. */
724 if (!rn)
725 return NULL;
726
727 /* Unlock node. */
728 route_unlock_node(rn);
729 dest = rib_dest_from_rnode(rn);
730
731 if (dest && dest->selected_fib
732 && !CHECK_FLAG(dest->selected_fib->status, ROUTE_ENTRY_REMOVED))
733 match = dest->selected_fib;
734
735 if (!match)
736 return NULL;
737
738 if (match->type == ZEBRA_ROUTE_CONNECT)
739 return match;
740
741 for (ALL_NEXTHOPS(match->ng, nexthop))
742 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB))
743 return match;
744
745 return NULL;
746 }
747
748 /*
749 * This clone function, unlike its original rib_lookup_ipv4(), checks
750 * if specified IPv4 route record (prefix/mask -> gate) exists in
751 * the whole RIB and has ROUTE_ENTRY_SELECTED_FIB set.
752 *
753 * Return values:
754 * -1: error
755 * 0: exact match found
756 * 1: a match was found with a different gate
757 * 2: connected route found
758 * 3: no matches found
759 */
760 int rib_lookup_ipv4_route(struct prefix_ipv4 *p, union sockunion *qgate,
761 vrf_id_t vrf_id)
762 {
763 struct route_table *table;
764 struct route_node *rn;
765 struct route_entry *match = NULL;
766 struct nexthop *nexthop;
767 int nexthops_active;
768 rib_dest_t *dest;
769
770 /* Lookup table. */
771 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
772 if (!table)
773 return ZEBRA_RIB_LOOKUP_ERROR;
774
775 /* Scan the RIB table for exactly matching RIB entry. */
776 rn = route_node_lookup(table, (struct prefix *)p);
777
778 /* No route for this prefix. */
779 if (!rn)
780 return ZEBRA_RIB_NOTFOUND;
781
782 /* Unlock node. */
783 route_unlock_node(rn);
784 dest = rib_dest_from_rnode(rn);
785
786 /* Find out if a "selected" RR for the discovered RIB entry exists ever.
787 */
788 if (dest && dest->selected_fib
789 && !CHECK_FLAG(dest->selected_fib->status, ROUTE_ENTRY_REMOVED))
790 match = dest->selected_fib;
791
792 /* None such found :( */
793 if (!match)
794 return ZEBRA_RIB_NOTFOUND;
795
796 if (match->type == ZEBRA_ROUTE_CONNECT)
797 return ZEBRA_RIB_FOUND_CONNECTED;
798
799 /* Ok, we have a cood candidate, let's check it's nexthop list... */
800 nexthops_active = 0;
801 for (ALL_NEXTHOPS(match->ng, nexthop))
802 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB)) {
803 nexthops_active = 1;
804 if (nexthop->gate.ipv4.s_addr == sockunion2ip(qgate))
805 return ZEBRA_RIB_FOUND_EXACT;
806 if (IS_ZEBRA_DEBUG_RIB) {
807 char gate_buf[INET_ADDRSTRLEN],
808 qgate_buf[INET_ADDRSTRLEN];
809 inet_ntop(AF_INET, &nexthop->gate.ipv4.s_addr,
810 gate_buf, INET_ADDRSTRLEN);
811 inet_ntop(AF_INET, &sockunion2ip(qgate),
812 qgate_buf, INET_ADDRSTRLEN);
813 zlog_debug("%s: qgate == %s, %s == %s",
814 __func__, qgate_buf,
815 nexthop->rparent ? "rgate" : "gate",
816 gate_buf);
817 }
818 }
819
820 if (nexthops_active)
821 return ZEBRA_RIB_FOUND_NOGATE;
822
823 return ZEBRA_RIB_NOTFOUND;
824 }
825
826 #define RIB_SYSTEM_ROUTE(R) \
827 ((R)->type == ZEBRA_ROUTE_KERNEL || (R)->type == ZEBRA_ROUTE_CONNECT)
828
829 /* This function verifies reachability of one given nexthop, which can be
830 * numbered or unnumbered, IPv4 or IPv6. The result is unconditionally stored
831 * in nexthop->flags field. If the 4th parameter, 'set', is non-zero,
832 * nexthop->ifindex will be updated appropriately as well.
833 * An existing route map can turn (otherwise active) nexthop into inactive, but
834 * not vice versa.
835 *
836 * The return value is the final value of 'ACTIVE' flag.
837 */
838
839 static unsigned nexthop_active_check(struct route_node *rn,
840 struct route_entry *re,
841 struct nexthop *nexthop, int set)
842 {
843 struct interface *ifp;
844 route_map_result_t ret = RMAP_MATCH;
845 int family;
846 char buf[SRCDEST2STR_BUFFER];
847 const struct prefix *p, *src_p;
848 srcdest_rnode_prefixes(rn, &p, &src_p);
849
850 if (rn->p.family == AF_INET)
851 family = AFI_IP;
852 else if (rn->p.family == AF_INET6)
853 family = AFI_IP6;
854 else
855 family = 0;
856 switch (nexthop->type) {
857 case NEXTHOP_TYPE_IFINDEX:
858 ifp = if_lookup_by_index(nexthop->ifindex, nexthop->vrf_id);
859 if (ifp && if_is_operative(ifp))
860 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
861 else
862 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
863 break;
864 case NEXTHOP_TYPE_IPV4:
865 case NEXTHOP_TYPE_IPV4_IFINDEX:
866 family = AFI_IP;
867 if (nexthop_active(AFI_IP, re, nexthop, set, rn))
868 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
869 else
870 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
871 break;
872 case NEXTHOP_TYPE_IPV6:
873 family = AFI_IP6;
874 if (nexthop_active(AFI_IP6, re, nexthop, set, rn))
875 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
876 else
877 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
878 break;
879 case NEXTHOP_TYPE_IPV6_IFINDEX:
880 /* RFC 5549, v4 prefix with v6 NH */
881 if (rn->p.family != AF_INET)
882 family = AFI_IP6;
883 if (IN6_IS_ADDR_LINKLOCAL(&nexthop->gate.ipv6)) {
884 ifp = if_lookup_by_index(nexthop->ifindex,
885 nexthop->vrf_id);
886 if (ifp && if_is_operative(ifp))
887 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
888 else
889 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
890 } else {
891 if (nexthop_active(AFI_IP6, re, nexthop, set, rn))
892 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
893 else
894 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
895 }
896 break;
897 case NEXTHOP_TYPE_BLACKHOLE:
898 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
899 break;
900 default:
901 break;
902 }
903 if (!CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE))
904 return 0;
905
906 /* XXX: What exactly do those checks do? Do we support
907 * e.g. IPv4 routes with IPv6 nexthops or vice versa? */
908 if (RIB_SYSTEM_ROUTE(re) || (family == AFI_IP && p->family != AF_INET)
909 || (family == AFI_IP6 && p->family != AF_INET6))
910 return CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
911
912 /* The original code didn't determine the family correctly
913 * e.g. for NEXTHOP_TYPE_IFINDEX. Retrieve the correct afi
914 * from the rib_table_info in those cases.
915 * Possibly it may be better to use only the rib_table_info
916 * in every case.
917 */
918 if (!family) {
919 rib_table_info_t *info;
920
921 info = srcdest_rnode_table_info(rn);
922 family = info->afi;
923 }
924
925 memset(&nexthop->rmap_src.ipv6, 0, sizeof(union g_addr));
926
927 /* It'll get set if required inside */
928 ret = zebra_route_map_check(family, re->type, re->instance, p, nexthop,
929 nexthop->vrf_id, re->tag);
930 if (ret == RMAP_DENYMATCH) {
931 if (IS_ZEBRA_DEBUG_RIB) {
932 srcdest_rnode2str(rn, buf, sizeof(buf));
933 zlog_debug(
934 "%u:%s: Filtering out with NH out %s due to route map",
935 re->vrf_id, buf,
936 ifindex2ifname(nexthop->ifindex,
937 nexthop->vrf_id));
938 }
939 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
940 }
941 return CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
942 }
943
944 /* Iterate over all nexthops of the given RIB entry and refresh their
945 * ACTIVE flag. re->nexthop_active_num is updated accordingly. If any
946 * nexthop is found to toggle the ACTIVE flag, the whole re structure
947 * is flagged with ROUTE_ENTRY_CHANGED. The 4th 'set' argument is
948 * transparently passed to nexthop_active_check().
949 *
950 * Return value is the new number of active nexthops.
951 */
952
953 static int nexthop_active_update(struct route_node *rn, struct route_entry *re,
954 int set)
955 {
956 struct nexthop *nexthop;
957 union g_addr prev_src;
958 unsigned int prev_active, new_active, old_num_nh;
959 ifindex_t prev_index;
960 old_num_nh = re->nexthop_active_num;
961
962 re->nexthop_active_num = 0;
963 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
964
965 for (nexthop = re->ng.nexthop; nexthop; nexthop = nexthop->next) {
966 /* No protocol daemon provides src and so we're skipping
967 * tracking it */
968 prev_src = nexthop->rmap_src;
969 prev_active = CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
970 prev_index = nexthop->ifindex;
971 if ((new_active = nexthop_active_check(rn, re, nexthop, set)))
972 re->nexthop_active_num++;
973 /* Don't allow src setting on IPv6 addr for now */
974 if (prev_active != new_active || prev_index != nexthop->ifindex
975 || ((nexthop->type >= NEXTHOP_TYPE_IFINDEX
976 && nexthop->type < NEXTHOP_TYPE_IPV6)
977 && prev_src.ipv4.s_addr
978 != nexthop->rmap_src.ipv4.s_addr)
979 || ((nexthop->type >= NEXTHOP_TYPE_IPV6
980 && nexthop->type < NEXTHOP_TYPE_BLACKHOLE)
981 && !(IPV6_ADDR_SAME(&prev_src.ipv6,
982 &nexthop->rmap_src.ipv6)))) {
983 SET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
984 SET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
985 }
986 }
987
988 if (old_num_nh != re->nexthop_active_num)
989 SET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
990
991 if (CHECK_FLAG(re->status, ROUTE_ENTRY_CHANGED)) {
992 SET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
993 }
994
995 return re->nexthop_active_num;
996 }
997
998 /*
999 * Is this RIB labeled-unicast? It must be of type BGP and all paths
1000 * (nexthops) must have a label.
1001 */
1002 int zebra_rib_labeled_unicast(struct route_entry *re)
1003 {
1004 struct nexthop *nexthop = NULL;
1005
1006 if (re->type != ZEBRA_ROUTE_BGP)
1007 return 0;
1008
1009 for (ALL_NEXTHOPS(re->ng, nexthop))
1010 if (!nexthop->nh_label || !nexthop->nh_label->num_labels)
1011 return 0;
1012
1013 return 1;
1014 }
1015
1016 void kernel_route_rib_pass_fail(struct route_node *rn, const struct prefix *p,
1017 struct route_entry *re,
1018 enum dp_results res)
1019 {
1020 struct nexthop *nexthop;
1021 char buf[PREFIX_STRLEN];
1022 rib_dest_t *dest;
1023
1024 dest = rib_dest_from_rnode(rn);
1025
1026 switch (res) {
1027 case DP_INSTALL_SUCCESS:
1028 dest->selected_fib = re;
1029 for (ALL_NEXTHOPS(re->ng, nexthop)) {
1030 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE))
1031 continue;
1032
1033 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE))
1034 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1035 else
1036 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1037 }
1038 zsend_route_notify_owner(re, p, ZAPI_ROUTE_INSTALLED);
1039 break;
1040 case DP_INSTALL_FAILURE:
1041 /*
1042 * I am not sure this is the right thing to do here
1043 * but the code always set selected_fib before
1044 * this assignment was moved here.
1045 */
1046 dest->selected_fib = re;
1047
1048 zsend_route_notify_owner(re, p, ZAPI_ROUTE_FAIL_INSTALL);
1049 flog_err(ZEBRA_ERR_DP_INSTALL_FAIL,
1050 "%u:%s: Route install failed", re->vrf_id,
1051 prefix2str(p, buf, sizeof(buf)));
1052 break;
1053 case DP_DELETE_SUCCESS:
1054 /*
1055 * The case where selected_fib is not re is
1056 * when we have received a system route
1057 * that is overriding our installed route
1058 * as such we should leave the selected_fib
1059 * pointer alone
1060 */
1061 if (dest->selected_fib == re)
1062 dest->selected_fib = NULL;
1063 for (ALL_NEXTHOPS(re->ng, nexthop))
1064 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1065
1066 zsend_route_notify_owner(re, p, ZAPI_ROUTE_REMOVED);
1067 break;
1068 case DP_DELETE_FAILURE:
1069 /*
1070 * Should we set this to NULL if the
1071 * delete fails?
1072 */
1073 dest->selected_fib = NULL;
1074 flog_err(ZEBRA_ERR_DP_DELETE_FAIL,
1075 "%u:%s: Route Deletion failure", re->vrf_id,
1076 prefix2str(p, buf, sizeof(buf)));
1077
1078 zsend_route_notify_owner(re, p, ZAPI_ROUTE_REMOVE_FAIL);
1079 break;
1080 }
1081 }
1082
1083 /* Update flag indicates whether this is a "replace" or not. Currently, this
1084 * is only used for IPv4.
1085 */
1086 void rib_install_kernel(struct route_node *rn, struct route_entry *re,
1087 struct route_entry *old)
1088 {
1089 struct nexthop *nexthop;
1090 rib_table_info_t *info = srcdest_rnode_table_info(rn);
1091 const struct prefix *p, *src_p;
1092 struct zebra_vrf *zvrf = vrf_info_lookup(re->vrf_id);
1093
1094 srcdest_rnode_prefixes(rn, &p, &src_p);
1095
1096 if (info->safi != SAFI_UNICAST) {
1097 for (ALL_NEXTHOPS(re->ng, nexthop))
1098 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1099 return;
1100 } else {
1101 struct nexthop *prev;
1102
1103 for (ALL_NEXTHOPS(re->ng, nexthop)) {
1104 UNSET_FLAG (nexthop->flags, NEXTHOP_FLAG_DUPLICATE);
1105 for (ALL_NEXTHOPS(re->ng, prev)) {
1106 if (prev == nexthop)
1107 break;
1108 if (nexthop_same_firsthop(nexthop, prev)) {
1109 SET_FLAG(nexthop->flags,
1110 NEXTHOP_FLAG_DUPLICATE);
1111 break;
1112 }
1113 }
1114 }
1115 }
1116
1117 /*
1118 * If this is a replace to a new RE let the originator of the RE
1119 * know that they've lost
1120 */
1121 if (old && (old != re) && (old->type != re->type))
1122 zsend_route_notify_owner(old, p, ZAPI_ROUTE_BETTER_ADMIN_WON);
1123
1124 /*
1125 * Make sure we update the FPM any time we send new information to
1126 * the kernel.
1127 */
1128 hook_call(rib_update, rn, "installing in kernel");
1129 switch (kernel_route_rib(rn, p, src_p, old, re)) {
1130 case DP_REQUEST_QUEUED:
1131 flog_err(
1132 ZEBRA_ERR_DP_INVALID_RC,
1133 "No current known DataPlane interfaces can return this, please fix");
1134 break;
1135 case DP_REQUEST_FAILURE:
1136 flog_err(
1137 ZEBRA_ERR_DP_INSTALL_FAIL,
1138 "No current known Rib Install Failure cases, please fix");
1139 break;
1140 case DP_REQUEST_SUCCESS:
1141 zvrf->installs++;
1142 break;
1143 }
1144
1145 return;
1146 }
1147
1148 /* Uninstall the route from kernel. */
1149 void rib_uninstall_kernel(struct route_node *rn, struct route_entry *re)
1150 {
1151 struct nexthop *nexthop;
1152 rib_table_info_t *info = srcdest_rnode_table_info(rn);
1153 const struct prefix *p, *src_p;
1154 struct zebra_vrf *zvrf = vrf_info_lookup(re->vrf_id);
1155
1156 srcdest_rnode_prefixes(rn, &p, &src_p);
1157
1158 if (info->safi != SAFI_UNICAST) {
1159 for (ALL_NEXTHOPS(re->ng, nexthop))
1160 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1161 return;
1162 }
1163
1164 /*
1165 * Make sure we update the FPM any time we send new information to
1166 * the kernel.
1167 */
1168 hook_call(rib_update, rn, "uninstalling from kernel");
1169 switch (kernel_route_rib(rn, p, src_p, re, NULL)) {
1170 case DP_REQUEST_QUEUED:
1171 flog_err(
1172 ZEBRA_ERR_DP_INVALID_RC,
1173 "No current known DataPlane interfaces can return this, please fix");
1174 break;
1175 case DP_REQUEST_FAILURE:
1176 flog_err(
1177 ZEBRA_ERR_DP_INSTALL_FAIL,
1178 "No current known RIB Install Failure cases, please fix");
1179 break;
1180 case DP_REQUEST_SUCCESS:
1181 if (zvrf)
1182 zvrf->removals++;
1183 break;
1184 }
1185
1186 return;
1187 }
1188
1189 /* Uninstall the route from kernel. */
1190 static void rib_uninstall(struct route_node *rn, struct route_entry *re)
1191 {
1192 rib_table_info_t *info = srcdest_rnode_table_info(rn);
1193 rib_dest_t *dest = rib_dest_from_rnode(rn);
1194
1195 if (dest && dest->selected_fib == re) {
1196 if (info->safi == SAFI_UNICAST)
1197 hook_call(rib_update, rn, "rib_uninstall");
1198
1199 if (!RIB_SYSTEM_ROUTE(re))
1200 rib_uninstall_kernel(rn, re);
1201
1202 /* If labeled-unicast route, uninstall transit LSP. */
1203 if (zebra_rib_labeled_unicast(re))
1204 zebra_mpls_lsp_uninstall(info->zvrf, rn, re);
1205 }
1206
1207 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)) {
1208 const struct prefix *p, *src_p;
1209
1210 srcdest_rnode_prefixes(rn, &p, &src_p);
1211
1212 redistribute_delete(p, src_p, re);
1213 UNSET_FLAG(re->flags, ZEBRA_FLAG_SELECTED);
1214 }
1215 }
1216
1217 /*
1218 * rib_can_delete_dest
1219 *
1220 * Returns TRUE if the given dest can be deleted from the table.
1221 */
1222 static int rib_can_delete_dest(rib_dest_t *dest)
1223 {
1224 if (dest->routes) {
1225 return 0;
1226 }
1227
1228 /*
1229 * Don't delete the dest if we have to update the FPM about this
1230 * prefix.
1231 */
1232 if (CHECK_FLAG(dest->flags, RIB_DEST_UPDATE_FPM)
1233 || CHECK_FLAG(dest->flags, RIB_DEST_SENT_TO_FPM))
1234 return 0;
1235
1236 return 1;
1237 }
1238
1239 /*
1240 * rib_gc_dest
1241 *
1242 * Garbage collect the rib dest corresponding to the given route node
1243 * if appropriate.
1244 *
1245 * Returns TRUE if the dest was deleted, FALSE otherwise.
1246 */
1247 int rib_gc_dest(struct route_node *rn)
1248 {
1249 rib_dest_t *dest;
1250
1251 dest = rib_dest_from_rnode(rn);
1252 if (!dest)
1253 return 0;
1254
1255 if (!rib_can_delete_dest(dest))
1256 return 0;
1257
1258 if (IS_ZEBRA_DEBUG_RIB) {
1259 struct zebra_vrf *zvrf;
1260
1261 zvrf = rib_dest_vrf(dest);
1262 rnode_debug(rn, zvrf_id(zvrf), "removing dest from table");
1263 }
1264
1265 dest->rnode = NULL;
1266 XFREE(MTYPE_RIB_DEST, dest);
1267 rn->info = NULL;
1268
1269 /*
1270 * Release the one reference that we keep on the route node.
1271 */
1272 route_unlock_node(rn);
1273 return 1;
1274 }
1275
1276 static void rib_process_add_fib(struct zebra_vrf *zvrf, struct route_node *rn,
1277 struct route_entry *new)
1278 {
1279 rib_dest_t *dest = rib_dest_from_rnode(rn);
1280
1281 hook_call(rib_update, rn, "new route selected");
1282
1283 /* Update real nexthop. This may actually determine if nexthop is active
1284 * or not. */
1285 if (!nexthop_active_update(rn, new, 1)) {
1286 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1287 return;
1288 }
1289
1290 if (IS_ZEBRA_DEBUG_RIB) {
1291 char buf[SRCDEST2STR_BUFFER];
1292 srcdest_rnode2str(rn, buf, sizeof(buf));
1293 zlog_debug("%u:%s: Adding route rn %p, re %p (type %d)",
1294 zvrf_id(zvrf), buf, rn, new, new->type);
1295 }
1296
1297 /* If labeled-unicast route, install transit LSP. */
1298 if (zebra_rib_labeled_unicast(new))
1299 zebra_mpls_lsp_install(zvrf, rn, new);
1300
1301 if (!RIB_SYSTEM_ROUTE(new))
1302 rib_install_kernel(rn, new, NULL);
1303 else
1304 dest->selected_fib = new;
1305
1306 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1307 }
1308
1309 static void rib_process_del_fib(struct zebra_vrf *zvrf, struct route_node *rn,
1310 struct route_entry *old)
1311 {
1312 rib_dest_t *dest = rib_dest_from_rnode(rn);
1313 hook_call(rib_update, rn, "removing existing route");
1314
1315 /* Uninstall from kernel. */
1316 if (IS_ZEBRA_DEBUG_RIB) {
1317 char buf[SRCDEST2STR_BUFFER];
1318 srcdest_rnode2str(rn, buf, sizeof(buf));
1319 zlog_debug("%u:%s: Deleting route rn %p, re %p (type %d)",
1320 zvrf_id(zvrf), buf, rn, old, old->type);
1321 }
1322
1323 /* If labeled-unicast route, uninstall transit LSP. */
1324 if (zebra_rib_labeled_unicast(old))
1325 zebra_mpls_lsp_uninstall(zvrf, rn, old);
1326
1327 if (!RIB_SYSTEM_ROUTE(old))
1328 rib_uninstall_kernel(rn, old);
1329 else {
1330 /*
1331 * We are setting this to NULL here
1332 * because that is what we traditionally
1333 * have been doing. I am not positive
1334 * that this is the right thing to do
1335 * but let's leave the code alone
1336 * for the RIB_SYSTEM_ROUTE case
1337 */
1338 dest->selected_fib = NULL;
1339 }
1340
1341 /* Update nexthop for route, reset changed flag. */
1342 nexthop_active_update(rn, old, 1);
1343 UNSET_FLAG(old->status, ROUTE_ENTRY_CHANGED);
1344 }
1345
1346 static void rib_process_update_fib(struct zebra_vrf *zvrf,
1347 struct route_node *rn,
1348 struct route_entry *old,
1349 struct route_entry *new)
1350 {
1351 struct nexthop *nexthop = NULL;
1352 int nh_active = 0;
1353 rib_dest_t *dest = rib_dest_from_rnode(rn);
1354
1355 /*
1356 * We have to install or update if a new route has been selected or
1357 * something has changed.
1358 */
1359 if (new != old || CHECK_FLAG(new->status, ROUTE_ENTRY_CHANGED)) {
1360 hook_call(rib_update, rn, "updating existing route");
1361
1362 /* Update the nexthop; we could determine here that nexthop is
1363 * inactive. */
1364 if (nexthop_active_update(rn, new, 1))
1365 nh_active = 1;
1366
1367 /* If nexthop is active, install the selected route, if
1368 * appropriate. If
1369 * the install succeeds, cleanup flags for prior route, if
1370 * different from
1371 * newly selected.
1372 */
1373 if (nh_active) {
1374 if (IS_ZEBRA_DEBUG_RIB) {
1375 char buf[SRCDEST2STR_BUFFER];
1376 srcdest_rnode2str(rn, buf, sizeof(buf));
1377 if (new != old)
1378 zlog_debug(
1379 "%u:%s: Updating route rn %p, re %p (type %d) "
1380 "old %p (type %d)",
1381 zvrf_id(zvrf), buf, rn, new,
1382 new->type, old, old->type);
1383 else
1384 zlog_debug(
1385 "%u:%s: Updating route rn %p, re %p (type %d)",
1386 zvrf_id(zvrf), buf, rn, new,
1387 new->type);
1388 }
1389
1390 /* If labeled-unicast route, uninstall transit LSP. */
1391 if (zebra_rib_labeled_unicast(old))
1392 zebra_mpls_lsp_uninstall(zvrf, rn, old);
1393
1394 /* Non-system route should be installed. */
1395 if (!RIB_SYSTEM_ROUTE(new)) {
1396 /* If labeled-unicast route, install transit
1397 * LSP. */
1398 if (zebra_rib_labeled_unicast(new))
1399 zebra_mpls_lsp_install(zvrf, rn, new);
1400
1401 rib_install_kernel(rn, new, old);
1402 } else {
1403 /*
1404 * We do not need to install the
1405 * selected route because it
1406 * is already isntalled by
1407 * the system( ie not us )
1408 * so just mark it as winning
1409 * we do need to ensure that
1410 * if we uninstall a route
1411 * from ourselves we don't
1412 * over write this pointer
1413 */
1414 dest->selected_fib = NULL;
1415 }
1416 /* If install succeeded or system route, cleanup flags
1417 * for prior route. */
1418 if (new != old) {
1419 if (RIB_SYSTEM_ROUTE(new)) {
1420 if (!RIB_SYSTEM_ROUTE(old))
1421 rib_uninstall_kernel(rn, old);
1422 } else {
1423 for (nexthop = old->ng.nexthop; nexthop;
1424 nexthop = nexthop->next)
1425 UNSET_FLAG(nexthop->flags,
1426 NEXTHOP_FLAG_FIB);
1427 }
1428 }
1429 }
1430
1431 /*
1432 * If nexthop for selected route is not active or install
1433 * failed, we
1434 * may need to uninstall and delete for redistribution.
1435 */
1436 if (!nh_active) {
1437 if (IS_ZEBRA_DEBUG_RIB) {
1438 char buf[SRCDEST2STR_BUFFER];
1439 srcdest_rnode2str(rn, buf, sizeof(buf));
1440 if (new != old)
1441 zlog_debug(
1442 "%u:%s: Deleting route rn %p, re %p (type %d) "
1443 "old %p (type %d) - nexthop inactive",
1444 zvrf_id(zvrf), buf, rn, new,
1445 new->type, old, old->type);
1446 else
1447 zlog_debug(
1448 "%u:%s: Deleting route rn %p, re %p (type %d) - nexthop inactive",
1449 zvrf_id(zvrf), buf, rn, new,
1450 new->type);
1451 }
1452
1453 /* If labeled-unicast route, uninstall transit LSP. */
1454 if (zebra_rib_labeled_unicast(old))
1455 zebra_mpls_lsp_uninstall(zvrf, rn, old);
1456
1457 if (!RIB_SYSTEM_ROUTE(old))
1458 rib_uninstall_kernel(rn, old);
1459 else
1460 dest->selected_fib = NULL;
1461 }
1462 } else {
1463 /*
1464 * Same route selected; check if in the FIB and if not,
1465 * re-install. This
1466 * is housekeeping code to deal with race conditions in kernel
1467 * with linux
1468 * netlink reporting interface up before IPv4 or IPv6 protocol
1469 * is ready
1470 * to add routes.
1471 */
1472 if (!RIB_SYSTEM_ROUTE(new)) {
1473 bool in_fib = false;
1474
1475 for (ALL_NEXTHOPS(new->ng, nexthop))
1476 if (CHECK_FLAG(nexthop->flags,
1477 NEXTHOP_FLAG_FIB)) {
1478 in_fib = true;
1479 break;
1480 }
1481 if (!in_fib)
1482 rib_install_kernel(rn, new, NULL);
1483 }
1484 }
1485
1486 /* Update prior route. */
1487 if (new != old) {
1488 /* Set real nexthop. */
1489 nexthop_active_update(rn, old, 1);
1490 UNSET_FLAG(old->status, ROUTE_ENTRY_CHANGED);
1491 }
1492
1493 /* Clear changed flag. */
1494 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1495 }
1496
1497 /* Check if 'alternate' RIB entry is better than 'current'. */
1498 static struct route_entry *rib_choose_best(struct route_entry *current,
1499 struct route_entry *alternate)
1500 {
1501 if (current == NULL)
1502 return alternate;
1503
1504 /* filter route selection in following order:
1505 * - connected beats other types
1506 * - if both connected, loopback or vrf wins
1507 * - lower distance beats higher
1508 * - lower metric beats higher for equal distance
1509 * - last, hence oldest, route wins tie break.
1510 */
1511
1512 /* Connected routes. Check to see if either are a vrf
1513 * or loopback interface. If not, pick the last connected
1514 * route of the set of lowest metric connected routes.
1515 */
1516 if (alternate->type == ZEBRA_ROUTE_CONNECT) {
1517 if (current->type != ZEBRA_ROUTE_CONNECT)
1518 return alternate;
1519
1520 /* both are connected. are either loop or vrf? */
1521 struct nexthop *nexthop = NULL;
1522
1523 for (ALL_NEXTHOPS(alternate->ng, nexthop)) {
1524 if (if_is_loopback_or_vrf(if_lookup_by_index(
1525 nexthop->ifindex, alternate->vrf_id)))
1526 return alternate;
1527 }
1528
1529 for (ALL_NEXTHOPS(current->ng, nexthop)) {
1530 if (if_is_loopback_or_vrf(if_lookup_by_index(
1531 nexthop->ifindex, current->vrf_id)))
1532 return current;
1533 }
1534
1535 /* Neither are loop or vrf so pick best metric */
1536 if (alternate->metric <= current->metric)
1537 return alternate;
1538
1539 return current;
1540 }
1541
1542 if (current->type == ZEBRA_ROUTE_CONNECT)
1543 return current;
1544
1545 /* higher distance loses */
1546 if (alternate->distance < current->distance)
1547 return alternate;
1548 if (current->distance < alternate->distance)
1549 return current;
1550
1551 /* metric tie-breaks equal distance */
1552 if (alternate->metric <= current->metric)
1553 return alternate;
1554
1555 return current;
1556 }
1557
1558 /* Core function for processing routing information base. */
1559 static void rib_process(struct route_node *rn)
1560 {
1561 struct route_entry *re;
1562 struct route_entry *next;
1563 struct route_entry *old_selected = NULL;
1564 struct route_entry *new_selected = NULL;
1565 struct route_entry *old_fib = NULL;
1566 struct route_entry *new_fib = NULL;
1567 struct route_entry *best = NULL;
1568 char buf[SRCDEST2STR_BUFFER];
1569 rib_dest_t *dest;
1570 struct zebra_vrf *zvrf = NULL;
1571 const struct prefix *p, *src_p;
1572
1573 srcdest_rnode_prefixes(rn, &p, &src_p);
1574 vrf_id_t vrf_id = VRF_UNKNOWN;
1575
1576 assert(rn);
1577
1578 dest = rib_dest_from_rnode(rn);
1579 if (dest) {
1580 zvrf = rib_dest_vrf(dest);
1581 vrf_id = zvrf_id(zvrf);
1582 }
1583
1584 if (IS_ZEBRA_DEBUG_RIB)
1585 srcdest_rnode2str(rn, buf, sizeof(buf));
1586
1587 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1588 zlog_debug("%u:%s: Processing rn %p", vrf_id, buf, rn);
1589
1590 /*
1591 * we can have rn's that have a NULL info pointer
1592 * (dest). As such let's not let the deref happen
1593 * additionally we know RNODE_FOREACH_RE_SAFE
1594 * will not iterate so we are ok.
1595 */
1596 if (dest)
1597 old_fib = dest->selected_fib;
1598
1599 RNODE_FOREACH_RE_SAFE (rn, re, next) {
1600 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1601 zlog_debug(
1602 "%u:%s: Examine re %p (type %d) status %x flags %x "
1603 "dist %d metric %d",
1604 vrf_id, buf, re, re->type, re->status,
1605 re->flags, re->distance, re->metric);
1606
1607 UNSET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
1608
1609 /* Currently selected re. */
1610 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)) {
1611 assert(old_selected == NULL);
1612 old_selected = re;
1613 }
1614
1615 /* Skip deleted entries from selection */
1616 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
1617 continue;
1618
1619 /* Skip unreachable nexthop. */
1620 /* This first call to nexthop_active_update is merely to
1621 * determine if
1622 * there's any change to nexthops associated with this RIB
1623 * entry. Now,
1624 * rib_process() can be invoked due to an external event such as
1625 * link
1626 * down or due to next-hop-tracking evaluation. In the latter
1627 * case,
1628 * a decision has already been made that the NHs have changed.
1629 * So, no
1630 * need to invoke a potentially expensive call again. Further,
1631 * since
1632 * the change might be in a recursive NH which is not caught in
1633 * the nexthop_active_update() code. Thus, we might miss changes
1634 * to
1635 * recursive NHs.
1636 */
1637 if (!CHECK_FLAG(re->status, ROUTE_ENTRY_CHANGED)
1638 && !nexthop_active_update(rn, re, 0)) {
1639 if (re->type == ZEBRA_ROUTE_TABLE) {
1640 /* XXX: HERE BE DRAGONS!!!!!
1641 * In all honesty, I have not yet figured out
1642 * what this part
1643 * does or why the ROUTE_ENTRY_CHANGED test
1644 * above is correct
1645 * or why we need to delete a route here, and
1646 * also not whether
1647 * this concerns both selected and fib route, or
1648 * only selected
1649 * or only fib */
1650 /* This entry was denied by the 'ip protocol
1651 * table' route-map, we
1652 * need to delete it */
1653 if (re != old_selected) {
1654 if (IS_ZEBRA_DEBUG_RIB)
1655 zlog_debug(
1656 "%s: %u:%s: imported via import-table but denied "
1657 "by the ip protocol table route-map",
1658 __func__, vrf_id, buf);
1659 rib_unlink(rn, re);
1660 } else
1661 SET_FLAG(re->status,
1662 ROUTE_ENTRY_REMOVED);
1663 }
1664
1665 continue;
1666 }
1667
1668 /* Infinite distance. */
1669 if (re->distance == DISTANCE_INFINITY) {
1670 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1671 continue;
1672 }
1673
1674 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_FIB_OVERRIDE)) {
1675 best = rib_choose_best(new_fib, re);
1676 if (new_fib && best != new_fib)
1677 UNSET_FLAG(new_fib->status,
1678 ROUTE_ENTRY_CHANGED);
1679 new_fib = best;
1680 } else {
1681 best = rib_choose_best(new_selected, re);
1682 if (new_selected && best != new_selected)
1683 UNSET_FLAG(new_selected->status,
1684 ROUTE_ENTRY_CHANGED);
1685 new_selected = best;
1686 }
1687 if (best != re)
1688 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1689 } /* RNODE_FOREACH_RE */
1690
1691 /* If no FIB override route, use the selected route also for FIB */
1692 if (new_fib == NULL)
1693 new_fib = new_selected;
1694
1695 /* After the cycle is finished, the following pointers will be set:
1696 * old_selected --- RE entry currently having SELECTED
1697 * new_selected --- RE entry that is newly SELECTED
1698 * old_fib --- RE entry currently in kernel FIB
1699 * new_fib --- RE entry that is newly to be in kernel FIB
1700 *
1701 * new_selected will get SELECTED flag, and is going to be redistributed
1702 * the zclients. new_fib (which can be new_selected) will be installed
1703 * in kernel.
1704 */
1705
1706 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
1707 zlog_debug(
1708 "%u:%s: After processing: old_selected %p new_selected %p old_fib %p new_fib %p",
1709 vrf_id, buf, (void *)old_selected, (void *)new_selected,
1710 (void *)old_fib, (void *)new_fib);
1711 }
1712
1713 /* Buffer ROUTE_ENTRY_CHANGED here, because it will get cleared if
1714 * fib == selected */
1715 bool selected_changed = new_selected && CHECK_FLAG(new_selected->status,
1716 ROUTE_ENTRY_CHANGED);
1717
1718 /* Update fib according to selection results */
1719 if (new_fib && old_fib)
1720 rib_process_update_fib(zvrf, rn, old_fib, new_fib);
1721 else if (new_fib)
1722 rib_process_add_fib(zvrf, rn, new_fib);
1723 else if (old_fib)
1724 rib_process_del_fib(zvrf, rn, old_fib);
1725
1726 /* Redistribute SELECTED entry */
1727 if (old_selected != new_selected || selected_changed) {
1728 struct nexthop *nexthop = NULL;
1729
1730 /* Check if we have a FIB route for the destination, otherwise,
1731 * don't redistribute it */
1732 if (new_fib) {
1733 for (ALL_NEXTHOPS(new_fib->ng, nexthop)) {
1734 if (CHECK_FLAG(nexthop->flags,
1735 NEXTHOP_FLAG_FIB)) {
1736 break;
1737 }
1738 }
1739 }
1740 if (!nexthop)
1741 new_selected = NULL;
1742
1743 if (new_selected && new_selected != new_fib) {
1744 nexthop_active_update(rn, new_selected, 1);
1745 UNSET_FLAG(new_selected->status, ROUTE_ENTRY_CHANGED);
1746 }
1747
1748 if (old_selected) {
1749 if (!new_selected)
1750 redistribute_delete(p, src_p, old_selected);
1751 if (old_selected != new_selected)
1752 UNSET_FLAG(old_selected->flags,
1753 ZEBRA_FLAG_SELECTED);
1754 }
1755
1756 if (new_selected) {
1757 /* Install new or replace existing redistributed entry
1758 */
1759 SET_FLAG(new_selected->flags, ZEBRA_FLAG_SELECTED);
1760 redistribute_update(p, src_p, new_selected,
1761 old_selected);
1762 }
1763 }
1764
1765 /* Remove all RE entries queued for removal */
1766 RNODE_FOREACH_RE_SAFE (rn, re, next) {
1767 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
1768 if (IS_ZEBRA_DEBUG_RIB) {
1769 rnode_debug(rn, vrf_id, "rn %p, removing re %p",
1770 (void *)rn, (void *)re);
1771 }
1772 rib_unlink(rn, re);
1773 }
1774 }
1775
1776 /*
1777 * Check if the dest can be deleted now.
1778 */
1779 rib_gc_dest(rn);
1780 }
1781
1782 /* Take a list of route_node structs and return 1, if there was a record
1783 * picked from it and processed by rib_process(). Don't process more,
1784 * than one RN record; operate only in the specified sub-queue.
1785 */
1786 static unsigned int process_subq(struct list *subq, uint8_t qindex)
1787 {
1788 struct listnode *lnode = listhead(subq);
1789 struct route_node *rnode;
1790 rib_dest_t *dest;
1791 struct zebra_vrf *zvrf = NULL;
1792
1793 if (!lnode)
1794 return 0;
1795
1796 rnode = listgetdata(lnode);
1797 dest = rib_dest_from_rnode(rnode);
1798 if (dest)
1799 zvrf = rib_dest_vrf(dest);
1800
1801 rib_process(rnode);
1802
1803 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
1804 char buf[SRCDEST2STR_BUFFER];
1805 srcdest_rnode2str(rnode, buf, sizeof(buf));
1806 zlog_debug("%u:%s: rn %p dequeued from sub-queue %u",
1807 zvrf ? zvrf_id(zvrf) : 0, buf, rnode, qindex);
1808 }
1809
1810 if (rnode->info)
1811 UNSET_FLAG(rib_dest_from_rnode(rnode)->flags,
1812 RIB_ROUTE_QUEUED(qindex));
1813
1814 #if 0
1815 else
1816 {
1817 zlog_debug ("%s: called for route_node (%p, %d) with no ribs",
1818 __func__, rnode, rnode->lock);
1819 zlog_backtrace(LOG_DEBUG);
1820 }
1821 #endif
1822 route_unlock_node(rnode);
1823 list_delete_node(subq, lnode);
1824 return 1;
1825 }
1826
1827 /*
1828 * All meta queues have been processed. Trigger next-hop evaluation.
1829 */
1830 static void meta_queue_process_complete(struct work_queue *dummy)
1831 {
1832 struct vrf *vrf;
1833 struct zebra_vrf *zvrf;
1834
1835 /* Evaluate nexthops for those VRFs which underwent route processing.
1836 * This
1837 * should limit the evaluation to the necessary VRFs in most common
1838 * situations.
1839 */
1840 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id) {
1841 zvrf = vrf->info;
1842 if (zvrf == NULL || !(zvrf->flags & ZEBRA_VRF_RIB_SCHEDULED))
1843 continue;
1844
1845 zvrf->flags &= ~ZEBRA_VRF_RIB_SCHEDULED;
1846 zebra_evaluate_rnh(zvrf_id(zvrf), AF_INET, 0, RNH_NEXTHOP_TYPE,
1847 NULL);
1848 zebra_evaluate_rnh(zvrf_id(zvrf), AF_INET, 0,
1849 RNH_IMPORT_CHECK_TYPE, NULL);
1850 zebra_evaluate_rnh(zvrf_id(zvrf), AF_INET6, 0, RNH_NEXTHOP_TYPE,
1851 NULL);
1852 zebra_evaluate_rnh(zvrf_id(zvrf), AF_INET6, 0,
1853 RNH_IMPORT_CHECK_TYPE, NULL);
1854 }
1855
1856 /* Schedule LSPs for processing, if needed. */
1857 zvrf = vrf_info_lookup(VRF_DEFAULT);
1858 if (mpls_should_lsps_be_processed(zvrf)) {
1859 if (IS_ZEBRA_DEBUG_MPLS)
1860 zlog_debug(
1861 "%u: Scheduling all LSPs upon RIB completion",
1862 zvrf_id(zvrf));
1863 zebra_mpls_lsp_schedule(zvrf);
1864 mpls_unmark_lsps_for_processing(zvrf);
1865 }
1866 }
1867
1868 /* Dispatch the meta queue by picking, processing and unlocking the next RN from
1869 * a non-empty sub-queue with lowest priority. wq is equal to zebra->ribq and
1870 * data
1871 * is pointed to the meta queue structure.
1872 */
1873 static wq_item_status meta_queue_process(struct work_queue *dummy, void *data)
1874 {
1875 struct meta_queue *mq = data;
1876 unsigned i;
1877
1878 for (i = 0; i < MQ_SIZE; i++)
1879 if (process_subq(mq->subq[i], i)) {
1880 mq->size--;
1881 break;
1882 }
1883 return mq->size ? WQ_REQUEUE : WQ_SUCCESS;
1884 }
1885
1886 /*
1887 * Map from rib types to queue type (priority) in meta queue
1888 */
1889 static const uint8_t meta_queue_map[ZEBRA_ROUTE_MAX] = {
1890 [ZEBRA_ROUTE_SYSTEM] = 4,
1891 [ZEBRA_ROUTE_KERNEL] = 0,
1892 [ZEBRA_ROUTE_CONNECT] = 0,
1893 [ZEBRA_ROUTE_STATIC] = 1,
1894 [ZEBRA_ROUTE_RIP] = 2,
1895 [ZEBRA_ROUTE_RIPNG] = 2,
1896 [ZEBRA_ROUTE_OSPF] = 2,
1897 [ZEBRA_ROUTE_OSPF6] = 2,
1898 [ZEBRA_ROUTE_ISIS] = 2,
1899 [ZEBRA_ROUTE_BGP] = 3,
1900 [ZEBRA_ROUTE_PIM] = 4, // Shouldn't happen but for safety
1901 [ZEBRA_ROUTE_EIGRP] = 2,
1902 [ZEBRA_ROUTE_NHRP] = 2,
1903 [ZEBRA_ROUTE_HSLS] = 4,
1904 [ZEBRA_ROUTE_OLSR] = 4,
1905 [ZEBRA_ROUTE_TABLE] = 1,
1906 [ZEBRA_ROUTE_LDP] = 4,
1907 [ZEBRA_ROUTE_VNC] = 3,
1908 [ZEBRA_ROUTE_VNC_DIRECT] = 3,
1909 [ZEBRA_ROUTE_VNC_DIRECT_RH] = 3,
1910 [ZEBRA_ROUTE_BGP_DIRECT] = 3,
1911 [ZEBRA_ROUTE_BGP_DIRECT_EXT] = 3,
1912 [ZEBRA_ROUTE_BABEL] = 2,
1913 [ZEBRA_ROUTE_ALL] = 4, // Shouldn't happen but for safety
1914 };
1915
1916 /* Look into the RN and queue it into one or more priority queues,
1917 * increasing the size for each data push done.
1918 */
1919 static void rib_meta_queue_add(struct meta_queue *mq, struct route_node *rn)
1920 {
1921 struct route_entry *re;
1922
1923 RNODE_FOREACH_RE (rn, re) {
1924 uint8_t qindex = meta_queue_map[re->type];
1925 struct zebra_vrf *zvrf;
1926
1927 /* Invariant: at this point we always have rn->info set. */
1928 if (CHECK_FLAG(rib_dest_from_rnode(rn)->flags,
1929 RIB_ROUTE_QUEUED(qindex))) {
1930 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1931 rnode_debug(
1932 rn, re->vrf_id,
1933 "rn %p is already queued in sub-queue %u",
1934 (void *)rn, qindex);
1935 continue;
1936 }
1937
1938 SET_FLAG(rib_dest_from_rnode(rn)->flags,
1939 RIB_ROUTE_QUEUED(qindex));
1940 listnode_add(mq->subq[qindex], rn);
1941 route_lock_node(rn);
1942 mq->size++;
1943
1944 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1945 rnode_debug(rn, re->vrf_id,
1946 "queued rn %p into sub-queue %u",
1947 (void *)rn, qindex);
1948
1949 zvrf = zebra_vrf_lookup_by_id(re->vrf_id);
1950 if (zvrf)
1951 zvrf->flags |= ZEBRA_VRF_RIB_SCHEDULED;
1952 }
1953 }
1954
1955 /* Add route_node to work queue and schedule processing */
1956 void rib_queue_add(struct route_node *rn)
1957 {
1958 assert(rn);
1959
1960 /* Pointless to queue a route_node with no RIB entries to add or remove
1961 */
1962 if (!rnode_to_ribs(rn)) {
1963 zlog_debug("%s: called for route_node (%p, %d) with no ribs",
1964 __func__, (void *)rn, rn->lock);
1965 zlog_backtrace(LOG_DEBUG);
1966 return;
1967 }
1968
1969 if (zebrad.ribq == NULL) {
1970 flog_err(ZEBRA_ERR_WQ_NONEXISTENT,
1971 "%s: work_queue does not exist!", __func__);
1972 return;
1973 }
1974
1975 /*
1976 * The RIB queue should normally be either empty or holding the only
1977 * work_queue_item element. In the latter case this element would
1978 * hold a pointer to the meta queue structure, which must be used to
1979 * actually queue the route nodes to process. So create the MQ
1980 * holder, if necessary, then push the work into it in any case.
1981 * This semantics was introduced after 0.99.9 release.
1982 */
1983 if (work_queue_empty(zebrad.ribq))
1984 work_queue_add(zebrad.ribq, zebrad.mq);
1985
1986 rib_meta_queue_add(zebrad.mq, rn);
1987
1988 return;
1989 }
1990
1991 /* Create new meta queue.
1992 A destructor function doesn't seem to be necessary here.
1993 */
1994 static struct meta_queue *meta_queue_new(void)
1995 {
1996 struct meta_queue *new;
1997 unsigned i;
1998
1999 new = XCALLOC(MTYPE_WORK_QUEUE, sizeof(struct meta_queue));
2000
2001 for (i = 0; i < MQ_SIZE; i++) {
2002 new->subq[i] = list_new();
2003 assert(new->subq[i]);
2004 }
2005
2006 return new;
2007 }
2008
2009 void meta_queue_free(struct meta_queue *mq)
2010 {
2011 unsigned i;
2012
2013 for (i = 0; i < MQ_SIZE; i++)
2014 list_delete_and_null(&mq->subq[i]);
2015
2016 XFREE(MTYPE_WORK_QUEUE, mq);
2017 }
2018
2019 /* initialise zebra rib work queue */
2020 static void rib_queue_init(struct zebra_t *zebra)
2021 {
2022 assert(zebra);
2023
2024 if (!(zebra->ribq =
2025 work_queue_new(zebra->master, "route_node processing"))) {
2026 flog_err(ZEBRA_ERR_WQ_NONEXISTENT,
2027 "%s: could not initialise work queue!", __func__);
2028 return;
2029 }
2030
2031 /* fill in the work queue spec */
2032 zebra->ribq->spec.workfunc = &meta_queue_process;
2033 zebra->ribq->spec.errorfunc = NULL;
2034 zebra->ribq->spec.completion_func = &meta_queue_process_complete;
2035 /* XXX: TODO: These should be runtime configurable via vty */
2036 zebra->ribq->spec.max_retries = 3;
2037 zebra->ribq->spec.hold = ZEBRA_RIB_PROCESS_HOLD_TIME;
2038
2039 if (!(zebra->mq = meta_queue_new())) {
2040 flog_err(ZEBRA_ERR_WQ_NONEXISTENT,
2041 "%s: could not initialise meta queue!", __func__);
2042 return;
2043 }
2044 return;
2045 }
2046
2047 /* RIB updates are processed via a queue of pointers to route_nodes.
2048 *
2049 * The queue length is bounded by the maximal size of the routing table,
2050 * as a route_node will not be requeued, if already queued.
2051 *
2052 * REs are submitted via rib_addnode or rib_delnode which set minimal
2053 * state, or static_install_route (when an existing RE is updated)
2054 * and then submit route_node to queue for best-path selection later.
2055 * Order of add/delete state changes are preserved for any given RE.
2056 *
2057 * Deleted REs are reaped during best-path selection.
2058 *
2059 * rib_addnode
2060 * |-> rib_link or unset ROUTE_ENTRY_REMOVE |->Update kernel with
2061 * |-------->| | best RE, if required
2062 * | |
2063 * static_install->|->rib_addqueue...... -> rib_process
2064 * | |
2065 * |-------->| |-> rib_unlink
2066 * |-> set ROUTE_ENTRY_REMOVE |
2067 * rib_delnode (RE freed)
2068 *
2069 * The 'info' pointer of a route_node points to a rib_dest_t
2070 * ('dest'). Queueing state for a route_node is kept on the dest. The
2071 * dest is created on-demand by rib_link() and is kept around at least
2072 * as long as there are ribs hanging off it (@see rib_gc_dest()).
2073 *
2074 * Refcounting (aka "locking" throughout the GNU Zebra and Quagga code):
2075 *
2076 * - route_nodes: refcounted by:
2077 * - dest attached to route_node:
2078 * - managed by: rib_link/rib_gc_dest
2079 * - route_node processing queue
2080 * - managed by: rib_addqueue, rib_process.
2081 *
2082 */
2083
2084 /* Add RE to head of the route node. */
2085 static void rib_link(struct route_node *rn, struct route_entry *re, int process)
2086 {
2087 struct route_entry *head;
2088 rib_dest_t *dest;
2089 afi_t afi;
2090 const char *rmap_name;
2091
2092 assert(re && rn);
2093
2094 dest = rib_dest_from_rnode(rn);
2095 if (!dest) {
2096 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2097 rnode_debug(rn, re->vrf_id, "rn %p adding dest", rn);
2098
2099 dest = XCALLOC(MTYPE_RIB_DEST, sizeof(rib_dest_t));
2100 route_lock_node(rn); /* rn route table reference */
2101 rn->info = dest;
2102 dest->rnode = rn;
2103 }
2104
2105 head = dest->routes;
2106 if (head) {
2107 head->prev = re;
2108 }
2109 re->next = head;
2110 dest->routes = re;
2111
2112 afi = (rn->p.family == AF_INET)
2113 ? AFI_IP
2114 : (rn->p.family == AF_INET6) ? AFI_IP6 : AFI_MAX;
2115 if (is_zebra_import_table_enabled(afi, re->table)) {
2116 rmap_name = zebra_get_import_table_route_map(afi, re->table);
2117 zebra_add_import_table_entry(rn, re, rmap_name);
2118 } else if (process)
2119 rib_queue_add(rn);
2120 }
2121
2122 static void rib_addnode(struct route_node *rn,
2123 struct route_entry *re, int process)
2124 {
2125 /* RE node has been un-removed before route-node is processed.
2126 * route_node must hence already be on the queue for processing..
2127 */
2128 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
2129 if (IS_ZEBRA_DEBUG_RIB)
2130 rnode_debug(rn, re->vrf_id, "rn %p, un-removed re %p",
2131 (void *)rn, (void *)re);
2132
2133 UNSET_FLAG(re->status, ROUTE_ENTRY_REMOVED);
2134 return;
2135 }
2136 rib_link(rn, re, process);
2137 }
2138
2139 /*
2140 * rib_unlink
2141 *
2142 * Detach a rib structure from a route_node.
2143 *
2144 * Note that a call to rib_unlink() should be followed by a call to
2145 * rib_gc_dest() at some point. This allows a rib_dest_t that is no
2146 * longer required to be deleted.
2147 */
2148 void rib_unlink(struct route_node *rn, struct route_entry *re)
2149 {
2150 rib_dest_t *dest;
2151
2152 assert(rn && re);
2153
2154 if (IS_ZEBRA_DEBUG_RIB)
2155 rnode_debug(rn, re->vrf_id, "rn %p, re %p", (void *)rn,
2156 (void *)re);
2157
2158 dest = rib_dest_from_rnode(rn);
2159
2160 if (re->next)
2161 re->next->prev = re->prev;
2162
2163 if (re->prev)
2164 re->prev->next = re->next;
2165 else {
2166 dest->routes = re->next;
2167 }
2168
2169 if (dest->selected_fib == re)
2170 dest->selected_fib = NULL;
2171
2172 nexthops_free(re->ng.nexthop);
2173 XFREE(MTYPE_RE, re);
2174 }
2175
2176 void rib_delnode(struct route_node *rn, struct route_entry *re)
2177 {
2178 afi_t afi;
2179
2180 if (IS_ZEBRA_DEBUG_RIB)
2181 rnode_debug(rn, re->vrf_id, "rn %p, re %p, removing",
2182 (void *)rn, (void *)re);
2183 SET_FLAG(re->status, ROUTE_ENTRY_REMOVED);
2184
2185 afi = (rn->p.family == AF_INET)
2186 ? AFI_IP
2187 : (rn->p.family == AF_INET6) ? AFI_IP6 : AFI_MAX;
2188 if (is_zebra_import_table_enabled(afi, re->table)) {
2189 zebra_del_import_table_entry(rn, re);
2190 /* Just clean up if non main table */
2191 if (IS_ZEBRA_DEBUG_RIB) {
2192 char buf[SRCDEST2STR_BUFFER];
2193 srcdest_rnode2str(rn, buf, sizeof(buf));
2194 zlog_debug(
2195 "%u:%s: Freeing route rn %p, re %p (type %d)",
2196 re->vrf_id, buf, rn, re, re->type);
2197 }
2198
2199 rib_unlink(rn, re);
2200 } else {
2201 rib_queue_add(rn);
2202 }
2203 }
2204
2205 /* This function dumps the contents of a given RE entry into
2206 * standard debug log. Calling function name and IP prefix in
2207 * question are passed as 1st and 2nd arguments.
2208 */
2209
2210 void _route_entry_dump(const char *func, union prefixconstptr pp,
2211 union prefixconstptr src_pp,
2212 const struct route_entry *re)
2213 {
2214 const struct prefix *src_p = src_pp.p;
2215 bool is_srcdst = src_p && src_p->prefixlen;
2216 char straddr[PREFIX_STRLEN];
2217 char srcaddr[PREFIX_STRLEN];
2218 struct nexthop *nexthop;
2219
2220 zlog_debug("%s: dumping RE entry %p for %s%s%s vrf %u", func,
2221 (const void *)re, prefix2str(pp, straddr, sizeof(straddr)),
2222 is_srcdst ? " from " : "",
2223 is_srcdst ? prefix2str(src_pp, srcaddr, sizeof(srcaddr))
2224 : "",
2225 re->vrf_id);
2226 zlog_debug("%s: uptime == %lu, type == %u, instance == %d, table == %d",
2227 func, (unsigned long)re->uptime, re->type, re->instance,
2228 re->table);
2229 zlog_debug(
2230 "%s: metric == %u, mtu == %u, distance == %u, flags == %u, status == %u",
2231 func, re->metric, re->mtu, re->distance, re->flags, re->status);
2232 zlog_debug("%s: nexthop_num == %u, nexthop_active_num == %u", func,
2233 re->nexthop_num, re->nexthop_active_num);
2234
2235 for (ALL_NEXTHOPS(re->ng, nexthop)) {
2236 struct interface *ifp;
2237 struct vrf *vrf = vrf_lookup_by_id(nexthop->vrf_id);
2238
2239 switch (nexthop->type) {
2240 case NEXTHOP_TYPE_BLACKHOLE:
2241 sprintf(straddr, "Blackhole");
2242 break;
2243 case NEXTHOP_TYPE_IFINDEX:
2244 ifp = if_lookup_by_index(nexthop->ifindex,
2245 nexthop->vrf_id);
2246 sprintf(straddr, "%s", ifp ? ifp->name : "Unknown");
2247 break;
2248 case NEXTHOP_TYPE_IPV4:
2249 /* fallthrough */
2250 case NEXTHOP_TYPE_IPV4_IFINDEX:
2251 inet_ntop(AF_INET, &nexthop->gate, straddr,
2252 INET6_ADDRSTRLEN);
2253 break;
2254 case NEXTHOP_TYPE_IPV6:
2255 case NEXTHOP_TYPE_IPV6_IFINDEX:
2256 inet_ntop(AF_INET6, &nexthop->gate, straddr,
2257 INET6_ADDRSTRLEN);
2258 break;
2259 }
2260 zlog_debug("%s: %s %s[%u] vrf %s(%u) with flags %s%s%s", func,
2261 (nexthop->rparent ? " NH" : "NH"), straddr,
2262 nexthop->ifindex, vrf ? vrf->name : "Unknown",
2263 nexthop->vrf_id,
2264 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE)
2265 ? "ACTIVE "
2266 : ""),
2267 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB)
2268 ? "FIB "
2269 : ""),
2270 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE)
2271 ? "RECURSIVE"
2272 : ""));
2273 }
2274 zlog_debug("%s: dump complete", func);
2275 }
2276
2277 /* This is an exported helper to rtm_read() to dump the strange
2278 * RE entry found by rib_lookup_ipv4_route()
2279 */
2280
2281 void rib_lookup_and_dump(struct prefix_ipv4 *p, vrf_id_t vrf_id)
2282 {
2283 struct route_table *table;
2284 struct route_node *rn;
2285 struct route_entry *re;
2286 char prefix_buf[INET_ADDRSTRLEN];
2287
2288 /* Lookup table. */
2289 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
2290 if (!table) {
2291 flog_err(ZEBRA_ERR_TABLE_LOOKUP_FAILED,
2292 "%s:%u zebra_vrf_table() returned NULL", __func__,
2293 vrf_id);
2294 return;
2295 }
2296
2297 /* Scan the RIB table for exactly matching RE entry. */
2298 rn = route_node_lookup(table, (struct prefix *)p);
2299
2300 /* No route for this prefix. */
2301 if (!rn) {
2302 zlog_debug("%s:%u lookup failed for %s", __func__, vrf_id,
2303 prefix2str((struct prefix *)p, prefix_buf,
2304 sizeof(prefix_buf)));
2305 return;
2306 }
2307
2308 /* Unlock node. */
2309 route_unlock_node(rn);
2310
2311 /* let's go */
2312 RNODE_FOREACH_RE (rn, re) {
2313 zlog_debug("%s:%u rn %p, re %p: %s, %s",
2314 __func__, vrf_id,
2315 (void *)rn, (void *)re,
2316 (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)
2317 ? "removed"
2318 : "NOT removed"),
2319 (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)
2320 ? "selected"
2321 : "NOT selected"));
2322 route_entry_dump(p, NULL, re);
2323 }
2324 }
2325
2326 /* Check if requested address assignment will fail due to another
2327 * route being installed by zebra in FIB already. Take necessary
2328 * actions, if needed: remove such a route from FIB and deSELECT
2329 * corresponding RE entry. Then put affected RN into RIBQ head.
2330 */
2331 void rib_lookup_and_pushup(struct prefix_ipv4 *p, vrf_id_t vrf_id)
2332 {
2333 struct route_table *table;
2334 struct route_node *rn;
2335 unsigned changed = 0;
2336 rib_dest_t *dest;
2337
2338 if (NULL == (table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id))) {
2339 flog_err(ZEBRA_ERR_TABLE_LOOKUP_FAILED,
2340 "%s:%u zebra_vrf_table() returned NULL", __func__,
2341 vrf_id);
2342 return;
2343 }
2344
2345 /* No matches would be the simplest case. */
2346 if (NULL == (rn = route_node_lookup(table, (struct prefix *)p)))
2347 return;
2348
2349 /* Unlock node. */
2350 route_unlock_node(rn);
2351
2352 dest = rib_dest_from_rnode(rn);
2353 /* Check all RE entries. In case any changes have to be done, requeue
2354 * the RN into RIBQ head. If the routing message about the new connected
2355 * route (generated by the IP address we are going to assign very soon)
2356 * comes before the RIBQ is processed, the new RE entry will join
2357 * RIBQ record already on head. This is necessary for proper
2358 * revalidation
2359 * of the rest of the RE.
2360 */
2361 if (dest->selected_fib && !RIB_SYSTEM_ROUTE(dest->selected_fib)) {
2362 changed = 1;
2363 if (IS_ZEBRA_DEBUG_RIB) {
2364 char buf[PREFIX_STRLEN];
2365
2366 zlog_debug("%u:%s: freeing way for connected prefix",
2367 dest->selected_fib->vrf_id,
2368 prefix2str(&rn->p, buf, sizeof(buf)));
2369 route_entry_dump(&rn->p, NULL, dest->selected_fib);
2370 }
2371 rib_uninstall(rn, dest->selected_fib);
2372 }
2373 if (changed)
2374 rib_queue_add(rn);
2375 }
2376
2377 int rib_add_multipath(afi_t afi, safi_t safi, struct prefix *p,
2378 struct prefix_ipv6 *src_p, struct route_entry *re)
2379 {
2380 struct route_table *table;
2381 struct route_node *rn;
2382 struct route_entry *same = NULL;
2383 struct nexthop *nexthop;
2384 int ret = 0;
2385
2386 if (!re)
2387 return 0;
2388
2389 assert(!src_p || !src_p->prefixlen || afi == AFI_IP6);
2390
2391 /* Lookup table. */
2392 table = zebra_vrf_table_with_table_id(afi, safi, re->vrf_id, re->table);
2393 if (!table) {
2394 XFREE(MTYPE_RE, re);
2395 return 0;
2396 }
2397
2398 /* Make it sure prefixlen is applied to the prefix. */
2399 apply_mask(p);
2400 if (src_p)
2401 apply_mask_ipv6(src_p);
2402
2403 /* Set default distance by route type. */
2404 if (re->distance == 0) {
2405 re->distance = route_distance(re->type);
2406
2407 /* iBGP distance is 200. */
2408 if (re->type == ZEBRA_ROUTE_BGP
2409 && CHECK_FLAG(re->flags, ZEBRA_FLAG_IBGP))
2410 re->distance = 200;
2411 }
2412
2413 /* Lookup route node.*/
2414 rn = srcdest_rnode_get(table, p, src_p);
2415
2416 /*
2417 * If same type of route are installed, treat it as a implicit
2418 * withdraw.
2419 * If the user has specified the No route replace semantics
2420 * for the install don't do a route replace.
2421 */
2422 RNODE_FOREACH_RE (rn, same) {
2423 if (CHECK_FLAG(same->status, ROUTE_ENTRY_REMOVED))
2424 continue;
2425
2426 if (same->type != re->type)
2427 continue;
2428 if (same->instance != re->instance)
2429 continue;
2430 if (same->type == ZEBRA_ROUTE_KERNEL
2431 && same->metric != re->metric)
2432 continue;
2433
2434 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_RR_USE_DISTANCE) &&
2435 same->distance != re->distance)
2436 continue;
2437
2438 /*
2439 * We should allow duplicate connected routes
2440 * because of IPv6 link-local routes and unnumbered
2441 * interfaces on Linux.
2442 */
2443 if (same->type != ZEBRA_ROUTE_CONNECT)
2444 break;
2445 }
2446
2447 /* If this route is kernel route, set FIB flag to the route. */
2448 if (RIB_SYSTEM_ROUTE(re))
2449 for (nexthop = re->ng.nexthop; nexthop; nexthop = nexthop->next)
2450 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
2451
2452 /* Link new re to node.*/
2453 if (IS_ZEBRA_DEBUG_RIB) {
2454 rnode_debug(
2455 rn, re->vrf_id,
2456 "Inserting route rn %p, re %p (type %d) existing %p",
2457 (void *)rn, (void *)re, re->type, (void *)same);
2458
2459 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2460 route_entry_dump(p, src_p, re);
2461 }
2462 rib_addnode(rn, re, 1);
2463 ret = 1;
2464
2465 /* Free implicit route.*/
2466 if (same) {
2467 rib_delnode(rn, same);
2468 ret = -1;
2469 }
2470
2471 route_unlock_node(rn);
2472 return ret;
2473 }
2474
2475 void rib_delete(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type,
2476 unsigned short instance, int flags, struct prefix *p,
2477 struct prefix_ipv6 *src_p, const struct nexthop *nh,
2478 uint32_t table_id, uint32_t metric, uint8_t distance,
2479 bool fromkernel)
2480 {
2481 struct route_table *table;
2482 struct route_node *rn;
2483 struct route_entry *re;
2484 struct route_entry *fib = NULL;
2485 struct route_entry *same = NULL;
2486 struct nexthop *rtnh;
2487 char buf2[INET6_ADDRSTRLEN];
2488 rib_dest_t *dest;
2489
2490 assert(!src_p || !src_p->prefixlen || afi == AFI_IP6);
2491
2492 /* Lookup table. */
2493 table = zebra_vrf_table_with_table_id(afi, safi, vrf_id, table_id);
2494 if (!table)
2495 return;
2496
2497 /* Apply mask. */
2498 apply_mask(p);
2499 if (src_p)
2500 apply_mask_ipv6(src_p);
2501
2502 /* Lookup route node. */
2503 rn = srcdest_rnode_lookup(table, p, src_p);
2504 if (!rn) {
2505 char dst_buf[PREFIX_STRLEN], src_buf[PREFIX_STRLEN];
2506
2507 prefix2str(p, dst_buf, sizeof(dst_buf));
2508 if (src_p && src_p->prefixlen)
2509 prefix2str(src_p, src_buf, sizeof(src_buf));
2510 else
2511 src_buf[0] = '\0';
2512
2513 if (IS_ZEBRA_DEBUG_RIB)
2514 zlog_debug("%u:%s%s%s doesn't exist in rib", vrf_id,
2515 dst_buf,
2516 (src_buf[0] != '\0') ? " from " : "",
2517 src_buf);
2518 return;
2519 }
2520
2521 dest = rib_dest_from_rnode(rn);
2522 fib = dest->selected_fib;
2523
2524 /* Lookup same type route. */
2525 RNODE_FOREACH_RE (rn, re) {
2526 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
2527 continue;
2528
2529 if (re->type != type)
2530 continue;
2531 if (re->instance != instance)
2532 continue;
2533 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_RR_USE_DISTANCE) &&
2534 distance != re->distance)
2535 continue;
2536
2537 if (re->type == ZEBRA_ROUTE_KERNEL && re->metric != metric)
2538 continue;
2539 if (re->type == ZEBRA_ROUTE_CONNECT && (rtnh = re->ng.nexthop)
2540 && rtnh->type == NEXTHOP_TYPE_IFINDEX && nh) {
2541 if (rtnh->ifindex != nh->ifindex)
2542 continue;
2543 same = re;
2544 break;
2545 }
2546 /* Make sure that the route found has the same gateway. */
2547 else {
2548 if (nh == NULL) {
2549 same = re;
2550 break;
2551 }
2552 for (ALL_NEXTHOPS(re->ng, rtnh))
2553 if (nexthop_same_no_recurse(rtnh, nh)) {
2554 same = re;
2555 break;
2556 }
2557 if (same)
2558 break;
2559 }
2560 }
2561 /* If same type of route can't be found and this message is from
2562 kernel. */
2563 if (!same) {
2564 /*
2565 * In the past(HA!) we could get here because
2566 * we were receiving a route delete from the
2567 * kernel and we're not marking the proto
2568 * as coming from it's appropriate originator.
2569 * Now that we are properly noticing the fact
2570 * that the kernel has deleted our route we
2571 * are not going to get called in this path
2572 * I am going to leave this here because
2573 * this might still work this way on non-linux
2574 * platforms as well as some weird state I have
2575 * not properly thought of yet.
2576 * If we can show that this code path is
2577 * dead then we can remove it.
2578 */
2579 if (fib && CHECK_FLAG(flags, ZEBRA_FLAG_SELFROUTE)) {
2580 if (IS_ZEBRA_DEBUG_RIB) {
2581 rnode_debug(
2582 rn, vrf_id,
2583 "rn %p, re %p (type %d) was deleted from kernel, adding",
2584 rn, fib, fib->type);
2585 }
2586 if (allow_delete) {
2587 /* Unset flags. */
2588 for (rtnh = fib->ng.nexthop; rtnh;
2589 rtnh = rtnh->next)
2590 UNSET_FLAG(rtnh->flags,
2591 NEXTHOP_FLAG_FIB);
2592
2593 /*
2594 * This is a non FRR route
2595 * as such we should mark
2596 * it as deleted
2597 */
2598 dest->selected_fib = NULL;
2599 } else {
2600 /* This means someone else, other than Zebra,
2601 * has deleted
2602 * a Zebra router from the kernel. We will add
2603 * it back */
2604 rib_install_kernel(rn, fib, NULL);
2605 }
2606 } else {
2607 if (IS_ZEBRA_DEBUG_RIB) {
2608 if (nh)
2609 rnode_debug(
2610 rn, vrf_id,
2611 "via %s ifindex %d type %d "
2612 "doesn't exist in rib",
2613 inet_ntop(afi2family(afi),
2614 &nh->gate, buf2,
2615 sizeof(buf2)),
2616 nh->ifindex, type);
2617 else
2618 rnode_debug(
2619 rn, vrf_id,
2620 "type %d doesn't exist in rib",
2621 type);
2622 }
2623 route_unlock_node(rn);
2624 return;
2625 }
2626 }
2627
2628 if (same) {
2629 if (fromkernel && CHECK_FLAG(flags, ZEBRA_FLAG_SELFROUTE)
2630 && !allow_delete) {
2631 rib_install_kernel(rn, same, NULL);
2632 route_unlock_node(rn);
2633
2634 return;
2635 }
2636
2637 if (CHECK_FLAG(flags, ZEBRA_FLAG_EVPN_ROUTE)) {
2638 struct nexthop *tmp_nh;
2639
2640 for (ALL_NEXTHOPS(re->ng, tmp_nh)) {
2641 struct ipaddr vtep_ip;
2642
2643 memset(&vtep_ip, 0, sizeof(struct ipaddr));
2644 if (afi == AFI_IP) {
2645 vtep_ip.ipa_type = IPADDR_V4;
2646 memcpy(&(vtep_ip.ipaddr_v4),
2647 &(tmp_nh->gate.ipv4),
2648 sizeof(struct in_addr));
2649 } else {
2650 vtep_ip.ipa_type = IPADDR_V6;
2651 memcpy(&(vtep_ip.ipaddr_v6),
2652 &(tmp_nh->gate.ipv6),
2653 sizeof(struct in6_addr));
2654 }
2655 zebra_vxlan_evpn_vrf_route_del(re->vrf_id,
2656 &vtep_ip, p);
2657 }
2658 }
2659 rib_delnode(rn, same);
2660 }
2661
2662 route_unlock_node(rn);
2663 return;
2664 }
2665
2666
2667 int rib_add(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type,
2668 unsigned short instance, int flags, struct prefix *p,
2669 struct prefix_ipv6 *src_p, const struct nexthop *nh,
2670 uint32_t table_id, uint32_t metric, uint32_t mtu, uint8_t distance,
2671 route_tag_t tag)
2672 {
2673 struct route_entry *re;
2674 struct nexthop *nexthop;
2675
2676 /* Allocate new route_entry structure. */
2677 re = XCALLOC(MTYPE_RE, sizeof(struct route_entry));
2678 re->type = type;
2679 re->instance = instance;
2680 re->distance = distance;
2681 re->flags = flags;
2682 re->metric = metric;
2683 re->mtu = mtu;
2684 re->table = table_id;
2685 re->vrf_id = vrf_id;
2686 re->nexthop_num = 0;
2687 re->uptime = time(NULL);
2688 re->tag = tag;
2689
2690 /* Add nexthop. */
2691 nexthop = nexthop_new();
2692 *nexthop = *nh;
2693 route_entry_nexthop_add(re, nexthop);
2694
2695 return rib_add_multipath(afi, safi, p, src_p, re);
2696 }
2697
2698 /* Schedule routes of a particular table (address-family) based on event. */
2699 void rib_update_table(struct route_table *table, rib_update_event_t event)
2700 {
2701 struct route_node *rn;
2702 struct route_entry *re, *next;
2703
2704 /* Walk all routes and queue for processing, if appropriate for
2705 * the trigger event.
2706 */
2707 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
2708 /*
2709 * If we are looking at a route node and the node
2710 * has already been queued we don't
2711 * need to queue it up again
2712 */
2713 if (rn->info && CHECK_FLAG(rib_dest_from_rnode(rn)->flags,
2714 RIB_ROUTE_ANY_QUEUED))
2715 continue;
2716 switch (event) {
2717 case RIB_UPDATE_IF_CHANGE:
2718 /* Examine all routes that won't get processed by the
2719 * protocol or
2720 * triggered by nexthop evaluation (NHT). This would be
2721 * system,
2722 * kernel and certain static routes. Note that NHT will
2723 * get
2724 * triggered upon an interface event as connected routes
2725 * always
2726 * get queued for processing.
2727 */
2728 RNODE_FOREACH_RE_SAFE (rn, re, next) {
2729 struct nexthop *nh;
2730
2731 if (re->type != ZEBRA_ROUTE_SYSTEM
2732 && re->type != ZEBRA_ROUTE_KERNEL
2733 && re->type != ZEBRA_ROUTE_CONNECT
2734 && re->type != ZEBRA_ROUTE_STATIC)
2735 continue;
2736
2737 if (re->type != ZEBRA_ROUTE_STATIC) {
2738 rib_queue_add(rn);
2739 continue;
2740 }
2741
2742 for (nh = re->ng.nexthop; nh; nh = nh->next)
2743 if (!(nh->type == NEXTHOP_TYPE_IPV4
2744 || nh->type == NEXTHOP_TYPE_IPV6))
2745 break;
2746
2747 /* If we only have nexthops to a
2748 * gateway, NHT will
2749 * take care.
2750 */
2751 if (nh)
2752 rib_queue_add(rn);
2753 }
2754 break;
2755
2756 case RIB_UPDATE_RMAP_CHANGE:
2757 case RIB_UPDATE_OTHER:
2758 /* Right now, examine all routes. Can restrict to a
2759 * protocol in
2760 * some cases (TODO).
2761 */
2762 if (rnode_to_ribs(rn))
2763 rib_queue_add(rn);
2764 break;
2765
2766 default:
2767 break;
2768 }
2769 }
2770 }
2771
2772 /* RIB update function. */
2773 void rib_update(vrf_id_t vrf_id, rib_update_event_t event)
2774 {
2775 struct route_table *table;
2776
2777 /* Process routes of interested address-families. */
2778 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
2779 if (table) {
2780 if (IS_ZEBRA_DEBUG_EVENT)
2781 zlog_debug("%s : AFI_IP event %d", __func__, event);
2782 rib_update_table(table, event);
2783 }
2784
2785 table = zebra_vrf_table(AFI_IP6, SAFI_UNICAST, vrf_id);
2786 if (table) {
2787 if (IS_ZEBRA_DEBUG_EVENT)
2788 zlog_debug("%s : AFI_IP6 event %d", __func__, event);
2789 rib_update_table(table, event);
2790 }
2791 }
2792
2793 /* Delete self installed routes after zebra is relaunched. */
2794 void rib_sweep_table(struct route_table *table)
2795 {
2796 struct route_node *rn;
2797 struct route_entry *re;
2798 struct route_entry *next;
2799 struct nexthop *nexthop;
2800
2801 if (!table)
2802 return;
2803
2804 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
2805 RNODE_FOREACH_RE_SAFE (rn, re, next) {
2806 if (IS_ZEBRA_DEBUG_RIB)
2807 route_entry_dump(&rn->p, NULL, re);
2808
2809 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
2810 continue;
2811
2812 if (!CHECK_FLAG(re->flags, ZEBRA_FLAG_SELFROUTE))
2813 continue;
2814
2815 /*
2816 * So we are starting up and have received
2817 * routes from the kernel that we have installed
2818 * from a previous run of zebra but not cleaned
2819 * up ( say a kill -9 )
2820 * But since we haven't actually installed
2821 * them yet( we received them from the kernel )
2822 * we don't think they are active.
2823 * So let's pretend they are active to actually
2824 * remove them.
2825 * In all honesty I'm not sure if we should
2826 * mark them as active when we receive them
2827 * This is startup only so probably ok.
2828 *
2829 * If we ever decide to move rib_sweep_table
2830 * to a different spot (ie startup )
2831 * this decision needs to be revisited
2832 */
2833 for (ALL_NEXTHOPS(re->ng, nexthop))
2834 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
2835
2836 rib_uninstall_kernel(rn, re);
2837 rib_delnode(rn, re);
2838 }
2839 }
2840 }
2841
2842 /* Sweep all RIB tables. */
2843 void rib_sweep_route(void)
2844 {
2845 struct vrf *vrf;
2846 struct zebra_vrf *zvrf;
2847
2848 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id) {
2849 if ((zvrf = vrf->info) == NULL)
2850 continue;
2851
2852 rib_sweep_table(zvrf->table[AFI_IP][SAFI_UNICAST]);
2853 rib_sweep_table(zvrf->table[AFI_IP6][SAFI_UNICAST]);
2854 }
2855
2856 zebra_ns_sweep_route();
2857 }
2858
2859 /* Remove specific by protocol routes from 'table'. */
2860 unsigned long rib_score_proto_table(uint8_t proto, unsigned short instance,
2861 struct route_table *table)
2862 {
2863 struct route_node *rn;
2864 struct route_entry *re;
2865 struct route_entry *next;
2866 unsigned long n = 0;
2867
2868 if (table)
2869 for (rn = route_top(table); rn; rn = srcdest_route_next(rn))
2870 RNODE_FOREACH_RE_SAFE (rn, re, next) {
2871 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
2872 continue;
2873 if (re->type == proto
2874 && re->instance == instance) {
2875 rib_delnode(rn, re);
2876 n++;
2877 }
2878 }
2879 return n;
2880 }
2881
2882 /* Remove specific by protocol routes. */
2883 unsigned long rib_score_proto(uint8_t proto, unsigned short instance)
2884 {
2885 struct vrf *vrf;
2886 struct zebra_vrf *zvrf;
2887 unsigned long cnt = 0;
2888
2889 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id)
2890 if ((zvrf = vrf->info) != NULL)
2891 cnt += rib_score_proto_table(
2892 proto, instance,
2893 zvrf->table[AFI_IP][SAFI_UNICAST])
2894 + rib_score_proto_table(
2895 proto, instance,
2896 zvrf->table[AFI_IP6][SAFI_UNICAST]);
2897
2898 cnt += zebra_ns_score_proto(proto, instance);
2899
2900 return cnt;
2901 }
2902
2903 /* Close RIB and clean up kernel routes. */
2904 void rib_close_table(struct route_table *table)
2905 {
2906 struct route_node *rn;
2907 rib_table_info_t *info;
2908 rib_dest_t *dest;
2909
2910 if (!table)
2911 return;
2912
2913 info = table->info;
2914
2915 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
2916 dest = rib_dest_from_rnode(rn);
2917
2918 if (dest && dest->selected_fib) {
2919 if (info->safi == SAFI_UNICAST)
2920 hook_call(rib_update, rn, NULL);
2921
2922 if (!RIB_SYSTEM_ROUTE(dest->selected_fib))
2923 rib_uninstall_kernel(rn, dest->selected_fib);
2924 }
2925 }
2926 }
2927
2928 /* Routing information base initialize. */
2929 void rib_init(void)
2930 {
2931 rib_queue_init(&zebrad);
2932 }
2933
2934 /*
2935 * vrf_id_get_next
2936 *
2937 * Get the first vrf id that is greater than the given vrf id if any.
2938 *
2939 * Returns TRUE if a vrf id was found, FALSE otherwise.
2940 */
2941 static inline int vrf_id_get_next(vrf_id_t vrf_id, vrf_id_t *next_id_p)
2942 {
2943 struct vrf *vrf;
2944
2945 vrf = vrf_lookup_by_id(vrf_id);
2946 if (vrf) {
2947 vrf = RB_NEXT(vrf_id_head, vrf);
2948 if (vrf) {
2949 *next_id_p = vrf->vrf_id;
2950 return 1;
2951 }
2952 }
2953
2954 return 0;
2955 }
2956
2957 /*
2958 * rib_tables_iter_next
2959 *
2960 * Returns the next table in the iteration.
2961 */
2962 struct route_table *rib_tables_iter_next(rib_tables_iter_t *iter)
2963 {
2964 struct route_table *table;
2965
2966 /*
2967 * Array that helps us go over all AFI/SAFI combinations via one
2968 * index.
2969 */
2970 static struct {
2971 afi_t afi;
2972 safi_t safi;
2973 } afi_safis[] = {
2974 {AFI_IP, SAFI_UNICAST}, {AFI_IP, SAFI_MULTICAST},
2975 {AFI_IP, SAFI_LABELED_UNICAST}, {AFI_IP6, SAFI_UNICAST},
2976 {AFI_IP6, SAFI_MULTICAST}, {AFI_IP6, SAFI_LABELED_UNICAST},
2977 };
2978
2979 table = NULL;
2980
2981 switch (iter->state) {
2982
2983 case RIB_TABLES_ITER_S_INIT:
2984 iter->vrf_id = VRF_DEFAULT;
2985 iter->afi_safi_ix = -1;
2986
2987 /* Fall through */
2988
2989 case RIB_TABLES_ITER_S_ITERATING:
2990 iter->afi_safi_ix++;
2991 while (1) {
2992
2993 while (iter->afi_safi_ix
2994 < (int)ZEBRA_NUM_OF(afi_safis)) {
2995 table = zebra_vrf_table(
2996 afi_safis[iter->afi_safi_ix].afi,
2997 afi_safis[iter->afi_safi_ix].safi,
2998 iter->vrf_id);
2999 if (table)
3000 break;
3001
3002 iter->afi_safi_ix++;
3003 }
3004
3005 /*
3006 * Found another table in this vrf.
3007 */
3008 if (table)
3009 break;
3010
3011 /*
3012 * Done with all tables in the current vrf, go to the
3013 * next
3014 * one.
3015 */
3016 if (!vrf_id_get_next(iter->vrf_id, &iter->vrf_id))
3017 break;
3018
3019 iter->afi_safi_ix = 0;
3020 }
3021
3022 break;
3023
3024 case RIB_TABLES_ITER_S_DONE:
3025 return NULL;
3026 }
3027
3028 if (table)
3029 iter->state = RIB_TABLES_ITER_S_ITERATING;
3030 else
3031 iter->state = RIB_TABLES_ITER_S_DONE;
3032
3033 return table;
3034 }