]> git.proxmox.com Git - mirror_frr.git/blob - zebra/zebra_rib.c
lib: Private api for nexthop_group manipulation
[mirror_frr.git] / zebra / zebra_rib.c
1 /* Routing Information Base.
2 * Copyright (C) 1997, 98, 99, 2001 Kunihiro Ishiguro
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; see the file COPYING; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include <zebra.h>
22
23 #include "command.h"
24 #include "if.h"
25 #include "linklist.h"
26 #include "log.h"
27 #include "memory.h"
28 #include "mpls.h"
29 #include "nexthop.h"
30 #include "prefix.h"
31 #include "prefix.h"
32 #include "routemap.h"
33 #include "sockunion.h"
34 #include "srcdest_table.h"
35 #include "table.h"
36 #include "thread.h"
37 #include "vrf.h"
38 #include "workqueue.h"
39 #include "nexthop_group_private.h"
40
41 #include "zebra/zebra_router.h"
42 #include "zebra/connected.h"
43 #include "zebra/debug.h"
44 #include "zebra/interface.h"
45 #include "zebra/redistribute.h"
46 #include "zebra/rib.h"
47 #include "zebra/rt.h"
48 #include "zebra/zapi_msg.h"
49 #include "zebra/zebra_errors.h"
50 #include "zebra/zebra_memory.h"
51 #include "zebra/zebra_ns.h"
52 #include "zebra/zebra_rnh.h"
53 #include "zebra/zebra_routemap.h"
54 #include "zebra/zebra_vrf.h"
55 #include "zebra/zebra_vxlan.h"
56 #include "zebra/zapi_msg.h"
57 #include "zebra/zebra_dplane.h"
58 #include "zebra/zebra_nhg.h"
59
60 /*
61 * Event, list, and mutex for delivery of dataplane results
62 */
63 static pthread_mutex_t dplane_mutex;
64 static struct thread *t_dplane;
65 static struct dplane_ctx_q rib_dplane_q;
66
67 DEFINE_HOOK(rib_update, (struct route_node * rn, const char *reason),
68 (rn, reason))
69
70 /* Should we allow non Quagga processes to delete our routes */
71 extern int allow_delete;
72
73 /* Each route type's string and default distance value. */
74 static const struct {
75 int key;
76 uint8_t distance;
77 uint8_t meta_q_map;
78 } route_info[ZEBRA_ROUTE_MAX] = {
79 [ZEBRA_ROUTE_SYSTEM] = {ZEBRA_ROUTE_SYSTEM, 0, 4},
80 [ZEBRA_ROUTE_KERNEL] = {ZEBRA_ROUTE_KERNEL, 0, 0},
81 [ZEBRA_ROUTE_CONNECT] = {ZEBRA_ROUTE_CONNECT, 0, 0},
82 [ZEBRA_ROUTE_STATIC] = {ZEBRA_ROUTE_STATIC, 1, 1},
83 [ZEBRA_ROUTE_RIP] = {ZEBRA_ROUTE_RIP, 120, 2},
84 [ZEBRA_ROUTE_RIPNG] = {ZEBRA_ROUTE_RIPNG, 120, 2},
85 [ZEBRA_ROUTE_OSPF] = {ZEBRA_ROUTE_OSPF, 110, 2},
86 [ZEBRA_ROUTE_OSPF6] = {ZEBRA_ROUTE_OSPF6, 110, 2},
87 [ZEBRA_ROUTE_ISIS] = {ZEBRA_ROUTE_ISIS, 115, 2},
88 [ZEBRA_ROUTE_BGP] = {ZEBRA_ROUTE_BGP, 20 /* IBGP is 200. */, 3},
89 [ZEBRA_ROUTE_PIM] = {ZEBRA_ROUTE_PIM, 255, 4},
90 [ZEBRA_ROUTE_EIGRP] = {ZEBRA_ROUTE_EIGRP, 90, 2},
91 [ZEBRA_ROUTE_NHRP] = {ZEBRA_ROUTE_NHRP, 10, 2},
92 [ZEBRA_ROUTE_HSLS] = {ZEBRA_ROUTE_HSLS, 255, 4},
93 [ZEBRA_ROUTE_OLSR] = {ZEBRA_ROUTE_OLSR, 255, 4},
94 [ZEBRA_ROUTE_TABLE] = {ZEBRA_ROUTE_TABLE, 150, 1},
95 [ZEBRA_ROUTE_LDP] = {ZEBRA_ROUTE_LDP, 150, 4},
96 [ZEBRA_ROUTE_VNC] = {ZEBRA_ROUTE_VNC, 20, 3},
97 [ZEBRA_ROUTE_VNC_DIRECT] = {ZEBRA_ROUTE_VNC_DIRECT, 20, 3},
98 [ZEBRA_ROUTE_VNC_DIRECT_RH] = {ZEBRA_ROUTE_VNC_DIRECT_RH, 20, 3},
99 [ZEBRA_ROUTE_BGP_DIRECT] = {ZEBRA_ROUTE_BGP_DIRECT, 20, 3},
100 [ZEBRA_ROUTE_BGP_DIRECT_EXT] = {ZEBRA_ROUTE_BGP_DIRECT_EXT, 20, 3},
101 [ZEBRA_ROUTE_BABEL] = {ZEBRA_ROUTE_BABEL, 100, 2},
102 [ZEBRA_ROUTE_SHARP] = {ZEBRA_ROUTE_SHARP, 150, 4},
103 [ZEBRA_ROUTE_PBR] = {ZEBRA_ROUTE_PBR, 200, 4},
104 [ZEBRA_ROUTE_BFD] = {ZEBRA_ROUTE_BFD, 255, 4},
105 [ZEBRA_ROUTE_OPENFABRIC] = {ZEBRA_ROUTE_OPENFABRIC, 115, 2},
106 [ZEBRA_ROUTE_VRRP] = {ZEBRA_ROUTE_VRRP, 255, 4}
107 /* Any new route type added to zebra, should be mirrored here */
108
109 /* no entry/default: 150 */
110 };
111
112 static void __attribute__((format(printf, 5, 6)))
113 _rnode_zlog(const char *_func, vrf_id_t vrf_id, struct route_node *rn,
114 int priority, const char *msgfmt, ...)
115 {
116 char buf[SRCDEST2STR_BUFFER + sizeof(" (MRIB)")];
117 char msgbuf[512];
118 va_list ap;
119
120 va_start(ap, msgfmt);
121 vsnprintf(msgbuf, sizeof(msgbuf), msgfmt, ap);
122 va_end(ap);
123
124 if (rn) {
125 rib_table_info_t *info = srcdest_rnode_table_info(rn);
126 srcdest_rnode2str(rn, buf, sizeof(buf));
127
128 if (info->safi == SAFI_MULTICAST)
129 strlcat(buf, " (MRIB)", sizeof(buf));
130 } else {
131 snprintf(buf, sizeof(buf), "{(route_node *) NULL}");
132 }
133
134 zlog(priority, "%s: %d:%s: %s", _func, vrf_id, buf, msgbuf);
135 }
136
137 #define rnode_debug(node, vrf_id, ...) \
138 _rnode_zlog(__func__, vrf_id, node, LOG_DEBUG, __VA_ARGS__)
139 #define rnode_info(node, ...) \
140 _rnode_zlog(__func__, vrf_id, node, LOG_INFO, __VA_ARGS__)
141
142 uint8_t route_distance(int type)
143 {
144 uint8_t distance;
145
146 if ((unsigned)type >= array_size(route_info))
147 distance = 150;
148 else
149 distance = route_info[type].distance;
150
151 return distance;
152 }
153
154 int is_zebra_valid_kernel_table(uint32_t table_id)
155 {
156 #ifdef linux
157 if ((table_id == RT_TABLE_UNSPEC) || (table_id == RT_TABLE_LOCAL)
158 || (table_id == RT_TABLE_COMPAT))
159 return 0;
160 #endif
161
162 return 1;
163 }
164
165 int is_zebra_main_routing_table(uint32_t table_id)
166 {
167 if (table_id == RT_TABLE_MAIN)
168 return 1;
169 return 0;
170 }
171
172 int zebra_check_addr(const struct prefix *p)
173 {
174 if (p->family == AF_INET) {
175 uint32_t addr;
176
177 addr = p->u.prefix4.s_addr;
178 addr = ntohl(addr);
179
180 if (IPV4_NET127(addr) || IN_CLASSD(addr)
181 || IPV4_LINKLOCAL(addr))
182 return 0;
183 }
184 if (p->family == AF_INET6) {
185 if (IN6_IS_ADDR_LOOPBACK(&p->u.prefix6))
186 return 0;
187 if (IN6_IS_ADDR_LINKLOCAL(&p->u.prefix6))
188 return 0;
189 }
190 return 1;
191 }
192
193 /* Add nexthop to the end of a rib node's nexthop list */
194 void route_entry_nexthop_add(struct route_entry *re, struct nexthop *nexthop)
195 {
196 _nexthop_add(&re->ng.nexthop, nexthop);
197 re->nexthop_num++;
198 }
199
200
201 /**
202 * copy_nexthop - copy a nexthop to the rib structure.
203 */
204 void route_entry_copy_nexthops(struct route_entry *re, struct nexthop *nh)
205 {
206 assert(!re->ng.nexthop);
207 copy_nexthops(&re->ng.nexthop, nh, NULL);
208 for (struct nexthop *nexthop = nh; nexthop; nexthop = nexthop->next)
209 re->nexthop_num++;
210 }
211
212 /* Delete specified nexthop from the list. */
213 void route_entry_nexthop_delete(struct route_entry *re, struct nexthop *nexthop)
214 {
215 if (nexthop->next)
216 nexthop->next->prev = nexthop->prev;
217 if (nexthop->prev)
218 nexthop->prev->next = nexthop->next;
219 else
220 re->ng.nexthop = nexthop->next;
221 re->nexthop_num--;
222 }
223
224
225 struct nexthop *route_entry_nexthop_ifindex_add(struct route_entry *re,
226 ifindex_t ifindex,
227 vrf_id_t nh_vrf_id)
228 {
229 struct nexthop *nexthop;
230
231 nexthop = nexthop_new();
232 nexthop->type = NEXTHOP_TYPE_IFINDEX;
233 nexthop->ifindex = ifindex;
234 nexthop->vrf_id = nh_vrf_id;
235
236 route_entry_nexthop_add(re, nexthop);
237
238 return nexthop;
239 }
240
241 struct nexthop *route_entry_nexthop_ipv4_add(struct route_entry *re,
242 struct in_addr *ipv4,
243 struct in_addr *src,
244 vrf_id_t nh_vrf_id)
245 {
246 struct nexthop *nexthop;
247
248 nexthop = nexthop_new();
249 nexthop->type = NEXTHOP_TYPE_IPV4;
250 nexthop->vrf_id = nh_vrf_id;
251 nexthop->gate.ipv4 = *ipv4;
252 if (src)
253 nexthop->src.ipv4 = *src;
254
255 route_entry_nexthop_add(re, nexthop);
256
257 return nexthop;
258 }
259
260 struct nexthop *route_entry_nexthop_ipv4_ifindex_add(struct route_entry *re,
261 struct in_addr *ipv4,
262 struct in_addr *src,
263 ifindex_t ifindex,
264 vrf_id_t nh_vrf_id)
265 {
266 struct nexthop *nexthop;
267 struct interface *ifp;
268
269 nexthop = nexthop_new();
270 nexthop->vrf_id = nh_vrf_id;
271 nexthop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
272 nexthop->gate.ipv4 = *ipv4;
273 if (src)
274 nexthop->src.ipv4 = *src;
275 nexthop->ifindex = ifindex;
276 ifp = if_lookup_by_index(nexthop->ifindex, nh_vrf_id);
277 /*Pending: need to think if null ifp here is ok during bootup?
278 There was a crash because ifp here was coming to be NULL */
279 if (ifp)
280 if (connected_is_unnumbered(ifp))
281 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK);
282
283 route_entry_nexthop_add(re, nexthop);
284
285 return nexthop;
286 }
287
288 struct nexthop *route_entry_nexthop_ipv6_add(struct route_entry *re,
289 struct in6_addr *ipv6,
290 vrf_id_t nh_vrf_id)
291 {
292 struct nexthop *nexthop;
293
294 nexthop = nexthop_new();
295 nexthop->vrf_id = nh_vrf_id;
296 nexthop->type = NEXTHOP_TYPE_IPV6;
297 nexthop->gate.ipv6 = *ipv6;
298
299 route_entry_nexthop_add(re, nexthop);
300
301 return nexthop;
302 }
303
304 struct nexthop *route_entry_nexthop_ipv6_ifindex_add(struct route_entry *re,
305 struct in6_addr *ipv6,
306 ifindex_t ifindex,
307 vrf_id_t nh_vrf_id)
308 {
309 struct nexthop *nexthop;
310
311 nexthop = nexthop_new();
312 nexthop->vrf_id = nh_vrf_id;
313 nexthop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
314 nexthop->gate.ipv6 = *ipv6;
315 nexthop->ifindex = ifindex;
316
317 route_entry_nexthop_add(re, nexthop);
318
319 return nexthop;
320 }
321
322 struct nexthop *route_entry_nexthop_blackhole_add(struct route_entry *re,
323 enum blackhole_type bh_type)
324 {
325 struct nexthop *nexthop;
326
327 nexthop = nexthop_new();
328 nexthop->vrf_id = VRF_DEFAULT;
329 nexthop->type = NEXTHOP_TYPE_BLACKHOLE;
330 nexthop->bh_type = bh_type;
331
332 route_entry_nexthop_add(re, nexthop);
333
334 return nexthop;
335 }
336
337 struct route_entry *rib_match(afi_t afi, safi_t safi, vrf_id_t vrf_id,
338 union g_addr *addr, struct route_node **rn_out)
339 {
340 struct prefix p;
341 struct route_table *table;
342 struct route_node *rn;
343 struct route_entry *match = NULL;
344
345 /* Lookup table. */
346 table = zebra_vrf_table(afi, safi, vrf_id);
347 if (!table)
348 return 0;
349
350 memset(&p, 0, sizeof(struct prefix));
351 p.family = afi;
352 if (afi == AFI_IP) {
353 p.u.prefix4 = addr->ipv4;
354 p.prefixlen = IPV4_MAX_PREFIXLEN;
355 } else {
356 p.u.prefix6 = addr->ipv6;
357 p.prefixlen = IPV6_MAX_PREFIXLEN;
358 }
359
360 rn = route_node_match(table, (struct prefix *)&p);
361
362 while (rn) {
363 rib_dest_t *dest;
364
365 route_unlock_node(rn);
366
367 dest = rib_dest_from_rnode(rn);
368 if (dest && dest->selected_fib
369 && !CHECK_FLAG(dest->selected_fib->status,
370 ROUTE_ENTRY_REMOVED))
371 match = dest->selected_fib;
372
373 /* If there is no selected route or matched route is EGP, go up
374 tree. */
375 if (!match) {
376 do {
377 rn = rn->parent;
378 } while (rn && rn->info == NULL);
379 if (rn)
380 route_lock_node(rn);
381 } else {
382 if (match->type != ZEBRA_ROUTE_CONNECT) {
383 if (!CHECK_FLAG(match->status,
384 ROUTE_ENTRY_INSTALLED))
385 return NULL;
386 }
387
388 if (rn_out)
389 *rn_out = rn;
390 return match;
391 }
392 }
393 return NULL;
394 }
395
396 struct route_entry *rib_match_ipv4_multicast(vrf_id_t vrf_id,
397 struct in_addr addr,
398 struct route_node **rn_out)
399 {
400 struct route_entry *re = NULL, *mre = NULL, *ure = NULL;
401 struct route_node *m_rn = NULL, *u_rn = NULL;
402 union g_addr gaddr = {.ipv4 = addr};
403
404 switch (zrouter.ipv4_multicast_mode) {
405 case MCAST_MRIB_ONLY:
406 return rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr,
407 rn_out);
408 case MCAST_URIB_ONLY:
409 return rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, rn_out);
410 case MCAST_NO_CONFIG:
411 case MCAST_MIX_MRIB_FIRST:
412 re = mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr,
413 &m_rn);
414 if (!mre)
415 re = ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id,
416 &gaddr, &u_rn);
417 break;
418 case MCAST_MIX_DISTANCE:
419 mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr, &m_rn);
420 ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, &u_rn);
421 if (mre && ure)
422 re = ure->distance < mre->distance ? ure : mre;
423 else if (mre)
424 re = mre;
425 else if (ure)
426 re = ure;
427 break;
428 case MCAST_MIX_PFXLEN:
429 mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr, &m_rn);
430 ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, &u_rn);
431 if (mre && ure)
432 re = u_rn->p.prefixlen > m_rn->p.prefixlen ? ure : mre;
433 else if (mre)
434 re = mre;
435 else if (ure)
436 re = ure;
437 break;
438 }
439
440 if (rn_out)
441 *rn_out = (re == mre) ? m_rn : u_rn;
442
443 if (IS_ZEBRA_DEBUG_RIB) {
444 char buf[BUFSIZ];
445 inet_ntop(AF_INET, &addr, buf, BUFSIZ);
446
447 zlog_debug("%s: %s: vrf: %u found %s, using %s",
448 __func__, buf, vrf_id,
449 mre ? (ure ? "MRIB+URIB" : "MRIB")
450 : ure ? "URIB" : "nothing",
451 re == ure ? "URIB" : re == mre ? "MRIB" : "none");
452 }
453 return re;
454 }
455
456 struct route_entry *rib_lookup_ipv4(struct prefix_ipv4 *p, vrf_id_t vrf_id)
457 {
458 struct route_table *table;
459 struct route_node *rn;
460 struct route_entry *match = NULL;
461 rib_dest_t *dest;
462
463 /* Lookup table. */
464 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
465 if (!table)
466 return 0;
467
468 rn = route_node_lookup(table, (struct prefix *)p);
469
470 /* No route for this prefix. */
471 if (!rn)
472 return NULL;
473
474 /* Unlock node. */
475 route_unlock_node(rn);
476 dest = rib_dest_from_rnode(rn);
477
478 if (dest && dest->selected_fib
479 && !CHECK_FLAG(dest->selected_fib->status, ROUTE_ENTRY_REMOVED))
480 match = dest->selected_fib;
481
482 if (!match)
483 return NULL;
484
485 if (match->type == ZEBRA_ROUTE_CONNECT)
486 return match;
487
488 if (CHECK_FLAG(match->status, ROUTE_ENTRY_INSTALLED))
489 return match;
490
491 return NULL;
492 }
493
494 /*
495 * Is this RIB labeled-unicast? It must be of type BGP and all paths
496 * (nexthops) must have a label.
497 */
498 int zebra_rib_labeled_unicast(struct route_entry *re)
499 {
500 struct nexthop *nexthop = NULL;
501
502 if (re->type != ZEBRA_ROUTE_BGP)
503 return 0;
504
505 for (ALL_NEXTHOPS(re->ng, nexthop))
506 if (!nexthop->nh_label || !nexthop->nh_label->num_labels)
507 return 0;
508
509 return 1;
510 }
511
512 /* Update flag indicates whether this is a "replace" or not. Currently, this
513 * is only used for IPv4.
514 */
515 void rib_install_kernel(struct route_node *rn, struct route_entry *re,
516 struct route_entry *old)
517 {
518 struct nexthop *nexthop;
519 rib_table_info_t *info = srcdest_rnode_table_info(rn);
520 struct zebra_vrf *zvrf = vrf_info_lookup(re->vrf_id);
521 const struct prefix *p, *src_p;
522 enum zebra_dplane_result ret;
523
524 rib_dest_t *dest = rib_dest_from_rnode(rn);
525
526 srcdest_rnode_prefixes(rn, &p, &src_p);
527
528 if (info->safi != SAFI_UNICAST) {
529 for (ALL_NEXTHOPS(re->ng, nexthop))
530 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
531 return;
532 } else {
533 struct nexthop *prev;
534
535 for (ALL_NEXTHOPS(re->ng, nexthop)) {
536 UNSET_FLAG (nexthop->flags, NEXTHOP_FLAG_DUPLICATE);
537 for (ALL_NEXTHOPS(re->ng, prev)) {
538 if (prev == nexthop)
539 break;
540 if (nexthop_same_firsthop(nexthop, prev)) {
541 SET_FLAG(nexthop->flags,
542 NEXTHOP_FLAG_DUPLICATE);
543 break;
544 }
545 }
546 }
547 }
548
549 /*
550 * If this is a replace to a new RE let the originator of the RE
551 * know that they've lost
552 */
553 if (old && (old != re) && (old->type != re->type))
554 zsend_route_notify_owner(old, p, ZAPI_ROUTE_BETTER_ADMIN_WON);
555
556 /* Update fib selection */
557 dest->selected_fib = re;
558
559 /*
560 * Make sure we update the FPM any time we send new information to
561 * the kernel.
562 */
563 hook_call(rib_update, rn, "installing in kernel");
564
565 /* Send add or update */
566 if (old)
567 ret = dplane_route_update(rn, re, old);
568 else
569 ret = dplane_route_add(rn, re);
570
571 switch (ret) {
572 case ZEBRA_DPLANE_REQUEST_QUEUED:
573 SET_FLAG(re->status, ROUTE_ENTRY_QUEUED);
574
575 if (old) {
576 SET_FLAG(old->status, ROUTE_ENTRY_QUEUED);
577
578 /* Free old FIB nexthop group */
579 if (old->fib_ng.nexthop) {
580 nexthops_free(old->fib_ng.nexthop);
581 old->fib_ng.nexthop = NULL;
582 }
583
584 if (!RIB_SYSTEM_ROUTE(old)) {
585 /* Clear old route's FIB flags */
586 for (ALL_NEXTHOPS(old->ng, nexthop)) {
587 UNSET_FLAG(nexthop->flags,
588 NEXTHOP_FLAG_FIB);
589 }
590 }
591 }
592
593 if (zvrf)
594 zvrf->installs_queued++;
595 break;
596 case ZEBRA_DPLANE_REQUEST_FAILURE:
597 {
598 char str[SRCDEST2STR_BUFFER];
599
600 srcdest_rnode2str(rn, str, sizeof(str));
601 flog_err(EC_ZEBRA_DP_INSTALL_FAIL,
602 "%u:%s: Failed to enqueue dataplane install",
603 re->vrf_id, str);
604 break;
605 }
606 case ZEBRA_DPLANE_REQUEST_SUCCESS:
607 if (zvrf)
608 zvrf->installs++;
609 break;
610 }
611
612 return;
613 }
614
615 /* Uninstall the route from kernel. */
616 void rib_uninstall_kernel(struct route_node *rn, struct route_entry *re)
617 {
618 struct nexthop *nexthop;
619 rib_table_info_t *info = srcdest_rnode_table_info(rn);
620 struct zebra_vrf *zvrf = vrf_info_lookup(re->vrf_id);
621
622 if (info->safi != SAFI_UNICAST) {
623 UNSET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
624 for (ALL_NEXTHOPS(re->ng, nexthop))
625 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
626 return;
627 }
628
629 /*
630 * Make sure we update the FPM any time we send new information to
631 * the dataplane.
632 */
633 hook_call(rib_update, rn, "uninstalling from kernel");
634
635 switch (dplane_route_delete(rn, re)) {
636 case ZEBRA_DPLANE_REQUEST_QUEUED:
637 if (zvrf)
638 zvrf->removals_queued++;
639 break;
640 case ZEBRA_DPLANE_REQUEST_FAILURE:
641 {
642 char str[SRCDEST2STR_BUFFER];
643
644 srcdest_rnode2str(rn, str, sizeof(str));
645 flog_err(EC_ZEBRA_DP_INSTALL_FAIL,
646 "%u:%s: Failed to enqueue dataplane uninstall",
647 re->vrf_id, str);
648 break;
649 }
650 case ZEBRA_DPLANE_REQUEST_SUCCESS:
651 if (zvrf)
652 zvrf->removals++;
653 break;
654 }
655
656 return;
657 }
658
659 /* Uninstall the route from kernel. */
660 static void rib_uninstall(struct route_node *rn, struct route_entry *re)
661 {
662 rib_table_info_t *info = srcdest_rnode_table_info(rn);
663 rib_dest_t *dest = rib_dest_from_rnode(rn);
664 struct nexthop *nexthop;
665
666 if (dest && dest->selected_fib == re) {
667 if (info->safi == SAFI_UNICAST)
668 hook_call(rib_update, rn, "rib_uninstall");
669
670 /* If labeled-unicast route, uninstall transit LSP. */
671 if (zebra_rib_labeled_unicast(re))
672 zebra_mpls_lsp_uninstall(info->zvrf, rn, re);
673
674 rib_uninstall_kernel(rn, re);
675
676 dest->selected_fib = NULL;
677
678 /* Free FIB nexthop group, if present */
679 if (re->fib_ng.nexthop) {
680 nexthops_free(re->fib_ng.nexthop);
681 re->fib_ng.nexthop = NULL;
682 }
683
684 for (ALL_NEXTHOPS(re->ng, nexthop))
685 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
686 }
687
688 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)) {
689 const struct prefix *p, *src_p;
690
691 srcdest_rnode_prefixes(rn, &p, &src_p);
692
693 redistribute_delete(p, src_p, re);
694 UNSET_FLAG(re->flags, ZEBRA_FLAG_SELECTED);
695 }
696 }
697
698 /*
699 * rib_can_delete_dest
700 *
701 * Returns TRUE if the given dest can be deleted from the table.
702 */
703 static int rib_can_delete_dest(rib_dest_t *dest)
704 {
705 if (re_list_first(&dest->routes)) {
706 return 0;
707 }
708
709 /*
710 * Unresolved rnh's are stored on the default route's list
711 *
712 * dest->rnode can also be the source prefix node in an
713 * ipv6 sourcedest table. Fortunately the prefix of a
714 * source prefix node can never be the default prefix.
715 */
716 if (is_default_prefix(&dest->rnode->p))
717 return 0;
718
719 /*
720 * Don't delete the dest if we have to update the FPM about this
721 * prefix.
722 */
723 if (CHECK_FLAG(dest->flags, RIB_DEST_UPDATE_FPM)
724 || CHECK_FLAG(dest->flags, RIB_DEST_SENT_TO_FPM))
725 return 0;
726
727 return 1;
728 }
729
730 void zebra_rib_evaluate_rn_nexthops(struct route_node *rn, uint32_t seq)
731 {
732 rib_dest_t *dest = rib_dest_from_rnode(rn);
733 struct rnh *rnh;
734
735 /*
736 * We are storing the rnh's associated withb
737 * the tracked nexthop as a list of the rn's.
738 * Unresolved rnh's are placed at the top
739 * of the tree list.( 0.0.0.0/0 for v4 and 0::0/0 for v6 )
740 * As such for each rn we need to walk up the tree
741 * and see if any rnh's need to see if they
742 * would match a more specific route
743 */
744 while (rn) {
745 if (IS_ZEBRA_DEBUG_NHT_DETAILED) {
746 char buf[PREFIX_STRLEN];
747
748 zlog_debug("%s: %s Being examined for Nexthop Tracking Count: %zd",
749 __PRETTY_FUNCTION__,
750 srcdest_rnode2str(rn, buf, sizeof(buf)),
751 dest ? rnh_list_count(&dest->nht) : 0);
752 }
753 if (!dest) {
754 rn = rn->parent;
755 if (rn)
756 dest = rib_dest_from_rnode(rn);
757 continue;
758 }
759 /*
760 * If we have any rnh's stored in the nht list
761 * then we know that this route node was used for
762 * nht resolution and as such we need to call the
763 * nexthop tracking evaluation code
764 */
765 frr_each_safe(rnh_list, &dest->nht, rnh) {
766 struct zebra_vrf *zvrf =
767 zebra_vrf_lookup_by_id(rnh->vrf_id);
768 struct prefix *p = &rnh->node->p;
769
770 if (IS_ZEBRA_DEBUG_NHT_DETAILED) {
771 char buf1[PREFIX_STRLEN];
772 char buf2[PREFIX_STRLEN];
773
774 zlog_debug("%u:%s has Nexthop(%s) Type: %s depending on it, evaluating %u:%u",
775 zvrf->vrf->vrf_id,
776 srcdest_rnode2str(rn, buf1,
777 sizeof(buf1)),
778 prefix2str(p, buf2, sizeof(buf2)),
779 rnh_type2str(rnh->type),
780 seq, rnh->seqno);
781 }
782
783 /*
784 * If we have evaluated this node on this pass
785 * already, due to following the tree up
786 * then we know that we can move onto the next
787 * rnh to process.
788 *
789 * Additionally we call zebra_evaluate_rnh
790 * when we gc the dest. In this case we know
791 * that there must be no other re's where
792 * we were originally as such we know that
793 * that sequence number is ok to respect.
794 */
795 if (rnh->seqno == seq) {
796 if (IS_ZEBRA_DEBUG_NHT_DETAILED)
797 zlog_debug(
798 "\tNode processed and moved already");
799 continue;
800 }
801
802 rnh->seqno = seq;
803 zebra_evaluate_rnh(zvrf, family2afi(p->family), 0,
804 rnh->type, p);
805 }
806
807 rn = rn->parent;
808 if (rn)
809 dest = rib_dest_from_rnode(rn);
810 }
811 }
812
813 /*
814 * rib_gc_dest
815 *
816 * Garbage collect the rib dest corresponding to the given route node
817 * if appropriate.
818 *
819 * Returns TRUE if the dest was deleted, FALSE otherwise.
820 */
821 int rib_gc_dest(struct route_node *rn)
822 {
823 rib_dest_t *dest;
824
825 dest = rib_dest_from_rnode(rn);
826 if (!dest)
827 return 0;
828
829 if (!rib_can_delete_dest(dest))
830 return 0;
831
832 if (IS_ZEBRA_DEBUG_RIB) {
833 struct zebra_vrf *zvrf;
834
835 zvrf = rib_dest_vrf(dest);
836 rnode_debug(rn, zvrf_id(zvrf), "removing dest from table");
837 }
838
839 zebra_rib_evaluate_rn_nexthops(rn, zebra_router_get_next_sequence());
840
841 dest->rnode = NULL;
842 rnh_list_fini(&dest->nht);
843 XFREE(MTYPE_RIB_DEST, dest);
844 rn->info = NULL;
845
846 /*
847 * Release the one reference that we keep on the route node.
848 */
849 route_unlock_node(rn);
850 return 1;
851 }
852
853 static void rib_process_add_fib(struct zebra_vrf *zvrf, struct route_node *rn,
854 struct route_entry *new)
855 {
856 hook_call(rib_update, rn, "new route selected");
857
858 /* Update real nexthop. This may actually determine if nexthop is active
859 * or not. */
860 if (!nexthop_group_active_nexthop_num(&new->ng)) {
861 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
862 return;
863 }
864
865 if (IS_ZEBRA_DEBUG_RIB) {
866 char buf[SRCDEST2STR_BUFFER];
867 srcdest_rnode2str(rn, buf, sizeof(buf));
868 zlog_debug("%u:%s: Adding route rn %p, re %p (%s)",
869 zvrf_id(zvrf), buf, rn, new,
870 zebra_route_string(new->type));
871 }
872
873 /* If labeled-unicast route, install transit LSP. */
874 if (zebra_rib_labeled_unicast(new))
875 zebra_mpls_lsp_install(zvrf, rn, new);
876
877 rib_install_kernel(rn, new, NULL);
878
879 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
880 }
881
882 static void rib_process_del_fib(struct zebra_vrf *zvrf, struct route_node *rn,
883 struct route_entry *old)
884 {
885 hook_call(rib_update, rn, "removing existing route");
886
887 /* Uninstall from kernel. */
888 if (IS_ZEBRA_DEBUG_RIB) {
889 char buf[SRCDEST2STR_BUFFER];
890 srcdest_rnode2str(rn, buf, sizeof(buf));
891 zlog_debug("%u:%s: Deleting route rn %p, re %p (%s)",
892 zvrf_id(zvrf), buf, rn, old,
893 zebra_route_string(old->type));
894 }
895
896 /* If labeled-unicast route, uninstall transit LSP. */
897 if (zebra_rib_labeled_unicast(old))
898 zebra_mpls_lsp_uninstall(zvrf, rn, old);
899
900 rib_uninstall_kernel(rn, old);
901
902 /* Update nexthop for route, reset changed flag. */
903 /* Note: this code also handles the Linux case when an interface goes
904 * down, causing the kernel to delete routes without sending DELROUTE
905 * notifications
906 */
907 if (RIB_KERNEL_ROUTE(old))
908 SET_FLAG(old->status, ROUTE_ENTRY_REMOVED);
909 else
910 UNSET_FLAG(old->status, ROUTE_ENTRY_CHANGED);
911 }
912
913 static void rib_process_update_fib(struct zebra_vrf *zvrf,
914 struct route_node *rn,
915 struct route_entry *old,
916 struct route_entry *new)
917 {
918 int nh_active = 0;
919
920 /*
921 * We have to install or update if a new route has been selected or
922 * something has changed.
923 */
924 if (new != old || CHECK_FLAG(new->status, ROUTE_ENTRY_CHANGED)) {
925 hook_call(rib_update, rn, "updating existing route");
926
927 /* Update the nexthop; we could determine here that nexthop is
928 * inactive. */
929 if (nexthop_group_active_nexthop_num(&new->ng))
930 nh_active = 1;
931
932 /* If nexthop is active, install the selected route, if
933 * appropriate. If
934 * the install succeeds, cleanup flags for prior route, if
935 * different from
936 * newly selected.
937 */
938 if (nh_active) {
939 if (IS_ZEBRA_DEBUG_RIB) {
940 char buf[SRCDEST2STR_BUFFER];
941 srcdest_rnode2str(rn, buf, sizeof(buf));
942 if (new != old)
943 zlog_debug(
944 "%u:%s: Updating route rn %p, re %p (%s) old %p (%s)",
945 zvrf_id(zvrf), buf, rn, new,
946 zebra_route_string(new->type),
947 old,
948 zebra_route_string(old->type));
949 else
950 zlog_debug(
951 "%u:%s: Updating route rn %p, re %p (%s)",
952 zvrf_id(zvrf), buf, rn, new,
953 zebra_route_string(new->type));
954 }
955
956 /* If labeled-unicast route, uninstall transit LSP. */
957 if (zebra_rib_labeled_unicast(old))
958 zebra_mpls_lsp_uninstall(zvrf, rn, old);
959
960 /*
961 * Non-system route should be installed.
962 * If labeled-unicast route, install transit
963 * LSP.
964 */
965 if (zebra_rib_labeled_unicast(new))
966 zebra_mpls_lsp_install(zvrf, rn, new);
967
968 rib_install_kernel(rn, new, old);
969 }
970
971 /*
972 * If nexthop for selected route is not active or install
973 * failed, we
974 * may need to uninstall and delete for redistribution.
975 */
976 if (!nh_active) {
977 if (IS_ZEBRA_DEBUG_RIB) {
978 char buf[SRCDEST2STR_BUFFER];
979 srcdest_rnode2str(rn, buf, sizeof(buf));
980 if (new != old)
981 zlog_debug(
982 "%u:%s: Deleting route rn %p, re %p (%s) old %p (%s) - nexthop inactive",
983 zvrf_id(zvrf), buf, rn, new,
984 zebra_route_string(new->type),
985 old,
986 zebra_route_string(old->type));
987 else
988 zlog_debug(
989 "%u:%s: Deleting route rn %p, re %p (%s) - nexthop inactive",
990 zvrf_id(zvrf), buf, rn, new,
991 zebra_route_string(new->type));
992 }
993
994 /* If labeled-unicast route, uninstall transit LSP. */
995 if (zebra_rib_labeled_unicast(old))
996 zebra_mpls_lsp_uninstall(zvrf, rn, old);
997
998 rib_uninstall_kernel(rn, old);
999 }
1000 } else {
1001 /*
1002 * Same route selected; check if in the FIB and if not,
1003 * re-install. This is housekeeping code to deal with
1004 * race conditions in kernel with linux netlink reporting
1005 * interface up before IPv4 or IPv6 protocol is ready
1006 * to add routes.
1007 */
1008 if (!CHECK_FLAG(new->status, ROUTE_ENTRY_INSTALLED) ||
1009 RIB_SYSTEM_ROUTE(new))
1010 rib_install_kernel(rn, new, NULL);
1011 }
1012
1013 /* Update prior route. */
1014 if (new != old)
1015 UNSET_FLAG(old->status, ROUTE_ENTRY_CHANGED);
1016
1017 /* Clear changed flag. */
1018 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1019 }
1020
1021 /* Check if 'alternate' RIB entry is better than 'current'. */
1022 static struct route_entry *rib_choose_best(struct route_entry *current,
1023 struct route_entry *alternate)
1024 {
1025 if (current == NULL)
1026 return alternate;
1027
1028 /* filter route selection in following order:
1029 * - connected beats other types
1030 * - if both connected, loopback or vrf wins
1031 * - lower distance beats higher
1032 * - lower metric beats higher for equal distance
1033 * - last, hence oldest, route wins tie break.
1034 */
1035
1036 /* Connected routes. Check to see if either are a vrf
1037 * or loopback interface. If not, pick the last connected
1038 * route of the set of lowest metric connected routes.
1039 */
1040 if (alternate->type == ZEBRA_ROUTE_CONNECT) {
1041 if (current->type != ZEBRA_ROUTE_CONNECT)
1042 return alternate;
1043
1044 /* both are connected. are either loop or vrf? */
1045 struct nexthop *nexthop = NULL;
1046
1047 for (ALL_NEXTHOPS(alternate->ng, nexthop)) {
1048 if (if_is_loopback_or_vrf(if_lookup_by_index(
1049 nexthop->ifindex, alternate->vrf_id)))
1050 return alternate;
1051 }
1052
1053 for (ALL_NEXTHOPS(current->ng, nexthop)) {
1054 if (if_is_loopback_or_vrf(if_lookup_by_index(
1055 nexthop->ifindex, current->vrf_id)))
1056 return current;
1057 }
1058
1059 /* Neither are loop or vrf so pick best metric */
1060 if (alternate->metric <= current->metric)
1061 return alternate;
1062
1063 return current;
1064 }
1065
1066 if (current->type == ZEBRA_ROUTE_CONNECT)
1067 return current;
1068
1069 /* higher distance loses */
1070 if (alternate->distance < current->distance)
1071 return alternate;
1072 if (current->distance < alternate->distance)
1073 return current;
1074
1075 /* metric tie-breaks equal distance */
1076 if (alternate->metric <= current->metric)
1077 return alternate;
1078
1079 return current;
1080 }
1081
1082 /* Core function for processing routing information base. */
1083 static void rib_process(struct route_node *rn)
1084 {
1085 struct route_entry *re;
1086 struct route_entry *next;
1087 struct route_entry *old_selected = NULL;
1088 struct route_entry *new_selected = NULL;
1089 struct route_entry *old_fib = NULL;
1090 struct route_entry *new_fib = NULL;
1091 struct route_entry *best = NULL;
1092 char buf[SRCDEST2STR_BUFFER];
1093 rib_dest_t *dest;
1094 struct zebra_vrf *zvrf = NULL;
1095 const struct prefix *p, *src_p;
1096
1097 srcdest_rnode_prefixes(rn, &p, &src_p);
1098 vrf_id_t vrf_id = VRF_UNKNOWN;
1099
1100 assert(rn);
1101
1102 dest = rib_dest_from_rnode(rn);
1103 if (dest) {
1104 zvrf = rib_dest_vrf(dest);
1105 vrf_id = zvrf_id(zvrf);
1106 }
1107
1108 if (IS_ZEBRA_DEBUG_RIB)
1109 srcdest_rnode2str(rn, buf, sizeof(buf));
1110
1111 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1112 zlog_debug("%u:%s: Processing rn %p", vrf_id, buf, rn);
1113
1114 /*
1115 * we can have rn's that have a NULL info pointer
1116 * (dest). As such let's not let the deref happen
1117 * additionally we know RNODE_FOREACH_RE_SAFE
1118 * will not iterate so we are ok.
1119 */
1120 if (dest)
1121 old_fib = dest->selected_fib;
1122
1123 RNODE_FOREACH_RE_SAFE (rn, re, next) {
1124 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1125 zlog_debug(
1126 "%u:%s: Examine re %p (%s) status %x flags %x dist %d metric %d",
1127 vrf_id, buf, re, zebra_route_string(re->type),
1128 re->status, re->flags, re->distance,
1129 re->metric);
1130
1131 UNSET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
1132
1133 /* Currently selected re. */
1134 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)) {
1135 assert(old_selected == NULL);
1136 old_selected = re;
1137 }
1138
1139 /* Skip deleted entries from selection */
1140 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
1141 continue;
1142
1143 /* Skip unreachable nexthop. */
1144 /* This first call to nexthop_active_update is merely to
1145 * determine if there's any change to nexthops associated
1146 * with this RIB entry. Now, rib_process() can be invoked due
1147 * to an external event such as link down or due to
1148 * next-hop-tracking evaluation. In the latter case,
1149 * a decision has already been made that the NHs have changed.
1150 * So, no need to invoke a potentially expensive call again.
1151 * Further, since the change might be in a recursive NH which
1152 * is not caught in the nexthop_active_update() code. Thus, we
1153 * might miss changes to recursive NHs.
1154 */
1155 if (CHECK_FLAG(re->status, ROUTE_ENTRY_CHANGED)
1156 && !nexthop_active_update(rn, re)) {
1157 if (re->type == ZEBRA_ROUTE_TABLE) {
1158 /* XXX: HERE BE DRAGONS!!!!!
1159 * In all honesty, I have not yet figured out
1160 * what this part does or why the
1161 * ROUTE_ENTRY_CHANGED test above is correct
1162 * or why we need to delete a route here, and
1163 * also not whether this concerns both selected
1164 * and fib route, or only selected
1165 * or only fib
1166 *
1167 * This entry was denied by the 'ip protocol
1168 * table' route-map, we need to delete it */
1169 if (re != old_selected) {
1170 if (IS_ZEBRA_DEBUG_RIB)
1171 zlog_debug(
1172 "%s: %u:%s: imported via import-table but denied "
1173 "by the ip protocol table route-map",
1174 __func__, vrf_id, buf);
1175 rib_unlink(rn, re);
1176 } else
1177 SET_FLAG(re->status,
1178 ROUTE_ENTRY_REMOVED);
1179 }
1180
1181 continue;
1182 }
1183
1184 /* Infinite distance. */
1185 if (re->distance == DISTANCE_INFINITY) {
1186 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1187 continue;
1188 }
1189
1190 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_FIB_OVERRIDE)) {
1191 best = rib_choose_best(new_fib, re);
1192 if (new_fib && best != new_fib)
1193 UNSET_FLAG(new_fib->status,
1194 ROUTE_ENTRY_CHANGED);
1195 new_fib = best;
1196 } else {
1197 best = rib_choose_best(new_selected, re);
1198 if (new_selected && best != new_selected)
1199 UNSET_FLAG(new_selected->status,
1200 ROUTE_ENTRY_CHANGED);
1201 new_selected = best;
1202 }
1203 if (best != re)
1204 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1205 } /* RNODE_FOREACH_RE */
1206
1207 /* If no FIB override route, use the selected route also for FIB */
1208 if (new_fib == NULL)
1209 new_fib = new_selected;
1210
1211 /* After the cycle is finished, the following pointers will be set:
1212 * old_selected --- RE entry currently having SELECTED
1213 * new_selected --- RE entry that is newly SELECTED
1214 * old_fib --- RE entry currently in kernel FIB
1215 * new_fib --- RE entry that is newly to be in kernel FIB
1216 *
1217 * new_selected will get SELECTED flag, and is going to be redistributed
1218 * the zclients. new_fib (which can be new_selected) will be installed
1219 * in kernel.
1220 */
1221
1222 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
1223 zlog_debug(
1224 "%u:%s: After processing: old_selected %p new_selected %p old_fib %p new_fib %p",
1225 vrf_id, buf, (void *)old_selected, (void *)new_selected,
1226 (void *)old_fib, (void *)new_fib);
1227 }
1228
1229 /* Buffer ROUTE_ENTRY_CHANGED here, because it will get cleared if
1230 * fib == selected */
1231 bool selected_changed = new_selected && CHECK_FLAG(new_selected->status,
1232 ROUTE_ENTRY_CHANGED);
1233
1234 /* Update fib according to selection results */
1235 if (new_fib && old_fib)
1236 rib_process_update_fib(zvrf, rn, old_fib, new_fib);
1237 else if (new_fib)
1238 rib_process_add_fib(zvrf, rn, new_fib);
1239 else if (old_fib)
1240 rib_process_del_fib(zvrf, rn, old_fib);
1241
1242 /* Update SELECTED entry */
1243 if (old_selected != new_selected || selected_changed) {
1244
1245 if (new_selected && new_selected != new_fib)
1246 UNSET_FLAG(new_selected->status, ROUTE_ENTRY_CHANGED);
1247
1248 if (new_selected)
1249 SET_FLAG(new_selected->flags, ZEBRA_FLAG_SELECTED);
1250
1251 if (old_selected) {
1252 if (!new_selected)
1253 redistribute_delete(p, src_p, old_selected);
1254 if (old_selected != new_selected)
1255 UNSET_FLAG(old_selected->flags,
1256 ZEBRA_FLAG_SELECTED);
1257 }
1258 }
1259
1260 /* Remove all RE entries queued for removal */
1261 RNODE_FOREACH_RE_SAFE (rn, re, next) {
1262 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
1263 if (IS_ZEBRA_DEBUG_RIB) {
1264 rnode_debug(rn, vrf_id, "rn %p, removing re %p",
1265 (void *)rn, (void *)re);
1266 }
1267 rib_unlink(rn, re);
1268 }
1269 }
1270
1271 /*
1272 * Check if the dest can be deleted now.
1273 */
1274 rib_gc_dest(rn);
1275 }
1276
1277 static void zebra_rib_evaluate_mpls(struct route_node *rn)
1278 {
1279 rib_dest_t *dest = rib_dest_from_rnode(rn);
1280 struct zebra_vrf *zvrf = vrf_info_lookup(VRF_DEFAULT);
1281
1282 if (!dest)
1283 return;
1284
1285 if (CHECK_FLAG(dest->flags, RIB_DEST_UPDATE_LSPS)) {
1286 if (IS_ZEBRA_DEBUG_MPLS)
1287 zlog_debug(
1288 "%u: Scheduling all LSPs upon RIB completion",
1289 zvrf_id(zvrf));
1290 zebra_mpls_lsp_schedule(zvrf);
1291 mpls_unmark_lsps_for_processing(rn);
1292 }
1293 }
1294
1295 /*
1296 * Utility to match route with dplane context data
1297 */
1298 static bool rib_route_match_ctx(const struct route_entry *re,
1299 const struct zebra_dplane_ctx *ctx,
1300 bool is_update)
1301 {
1302 bool result = false;
1303
1304 if (is_update) {
1305 /*
1306 * In 'update' case, we test info about the 'previous' or
1307 * 'old' route
1308 */
1309 if ((re->type == dplane_ctx_get_old_type(ctx)) &&
1310 (re->instance == dplane_ctx_get_old_instance(ctx))) {
1311 result = true;
1312
1313 /* TODO -- we're using this extra test, but it's not
1314 * exactly clear why.
1315 */
1316 if (re->type == ZEBRA_ROUTE_STATIC &&
1317 (re->distance != dplane_ctx_get_old_distance(ctx) ||
1318 re->tag != dplane_ctx_get_old_tag(ctx))) {
1319 result = false;
1320 }
1321 }
1322
1323 } else {
1324 /*
1325 * Ordinary, single-route case using primary context info
1326 */
1327 if ((dplane_ctx_get_op(ctx) != DPLANE_OP_ROUTE_DELETE) &&
1328 CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
1329 /* Skip route that's been deleted */
1330 goto done;
1331 }
1332
1333 if ((re->type == dplane_ctx_get_type(ctx)) &&
1334 (re->instance == dplane_ctx_get_instance(ctx))) {
1335 result = true;
1336
1337 /* TODO -- we're using this extra test, but it's not
1338 * exactly clear why.
1339 */
1340 if (re->type == ZEBRA_ROUTE_STATIC &&
1341 (re->distance != dplane_ctx_get_distance(ctx) ||
1342 re->tag != dplane_ctx_get_tag(ctx))) {
1343 result = false;
1344 }
1345 }
1346 }
1347
1348 done:
1349
1350 return (result);
1351 }
1352
1353 static void zebra_rib_fixup_system(struct route_node *rn)
1354 {
1355 struct route_entry *re;
1356
1357 RNODE_FOREACH_RE(rn, re) {
1358 struct nexthop *nhop;
1359
1360 if (!RIB_SYSTEM_ROUTE(re))
1361 continue;
1362
1363 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
1364 continue;
1365
1366 SET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
1367
1368 for (ALL_NEXTHOPS(re->ng, nhop)) {
1369 if (CHECK_FLAG(nhop->flags, NEXTHOP_FLAG_RECURSIVE))
1370 continue;
1371
1372 SET_FLAG(nhop->flags, NEXTHOP_FLAG_FIB);
1373 }
1374 }
1375 }
1376
1377 /*
1378 * Update a route from a dplane context. This consolidates common code
1379 * that can be used in processing of results from FIB updates, and in
1380 * async notification processing.
1381 * The return is 'true' if the installed nexthops changed; 'false' otherwise.
1382 */
1383 static bool rib_update_re_from_ctx(struct route_entry *re,
1384 struct route_node *rn,
1385 struct zebra_dplane_ctx *ctx)
1386 {
1387 char dest_str[PREFIX_STRLEN] = "";
1388 char nh_str[NEXTHOP_STRLEN];
1389 struct nexthop *nexthop, *ctx_nexthop;
1390 bool matched;
1391 const struct nexthop_group *ctxnhg;
1392 bool is_selected = false; /* Is 're' currently the selected re? */
1393 bool changed_p = false; /* Change to nexthops? */
1394 rib_dest_t *dest;
1395
1396 /* Note well: only capturing the prefix string if debug is enabled here;
1397 * unconditional log messages will have to generate the string.
1398 */
1399 if (IS_ZEBRA_DEBUG_RIB)
1400 prefix2str(&(rn->p), dest_str, sizeof(dest_str));
1401
1402 dest = rib_dest_from_rnode(rn);
1403 if (dest)
1404 is_selected = (re == dest->selected_fib);
1405
1406 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1407 zlog_debug("update_from_ctx: %u:%s: %sSELECTED",
1408 re->vrf_id, dest_str, (is_selected ? "" : "NOT "));
1409
1410 /* Update zebra's nexthop FIB flag for each nexthop that was installed.
1411 * If the installed set differs from the set requested by the rib/owner,
1412 * we use the fib-specific nexthop-group to record the actual FIB
1413 * status.
1414 */
1415
1416 /*
1417 * First check the fib nexthop-group, if it's present. The comparison
1418 * here is quite strict: we require that the fib sets match exactly.
1419 */
1420 matched = false;
1421 do {
1422 if (re->fib_ng.nexthop == NULL)
1423 break;
1424
1425 matched = true;
1426
1427 /* First check the route's fib nexthops */
1428 for (ALL_NEXTHOPS(re->fib_ng, nexthop)) {
1429
1430 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE))
1431 continue;
1432
1433 ctx_nexthop = NULL;
1434 for (ALL_NEXTHOPS_PTR(dplane_ctx_get_ng(ctx),
1435 ctx_nexthop)) {
1436 if (nexthop_same(ctx_nexthop, nexthop))
1437 break;
1438 }
1439
1440 if (ctx_nexthop == NULL) {
1441 /* Nexthop not in the new installed set */
1442 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
1443 nexthop2str(nexthop, nh_str,
1444 sizeof(nh_str));
1445 zlog_debug("update_from_ctx: no match for fib nh %s",
1446 nh_str);
1447 }
1448
1449 matched = false;
1450 break;
1451 }
1452 }
1453
1454 if (!matched)
1455 break;
1456
1457 /* Check the new installed set */
1458 ctx_nexthop = NULL;
1459 for (ALL_NEXTHOPS_PTR(dplane_ctx_get_ng(ctx), ctx_nexthop)) {
1460
1461 if (CHECK_FLAG(ctx_nexthop->flags,
1462 NEXTHOP_FLAG_RECURSIVE))
1463 continue;
1464
1465 /* Compare with the current group's nexthops */
1466 nexthop = NULL;
1467 for (ALL_NEXTHOPS(re->fib_ng, nexthop)) {
1468 if (nexthop_same(nexthop, ctx_nexthop))
1469 break;
1470 }
1471
1472 if (nexthop == NULL) {
1473 /* Nexthop not in the old installed set */
1474 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
1475 nexthop2str(ctx_nexthop, nh_str,
1476 sizeof(nh_str));
1477 zlog_debug("update_from_ctx: no fib match for notif nh %s",
1478 nh_str);
1479 }
1480 matched = false;
1481 break;
1482 }
1483 }
1484
1485 } while (0);
1486
1487 /* If the new FIB set matches the existing FIB set, we're done. */
1488 if (matched) {
1489 if (IS_ZEBRA_DEBUG_RIB)
1490 zlog_debug("%u:%s update_from_ctx(): existing fib nhg, no change",
1491 re->vrf_id, dest_str);
1492 goto done;
1493
1494 } else if (re->fib_ng.nexthop) {
1495 /*
1496 * Free stale fib list and move on to check the rib nhg.
1497 */
1498 if (IS_ZEBRA_DEBUG_RIB)
1499 zlog_debug("%u:%s update_from_ctx(): replacing fib nhg",
1500 re->vrf_id, dest_str);
1501 nexthops_free(re->fib_ng.nexthop);
1502 re->fib_ng.nexthop = NULL;
1503
1504 /* Note that the installed nexthops have changed */
1505 changed_p = true;
1506 } else {
1507 if (IS_ZEBRA_DEBUG_RIB)
1508 zlog_debug("%u:%s update_from_ctx(): no fib nhg",
1509 re->vrf_id, dest_str);
1510 }
1511
1512 /*
1513 * Compare with the rib nexthop group. The comparison here is different:
1514 * the RIB group may be a superset of the list installed in the FIB. We
1515 * walk the RIB group, looking for the 'installable' candidate
1516 * nexthops, and then check those against the set
1517 * that is actually installed.
1518 */
1519 matched = true;
1520 for (ALL_NEXTHOPS(re->ng, nexthop)) {
1521
1522 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE))
1523 continue;
1524
1525 if (!CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE))
1526 continue;
1527
1528 /* Check for a FIB nexthop corresponding to the RIB nexthop */
1529 ctx_nexthop = NULL;
1530 for (ALL_NEXTHOPS_PTR(dplane_ctx_get_ng(ctx), ctx_nexthop)) {
1531 if (nexthop_same(ctx_nexthop, nexthop))
1532 break;
1533 }
1534
1535 /* If the FIB doesn't know about the nexthop,
1536 * it's not installed
1537 */
1538 if (ctx_nexthop == NULL) {
1539 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
1540 nexthop2str(nexthop, nh_str, sizeof(nh_str));
1541 zlog_debug("update_from_ctx: no notif match for rib nh %s",
1542 nh_str);
1543 }
1544 matched = false;
1545
1546 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB))
1547 changed_p = true;
1548
1549 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1550 break;
1551 }
1552
1553 if (CHECK_FLAG(ctx_nexthop->flags, NEXTHOP_FLAG_FIB)) {
1554 if (!CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB))
1555 changed_p = true;
1556
1557 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1558 } else {
1559 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB))
1560 changed_p = true;
1561
1562 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1563 }
1564 }
1565
1566 /* If all nexthops were processed, we're done */
1567 if (matched) {
1568 if (IS_ZEBRA_DEBUG_RIB)
1569 zlog_debug("%u:%s update_from_ctx(): rib nhg matched, changed '%s'",
1570 re->vrf_id, dest_str,
1571 (changed_p ? "true" : "false"));
1572 goto done;
1573 }
1574
1575 /* FIB nexthop set differs from the RIB set:
1576 * create a fib-specific nexthop-group
1577 */
1578 if (IS_ZEBRA_DEBUG_RIB)
1579 zlog_debug("%u:%s update_from_ctx(): changed %s, adding new fib nhg",
1580 re->vrf_id, dest_str,
1581 (changed_p ? "true" : "false"));
1582
1583 ctxnhg = dplane_ctx_get_ng(ctx);
1584
1585 if (ctxnhg->nexthop)
1586 copy_nexthops(&(re->fib_ng.nexthop), ctxnhg->nexthop, NULL);
1587 else {
1588 /* Bit of a special case when the fib has _no_ installed
1589 * nexthops.
1590 */
1591 nexthop = nexthop_new();
1592 nexthop->type = NEXTHOP_TYPE_IPV4;
1593 _nexthop_add(&(re->fib_ng.nexthop), nexthop);
1594 }
1595
1596 done:
1597 return changed_p;
1598 }
1599
1600 /*
1601 * Helper to locate a zebra route-node from a dplane context. This is used
1602 * when processing dplane results, e.g. Note well: the route-node is returned
1603 * with a ref held - route_unlock_node() must be called eventually.
1604 */
1605 static struct route_node *
1606 rib_find_rn_from_ctx(const struct zebra_dplane_ctx *ctx)
1607 {
1608 struct route_table *table = NULL;
1609 struct route_node *rn = NULL;
1610 const struct prefix *dest_pfx, *src_pfx;
1611
1612 /* Locate rn and re(s) from ctx */
1613
1614 table = zebra_vrf_table_with_table_id(dplane_ctx_get_afi(ctx),
1615 dplane_ctx_get_safi(ctx),
1616 dplane_ctx_get_vrf(ctx),
1617 dplane_ctx_get_table(ctx));
1618 if (table == NULL) {
1619 if (IS_ZEBRA_DEBUG_DPLANE) {
1620 zlog_debug("Failed to find route for ctx: no table for afi %d, safi %d, vrf %u",
1621 dplane_ctx_get_afi(ctx),
1622 dplane_ctx_get_safi(ctx),
1623 dplane_ctx_get_vrf(ctx));
1624 }
1625 goto done;
1626 }
1627
1628 dest_pfx = dplane_ctx_get_dest(ctx);
1629 src_pfx = dplane_ctx_get_src(ctx);
1630
1631 rn = srcdest_rnode_get(table, dest_pfx,
1632 src_pfx ? (struct prefix_ipv6 *)src_pfx : NULL);
1633
1634 done:
1635 return rn;
1636 }
1637
1638
1639
1640 /*
1641 * Route-update results processing after async dataplane update.
1642 */
1643 static void rib_process_result(struct zebra_dplane_ctx *ctx)
1644 {
1645 struct zebra_vrf *zvrf = NULL;
1646 struct route_node *rn = NULL;
1647 struct route_entry *re = NULL, *old_re = NULL, *rib;
1648 bool is_update = false;
1649 char dest_str[PREFIX_STRLEN] = "";
1650 enum dplane_op_e op;
1651 enum zebra_dplane_result status;
1652 const struct prefix *dest_pfx, *src_pfx;
1653 uint32_t seq;
1654 bool fib_changed = false;
1655
1656 zvrf = vrf_info_lookup(dplane_ctx_get_vrf(ctx));
1657 dest_pfx = dplane_ctx_get_dest(ctx);
1658
1659 /* Note well: only capturing the prefix string if debug is enabled here;
1660 * unconditional log messages will have to generate the string.
1661 */
1662 if (IS_ZEBRA_DEBUG_DPLANE)
1663 prefix2str(dest_pfx, dest_str, sizeof(dest_str));
1664
1665 /* Locate rn and re(s) from ctx */
1666 rn = rib_find_rn_from_ctx(ctx);
1667 if (rn == NULL) {
1668 if (IS_ZEBRA_DEBUG_DPLANE) {
1669 zlog_debug("Failed to process dplane results: no route for %u:%s",
1670 dplane_ctx_get_vrf(ctx), dest_str);
1671 }
1672 goto done;
1673 }
1674
1675 srcdest_rnode_prefixes(rn, &dest_pfx, &src_pfx);
1676
1677 op = dplane_ctx_get_op(ctx);
1678 status = dplane_ctx_get_status(ctx);
1679
1680 if (IS_ZEBRA_DEBUG_DPLANE_DETAIL)
1681 zlog_debug("%u:%s Processing dplane ctx %p, op %s result %s",
1682 dplane_ctx_get_vrf(ctx), dest_str, ctx,
1683 dplane_op2str(op), dplane_res2str(status));
1684
1685 /*
1686 * Update is a bit of a special case, where we may have both old and new
1687 * routes to post-process.
1688 */
1689 is_update = dplane_ctx_is_update(ctx);
1690
1691 /*
1692 * Take a pass through the routes, look for matches with the context
1693 * info.
1694 */
1695 RNODE_FOREACH_RE(rn, rib) {
1696
1697 if (re == NULL) {
1698 if (rib_route_match_ctx(rib, ctx, false))
1699 re = rib;
1700 }
1701
1702 /* Check for old route match */
1703 if (is_update && (old_re == NULL)) {
1704 if (rib_route_match_ctx(rib, ctx, true /*is_update*/))
1705 old_re = rib;
1706 }
1707
1708 /* Have we found the routes we need to work on? */
1709 if (re && ((!is_update || old_re)))
1710 break;
1711 }
1712
1713 seq = dplane_ctx_get_seq(ctx);
1714
1715 /*
1716 * Check sequence number(s) to detect stale results before continuing
1717 */
1718 if (re) {
1719 if (re->dplane_sequence != seq) {
1720 if (IS_ZEBRA_DEBUG_DPLANE_DETAIL)
1721 zlog_debug("%u:%s Stale dplane result for re %p",
1722 dplane_ctx_get_vrf(ctx),
1723 dest_str, re);
1724 } else
1725 UNSET_FLAG(re->status, ROUTE_ENTRY_QUEUED);
1726 }
1727
1728 if (old_re) {
1729 if (old_re->dplane_sequence != dplane_ctx_get_old_seq(ctx)) {
1730 if (IS_ZEBRA_DEBUG_DPLANE_DETAIL)
1731 zlog_debug("%u:%s Stale dplane result for old_re %p",
1732 dplane_ctx_get_vrf(ctx),
1733 dest_str, old_re);
1734 } else
1735 UNSET_FLAG(old_re->status, ROUTE_ENTRY_QUEUED);
1736 }
1737
1738 switch (op) {
1739 case DPLANE_OP_ROUTE_INSTALL:
1740 case DPLANE_OP_ROUTE_UPDATE:
1741 if (status == ZEBRA_DPLANE_REQUEST_SUCCESS) {
1742 if (re) {
1743 UNSET_FLAG(re->status, ROUTE_ENTRY_FAILED);
1744 SET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
1745 }
1746 /*
1747 * On an update operation from the same route type
1748 * context retrieval currently has no way to know
1749 * which was the old and which was the new.
1750 * So don't unset our flags that we just set.
1751 * We know redistribution is ok because the
1752 * old_re in this case is used for nothing
1753 * more than knowing whom to contact if necessary.
1754 */
1755 if (old_re && old_re != re) {
1756 UNSET_FLAG(old_re->status, ROUTE_ENTRY_FAILED);
1757 UNSET_FLAG(old_re->status,
1758 ROUTE_ENTRY_INSTALLED);
1759 }
1760
1761 /* Update zebra route based on the results in
1762 * the context struct.
1763 */
1764 if (re) {
1765 fib_changed =
1766 rib_update_re_from_ctx(re, rn, ctx);
1767
1768 if (!fib_changed) {
1769 if (IS_ZEBRA_DEBUG_DPLANE_DETAIL)
1770 zlog_debug("%u:%s no fib change for re",
1771 dplane_ctx_get_vrf(
1772 ctx),
1773 dest_str);
1774 }
1775
1776 /* Redistribute */
1777 redistribute_update(dest_pfx, src_pfx,
1778 re, NULL);
1779 }
1780
1781 /*
1782 * System routes are weird in that they
1783 * allow multiple to be installed that match
1784 * to the same prefix, so after we get the
1785 * result we need to clean them up so that
1786 * we can actually use them.
1787 */
1788 if ((re && RIB_SYSTEM_ROUTE(re)) ||
1789 (old_re && RIB_SYSTEM_ROUTE(old_re)))
1790 zebra_rib_fixup_system(rn);
1791
1792 if (zvrf)
1793 zvrf->installs++;
1794
1795 /* Notify route owner */
1796 zsend_route_notify_owner_ctx(ctx, ZAPI_ROUTE_INSTALLED);
1797
1798 } else {
1799 if (re) {
1800 SET_FLAG(re->status, ROUTE_ENTRY_FAILED);
1801 UNSET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
1802 } if (old_re)
1803 SET_FLAG(old_re->status, ROUTE_ENTRY_FAILED);
1804 if (re)
1805 zsend_route_notify_owner(re, dest_pfx,
1806 ZAPI_ROUTE_FAIL_INSTALL);
1807
1808 zlog_warn("%u:%s: Route install failed",
1809 dplane_ctx_get_vrf(ctx),
1810 prefix2str(dest_pfx,
1811 dest_str, sizeof(dest_str)));
1812 }
1813 break;
1814 case DPLANE_OP_ROUTE_DELETE:
1815 if (re)
1816 SET_FLAG(re->status, ROUTE_ENTRY_FAILED);
1817 /*
1818 * In the delete case, the zebra core datastructs were
1819 * updated (or removed) at the time the delete was issued,
1820 * so we're just notifying the route owner.
1821 */
1822 if (status == ZEBRA_DPLANE_REQUEST_SUCCESS) {
1823 if (re) {
1824 UNSET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
1825 UNSET_FLAG(re->status, ROUTE_ENTRY_FAILED);
1826 }
1827 zsend_route_notify_owner_ctx(ctx, ZAPI_ROUTE_REMOVED);
1828
1829 if (zvrf)
1830 zvrf->removals++;
1831 } else {
1832 if (re)
1833 SET_FLAG(re->status, ROUTE_ENTRY_FAILED);
1834 zsend_route_notify_owner_ctx(ctx,
1835 ZAPI_ROUTE_REMOVE_FAIL);
1836
1837 zlog_warn("%u:%s: Route Deletion failure",
1838 dplane_ctx_get_vrf(ctx),
1839 prefix2str(dest_pfx,
1840 dest_str, sizeof(dest_str)));
1841 }
1842
1843 /*
1844 * System routes are weird in that they
1845 * allow multiple to be installed that match
1846 * to the same prefix, so after we get the
1847 * result we need to clean them up so that
1848 * we can actually use them.
1849 */
1850 if ((re && RIB_SYSTEM_ROUTE(re)) ||
1851 (old_re && RIB_SYSTEM_ROUTE(old_re)))
1852 zebra_rib_fixup_system(rn);
1853 break;
1854 default:
1855 break;
1856 }
1857
1858 zebra_rib_evaluate_rn_nexthops(rn, seq);
1859 zebra_rib_evaluate_mpls(rn);
1860 done:
1861
1862 if (rn)
1863 route_unlock_node(rn);
1864
1865 /* Return context to dataplane module */
1866 dplane_ctx_fini(&ctx);
1867 }
1868
1869 /*
1870 * Handle notification from async dataplane: the dataplane has detected
1871 * some change to a route, and notifies zebra so that the control plane
1872 * can reflect that change.
1873 */
1874 static void rib_process_dplane_notify(struct zebra_dplane_ctx *ctx)
1875 {
1876 struct route_node *rn = NULL;
1877 struct route_entry *re = NULL;
1878 struct nexthop *nexthop;
1879 char dest_str[PREFIX_STRLEN] = "";
1880 const struct prefix *dest_pfx, *src_pfx;
1881 rib_dest_t *dest;
1882 bool fib_changed = false;
1883 bool debug_p = IS_ZEBRA_DEBUG_DPLANE | IS_ZEBRA_DEBUG_RIB;
1884 int start_count, end_count;
1885 dest_pfx = dplane_ctx_get_dest(ctx);
1886
1887 /* Note well: only capturing the prefix string if debug is enabled here;
1888 * unconditional log messages will have to generate the string.
1889 */
1890 if (debug_p)
1891 prefix2str(dest_pfx, dest_str, sizeof(dest_str));
1892
1893 /* Locate rn and re(s) from ctx */
1894 rn = rib_find_rn_from_ctx(ctx);
1895 if (rn == NULL) {
1896 if (debug_p) {
1897 zlog_debug("Failed to process dplane notification: no routes for %u:%s",
1898 dplane_ctx_get_vrf(ctx), dest_str);
1899 }
1900 goto done;
1901 }
1902
1903 dest = rib_dest_from_rnode(rn);
1904 srcdest_rnode_prefixes(rn, &dest_pfx, &src_pfx);
1905
1906 if (debug_p)
1907 zlog_debug("%u:%s Processing dplane notif ctx %p",
1908 dplane_ctx_get_vrf(ctx), dest_str, ctx);
1909
1910 /*
1911 * Take a pass through the routes, look for matches with the context
1912 * info.
1913 */
1914 RNODE_FOREACH_RE(rn, re) {
1915 if (rib_route_match_ctx(re, ctx, false /*!update*/))
1916 break;
1917 }
1918
1919 /* No match? Nothing we can do */
1920 if (re == NULL) {
1921 if (debug_p)
1922 zlog_debug("%u:%s Unable to process dplane notification: no entry for type %s",
1923 dplane_ctx_get_vrf(ctx), dest_str,
1924 zebra_route_string(
1925 dplane_ctx_get_type(ctx)));
1926
1927 goto done;
1928 }
1929
1930 /* Is this a notification that ... matters? We only really care about
1931 * the route that is currently selected for installation.
1932 */
1933 if (re != dest->selected_fib) {
1934 /* TODO -- don't skip processing entirely? We might like to
1935 * at least report on the event.
1936 */
1937 if (debug_p)
1938 zlog_debug("%u:%s dplane notif, but type %s not selected_fib",
1939 dplane_ctx_get_vrf(ctx), dest_str,
1940 zebra_route_string(
1941 dplane_ctx_get_type(ctx)));
1942 goto done;
1943 }
1944
1945 /* We'll want to determine whether the installation status of the
1946 * route has changed: we'll check the status before processing,
1947 * and then again if there's been a change.
1948 */
1949 start_count = 0;
1950 for (ALL_NEXTHOPS_PTR(rib_active_nhg(re), nexthop)) {
1951 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB))
1952 start_count++;
1953 }
1954
1955 /* Update zebra's nexthop FIB flags based on the context struct's
1956 * nexthops.
1957 */
1958 fib_changed = rib_update_re_from_ctx(re, rn, ctx);
1959
1960 if (!fib_changed) {
1961 if (debug_p)
1962 zlog_debug("%u:%s No change from dplane notification",
1963 dplane_ctx_get_vrf(ctx), dest_str);
1964
1965 goto done;
1966 }
1967
1968 /*
1969 * Perform follow-up work if the actual status of the prefix
1970 * changed.
1971 */
1972
1973 end_count = 0;
1974 for (ALL_NEXTHOPS_PTR(rib_active_nhg(re), nexthop)) {
1975 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB))
1976 end_count++;
1977 }
1978
1979 /* Various fib transitions: changed nexthops; from installed to
1980 * not-installed; or not-installed to installed.
1981 */
1982 if (start_count > 0 && end_count > 0) {
1983
1984 /* Changed nexthops - update kernel/others */
1985 dplane_route_notif_update(rn, re,
1986 DPLANE_OP_ROUTE_UPDATE, ctx);
1987
1988 } else if (start_count == 0 && end_count > 0) {
1989 if (debug_p)
1990 zlog_debug("%u:%s installed transition from dplane notification",
1991 dplane_ctx_get_vrf(ctx), dest_str);
1992
1993 /* We expect this to be the selected route, so we want
1994 * to tell others about this transistion.
1995 */
1996 SET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
1997
1998 /* Changed nexthops - update kernel/others */
1999 dplane_route_notif_update(rn, re, DPLANE_OP_ROUTE_INSTALL, ctx);
2000
2001 /* Redistribute, lsp, and nht update */
2002 redistribute_update(dest_pfx, src_pfx, re, NULL);
2003
2004 zebra_rib_evaluate_rn_nexthops(
2005 rn, zebra_router_get_next_sequence());
2006
2007 zebra_rib_evaluate_mpls(rn);
2008
2009 } else if (start_count > 0 && end_count == 0) {
2010 if (debug_p)
2011 zlog_debug("%u:%s un-installed transition from dplane notification",
2012 dplane_ctx_get_vrf(ctx), dest_str);
2013
2014 /* Transition from _something_ installed to _nothing_
2015 * installed.
2016 */
2017 /* We expect this to be the selected route, so we want
2018 * to tell others about this transistion.
2019 */
2020 UNSET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
2021
2022 /* Changed nexthops - update kernel/others */
2023 dplane_route_notif_update(rn, re, DPLANE_OP_ROUTE_DELETE, ctx);
2024
2025 /* Redistribute, lsp, and nht update */
2026 redistribute_delete(dest_pfx, src_pfx, re);
2027
2028 zebra_rib_evaluate_rn_nexthops(
2029 rn, zebra_router_get_next_sequence());
2030
2031 zebra_rib_evaluate_mpls(rn);
2032 }
2033
2034 done:
2035 if (rn)
2036 route_unlock_node(rn);
2037
2038 /* Return context to dataplane module */
2039 dplane_ctx_fini(&ctx);
2040 }
2041
2042 /* Take a list of route_node structs and return 1, if there was a record
2043 * picked from it and processed by rib_process(). Don't process more,
2044 * than one RN record; operate only in the specified sub-queue.
2045 */
2046 static unsigned int process_subq(struct list *subq, uint8_t qindex)
2047 {
2048 struct listnode *lnode = listhead(subq);
2049 struct route_node *rnode;
2050 rib_dest_t *dest;
2051 struct zebra_vrf *zvrf = NULL;
2052
2053 if (!lnode)
2054 return 0;
2055
2056 rnode = listgetdata(lnode);
2057 dest = rib_dest_from_rnode(rnode);
2058 if (dest)
2059 zvrf = rib_dest_vrf(dest);
2060
2061 rib_process(rnode);
2062
2063 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
2064 char buf[SRCDEST2STR_BUFFER];
2065
2066 srcdest_rnode2str(rnode, buf, sizeof(buf));
2067 zlog_debug("%u:%s: rn %p dequeued from sub-queue %u",
2068 zvrf ? zvrf_id(zvrf) : 0, buf, rnode, qindex);
2069 }
2070
2071 if (rnode->info)
2072 UNSET_FLAG(rib_dest_from_rnode(rnode)->flags,
2073 RIB_ROUTE_QUEUED(qindex));
2074
2075 #if 0
2076 else
2077 {
2078 zlog_debug ("%s: called for route_node (%p, %d) with no ribs",
2079 __func__, rnode, rnode->lock);
2080 zlog_backtrace(LOG_DEBUG);
2081 }
2082 #endif
2083 route_unlock_node(rnode);
2084 list_delete_node(subq, lnode);
2085 return 1;
2086 }
2087
2088
2089 /*
2090 * Perform next-hop tracking processing after RIB updates.
2091 */
2092 static void do_nht_processing(void)
2093 {
2094 }
2095
2096 /* Dispatch the meta queue by picking, processing and unlocking the next RN from
2097 * a non-empty sub-queue with lowest priority. wq is equal to zebra->ribq and
2098 * data
2099 * is pointed to the meta queue structure.
2100 */
2101 static wq_item_status meta_queue_process(struct work_queue *dummy, void *data)
2102 {
2103 struct meta_queue *mq = data;
2104 unsigned i;
2105 uint32_t queue_len, queue_limit;
2106
2107 /* Ensure there's room for more dataplane updates */
2108 queue_limit = dplane_get_in_queue_limit();
2109 queue_len = dplane_get_in_queue_len();
2110 if (queue_len > queue_limit) {
2111 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2112 zlog_debug("rib queue: dplane queue len %u, limit %u, retrying",
2113 queue_len, queue_limit);
2114
2115 /* Ensure that the meta-queue is actually enqueued */
2116 if (work_queue_empty(zrouter.ribq))
2117 work_queue_add(zrouter.ribq, zrouter.mq);
2118
2119 return WQ_QUEUE_BLOCKED;
2120 }
2121
2122 for (i = 0; i < MQ_SIZE; i++)
2123 if (process_subq(mq->subq[i], i)) {
2124 mq->size--;
2125 break;
2126 }
2127 return mq->size ? WQ_REQUEUE : WQ_SUCCESS;
2128 }
2129
2130
2131 /*
2132 * Look into the RN and queue it into the highest priority queue
2133 * at this point in time for processing.
2134 *
2135 * We will enqueue a route node only once per invocation.
2136 *
2137 * There are two possibilities here that should be kept in mind.
2138 * If the original invocation has not been pulled off for processing
2139 * yet, A subsuquent invocation can have a route entry with a better
2140 * meta queue index value and we can have a situation where
2141 * we might have the same node enqueued 2 times. Not necessarily
2142 * an optimal situation but it should be ok.
2143 *
2144 * The other possibility is that the original invocation has not
2145 * been pulled off for processing yet, A subsusquent invocation
2146 * doesn't have a route_entry with a better meta-queue and the
2147 * original metaqueue index value will win and we'll end up with
2148 * the route node enqueued once.
2149 */
2150 static void rib_meta_queue_add(struct meta_queue *mq, struct route_node *rn)
2151 {
2152 struct route_entry *re = NULL, *curr_re = NULL;
2153 uint8_t qindex = MQ_SIZE, curr_qindex = MQ_SIZE;
2154
2155 RNODE_FOREACH_RE (rn, curr_re) {
2156 curr_qindex = route_info[curr_re->type].meta_q_map;
2157
2158 if (curr_qindex <= qindex) {
2159 re = curr_re;
2160 qindex = curr_qindex;
2161 }
2162 }
2163
2164 if (!re)
2165 return;
2166
2167 /* Invariant: at this point we always have rn->info set. */
2168 if (CHECK_FLAG(rib_dest_from_rnode(rn)->flags,
2169 RIB_ROUTE_QUEUED(qindex))) {
2170 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2171 rnode_debug(rn, re->vrf_id,
2172 "rn %p is already queued in sub-queue %u",
2173 (void *)rn, qindex);
2174 return;
2175 }
2176
2177 SET_FLAG(rib_dest_from_rnode(rn)->flags, RIB_ROUTE_QUEUED(qindex));
2178 listnode_add(mq->subq[qindex], rn);
2179 route_lock_node(rn);
2180 mq->size++;
2181
2182 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2183 rnode_debug(rn, re->vrf_id, "queued rn %p into sub-queue %u",
2184 (void *)rn, qindex);
2185 }
2186
2187 /* Add route_node to work queue and schedule processing */
2188 void rib_queue_add(struct route_node *rn)
2189 {
2190 assert(rn);
2191
2192 /* Pointless to queue a route_node with no RIB entries to add or remove
2193 */
2194 if (!rnode_to_ribs(rn)) {
2195 zlog_debug("%s: called for route_node (%p, %d) with no ribs",
2196 __func__, (void *)rn, rn->lock);
2197 zlog_backtrace(LOG_DEBUG);
2198 return;
2199 }
2200
2201 if (zrouter.ribq == NULL) {
2202 flog_err(EC_ZEBRA_WQ_NONEXISTENT,
2203 "%s: work_queue does not exist!", __func__);
2204 return;
2205 }
2206
2207 /*
2208 * The RIB queue should normally be either empty or holding the only
2209 * work_queue_item element. In the latter case this element would
2210 * hold a pointer to the meta queue structure, which must be used to
2211 * actually queue the route nodes to process. So create the MQ
2212 * holder, if necessary, then push the work into it in any case.
2213 * This semantics was introduced after 0.99.9 release.
2214 */
2215 if (work_queue_empty(zrouter.ribq))
2216 work_queue_add(zrouter.ribq, zrouter.mq);
2217
2218 rib_meta_queue_add(zrouter.mq, rn);
2219
2220 return;
2221 }
2222
2223 /* Create new meta queue.
2224 A destructor function doesn't seem to be necessary here.
2225 */
2226 static struct meta_queue *meta_queue_new(void)
2227 {
2228 struct meta_queue *new;
2229 unsigned i;
2230
2231 new = XCALLOC(MTYPE_WORK_QUEUE, sizeof(struct meta_queue));
2232
2233 for (i = 0; i < MQ_SIZE; i++) {
2234 new->subq[i] = list_new();
2235 assert(new->subq[i]);
2236 }
2237
2238 return new;
2239 }
2240
2241 void meta_queue_free(struct meta_queue *mq)
2242 {
2243 unsigned i;
2244
2245 for (i = 0; i < MQ_SIZE; i++)
2246 list_delete(&mq->subq[i]);
2247
2248 XFREE(MTYPE_WORK_QUEUE, mq);
2249 }
2250
2251 /* initialise zebra rib work queue */
2252 static void rib_queue_init(void)
2253 {
2254 if (!(zrouter.ribq = work_queue_new(zrouter.master,
2255 "route_node processing"))) {
2256 flog_err(EC_ZEBRA_WQ_NONEXISTENT,
2257 "%s: could not initialise work queue!", __func__);
2258 return;
2259 }
2260
2261 /* fill in the work queue spec */
2262 zrouter.ribq->spec.workfunc = &meta_queue_process;
2263 zrouter.ribq->spec.errorfunc = NULL;
2264 zrouter.ribq->spec.completion_func = NULL;
2265 /* XXX: TODO: These should be runtime configurable via vty */
2266 zrouter.ribq->spec.max_retries = 3;
2267 zrouter.ribq->spec.hold = ZEBRA_RIB_PROCESS_HOLD_TIME;
2268 zrouter.ribq->spec.retry = ZEBRA_RIB_PROCESS_RETRY_TIME;
2269
2270 if (!(zrouter.mq = meta_queue_new())) {
2271 flog_err(EC_ZEBRA_WQ_NONEXISTENT,
2272 "%s: could not initialise meta queue!", __func__);
2273 return;
2274 }
2275 return;
2276 }
2277
2278 rib_dest_t *zebra_rib_create_dest(struct route_node *rn)
2279 {
2280 rib_dest_t *dest;
2281
2282 dest = XCALLOC(MTYPE_RIB_DEST, sizeof(rib_dest_t));
2283 rnh_list_init(&dest->nht);
2284 route_lock_node(rn); /* rn route table reference */
2285 rn->info = dest;
2286 dest->rnode = rn;
2287
2288 return dest;
2289 }
2290
2291 /* RIB updates are processed via a queue of pointers to route_nodes.
2292 *
2293 * The queue length is bounded by the maximal size of the routing table,
2294 * as a route_node will not be requeued, if already queued.
2295 *
2296 * REs are submitted via rib_addnode or rib_delnode which set minimal
2297 * state, or static_install_route (when an existing RE is updated)
2298 * and then submit route_node to queue for best-path selection later.
2299 * Order of add/delete state changes are preserved for any given RE.
2300 *
2301 * Deleted REs are reaped during best-path selection.
2302 *
2303 * rib_addnode
2304 * |-> rib_link or unset ROUTE_ENTRY_REMOVE |->Update kernel with
2305 * |-------->| | best RE, if required
2306 * | |
2307 * static_install->|->rib_addqueue...... -> rib_process
2308 * | |
2309 * |-------->| |-> rib_unlink
2310 * |-> set ROUTE_ENTRY_REMOVE |
2311 * rib_delnode (RE freed)
2312 *
2313 * The 'info' pointer of a route_node points to a rib_dest_t
2314 * ('dest'). Queueing state for a route_node is kept on the dest. The
2315 * dest is created on-demand by rib_link() and is kept around at least
2316 * as long as there are ribs hanging off it (@see rib_gc_dest()).
2317 *
2318 * Refcounting (aka "locking" throughout the GNU Zebra and Quagga code):
2319 *
2320 * - route_nodes: refcounted by:
2321 * - dest attached to route_node:
2322 * - managed by: rib_link/rib_gc_dest
2323 * - route_node processing queue
2324 * - managed by: rib_addqueue, rib_process.
2325 *
2326 */
2327
2328 /* Add RE to head of the route node. */
2329 static void rib_link(struct route_node *rn, struct route_entry *re, int process)
2330 {
2331 rib_dest_t *dest;
2332 afi_t afi;
2333 const char *rmap_name;
2334
2335 assert(re && rn);
2336
2337 dest = rib_dest_from_rnode(rn);
2338 if (!dest) {
2339 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2340 rnode_debug(rn, re->vrf_id, "rn %p adding dest", rn);
2341
2342 dest = zebra_rib_create_dest(rn);
2343 }
2344
2345 re_list_add_head(&dest->routes, re);
2346
2347 afi = (rn->p.family == AF_INET)
2348 ? AFI_IP
2349 : (rn->p.family == AF_INET6) ? AFI_IP6 : AFI_MAX;
2350 if (is_zebra_import_table_enabled(afi, re->table)) {
2351 rmap_name = zebra_get_import_table_route_map(afi, re->table);
2352 zebra_add_import_table_entry(rn, re, rmap_name);
2353 } else if (process)
2354 rib_queue_add(rn);
2355 }
2356
2357 static void rib_addnode(struct route_node *rn,
2358 struct route_entry *re, int process)
2359 {
2360 /* RE node has been un-removed before route-node is processed.
2361 * route_node must hence already be on the queue for processing..
2362 */
2363 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
2364 if (IS_ZEBRA_DEBUG_RIB)
2365 rnode_debug(rn, re->vrf_id, "rn %p, un-removed re %p",
2366 (void *)rn, (void *)re);
2367
2368 UNSET_FLAG(re->status, ROUTE_ENTRY_REMOVED);
2369 return;
2370 }
2371 rib_link(rn, re, process);
2372 }
2373
2374 /*
2375 * rib_unlink
2376 *
2377 * Detach a rib structure from a route_node.
2378 *
2379 * Note that a call to rib_unlink() should be followed by a call to
2380 * rib_gc_dest() at some point. This allows a rib_dest_t that is no
2381 * longer required to be deleted.
2382 */
2383 void rib_unlink(struct route_node *rn, struct route_entry *re)
2384 {
2385 rib_dest_t *dest;
2386
2387 assert(rn && re);
2388
2389 if (IS_ZEBRA_DEBUG_RIB)
2390 rnode_debug(rn, re->vrf_id, "rn %p, re %p", (void *)rn,
2391 (void *)re);
2392
2393 dest = rib_dest_from_rnode(rn);
2394
2395 re_list_del(&dest->routes, re);
2396
2397 if (dest->selected_fib == re)
2398 dest->selected_fib = NULL;
2399
2400 nexthops_free(re->ng.nexthop);
2401 nexthops_free(re->fib_ng.nexthop);
2402
2403 XFREE(MTYPE_RE, re);
2404 }
2405
2406 void rib_delnode(struct route_node *rn, struct route_entry *re)
2407 {
2408 afi_t afi;
2409
2410 if (IS_ZEBRA_DEBUG_RIB)
2411 rnode_debug(rn, re->vrf_id, "rn %p, re %p, removing",
2412 (void *)rn, (void *)re);
2413 SET_FLAG(re->status, ROUTE_ENTRY_REMOVED);
2414
2415 afi = (rn->p.family == AF_INET)
2416 ? AFI_IP
2417 : (rn->p.family == AF_INET6) ? AFI_IP6 : AFI_MAX;
2418 if (is_zebra_import_table_enabled(afi, re->table)) {
2419 zebra_del_import_table_entry(rn, re);
2420 /* Just clean up if non main table */
2421 if (IS_ZEBRA_DEBUG_RIB) {
2422 char buf[SRCDEST2STR_BUFFER];
2423 srcdest_rnode2str(rn, buf, sizeof(buf));
2424 zlog_debug("%u:%s: Freeing route rn %p, re %p (%s)",
2425 re->vrf_id, buf, rn, re,
2426 zebra_route_string(re->type));
2427 }
2428
2429 rib_unlink(rn, re);
2430 } else {
2431 rib_queue_add(rn);
2432 }
2433 }
2434
2435 /* This function dumps the contents of a given RE entry into
2436 * standard debug log. Calling function name and IP prefix in
2437 * question are passed as 1st and 2nd arguments.
2438 */
2439
2440 void _route_entry_dump(const char *func, union prefixconstptr pp,
2441 union prefixconstptr src_pp,
2442 const struct route_entry *re)
2443 {
2444 const struct prefix *src_p = src_pp.p;
2445 bool is_srcdst = src_p && src_p->prefixlen;
2446 char straddr[PREFIX_STRLEN];
2447 char srcaddr[PREFIX_STRLEN];
2448 char nhname[PREFIX_STRLEN];
2449 struct nexthop *nexthop;
2450
2451 zlog_debug("%s: dumping RE entry %p for %s%s%s vrf %u", func,
2452 (const void *)re, prefix2str(pp, straddr, sizeof(straddr)),
2453 is_srcdst ? " from " : "",
2454 is_srcdst ? prefix2str(src_pp, srcaddr, sizeof(srcaddr))
2455 : "",
2456 re->vrf_id);
2457 zlog_debug("%s: uptime == %lu, type == %u, instance == %d, table == %d",
2458 straddr, (unsigned long)re->uptime, re->type, re->instance,
2459 re->table);
2460 zlog_debug(
2461 "%s: metric == %u, mtu == %u, distance == %u, flags == %u, status == %u",
2462 straddr, re->metric, re->mtu, re->distance, re->flags, re->status);
2463 zlog_debug("%s: nexthop_num == %u, nexthop_active_num == %u", straddr,
2464 re->nexthop_num, re->nexthop_active_num);
2465
2466 for (ALL_NEXTHOPS(re->ng, nexthop)) {
2467 struct interface *ifp;
2468 struct vrf *vrf = vrf_lookup_by_id(nexthop->vrf_id);
2469
2470 switch (nexthop->type) {
2471 case NEXTHOP_TYPE_BLACKHOLE:
2472 sprintf(nhname, "Blackhole");
2473 break;
2474 case NEXTHOP_TYPE_IFINDEX:
2475 ifp = if_lookup_by_index(nexthop->ifindex,
2476 nexthop->vrf_id);
2477 sprintf(nhname, "%s", ifp ? ifp->name : "Unknown");
2478 break;
2479 case NEXTHOP_TYPE_IPV4:
2480 /* fallthrough */
2481 case NEXTHOP_TYPE_IPV4_IFINDEX:
2482 inet_ntop(AF_INET, &nexthop->gate, nhname,
2483 INET6_ADDRSTRLEN);
2484 break;
2485 case NEXTHOP_TYPE_IPV6:
2486 case NEXTHOP_TYPE_IPV6_IFINDEX:
2487 inet_ntop(AF_INET6, &nexthop->gate, nhname,
2488 INET6_ADDRSTRLEN);
2489 break;
2490 }
2491 zlog_debug("%s: %s %s[%u] vrf %s(%u) with flags %s%s%s%s%s%s",
2492 straddr, (nexthop->rparent ? " NH" : "NH"), nhname,
2493 nexthop->ifindex, vrf ? vrf->name : "Unknown",
2494 nexthop->vrf_id,
2495 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE)
2496 ? "ACTIVE "
2497 : ""),
2498 (CHECK_FLAG(re->status, ROUTE_ENTRY_INSTALLED)
2499 ? "FIB "
2500 : ""),
2501 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE)
2502 ? "RECURSIVE "
2503 : ""),
2504 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK)
2505 ? "ONLINK "
2506 : ""),
2507 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_MATCHED)
2508 ? "MATCHED "
2509 : ""),
2510 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_DUPLICATE)
2511 ? "DUPLICATE "
2512 : ""));
2513 }
2514 zlog_debug("%s: dump complete", straddr);
2515 }
2516
2517 /* This is an exported helper to rtm_read() to dump the strange
2518 * RE entry found by rib_lookup_ipv4_route()
2519 */
2520
2521 void rib_lookup_and_dump(struct prefix_ipv4 *p, vrf_id_t vrf_id)
2522 {
2523 struct route_table *table;
2524 struct route_node *rn;
2525 struct route_entry *re;
2526 char prefix_buf[INET_ADDRSTRLEN];
2527
2528 /* Lookup table. */
2529 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
2530 if (!table) {
2531 flog_err(EC_ZEBRA_TABLE_LOOKUP_FAILED,
2532 "%s:%u zebra_vrf_table() returned NULL", __func__,
2533 vrf_id);
2534 return;
2535 }
2536
2537 /* Scan the RIB table for exactly matching RE entry. */
2538 rn = route_node_lookup(table, (struct prefix *)p);
2539
2540 /* No route for this prefix. */
2541 if (!rn) {
2542 zlog_debug("%s:%u lookup failed for %s", __func__, vrf_id,
2543 prefix2str((struct prefix *)p, prefix_buf,
2544 sizeof(prefix_buf)));
2545 return;
2546 }
2547
2548 /* Unlock node. */
2549 route_unlock_node(rn);
2550
2551 /* let's go */
2552 RNODE_FOREACH_RE (rn, re) {
2553 zlog_debug("%s:%u rn %p, re %p: %s, %s",
2554 __func__, vrf_id,
2555 (void *)rn, (void *)re,
2556 (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)
2557 ? "removed"
2558 : "NOT removed"),
2559 (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)
2560 ? "selected"
2561 : "NOT selected"));
2562 route_entry_dump(p, NULL, re);
2563 }
2564 }
2565
2566 /* Check if requested address assignment will fail due to another
2567 * route being installed by zebra in FIB already. Take necessary
2568 * actions, if needed: remove such a route from FIB and deSELECT
2569 * corresponding RE entry. Then put affected RN into RIBQ head.
2570 */
2571 void rib_lookup_and_pushup(struct prefix_ipv4 *p, vrf_id_t vrf_id)
2572 {
2573 struct route_table *table;
2574 struct route_node *rn;
2575 rib_dest_t *dest;
2576
2577 if (NULL == (table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id))) {
2578 flog_err(EC_ZEBRA_TABLE_LOOKUP_FAILED,
2579 "%s:%u zebra_vrf_table() returned NULL", __func__,
2580 vrf_id);
2581 return;
2582 }
2583
2584 /* No matches would be the simplest case. */
2585 if (NULL == (rn = route_node_lookup(table, (struct prefix *)p)))
2586 return;
2587
2588 /* Unlock node. */
2589 route_unlock_node(rn);
2590
2591 dest = rib_dest_from_rnode(rn);
2592 /* Check all RE entries. In case any changes have to be done, requeue
2593 * the RN into RIBQ head. If the routing message about the new connected
2594 * route (generated by the IP address we are going to assign very soon)
2595 * comes before the RIBQ is processed, the new RE entry will join
2596 * RIBQ record already on head. This is necessary for proper
2597 * revalidation
2598 * of the rest of the RE.
2599 */
2600 if (dest->selected_fib) {
2601 if (IS_ZEBRA_DEBUG_RIB) {
2602 char buf[PREFIX_STRLEN];
2603
2604 zlog_debug("%u:%s: freeing way for connected prefix",
2605 dest->selected_fib->vrf_id,
2606 prefix2str(&rn->p, buf, sizeof(buf)));
2607 route_entry_dump(&rn->p, NULL, dest->selected_fib);
2608 }
2609 rib_uninstall(rn, dest->selected_fib);
2610 rib_queue_add(rn);
2611 }
2612 }
2613
2614 int rib_add_multipath(afi_t afi, safi_t safi, struct prefix *p,
2615 struct prefix_ipv6 *src_p, struct route_entry *re)
2616 {
2617 struct route_table *table;
2618 struct route_node *rn;
2619 struct route_entry *same = NULL;
2620 int ret = 0;
2621
2622 if (!re)
2623 return 0;
2624
2625 assert(!src_p || !src_p->prefixlen || afi == AFI_IP6);
2626
2627 /* Lookup table. */
2628 table = zebra_vrf_table_with_table_id(afi, safi, re->vrf_id, re->table);
2629 if (!table) {
2630 XFREE(MTYPE_RE, re);
2631 return 0;
2632 }
2633
2634 /* Make it sure prefixlen is applied to the prefix. */
2635 apply_mask(p);
2636 if (src_p)
2637 apply_mask_ipv6(src_p);
2638
2639 /* Set default distance by route type. */
2640 if (re->distance == 0)
2641 re->distance = route_distance(re->type);
2642
2643 /* Lookup route node.*/
2644 rn = srcdest_rnode_get(table, p, src_p);
2645
2646 /*
2647 * If same type of route are installed, treat it as a implicit
2648 * withdraw.
2649 * If the user has specified the No route replace semantics
2650 * for the install don't do a route replace.
2651 */
2652 RNODE_FOREACH_RE (rn, same) {
2653 if (CHECK_FLAG(same->status, ROUTE_ENTRY_REMOVED))
2654 continue;
2655
2656 if (same->type != re->type)
2657 continue;
2658 if (same->instance != re->instance)
2659 continue;
2660 if (same->type == ZEBRA_ROUTE_KERNEL
2661 && same->metric != re->metric)
2662 continue;
2663
2664 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_RR_USE_DISTANCE) &&
2665 same->distance != re->distance)
2666 continue;
2667
2668 /*
2669 * We should allow duplicate connected routes
2670 * because of IPv6 link-local routes and unnumbered
2671 * interfaces on Linux.
2672 */
2673 if (same->type != ZEBRA_ROUTE_CONNECT)
2674 break;
2675 }
2676
2677 /* If this route is kernel/connected route, notify the dataplane. */
2678 if (RIB_SYSTEM_ROUTE(re)) {
2679 /* Notify dataplane */
2680 dplane_sys_route_add(rn, re);
2681 }
2682
2683 /* Link new re to node.*/
2684 if (IS_ZEBRA_DEBUG_RIB) {
2685 rnode_debug(rn, re->vrf_id,
2686 "Inserting route rn %p, re %p (%s) existing %p",
2687 rn, re, zebra_route_string(re->type), same);
2688
2689 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2690 route_entry_dump(p, src_p, re);
2691 }
2692
2693 SET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
2694 rib_addnode(rn, re, 1);
2695 ret = 1;
2696
2697 /* Free implicit route.*/
2698 if (same) {
2699 rib_delnode(rn, same);
2700 ret = -1;
2701 }
2702
2703 route_unlock_node(rn);
2704 return ret;
2705 }
2706
2707 void rib_delete(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type,
2708 unsigned short instance, int flags, struct prefix *p,
2709 struct prefix_ipv6 *src_p, const struct nexthop *nh,
2710 uint32_t table_id, uint32_t metric, uint8_t distance,
2711 bool fromkernel)
2712 {
2713 struct route_table *table;
2714 struct route_node *rn;
2715 struct route_entry *re;
2716 struct route_entry *fib = NULL;
2717 struct route_entry *same = NULL;
2718 struct nexthop *rtnh;
2719 char buf2[INET6_ADDRSTRLEN];
2720 rib_dest_t *dest;
2721
2722 assert(!src_p || !src_p->prefixlen || afi == AFI_IP6);
2723
2724 /* Lookup table. */
2725 table = zebra_vrf_table_with_table_id(afi, safi, vrf_id, table_id);
2726 if (!table)
2727 return;
2728
2729 /* Apply mask. */
2730 apply_mask(p);
2731 if (src_p)
2732 apply_mask_ipv6(src_p);
2733
2734 /* Lookup route node. */
2735 rn = srcdest_rnode_lookup(table, p, src_p);
2736 if (!rn) {
2737 char dst_buf[PREFIX_STRLEN], src_buf[PREFIX_STRLEN];
2738
2739 prefix2str(p, dst_buf, sizeof(dst_buf));
2740 if (src_p && src_p->prefixlen)
2741 prefix2str(src_p, src_buf, sizeof(src_buf));
2742 else
2743 src_buf[0] = '\0';
2744
2745 if (IS_ZEBRA_DEBUG_RIB)
2746 zlog_debug("%u:%s%s%s doesn't exist in rib", vrf_id,
2747 dst_buf,
2748 (src_buf[0] != '\0') ? " from " : "",
2749 src_buf);
2750 return;
2751 }
2752
2753 dest = rib_dest_from_rnode(rn);
2754 fib = dest->selected_fib;
2755
2756 /* Lookup same type route. */
2757 RNODE_FOREACH_RE (rn, re) {
2758 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
2759 continue;
2760
2761 if (re->type != type)
2762 continue;
2763 if (re->instance != instance)
2764 continue;
2765 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_RR_USE_DISTANCE) &&
2766 distance != re->distance)
2767 continue;
2768
2769 if (re->type == ZEBRA_ROUTE_KERNEL && re->metric != metric)
2770 continue;
2771 if (re->type == ZEBRA_ROUTE_CONNECT && (rtnh = re->ng.nexthop)
2772 && rtnh->type == NEXTHOP_TYPE_IFINDEX && nh) {
2773 if (rtnh->ifindex != nh->ifindex)
2774 continue;
2775 same = re;
2776 break;
2777 }
2778 /* Make sure that the route found has the same gateway. */
2779 else {
2780 if (nh == NULL) {
2781 same = re;
2782 break;
2783 }
2784 for (ALL_NEXTHOPS(re->ng, rtnh))
2785 /*
2786 * No guarantee all kernel send nh with labels
2787 * on delete.
2788 */
2789 if (nexthop_same_no_labels(rtnh, nh)) {
2790 same = re;
2791 break;
2792 }
2793 if (same)
2794 break;
2795 }
2796 }
2797 /* If same type of route can't be found and this message is from
2798 kernel. */
2799 if (!same) {
2800 /*
2801 * In the past(HA!) we could get here because
2802 * we were receiving a route delete from the
2803 * kernel and we're not marking the proto
2804 * as coming from it's appropriate originator.
2805 * Now that we are properly noticing the fact
2806 * that the kernel has deleted our route we
2807 * are not going to get called in this path
2808 * I am going to leave this here because
2809 * this might still work this way on non-linux
2810 * platforms as well as some weird state I have
2811 * not properly thought of yet.
2812 * If we can show that this code path is
2813 * dead then we can remove it.
2814 */
2815 if (fib && CHECK_FLAG(flags, ZEBRA_FLAG_SELFROUTE)) {
2816 if (IS_ZEBRA_DEBUG_RIB) {
2817 rnode_debug(rn, vrf_id,
2818 "rn %p, re %p (%s) was deleted from kernel, adding",
2819 rn, fib,
2820 zebra_route_string(fib->type));
2821 }
2822 if (allow_delete) {
2823 UNSET_FLAG(fib->status, ROUTE_ENTRY_INSTALLED);
2824 /* Unset flags. */
2825 for (rtnh = fib->ng.nexthop; rtnh;
2826 rtnh = rtnh->next)
2827 UNSET_FLAG(rtnh->flags,
2828 NEXTHOP_FLAG_FIB);
2829
2830 /*
2831 * This is a non FRR route
2832 * as such we should mark
2833 * it as deleted
2834 */
2835 dest->selected_fib = NULL;
2836 } else {
2837 /* This means someone else, other than Zebra,
2838 * has deleted
2839 * a Zebra router from the kernel. We will add
2840 * it back */
2841 rib_install_kernel(rn, fib, NULL);
2842 }
2843 } else {
2844 if (IS_ZEBRA_DEBUG_RIB) {
2845 if (nh)
2846 rnode_debug(
2847 rn, vrf_id,
2848 "via %s ifindex %d type %d "
2849 "doesn't exist in rib",
2850 inet_ntop(afi2family(afi),
2851 &nh->gate, buf2,
2852 sizeof(buf2)),
2853 nh->ifindex, type);
2854 else
2855 rnode_debug(
2856 rn, vrf_id,
2857 "type %d doesn't exist in rib",
2858 type);
2859 }
2860 route_unlock_node(rn);
2861 return;
2862 }
2863 }
2864
2865 if (same) {
2866 if (fromkernel && CHECK_FLAG(flags, ZEBRA_FLAG_SELFROUTE)
2867 && !allow_delete) {
2868 rib_install_kernel(rn, same, NULL);
2869 route_unlock_node(rn);
2870
2871 return;
2872 }
2873
2874 /* Special handling for IPv4 or IPv6 routes sourced from
2875 * EVPN - the nexthop (and associated MAC) need to be
2876 * uninstalled if no more refs.
2877 */
2878 if (CHECK_FLAG(flags, ZEBRA_FLAG_EVPN_ROUTE)) {
2879 struct nexthop *tmp_nh;
2880
2881 for (ALL_NEXTHOPS(re->ng, tmp_nh)) {
2882 struct ipaddr vtep_ip;
2883
2884 memset(&vtep_ip, 0, sizeof(struct ipaddr));
2885 if (afi == AFI_IP) {
2886 vtep_ip.ipa_type = IPADDR_V4;
2887 memcpy(&(vtep_ip.ipaddr_v4),
2888 &(tmp_nh->gate.ipv4),
2889 sizeof(struct in_addr));
2890 } else {
2891 vtep_ip.ipa_type = IPADDR_V6;
2892 memcpy(&(vtep_ip.ipaddr_v6),
2893 &(tmp_nh->gate.ipv6),
2894 sizeof(struct in6_addr));
2895 }
2896 zebra_vxlan_evpn_vrf_route_del(re->vrf_id,
2897 &vtep_ip, p);
2898 }
2899 }
2900
2901 /* Notify dplane if system route changes */
2902 if (RIB_SYSTEM_ROUTE(re))
2903 dplane_sys_route_del(rn, same);
2904
2905 rib_delnode(rn, same);
2906 }
2907
2908 route_unlock_node(rn);
2909 return;
2910 }
2911
2912
2913 int rib_add(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type,
2914 unsigned short instance, int flags, struct prefix *p,
2915 struct prefix_ipv6 *src_p, const struct nexthop *nh,
2916 uint32_t table_id, uint32_t metric, uint32_t mtu, uint8_t distance,
2917 route_tag_t tag)
2918 {
2919 struct route_entry *re;
2920 struct nexthop *nexthop;
2921
2922 /* Allocate new route_entry structure. */
2923 re = XCALLOC(MTYPE_RE, sizeof(struct route_entry));
2924 re->type = type;
2925 re->instance = instance;
2926 re->distance = distance;
2927 re->flags = flags;
2928 re->metric = metric;
2929 re->mtu = mtu;
2930 re->table = table_id;
2931 re->vrf_id = vrf_id;
2932 re->nexthop_num = 0;
2933 re->uptime = monotime(NULL);
2934 re->tag = tag;
2935
2936 /* Add nexthop. */
2937 nexthop = nexthop_new();
2938 *nexthop = *nh;
2939 route_entry_nexthop_add(re, nexthop);
2940
2941 return rib_add_multipath(afi, safi, p, src_p, re);
2942 }
2943
2944 /* Schedule routes of a particular table (address-family) based on event. */
2945 void rib_update_table(struct route_table *table, rib_update_event_t event)
2946 {
2947 struct route_node *rn;
2948 struct route_entry *re, *next;
2949
2950 /* Walk all routes and queue for processing, if appropriate for
2951 * the trigger event.
2952 */
2953 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
2954 /*
2955 * If we are looking at a route node and the node
2956 * has already been queued we don't
2957 * need to queue it up again
2958 */
2959 if (rn->info && CHECK_FLAG(rib_dest_from_rnode(rn)->flags,
2960 RIB_ROUTE_ANY_QUEUED))
2961 continue;
2962 switch (event) {
2963 case RIB_UPDATE_IF_CHANGE:
2964 /* Examine all routes that won't get processed by the
2965 * protocol or
2966 * triggered by nexthop evaluation (NHT). This would be
2967 * system,
2968 * kernel and certain static routes. Note that NHT will
2969 * get
2970 * triggered upon an interface event as connected routes
2971 * always
2972 * get queued for processing.
2973 */
2974 RNODE_FOREACH_RE_SAFE (rn, re, next) {
2975 struct nexthop *nh;
2976
2977 if (re->type != ZEBRA_ROUTE_SYSTEM
2978 && re->type != ZEBRA_ROUTE_KERNEL
2979 && re->type != ZEBRA_ROUTE_CONNECT
2980 && re->type != ZEBRA_ROUTE_STATIC)
2981 continue;
2982
2983 if (re->type != ZEBRA_ROUTE_STATIC) {
2984 SET_FLAG(re->status,
2985 ROUTE_ENTRY_CHANGED);
2986 rib_queue_add(rn);
2987 continue;
2988 }
2989
2990 for (nh = re->ng.nexthop; nh; nh = nh->next)
2991 if (!(nh->type == NEXTHOP_TYPE_IPV4
2992 || nh->type == NEXTHOP_TYPE_IPV6))
2993 break;
2994
2995 /* If we only have nexthops to a
2996 * gateway, NHT will
2997 * take care.
2998 */
2999 if (nh) {
3000 SET_FLAG(re->status,
3001 ROUTE_ENTRY_CHANGED);
3002 rib_queue_add(rn);
3003 }
3004 }
3005 break;
3006
3007 case RIB_UPDATE_RMAP_CHANGE:
3008 case RIB_UPDATE_OTHER:
3009 /* Right now, examine all routes. Can restrict to a
3010 * protocol in
3011 * some cases (TODO).
3012 */
3013 if (rnode_to_ribs(rn)) {
3014 RNODE_FOREACH_RE_SAFE (rn, re, next)
3015 SET_FLAG(re->status,
3016 ROUTE_ENTRY_CHANGED);
3017 rib_queue_add(rn);
3018 }
3019 break;
3020
3021 default:
3022 break;
3023 }
3024 }
3025 }
3026
3027 /* RIB update function. */
3028 void rib_update(vrf_id_t vrf_id, rib_update_event_t event)
3029 {
3030 struct route_table *table;
3031
3032 /* Process routes of interested address-families. */
3033 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
3034 if (table) {
3035 if (IS_ZEBRA_DEBUG_EVENT)
3036 zlog_debug("%s : AFI_IP event %d", __func__, event);
3037 rib_update_table(table, event);
3038 }
3039
3040 table = zebra_vrf_table(AFI_IP6, SAFI_UNICAST, vrf_id);
3041 if (table) {
3042 if (IS_ZEBRA_DEBUG_EVENT)
3043 zlog_debug("%s : AFI_IP6 event %d", __func__, event);
3044 rib_update_table(table, event);
3045 }
3046 }
3047
3048 /* Delete self installed routes after zebra is relaunched. */
3049 void rib_sweep_table(struct route_table *table)
3050 {
3051 struct route_node *rn;
3052 struct route_entry *re;
3053 struct route_entry *next;
3054 struct nexthop *nexthop;
3055
3056 if (!table)
3057 return;
3058
3059 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
3060 RNODE_FOREACH_RE_SAFE (rn, re, next) {
3061
3062 if (IS_ZEBRA_DEBUG_RIB)
3063 route_entry_dump(&rn->p, NULL, re);
3064
3065 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
3066 continue;
3067
3068 if (!CHECK_FLAG(re->flags, ZEBRA_FLAG_SELFROUTE))
3069 continue;
3070
3071 /*
3072 * If routes are older than startup_time then
3073 * we know we read them in from the kernel.
3074 * As such we can safely remove them.
3075 */
3076 if (zrouter.startup_time < re->uptime)
3077 continue;
3078
3079 /*
3080 * So we are starting up and have received
3081 * routes from the kernel that we have installed
3082 * from a previous run of zebra but not cleaned
3083 * up ( say a kill -9 )
3084 * But since we haven't actually installed
3085 * them yet( we received them from the kernel )
3086 * we don't think they are active.
3087 * So let's pretend they are active to actually
3088 * remove them.
3089 * In all honesty I'm not sure if we should
3090 * mark them as active when we receive them
3091 * This is startup only so probably ok.
3092 *
3093 * If we ever decide to move rib_sweep_table
3094 * to a different spot (ie startup )
3095 * this decision needs to be revisited
3096 */
3097 SET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
3098 for (ALL_NEXTHOPS(re->ng, nexthop))
3099 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
3100
3101 rib_uninstall_kernel(rn, re);
3102 rib_delnode(rn, re);
3103 }
3104 }
3105 }
3106
3107 /* Sweep all RIB tables. */
3108 int rib_sweep_route(struct thread *t)
3109 {
3110 struct vrf *vrf;
3111 struct zebra_vrf *zvrf;
3112
3113 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id) {
3114 if ((zvrf = vrf->info) == NULL)
3115 continue;
3116
3117 rib_sweep_table(zvrf->table[AFI_IP][SAFI_UNICAST]);
3118 rib_sweep_table(zvrf->table[AFI_IP6][SAFI_UNICAST]);
3119 }
3120
3121 zebra_router_sweep_route();
3122
3123 return 0;
3124 }
3125
3126 /* Remove specific by protocol routes from 'table'. */
3127 unsigned long rib_score_proto_table(uint8_t proto, unsigned short instance,
3128 struct route_table *table)
3129 {
3130 struct route_node *rn;
3131 struct route_entry *re;
3132 struct route_entry *next;
3133 unsigned long n = 0;
3134
3135 if (table)
3136 for (rn = route_top(table); rn; rn = srcdest_route_next(rn))
3137 RNODE_FOREACH_RE_SAFE (rn, re, next) {
3138 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
3139 continue;
3140 if (re->type == proto
3141 && re->instance == instance) {
3142 rib_delnode(rn, re);
3143 n++;
3144 }
3145 }
3146 return n;
3147 }
3148
3149 /* Remove specific by protocol routes. */
3150 unsigned long rib_score_proto(uint8_t proto, unsigned short instance)
3151 {
3152 struct vrf *vrf;
3153 struct zebra_vrf *zvrf;
3154 struct other_route_table *ort;
3155 unsigned long cnt = 0;
3156
3157 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id) {
3158 zvrf = vrf->info;
3159 if (!zvrf)
3160 continue;
3161
3162 cnt += rib_score_proto_table(proto, instance,
3163 zvrf->table[AFI_IP][SAFI_UNICAST])
3164 + rib_score_proto_table(
3165 proto, instance,
3166 zvrf->table[AFI_IP6][SAFI_UNICAST]);
3167
3168 frr_each(otable, &zvrf->other_tables, ort) cnt +=
3169 rib_score_proto_table(proto, instance, ort->table);
3170 }
3171
3172 return cnt;
3173 }
3174
3175 /* Close RIB and clean up kernel routes. */
3176 void rib_close_table(struct route_table *table)
3177 {
3178 struct route_node *rn;
3179 rib_table_info_t *info;
3180 rib_dest_t *dest;
3181
3182 if (!table)
3183 return;
3184
3185 info = route_table_get_info(table);
3186
3187 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
3188 dest = rib_dest_from_rnode(rn);
3189
3190 if (dest && dest->selected_fib) {
3191 if (info->safi == SAFI_UNICAST)
3192 hook_call(rib_update, rn, NULL);
3193
3194 rib_uninstall_kernel(rn, dest->selected_fib);
3195 dest->selected_fib = NULL;
3196 }
3197 }
3198 }
3199
3200 /*
3201 * Handler for async dataplane results after a pseudowire installation
3202 */
3203 static int handle_pw_result(struct zebra_dplane_ctx *ctx)
3204 {
3205 struct zebra_pw *pw;
3206 struct zebra_vrf *vrf;
3207
3208 /* The pseudowire code assumes success - we act on an error
3209 * result for installation attempts here.
3210 */
3211 if (dplane_ctx_get_op(ctx) != DPLANE_OP_PW_INSTALL)
3212 goto done;
3213
3214 if (dplane_ctx_get_status(ctx) != ZEBRA_DPLANE_REQUEST_SUCCESS) {
3215 vrf = zebra_vrf_lookup_by_id(dplane_ctx_get_vrf(ctx));
3216 pw = zebra_pw_find(vrf, dplane_ctx_get_pw_ifname(ctx));
3217 if (pw)
3218 zebra_pw_install_failure(pw);
3219 }
3220
3221 done:
3222
3223 return 0;
3224 }
3225
3226
3227 /*
3228 * Handle results from the dataplane system. Dequeue update context
3229 * structs, dispatch to appropriate internal handlers.
3230 */
3231 static int rib_process_dplane_results(struct thread *thread)
3232 {
3233 struct zebra_dplane_ctx *ctx;
3234 struct dplane_ctx_q ctxlist;
3235
3236 /* Dequeue a list of completed updates with one lock/unlock cycle */
3237
3238 do {
3239 TAILQ_INIT(&ctxlist);
3240
3241 /* Take lock controlling queue of results */
3242 pthread_mutex_lock(&dplane_mutex);
3243 {
3244 /* Dequeue list of context structs */
3245 dplane_ctx_list_append(&ctxlist, &rib_dplane_q);
3246 }
3247 pthread_mutex_unlock(&dplane_mutex);
3248
3249 /* Dequeue context block */
3250 ctx = dplane_ctx_dequeue(&ctxlist);
3251
3252 /* If we've emptied the results queue, we're done */
3253 if (ctx == NULL)
3254 break;
3255
3256 while (ctx) {
3257 switch (dplane_ctx_get_op(ctx)) {
3258 case DPLANE_OP_ROUTE_INSTALL:
3259 case DPLANE_OP_ROUTE_UPDATE:
3260 case DPLANE_OP_ROUTE_DELETE:
3261 {
3262 /* Bit of special case for route updates
3263 * that were generated by async notifications:
3264 * we don't want to continue processing these
3265 * in the rib.
3266 */
3267 if (dplane_ctx_get_notif_provider(ctx) == 0)
3268 rib_process_result(ctx);
3269 else
3270 dplane_ctx_fini(&ctx);
3271 }
3272 break;
3273
3274 case DPLANE_OP_ROUTE_NOTIFY:
3275 rib_process_dplane_notify(ctx);
3276 break;
3277
3278 case DPLANE_OP_LSP_INSTALL:
3279 case DPLANE_OP_LSP_UPDATE:
3280 case DPLANE_OP_LSP_DELETE:
3281 {
3282 /* Bit of special case for LSP updates
3283 * that were generated by async notifications:
3284 * we don't want to continue processing these.
3285 */
3286 if (dplane_ctx_get_notif_provider(ctx) == 0)
3287 zebra_mpls_lsp_dplane_result(ctx);
3288 else
3289 dplane_ctx_fini(&ctx);
3290 }
3291 break;
3292
3293 case DPLANE_OP_LSP_NOTIFY:
3294 zebra_mpls_process_dplane_notify(ctx);
3295 break;
3296
3297 case DPLANE_OP_PW_INSTALL:
3298 case DPLANE_OP_PW_UNINSTALL:
3299 handle_pw_result(ctx);
3300 break;
3301
3302 case DPLANE_OP_SYS_ROUTE_ADD:
3303 case DPLANE_OP_SYS_ROUTE_DELETE:
3304 /* No further processing in zebra for these. */
3305 dplane_ctx_fini(&ctx);
3306 break;
3307
3308 default:
3309 /* Don't expect this: just return the struct? */
3310 dplane_ctx_fini(&ctx);
3311 break;
3312 } /* Dispatch by op code */
3313
3314 ctx = dplane_ctx_dequeue(&ctxlist);
3315 }
3316
3317 } while (1);
3318
3319 /* Check for nexthop tracking processing after finishing with results */
3320 do_nht_processing();
3321
3322 return 0;
3323 }
3324
3325 /*
3326 * Results are returned from the dataplane subsystem, in the context of
3327 * the dataplane pthread. We enqueue the results here for processing by
3328 * the main thread later.
3329 */
3330 static int rib_dplane_results(struct dplane_ctx_q *ctxlist)
3331 {
3332 /* Take lock controlling queue of results */
3333 pthread_mutex_lock(&dplane_mutex);
3334 {
3335 /* Enqueue context blocks */
3336 dplane_ctx_list_append(&rib_dplane_q, ctxlist);
3337 }
3338 pthread_mutex_unlock(&dplane_mutex);
3339
3340 /* Ensure event is signalled to zebra main pthread */
3341 thread_add_event(zrouter.master, rib_process_dplane_results, NULL, 0,
3342 &t_dplane);
3343
3344 return 0;
3345 }
3346
3347 /*
3348 * Ensure there are no empty slots in the route_info array.
3349 * Every route type in zebra should be present there.
3350 */
3351 static void check_route_info(void)
3352 {
3353 int len = array_size(route_info);
3354
3355 /*
3356 * ZEBRA_ROUTE_SYSTEM is special cased since
3357 * its key is 0 anyway.
3358 *
3359 * ZEBRA_ROUTE_ALL is also ignored.
3360 */
3361 for (int i = 0; i < len; i++) {
3362 if (i == ZEBRA_ROUTE_SYSTEM || i == ZEBRA_ROUTE_ALL)
3363 continue;
3364 assert(route_info[i].key);
3365 assert(route_info[i].meta_q_map < MQ_SIZE);
3366 }
3367 }
3368
3369 /* Routing information base initialize. */
3370 void rib_init(void)
3371 {
3372 check_route_info();
3373
3374 rib_queue_init();
3375
3376 /* Init dataplane, and register for results */
3377 pthread_mutex_init(&dplane_mutex, NULL);
3378 TAILQ_INIT(&rib_dplane_q);
3379 zebra_dplane_init(rib_dplane_results);
3380 }
3381
3382 /*
3383 * vrf_id_get_next
3384 *
3385 * Get the first vrf id that is greater than the given vrf id if any.
3386 *
3387 * Returns TRUE if a vrf id was found, FALSE otherwise.
3388 */
3389 static inline int vrf_id_get_next(vrf_id_t vrf_id, vrf_id_t *next_id_p)
3390 {
3391 struct vrf *vrf;
3392
3393 vrf = vrf_lookup_by_id(vrf_id);
3394 if (vrf) {
3395 vrf = RB_NEXT(vrf_id_head, vrf);
3396 if (vrf) {
3397 *next_id_p = vrf->vrf_id;
3398 return 1;
3399 }
3400 }
3401
3402 return 0;
3403 }
3404
3405 /*
3406 * rib_tables_iter_next
3407 *
3408 * Returns the next table in the iteration.
3409 */
3410 struct route_table *rib_tables_iter_next(rib_tables_iter_t *iter)
3411 {
3412 struct route_table *table;
3413
3414 /*
3415 * Array that helps us go over all AFI/SAFI combinations via one
3416 * index.
3417 */
3418 static struct {
3419 afi_t afi;
3420 safi_t safi;
3421 } afi_safis[] = {
3422 {AFI_IP, SAFI_UNICAST}, {AFI_IP, SAFI_MULTICAST},
3423 {AFI_IP, SAFI_LABELED_UNICAST}, {AFI_IP6, SAFI_UNICAST},
3424 {AFI_IP6, SAFI_MULTICAST}, {AFI_IP6, SAFI_LABELED_UNICAST},
3425 };
3426
3427 table = NULL;
3428
3429 switch (iter->state) {
3430
3431 case RIB_TABLES_ITER_S_INIT:
3432 iter->vrf_id = VRF_DEFAULT;
3433 iter->afi_safi_ix = -1;
3434
3435 /* Fall through */
3436
3437 case RIB_TABLES_ITER_S_ITERATING:
3438 iter->afi_safi_ix++;
3439 while (1) {
3440
3441 while (iter->afi_safi_ix
3442 < (int)array_size(afi_safis)) {
3443 table = zebra_vrf_table(
3444 afi_safis[iter->afi_safi_ix].afi,
3445 afi_safis[iter->afi_safi_ix].safi,
3446 iter->vrf_id);
3447 if (table)
3448 break;
3449
3450 iter->afi_safi_ix++;
3451 }
3452
3453 /*
3454 * Found another table in this vrf.
3455 */
3456 if (table)
3457 break;
3458
3459 /*
3460 * Done with all tables in the current vrf, go to the
3461 * next
3462 * one.
3463 */
3464 if (!vrf_id_get_next(iter->vrf_id, &iter->vrf_id))
3465 break;
3466
3467 iter->afi_safi_ix = 0;
3468 }
3469
3470 break;
3471
3472 case RIB_TABLES_ITER_S_DONE:
3473 return NULL;
3474 }
3475
3476 if (table)
3477 iter->state = RIB_TABLES_ITER_S_ITERATING;
3478 else
3479 iter->state = RIB_TABLES_ITER_S_DONE;
3480
3481 return table;
3482 }