]> git.proxmox.com Git - mirror_frr.git/blob - zebra/zebra_rib.c
*: remove useless return variables
[mirror_frr.git] / zebra / zebra_rib.c
1 /* Routing Information Base.
2 * Copyright (C) 1997, 98, 99, 2001 Kunihiro Ishiguro
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; see the file COPYING; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include <zebra.h>
22
23 #include "command.h"
24 #include "if.h"
25 #include "linklist.h"
26 #include "log.h"
27 #include "log_int.h"
28 #include "memory.h"
29 #include "mpls.h"
30 #include "nexthop.h"
31 #include "prefix.h"
32 #include "prefix.h"
33 #include "routemap.h"
34 #include "sockunion.h"
35 #include "srcdest_table.h"
36 #include "table.h"
37 #include "thread.h"
38 #include "vrf.h"
39 #include "workqueue.h"
40
41 #include "zebra/zebra_router.h"
42 #include "zebra/connected.h"
43 #include "zebra/debug.h"
44 #include "zebra/interface.h"
45 #include "zebra/redistribute.h"
46 #include "zebra/rib.h"
47 #include "zebra/rt.h"
48 #include "zebra/zapi_msg.h"
49 #include "zebra/zebra_errors.h"
50 #include "zebra/zebra_memory.h"
51 #include "zebra/zebra_ns.h"
52 #include "zebra/zebra_rnh.h"
53 #include "zebra/zebra_routemap.h"
54 #include "zebra/zebra_vrf.h"
55 #include "zebra/zebra_vxlan.h"
56 #include "zebra/zapi_msg.h"
57 #include "zebra/zebra_dplane.h"
58
59 /*
60 * Event, list, and mutex for delivery of dataplane results
61 */
62 static pthread_mutex_t dplane_mutex;
63 static struct thread *t_dplane;
64 static struct dplane_ctx_q rib_dplane_q;
65
66 DEFINE_HOOK(rib_update, (struct route_node * rn, const char *reason),
67 (rn, reason))
68
69 /* Should we allow non Quagga processes to delete our routes */
70 extern int allow_delete;
71
72 /* Each route type's string and default distance value. */
73 static const struct {
74 int key;
75 int distance;
76 uint8_t meta_q_map;
77 } route_info[ZEBRA_ROUTE_MAX] = {
78 [ZEBRA_ROUTE_SYSTEM] = {ZEBRA_ROUTE_SYSTEM, 0, 4},
79 [ZEBRA_ROUTE_KERNEL] = {ZEBRA_ROUTE_KERNEL, 0, 0},
80 [ZEBRA_ROUTE_CONNECT] = {ZEBRA_ROUTE_CONNECT, 0, 0},
81 [ZEBRA_ROUTE_STATIC] = {ZEBRA_ROUTE_STATIC, 1, 1},
82 [ZEBRA_ROUTE_RIP] = {ZEBRA_ROUTE_RIP, 120, 2},
83 [ZEBRA_ROUTE_RIPNG] = {ZEBRA_ROUTE_RIPNG, 120, 2},
84 [ZEBRA_ROUTE_OSPF] = {ZEBRA_ROUTE_OSPF, 110, 2},
85 [ZEBRA_ROUTE_OSPF6] = {ZEBRA_ROUTE_OSPF6, 110, 2},
86 [ZEBRA_ROUTE_ISIS] = {ZEBRA_ROUTE_ISIS, 115, 2},
87 [ZEBRA_ROUTE_BGP] = {ZEBRA_ROUTE_BGP, 20 /* IBGP is 200. */, 3},
88 [ZEBRA_ROUTE_PIM] = {ZEBRA_ROUTE_PIM, 255, 4},
89 [ZEBRA_ROUTE_EIGRP] = {ZEBRA_ROUTE_EIGRP, 90, 2},
90 [ZEBRA_ROUTE_NHRP] = {ZEBRA_ROUTE_NHRP, 10, 2},
91 [ZEBRA_ROUTE_HSLS] = {ZEBRA_ROUTE_HSLS, 255, 4},
92 [ZEBRA_ROUTE_OLSR] = {ZEBRA_ROUTE_OLSR, 255, 4},
93 [ZEBRA_ROUTE_TABLE] = {ZEBRA_ROUTE_TABLE, 150, 1},
94 [ZEBRA_ROUTE_LDP] = {ZEBRA_ROUTE_LDP, 150, 4},
95 [ZEBRA_ROUTE_VNC] = {ZEBRA_ROUTE_VNC, 20, 3},
96 [ZEBRA_ROUTE_VNC_DIRECT] = {ZEBRA_ROUTE_VNC_DIRECT, 20, 3},
97 [ZEBRA_ROUTE_VNC_DIRECT_RH] = {ZEBRA_ROUTE_VNC_DIRECT_RH, 20, 3},
98 [ZEBRA_ROUTE_BGP_DIRECT] = {ZEBRA_ROUTE_BGP_DIRECT, 20, 3},
99 [ZEBRA_ROUTE_BGP_DIRECT_EXT] = {ZEBRA_ROUTE_BGP_DIRECT_EXT, 20, 3},
100 [ZEBRA_ROUTE_BABEL] = {ZEBRA_ROUTE_BABEL, 100, 2},
101 [ZEBRA_ROUTE_SHARP] = {ZEBRA_ROUTE_SHARP, 150, 4},
102
103 /* no entry/default: 150 */
104 };
105
106 /* RPF lookup behaviour */
107 static enum multicast_mode ipv4_multicast_mode = MCAST_NO_CONFIG;
108
109
110 static void __attribute__((format(printf, 5, 6)))
111 _rnode_zlog(const char *_func, vrf_id_t vrf_id, struct route_node *rn,
112 int priority, const char *msgfmt, ...)
113 {
114 char buf[SRCDEST2STR_BUFFER + sizeof(" (MRIB)")];
115 char msgbuf[512];
116 va_list ap;
117
118 va_start(ap, msgfmt);
119 vsnprintf(msgbuf, sizeof(msgbuf), msgfmt, ap);
120 va_end(ap);
121
122 if (rn) {
123 rib_table_info_t *info = srcdest_rnode_table_info(rn);
124 srcdest_rnode2str(rn, buf, sizeof(buf));
125
126 if (info->safi == SAFI_MULTICAST)
127 strcat(buf, " (MRIB)");
128 } else {
129 snprintf(buf, sizeof(buf), "{(route_node *) NULL}");
130 }
131
132 zlog(priority, "%s: %d:%s: %s", _func, vrf_id, buf, msgbuf);
133 }
134
135 #define rnode_debug(node, vrf_id, ...) \
136 _rnode_zlog(__func__, vrf_id, node, LOG_DEBUG, __VA_ARGS__)
137 #define rnode_info(node, ...) \
138 _rnode_zlog(__func__, vrf_id, node, LOG_INFO, __VA_ARGS__)
139
140 uint8_t route_distance(int type)
141 {
142 uint8_t distance;
143
144 if ((unsigned)type >= array_size(route_info))
145 distance = 150;
146 else
147 distance = route_info[type].distance;
148
149 return distance;
150 }
151
152 int is_zebra_valid_kernel_table(uint32_t table_id)
153 {
154 #ifdef linux
155 if ((table_id == RT_TABLE_UNSPEC) || (table_id == RT_TABLE_LOCAL)
156 || (table_id == RT_TABLE_COMPAT))
157 return 0;
158 #endif
159
160 return 1;
161 }
162
163 int is_zebra_main_routing_table(uint32_t table_id)
164 {
165 if ((table_id == RT_TABLE_MAIN)
166 || (table_id == zrouter.rtm_table_default))
167 return 1;
168 return 0;
169 }
170
171 int zebra_check_addr(const struct prefix *p)
172 {
173 if (p->family == AF_INET) {
174 uint32_t addr;
175
176 addr = p->u.prefix4.s_addr;
177 addr = ntohl(addr);
178
179 if (IPV4_NET127(addr) || IN_CLASSD(addr)
180 || IPV4_LINKLOCAL(addr))
181 return 0;
182 }
183 if (p->family == AF_INET6) {
184 if (IN6_IS_ADDR_LOOPBACK(&p->u.prefix6))
185 return 0;
186 if (IN6_IS_ADDR_LINKLOCAL(&p->u.prefix6))
187 return 0;
188 }
189 return 1;
190 }
191
192 /* Add nexthop to the end of a rib node's nexthop list */
193 void route_entry_nexthop_add(struct route_entry *re, struct nexthop *nexthop)
194 {
195 nexthop_add(&re->ng.nexthop, nexthop);
196 re->nexthop_num++;
197 }
198
199
200 /**
201 * copy_nexthop - copy a nexthop to the rib structure.
202 */
203 void route_entry_copy_nexthops(struct route_entry *re, struct nexthop *nh)
204 {
205 assert(!re->ng.nexthop);
206 copy_nexthops(&re->ng.nexthop, nh, NULL);
207 for (struct nexthop *nexthop = nh; nexthop; nexthop = nexthop->next)
208 re->nexthop_num++;
209 }
210
211 /* Delete specified nexthop from the list. */
212 void route_entry_nexthop_delete(struct route_entry *re, struct nexthop *nexthop)
213 {
214 if (nexthop->next)
215 nexthop->next->prev = nexthop->prev;
216 if (nexthop->prev)
217 nexthop->prev->next = nexthop->next;
218 else
219 re->ng.nexthop = nexthop->next;
220 re->nexthop_num--;
221 }
222
223
224 struct nexthop *route_entry_nexthop_ifindex_add(struct route_entry *re,
225 ifindex_t ifindex,
226 vrf_id_t nh_vrf_id)
227 {
228 struct nexthop *nexthop;
229
230 nexthop = nexthop_new();
231 nexthop->type = NEXTHOP_TYPE_IFINDEX;
232 nexthop->ifindex = ifindex;
233 nexthop->vrf_id = nh_vrf_id;
234
235 route_entry_nexthop_add(re, nexthop);
236
237 return nexthop;
238 }
239
240 struct nexthop *route_entry_nexthop_ipv4_add(struct route_entry *re,
241 struct in_addr *ipv4,
242 struct in_addr *src,
243 vrf_id_t nh_vrf_id)
244 {
245 struct nexthop *nexthop;
246
247 nexthop = nexthop_new();
248 nexthop->type = NEXTHOP_TYPE_IPV4;
249 nexthop->vrf_id = nh_vrf_id;
250 nexthop->gate.ipv4 = *ipv4;
251 if (src)
252 nexthop->src.ipv4 = *src;
253
254 route_entry_nexthop_add(re, nexthop);
255
256 return nexthop;
257 }
258
259 struct nexthop *route_entry_nexthop_ipv4_ifindex_add(struct route_entry *re,
260 struct in_addr *ipv4,
261 struct in_addr *src,
262 ifindex_t ifindex,
263 vrf_id_t nh_vrf_id)
264 {
265 struct nexthop *nexthop;
266 struct interface *ifp;
267
268 nexthop = nexthop_new();
269 nexthop->vrf_id = nh_vrf_id;
270 nexthop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
271 nexthop->gate.ipv4 = *ipv4;
272 if (src)
273 nexthop->src.ipv4 = *src;
274 nexthop->ifindex = ifindex;
275 ifp = if_lookup_by_index(nexthop->ifindex, nh_vrf_id);
276 /*Pending: need to think if null ifp here is ok during bootup?
277 There was a crash because ifp here was coming to be NULL */
278 if (ifp)
279 if (connected_is_unnumbered(ifp)
280 || CHECK_FLAG(re->flags, ZEBRA_FLAG_EVPN_ROUTE)) {
281 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK);
282 }
283
284 route_entry_nexthop_add(re, nexthop);
285
286 return nexthop;
287 }
288
289 struct nexthop *route_entry_nexthop_ipv6_add(struct route_entry *re,
290 struct in6_addr *ipv6,
291 vrf_id_t nh_vrf_id)
292 {
293 struct nexthop *nexthop;
294
295 nexthop = nexthop_new();
296 nexthop->vrf_id = nh_vrf_id;
297 nexthop->type = NEXTHOP_TYPE_IPV6;
298 nexthop->gate.ipv6 = *ipv6;
299
300 route_entry_nexthop_add(re, nexthop);
301
302 return nexthop;
303 }
304
305 struct nexthop *route_entry_nexthop_ipv6_ifindex_add(struct route_entry *re,
306 struct in6_addr *ipv6,
307 ifindex_t ifindex,
308 vrf_id_t nh_vrf_id)
309 {
310 struct nexthop *nexthop;
311
312 nexthop = nexthop_new();
313 nexthop->vrf_id = nh_vrf_id;
314 nexthop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
315 nexthop->gate.ipv6 = *ipv6;
316 nexthop->ifindex = ifindex;
317 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_EVPN_ROUTE))
318 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK);
319
320 route_entry_nexthop_add(re, nexthop);
321
322 return nexthop;
323 }
324
325 struct nexthop *route_entry_nexthop_blackhole_add(struct route_entry *re,
326 enum blackhole_type bh_type)
327 {
328 struct nexthop *nexthop;
329
330 nexthop = nexthop_new();
331 nexthop->vrf_id = VRF_DEFAULT;
332 nexthop->type = NEXTHOP_TYPE_BLACKHOLE;
333 nexthop->bh_type = bh_type;
334
335 route_entry_nexthop_add(re, nexthop);
336
337 return nexthop;
338 }
339
340 static void nexthop_set_resolved(afi_t afi, const struct nexthop *newhop,
341 struct nexthop *nexthop)
342 {
343 struct nexthop *resolved_hop;
344
345 resolved_hop = nexthop_new();
346 SET_FLAG(resolved_hop->flags, NEXTHOP_FLAG_ACTIVE);
347
348 resolved_hop->vrf_id = nexthop->vrf_id;
349 switch (newhop->type) {
350 case NEXTHOP_TYPE_IPV4:
351 case NEXTHOP_TYPE_IPV4_IFINDEX:
352 /* If the resolving route specifies a gateway, use it */
353 resolved_hop->type = newhop->type;
354 resolved_hop->gate.ipv4 = newhop->gate.ipv4;
355
356 if (newhop->ifindex) {
357 resolved_hop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
358 resolved_hop->ifindex = newhop->ifindex;
359 }
360 break;
361 case NEXTHOP_TYPE_IPV6:
362 case NEXTHOP_TYPE_IPV6_IFINDEX:
363 resolved_hop->type = newhop->type;
364 resolved_hop->gate.ipv6 = newhop->gate.ipv6;
365
366 if (newhop->ifindex) {
367 resolved_hop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
368 resolved_hop->ifindex = newhop->ifindex;
369 }
370 break;
371 case NEXTHOP_TYPE_IFINDEX:
372 /* If the resolving route is an interface route,
373 * it means the gateway we are looking up is connected
374 * to that interface. (The actual network is _not_ onlink).
375 * Therefore, the resolved route should have the original
376 * gateway as nexthop as it is directly connected.
377 *
378 * On Linux, we have to set the onlink netlink flag because
379 * otherwise, the kernel won't accept the route.
380 */
381 resolved_hop->flags |= NEXTHOP_FLAG_ONLINK;
382 if (afi == AFI_IP) {
383 resolved_hop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
384 resolved_hop->gate.ipv4 = nexthop->gate.ipv4;
385 } else if (afi == AFI_IP6) {
386 resolved_hop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
387 resolved_hop->gate.ipv6 = nexthop->gate.ipv6;
388 }
389 resolved_hop->ifindex = newhop->ifindex;
390 break;
391 case NEXTHOP_TYPE_BLACKHOLE:
392 resolved_hop->type = NEXTHOP_TYPE_BLACKHOLE;
393 resolved_hop->bh_type = nexthop->bh_type;
394 break;
395 }
396
397 if (newhop->flags & NEXTHOP_FLAG_ONLINK)
398 resolved_hop->flags |= NEXTHOP_FLAG_ONLINK;
399
400 /* Copy labels of the resolved route */
401 if (newhop->nh_label)
402 nexthop_add_labels(resolved_hop, newhop->nh_label_type,
403 newhop->nh_label->num_labels,
404 &newhop->nh_label->label[0]);
405
406 resolved_hop->rparent = nexthop;
407 nexthop_add(&nexthop->resolved, resolved_hop);
408 }
409
410 /* If force flag is not set, do not modify falgs at all for uninstall
411 the route from FIB. */
412 static int nexthop_active(afi_t afi, struct route_entry *re,
413 struct nexthop *nexthop, bool set,
414 struct route_node *top)
415 {
416 struct prefix p;
417 struct route_table *table;
418 struct route_node *rn;
419 struct route_entry *match = NULL;
420 int resolved;
421 struct nexthop *newhop;
422 struct interface *ifp;
423 rib_dest_t *dest;
424
425 if ((nexthop->type == NEXTHOP_TYPE_IPV4)
426 || nexthop->type == NEXTHOP_TYPE_IPV6)
427 nexthop->ifindex = 0;
428
429 if (set) {
430 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE);
431 nexthops_free(nexthop->resolved);
432 nexthop->resolved = NULL;
433 re->nexthop_mtu = 0;
434 }
435
436 /* Next hops (remote VTEPs) for EVPN routes are fully resolved. */
437 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_EVPN_RVTEP))
438 return 1;
439
440 /*
441 * If the kernel has sent us a route, then
442 * by golly gee whiz it's a good route.
443 */
444 if (re->type == ZEBRA_ROUTE_KERNEL ||
445 re->type == ZEBRA_ROUTE_SYSTEM)
446 return 1;
447
448 /* Skip nexthops that have been filtered out due to route-map */
449 /* The nexthops are specific to this route and so the same */
450 /* nexthop for a different route may not have this flag set */
451 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FILTERED)) {
452 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
453 zlog_debug("\t%s: Nexthop Filtered",
454 __PRETTY_FUNCTION__);
455 return 0;
456 }
457
458 /*
459 * Check to see if we should trust the passed in information
460 * for UNNUMBERED interfaces as that we won't find the GW
461 * address in the routing table.
462 */
463 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK)) {
464 ifp = if_lookup_by_index(nexthop->ifindex, nexthop->vrf_id);
465 if (!ifp) {
466 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
467 zlog_debug(
468 "\t%s: Onlink and interface: %u[%u] does not exist",
469 __PRETTY_FUNCTION__, nexthop->ifindex,
470 nexthop->vrf_id);
471 return 0;
472 }
473 if (connected_is_unnumbered(ifp)) {
474 if (if_is_operative(ifp))
475 return 1;
476 else {
477 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
478 zlog_debug(
479 "\t%s: Onlink and interface %s is not operative",
480 __PRETTY_FUNCTION__, ifp->name);
481 return 0;
482 }
483 }
484 if (!if_is_operative(ifp)) {
485 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
486 zlog_debug(
487 "\t%s: Interface %s is not unnumbered",
488 __PRETTY_FUNCTION__,
489 ifp ? ifp->name : "Unknown");
490 return 0;
491 }
492 }
493
494 /* Make lookup prefix. */
495 memset(&p, 0, sizeof(struct prefix));
496 switch (afi) {
497 case AFI_IP:
498 p.family = AF_INET;
499 p.prefixlen = IPV4_MAX_PREFIXLEN;
500 p.u.prefix4 = nexthop->gate.ipv4;
501 break;
502 case AFI_IP6:
503 p.family = AF_INET6;
504 p.prefixlen = IPV6_MAX_PREFIXLEN;
505 p.u.prefix6 = nexthop->gate.ipv6;
506 break;
507 default:
508 assert(afi != AFI_IP && afi != AFI_IP6);
509 break;
510 }
511 /* Lookup table. */
512 table = zebra_vrf_table(afi, SAFI_UNICAST, nexthop->vrf_id);
513 if (!table) {
514 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
515 zlog_debug("\t%s: Table not found",
516 __PRETTY_FUNCTION__);
517 return 0;
518 }
519
520 rn = route_node_match(table, (struct prefix *)&p);
521 while (rn) {
522 route_unlock_node(rn);
523
524 /* Lookup should halt if we've matched against ourselves ('top',
525 * if specified) - i.e., we cannot have a nexthop NH1 is
526 * resolved by a route NH1. The exception is if the route is a
527 * host route.
528 */
529 if (top && rn == top)
530 if (((afi == AFI_IP) && (rn->p.prefixlen != 32))
531 || ((afi == AFI_IP6) && (rn->p.prefixlen != 128))) {
532 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
533 zlog_debug(
534 "\t%s: Matched against ourself and prefix length is not max bit length",
535 __PRETTY_FUNCTION__);
536 return 0;
537 }
538
539 /* Pick up selected route. */
540 /* However, do not resolve over default route unless explicitly
541 * allowed. */
542 if (is_default_prefix(&rn->p)
543 && !rnh_resolve_via_default(p.family)) {
544 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
545 zlog_debug(
546 "\t:%s: Resolved against default route",
547 __PRETTY_FUNCTION__);
548 return 0;
549 }
550
551 dest = rib_dest_from_rnode(rn);
552 if (dest && dest->selected_fib
553 && !CHECK_FLAG(dest->selected_fib->status,
554 ROUTE_ENTRY_REMOVED)
555 && dest->selected_fib->type != ZEBRA_ROUTE_TABLE)
556 match = dest->selected_fib;
557
558 /* If there is no selected route or matched route is EGP, go up
559 tree. */
560 if (!match) {
561 do {
562 rn = rn->parent;
563 } while (rn && rn->info == NULL);
564 if (rn)
565 route_lock_node(rn);
566
567 continue;
568 }
569
570 if (match->type == ZEBRA_ROUTE_CONNECT) {
571 /* Directly point connected route. */
572 newhop = match->ng.nexthop;
573 if (newhop) {
574 if (nexthop->type == NEXTHOP_TYPE_IPV4
575 || nexthop->type == NEXTHOP_TYPE_IPV6)
576 nexthop->ifindex = newhop->ifindex;
577 }
578 return 1;
579 } else if (CHECK_FLAG(re->flags, ZEBRA_FLAG_ALLOW_RECURSION)) {
580 resolved = 0;
581 for (ALL_NEXTHOPS(match->ng, newhop)) {
582 if (!CHECK_FLAG(match->status,
583 ROUTE_ENTRY_INSTALLED))
584 continue;
585 if (CHECK_FLAG(newhop->flags,
586 NEXTHOP_FLAG_RECURSIVE))
587 continue;
588
589 if (set) {
590 SET_FLAG(nexthop->flags,
591 NEXTHOP_FLAG_RECURSIVE);
592 SET_FLAG(re->status,
593 ROUTE_ENTRY_NEXTHOPS_CHANGED);
594 nexthop_set_resolved(afi, newhop,
595 nexthop);
596 }
597 resolved = 1;
598 }
599 if (resolved && set)
600 re->nexthop_mtu = match->mtu;
601 if (!resolved && IS_ZEBRA_DEBUG_RIB_DETAILED)
602 zlog_debug("\t%s: Recursion failed to find",
603 __PRETTY_FUNCTION__);
604 return resolved;
605 } else if (re->type == ZEBRA_ROUTE_STATIC) {
606 resolved = 0;
607 for (ALL_NEXTHOPS(match->ng, newhop)) {
608 if (!CHECK_FLAG(match->status,
609 ROUTE_ENTRY_INSTALLED))
610 continue;
611 if (CHECK_FLAG(newhop->flags,
612 NEXTHOP_FLAG_RECURSIVE))
613 continue;
614
615 if (set) {
616 SET_FLAG(nexthop->flags,
617 NEXTHOP_FLAG_RECURSIVE);
618 nexthop_set_resolved(afi, newhop,
619 nexthop);
620 }
621 resolved = 1;
622 }
623 if (resolved && set)
624 re->nexthop_mtu = match->mtu;
625
626 if (!resolved && IS_ZEBRA_DEBUG_RIB_DETAILED)
627 zlog_debug(
628 "\t%s: Static route unable to resolve",
629 __PRETTY_FUNCTION__);
630 return resolved;
631 } else {
632 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
633 zlog_debug("\t%s: Route Type %s has not turned on recursion",
634 __PRETTY_FUNCTION__,
635 zebra_route_string(re->type));
636 if (re->type == ZEBRA_ROUTE_BGP &&
637 !CHECK_FLAG(re->flags, ZEBRA_FLAG_IBGP))
638 zlog_debug("\tEBGP: see \"disable-ebgp-connected-route-check\" or \"disable-connected-check\"");
639 }
640 return 0;
641 }
642 }
643 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
644 zlog_debug("\t%s: Nexthop did not lookup in table",
645 __PRETTY_FUNCTION__);
646 return 0;
647 }
648
649 struct route_entry *rib_match(afi_t afi, safi_t safi, vrf_id_t vrf_id,
650 union g_addr *addr, struct route_node **rn_out)
651 {
652 struct prefix p;
653 struct route_table *table;
654 struct route_node *rn;
655 struct route_entry *match = NULL;
656
657 /* Lookup table. */
658 table = zebra_vrf_table(afi, safi, vrf_id);
659 if (!table)
660 return 0;
661
662 memset(&p, 0, sizeof(struct prefix));
663 p.family = afi;
664 if (afi == AFI_IP) {
665 p.u.prefix4 = addr->ipv4;
666 p.prefixlen = IPV4_MAX_PREFIXLEN;
667 } else {
668 p.u.prefix6 = addr->ipv6;
669 p.prefixlen = IPV6_MAX_PREFIXLEN;
670 }
671
672 rn = route_node_match(table, (struct prefix *)&p);
673
674 while (rn) {
675 rib_dest_t *dest;
676
677 route_unlock_node(rn);
678
679 dest = rib_dest_from_rnode(rn);
680 if (dest && dest->selected_fib
681 && !CHECK_FLAG(dest->selected_fib->status,
682 ROUTE_ENTRY_REMOVED))
683 match = dest->selected_fib;
684
685 /* If there is no selected route or matched route is EGP, go up
686 tree. */
687 if (!match) {
688 do {
689 rn = rn->parent;
690 } while (rn && rn->info == NULL);
691 if (rn)
692 route_lock_node(rn);
693 } else {
694 if (match->type != ZEBRA_ROUTE_CONNECT) {
695 if (!CHECK_FLAG(match->status,
696 ROUTE_ENTRY_INSTALLED))
697 return NULL;
698 }
699
700 if (rn_out)
701 *rn_out = rn;
702 return match;
703 }
704 }
705 return NULL;
706 }
707
708 struct route_entry *rib_match_ipv4_multicast(vrf_id_t vrf_id,
709 struct in_addr addr,
710 struct route_node **rn_out)
711 {
712 struct route_entry *re = NULL, *mre = NULL, *ure = NULL;
713 struct route_node *m_rn = NULL, *u_rn = NULL;
714 union g_addr gaddr = {.ipv4 = addr};
715
716 switch (ipv4_multicast_mode) {
717 case MCAST_MRIB_ONLY:
718 return rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr,
719 rn_out);
720 case MCAST_URIB_ONLY:
721 return rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, rn_out);
722 case MCAST_NO_CONFIG:
723 case MCAST_MIX_MRIB_FIRST:
724 re = mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr,
725 &m_rn);
726 if (!mre)
727 re = ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id,
728 &gaddr, &u_rn);
729 break;
730 case MCAST_MIX_DISTANCE:
731 mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr, &m_rn);
732 ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, &u_rn);
733 if (mre && ure)
734 re = ure->distance < mre->distance ? ure : mre;
735 else if (mre)
736 re = mre;
737 else if (ure)
738 re = ure;
739 break;
740 case MCAST_MIX_PFXLEN:
741 mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr, &m_rn);
742 ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, &u_rn);
743 if (mre && ure)
744 re = u_rn->p.prefixlen > m_rn->p.prefixlen ? ure : mre;
745 else if (mre)
746 re = mre;
747 else if (ure)
748 re = ure;
749 break;
750 }
751
752 if (rn_out)
753 *rn_out = (re == mre) ? m_rn : u_rn;
754
755 if (IS_ZEBRA_DEBUG_RIB) {
756 char buf[BUFSIZ];
757 inet_ntop(AF_INET, &addr, buf, BUFSIZ);
758
759 zlog_debug("%s: %s: vrf: %u found %s, using %s",
760 __func__, buf, vrf_id,
761 mre ? (ure ? "MRIB+URIB" : "MRIB")
762 : ure ? "URIB" : "nothing",
763 re == ure ? "URIB" : re == mre ? "MRIB" : "none");
764 }
765 return re;
766 }
767
768 void multicast_mode_ipv4_set(enum multicast_mode mode)
769 {
770 if (IS_ZEBRA_DEBUG_RIB)
771 zlog_debug("%s: multicast lookup mode set (%d)", __func__,
772 mode);
773 ipv4_multicast_mode = mode;
774 }
775
776 enum multicast_mode multicast_mode_ipv4_get(void)
777 {
778 return ipv4_multicast_mode;
779 }
780
781 struct route_entry *rib_lookup_ipv4(struct prefix_ipv4 *p, vrf_id_t vrf_id)
782 {
783 struct route_table *table;
784 struct route_node *rn;
785 struct route_entry *match = NULL;
786 rib_dest_t *dest;
787
788 /* Lookup table. */
789 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
790 if (!table)
791 return 0;
792
793 rn = route_node_lookup(table, (struct prefix *)p);
794
795 /* No route for this prefix. */
796 if (!rn)
797 return NULL;
798
799 /* Unlock node. */
800 route_unlock_node(rn);
801 dest = rib_dest_from_rnode(rn);
802
803 if (dest && dest->selected_fib
804 && !CHECK_FLAG(dest->selected_fib->status, ROUTE_ENTRY_REMOVED))
805 match = dest->selected_fib;
806
807 if (!match)
808 return NULL;
809
810 if (match->type == ZEBRA_ROUTE_CONNECT)
811 return match;
812
813 if (CHECK_FLAG(match->status, ROUTE_ENTRY_INSTALLED))
814 return match;
815
816 return NULL;
817 }
818
819 #define RIB_SYSTEM_ROUTE(R) \
820 ((R)->type == ZEBRA_ROUTE_KERNEL || (R)->type == ZEBRA_ROUTE_CONNECT)
821
822 #define RIB_KERNEL_ROUTE(R) \
823 ((R)->type == ZEBRA_ROUTE_KERNEL)
824
825 /* This function verifies reachability of one given nexthop, which can be
826 * numbered or unnumbered, IPv4 or IPv6. The result is unconditionally stored
827 * in nexthop->flags field. If the 4th parameter, 'set', is non-zero,
828 * nexthop->ifindex will be updated appropriately as well.
829 * An existing route map can turn (otherwise active) nexthop into inactive, but
830 * not vice versa.
831 *
832 * The return value is the final value of 'ACTIVE' flag.
833 */
834
835 static unsigned nexthop_active_check(struct route_node *rn,
836 struct route_entry *re,
837 struct nexthop *nexthop, bool set)
838 {
839 struct interface *ifp;
840 route_map_result_t ret = RMAP_MATCH;
841 int family;
842 char buf[SRCDEST2STR_BUFFER];
843 const struct prefix *p, *src_p;
844 struct zebra_vrf *zvrf;
845
846 srcdest_rnode_prefixes(rn, &p, &src_p);
847
848 if (rn->p.family == AF_INET)
849 family = AFI_IP;
850 else if (rn->p.family == AF_INET6)
851 family = AFI_IP6;
852 else
853 family = 0;
854 switch (nexthop->type) {
855 case NEXTHOP_TYPE_IFINDEX:
856 ifp = if_lookup_by_index(nexthop->ifindex, nexthop->vrf_id);
857 if (ifp && if_is_operative(ifp))
858 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
859 else
860 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
861 break;
862 case NEXTHOP_TYPE_IPV4:
863 case NEXTHOP_TYPE_IPV4_IFINDEX:
864 family = AFI_IP;
865 if (nexthop_active(AFI_IP, re, nexthop, set, rn))
866 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
867 else
868 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
869 break;
870 case NEXTHOP_TYPE_IPV6:
871 family = AFI_IP6;
872 if (nexthop_active(AFI_IP6, re, nexthop, set, rn))
873 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
874 else
875 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
876 break;
877 case NEXTHOP_TYPE_IPV6_IFINDEX:
878 /* RFC 5549, v4 prefix with v6 NH */
879 if (rn->p.family != AF_INET)
880 family = AFI_IP6;
881 if (IN6_IS_ADDR_LINKLOCAL(&nexthop->gate.ipv6)) {
882 ifp = if_lookup_by_index(nexthop->ifindex,
883 nexthop->vrf_id);
884 if (ifp && if_is_operative(ifp))
885 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
886 else
887 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
888 } else {
889 if (nexthop_active(AFI_IP6, re, nexthop, set, rn))
890 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
891 else
892 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
893 }
894 break;
895 case NEXTHOP_TYPE_BLACKHOLE:
896 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
897 break;
898 default:
899 break;
900 }
901 if (!CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE)) {
902 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
903 zlog_debug("\t%s: Unable to find a active nexthop",
904 __PRETTY_FUNCTION__);
905 return 0;
906 }
907
908 /* XXX: What exactly do those checks do? Do we support
909 * e.g. IPv4 routes with IPv6 nexthops or vice versa?
910 */
911 if (RIB_SYSTEM_ROUTE(re) || (family == AFI_IP && p->family != AF_INET)
912 || (family == AFI_IP6 && p->family != AF_INET6))
913 return CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
914
915 /* The original code didn't determine the family correctly
916 * e.g. for NEXTHOP_TYPE_IFINDEX. Retrieve the correct afi
917 * from the rib_table_info in those cases.
918 * Possibly it may be better to use only the rib_table_info
919 * in every case.
920 */
921 if (!family) {
922 rib_table_info_t *info;
923
924 info = srcdest_rnode_table_info(rn);
925 family = info->afi;
926 }
927
928 memset(&nexthop->rmap_src.ipv6, 0, sizeof(union g_addr));
929
930 zvrf = zebra_vrf_lookup_by_id(nexthop->vrf_id);
931 if (!zvrf) {
932 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
933 zlog_debug("\t%s: zvrf is NULL", __PRETTY_FUNCTION__);
934 return CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
935 }
936
937 /* It'll get set if required inside */
938 ret = zebra_route_map_check(family, re->type, re->instance, p,
939 nexthop, zvrf, re->tag);
940 if (ret == RMAP_DENYMATCH) {
941 if (IS_ZEBRA_DEBUG_RIB) {
942 srcdest_rnode2str(rn, buf, sizeof(buf));
943 zlog_debug(
944 "%u:%s: Filtering out with NH out %s due to route map",
945 re->vrf_id, buf,
946 ifindex2ifname(nexthop->ifindex,
947 nexthop->vrf_id));
948 }
949 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
950 }
951 return CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
952 }
953
954 /* Iterate over all nexthops of the given RIB entry and refresh their
955 * ACTIVE flag. re->nexthop_active_num is updated accordingly. If any
956 * nexthop is found to toggle the ACTIVE flag, the whole re structure
957 * is flagged with ROUTE_ENTRY_CHANGED. The 4th 'set' argument is
958 * transparently passed to nexthop_active_check().
959 *
960 * Return value is the new number of active nexthops.
961 */
962
963 static int nexthop_active_update(struct route_node *rn, struct route_entry *re,
964 bool set)
965 {
966 struct nexthop *nexthop;
967 union g_addr prev_src;
968 unsigned int prev_active, new_active, old_num_nh;
969 ifindex_t prev_index;
970
971 old_num_nh = re->nexthop_active_num;
972
973 re->nexthop_active_num = 0;
974 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
975
976 for (nexthop = re->ng.nexthop; nexthop; nexthop = nexthop->next) {
977 /* No protocol daemon provides src and so we're skipping
978 * tracking it */
979 prev_src = nexthop->rmap_src;
980 prev_active = CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
981 prev_index = nexthop->ifindex;
982 /*
983 * We need to respect the multipath_num here
984 * as that what we should be able to install from
985 * a multipath perpsective should not be a data plane
986 * decision point.
987 */
988 new_active = nexthop_active_check(rn, re, nexthop, set);
989 if (new_active && re->nexthop_active_num >= multipath_num) {
990 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
991 new_active = 0;
992 }
993 if (new_active)
994 re->nexthop_active_num++;
995 /* Don't allow src setting on IPv6 addr for now */
996 if (prev_active != new_active || prev_index != nexthop->ifindex
997 || ((nexthop->type >= NEXTHOP_TYPE_IFINDEX
998 && nexthop->type < NEXTHOP_TYPE_IPV6)
999 && prev_src.ipv4.s_addr
1000 != nexthop->rmap_src.ipv4.s_addr)
1001 || ((nexthop->type >= NEXTHOP_TYPE_IPV6
1002 && nexthop->type < NEXTHOP_TYPE_BLACKHOLE)
1003 && !(IPV6_ADDR_SAME(&prev_src.ipv6,
1004 &nexthop->rmap_src.ipv6)))) {
1005 SET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1006 SET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
1007 }
1008 }
1009
1010 if (old_num_nh != re->nexthop_active_num)
1011 SET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1012
1013 if (CHECK_FLAG(re->status, ROUTE_ENTRY_CHANGED)) {
1014 SET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
1015 }
1016
1017 return re->nexthop_active_num;
1018 }
1019
1020 /*
1021 * Is this RIB labeled-unicast? It must be of type BGP and all paths
1022 * (nexthops) must have a label.
1023 */
1024 int zebra_rib_labeled_unicast(struct route_entry *re)
1025 {
1026 struct nexthop *nexthop = NULL;
1027
1028 if (re->type != ZEBRA_ROUTE_BGP)
1029 return 0;
1030
1031 for (ALL_NEXTHOPS(re->ng, nexthop))
1032 if (!nexthop->nh_label || !nexthop->nh_label->num_labels)
1033 return 0;
1034
1035 return 1;
1036 }
1037
1038 /* Update flag indicates whether this is a "replace" or not. Currently, this
1039 * is only used for IPv4.
1040 */
1041 void rib_install_kernel(struct route_node *rn, struct route_entry *re,
1042 struct route_entry *old)
1043 {
1044 struct nexthop *nexthop;
1045 rib_table_info_t *info = srcdest_rnode_table_info(rn);
1046 struct zebra_vrf *zvrf = vrf_info_lookup(re->vrf_id);
1047 const struct prefix *p, *src_p;
1048 enum zebra_dplane_result ret;
1049
1050 rib_dest_t *dest = rib_dest_from_rnode(rn);
1051
1052 srcdest_rnode_prefixes(rn, &p, &src_p);
1053
1054 if (info->safi != SAFI_UNICAST) {
1055 for (ALL_NEXTHOPS(re->ng, nexthop))
1056 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1057 return;
1058 } else {
1059 struct nexthop *prev;
1060
1061 for (ALL_NEXTHOPS(re->ng, nexthop)) {
1062 UNSET_FLAG (nexthop->flags, NEXTHOP_FLAG_DUPLICATE);
1063 for (ALL_NEXTHOPS(re->ng, prev)) {
1064 if (prev == nexthop)
1065 break;
1066 if (nexthop_same_firsthop(nexthop, prev)) {
1067 SET_FLAG(nexthop->flags,
1068 NEXTHOP_FLAG_DUPLICATE);
1069 break;
1070 }
1071 }
1072 }
1073 }
1074
1075 /*
1076 * If this is a replace to a new RE let the originator of the RE
1077 * know that they've lost
1078 */
1079 if (old && (old != re) && (old->type != re->type))
1080 zsend_route_notify_owner(old, p, ZAPI_ROUTE_BETTER_ADMIN_WON);
1081
1082 /* Update fib selection */
1083 dest->selected_fib = re;
1084
1085 /*
1086 * Make sure we update the FPM any time we send new information to
1087 * the kernel.
1088 */
1089 hook_call(rib_update, rn, "installing in kernel");
1090
1091 /* Send add or update */
1092 if (old)
1093 ret = dplane_route_update(rn, re, old);
1094 else
1095 ret = dplane_route_add(rn, re);
1096
1097 switch (ret) {
1098 case ZEBRA_DPLANE_REQUEST_QUEUED:
1099 SET_FLAG(re->status, ROUTE_ENTRY_QUEUED);
1100 if (old)
1101 SET_FLAG(old->status, ROUTE_ENTRY_QUEUED);
1102 if (zvrf)
1103 zvrf->installs_queued++;
1104 break;
1105 case ZEBRA_DPLANE_REQUEST_FAILURE:
1106 {
1107 char str[SRCDEST2STR_BUFFER];
1108
1109 srcdest_rnode2str(rn, str, sizeof(str));
1110 flog_err(EC_ZEBRA_DP_INSTALL_FAIL,
1111 "%u:%s: Failed to enqueue dataplane install",
1112 re->vrf_id, str);
1113 break;
1114 }
1115 case ZEBRA_DPLANE_REQUEST_SUCCESS:
1116 if (zvrf)
1117 zvrf->installs++;
1118 break;
1119 }
1120
1121 return;
1122 }
1123
1124 /* Uninstall the route from kernel. */
1125 void rib_uninstall_kernel(struct route_node *rn, struct route_entry *re)
1126 {
1127 struct nexthop *nexthop;
1128 rib_table_info_t *info = srcdest_rnode_table_info(rn);
1129 struct zebra_vrf *zvrf = vrf_info_lookup(re->vrf_id);
1130
1131 if (info->safi != SAFI_UNICAST) {
1132 UNSET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
1133 for (ALL_NEXTHOPS(re->ng, nexthop))
1134 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1135 return;
1136 }
1137
1138 /*
1139 * Make sure we update the FPM any time we send new information to
1140 * the dataplane.
1141 */
1142 hook_call(rib_update, rn, "uninstalling from kernel");
1143
1144 switch (dplane_route_delete(rn, re)) {
1145 case ZEBRA_DPLANE_REQUEST_QUEUED:
1146 if (zvrf)
1147 zvrf->removals_queued++;
1148 break;
1149 case ZEBRA_DPLANE_REQUEST_FAILURE:
1150 {
1151 char str[SRCDEST2STR_BUFFER];
1152
1153 srcdest_rnode2str(rn, str, sizeof(str));
1154 flog_err(EC_ZEBRA_DP_INSTALL_FAIL,
1155 "%u:%s: Failed to enqueue dataplane uninstall",
1156 re->vrf_id, str);
1157 break;
1158 }
1159 case ZEBRA_DPLANE_REQUEST_SUCCESS:
1160 if (zvrf)
1161 zvrf->removals++;
1162 break;
1163 }
1164
1165 return;
1166 }
1167
1168 /* Uninstall the route from kernel. */
1169 static void rib_uninstall(struct route_node *rn, struct route_entry *re)
1170 {
1171 rib_table_info_t *info = srcdest_rnode_table_info(rn);
1172 rib_dest_t *dest = rib_dest_from_rnode(rn);
1173 struct nexthop *nexthop;
1174
1175 if (dest && dest->selected_fib == re) {
1176 if (info->safi == SAFI_UNICAST)
1177 hook_call(rib_update, rn, "rib_uninstall");
1178
1179 /* If labeled-unicast route, uninstall transit LSP. */
1180 if (zebra_rib_labeled_unicast(re))
1181 zebra_mpls_lsp_uninstall(info->zvrf, rn, re);
1182
1183 if (!RIB_SYSTEM_ROUTE(re))
1184 rib_uninstall_kernel(rn, re);
1185 else
1186 UNSET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
1187
1188 dest->selected_fib = NULL;
1189
1190 for (ALL_NEXTHOPS(re->ng, nexthop))
1191 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1192 }
1193
1194 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)) {
1195 const struct prefix *p, *src_p;
1196
1197 srcdest_rnode_prefixes(rn, &p, &src_p);
1198
1199 redistribute_delete(p, src_p, re);
1200 UNSET_FLAG(re->flags, ZEBRA_FLAG_SELECTED);
1201 }
1202 }
1203
1204 /*
1205 * rib_can_delete_dest
1206 *
1207 * Returns TRUE if the given dest can be deleted from the table.
1208 */
1209 static int rib_can_delete_dest(rib_dest_t *dest)
1210 {
1211 if (dest->routes) {
1212 return 0;
1213 }
1214
1215 /*
1216 * Don't delete the dest if we have to update the FPM about this
1217 * prefix.
1218 */
1219 if (CHECK_FLAG(dest->flags, RIB_DEST_UPDATE_FPM)
1220 || CHECK_FLAG(dest->flags, RIB_DEST_SENT_TO_FPM))
1221 return 0;
1222
1223 return 1;
1224 }
1225
1226 /*
1227 * rib_gc_dest
1228 *
1229 * Garbage collect the rib dest corresponding to the given route node
1230 * if appropriate.
1231 *
1232 * Returns TRUE if the dest was deleted, FALSE otherwise.
1233 */
1234 int rib_gc_dest(struct route_node *rn)
1235 {
1236 rib_dest_t *dest;
1237
1238 dest = rib_dest_from_rnode(rn);
1239 if (!dest)
1240 return 0;
1241
1242 if (!rib_can_delete_dest(dest))
1243 return 0;
1244
1245 if (IS_ZEBRA_DEBUG_RIB) {
1246 struct zebra_vrf *zvrf;
1247
1248 zvrf = rib_dest_vrf(dest);
1249 rnode_debug(rn, zvrf_id(zvrf), "removing dest from table");
1250 }
1251
1252 dest->rnode = NULL;
1253 XFREE(MTYPE_RIB_DEST, dest);
1254 rn->info = NULL;
1255
1256 /*
1257 * Release the one reference that we keep on the route node.
1258 */
1259 route_unlock_node(rn);
1260 return 1;
1261 }
1262
1263 static void rib_process_add_fib(struct zebra_vrf *zvrf, struct route_node *rn,
1264 struct route_entry *new)
1265 {
1266 rib_dest_t *dest = rib_dest_from_rnode(rn);
1267
1268 hook_call(rib_update, rn, "new route selected");
1269
1270 /* Update real nexthop. This may actually determine if nexthop is active
1271 * or not. */
1272 if (!nexthop_active_update(rn, new, true)) {
1273 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1274 return;
1275 }
1276
1277 if (IS_ZEBRA_DEBUG_RIB) {
1278 char buf[SRCDEST2STR_BUFFER];
1279 srcdest_rnode2str(rn, buf, sizeof(buf));
1280 zlog_debug("%u:%s: Adding route rn %p, re %p (%s)",
1281 zvrf_id(zvrf), buf, rn, new,
1282 zebra_route_string(new->type));
1283 }
1284
1285 /* If labeled-unicast route, install transit LSP. */
1286 if (zebra_rib_labeled_unicast(new))
1287 zebra_mpls_lsp_install(zvrf, rn, new);
1288
1289 if (!RIB_SYSTEM_ROUTE(new))
1290 rib_install_kernel(rn, new, NULL);
1291 else
1292 dest->selected_fib = new;
1293
1294 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1295 }
1296
1297 static void rib_process_del_fib(struct zebra_vrf *zvrf, struct route_node *rn,
1298 struct route_entry *old)
1299 {
1300 rib_dest_t *dest = rib_dest_from_rnode(rn);
1301 hook_call(rib_update, rn, "removing existing route");
1302
1303 /* Uninstall from kernel. */
1304 if (IS_ZEBRA_DEBUG_RIB) {
1305 char buf[SRCDEST2STR_BUFFER];
1306 srcdest_rnode2str(rn, buf, sizeof(buf));
1307 zlog_debug("%u:%s: Deleting route rn %p, re %p (%s)",
1308 zvrf_id(zvrf), buf, rn, old,
1309 zebra_route_string(old->type));
1310 }
1311
1312 /* If labeled-unicast route, uninstall transit LSP. */
1313 if (zebra_rib_labeled_unicast(old))
1314 zebra_mpls_lsp_uninstall(zvrf, rn, old);
1315
1316 if (!RIB_SYSTEM_ROUTE(old))
1317 rib_uninstall_kernel(rn, old);
1318 else {
1319 UNSET_FLAG(old->status, ROUTE_ENTRY_INSTALLED);
1320 /*
1321 * We are setting this to NULL here
1322 * because that is what we traditionally
1323 * have been doing. I am not positive
1324 * that this is the right thing to do
1325 * but let's leave the code alone
1326 * for the RIB_SYSTEM_ROUTE case
1327 */
1328 dest->selected_fib = NULL;
1329 }
1330
1331 /* Update nexthop for route, reset changed flag. */
1332 /* Note: this code also handles the Linux case when an interface goes
1333 * down, causing the kernel to delete routes without sending DELROUTE
1334 * notifications
1335 */
1336 if (!nexthop_active_update(rn, old, true) &&
1337 (RIB_KERNEL_ROUTE(old)))
1338 SET_FLAG(old->status, ROUTE_ENTRY_REMOVED);
1339 else
1340 UNSET_FLAG(old->status, ROUTE_ENTRY_CHANGED);
1341 }
1342
1343 static void rib_process_update_fib(struct zebra_vrf *zvrf,
1344 struct route_node *rn,
1345 struct route_entry *old,
1346 struct route_entry *new)
1347 {
1348 struct nexthop *nexthop = NULL;
1349 int nh_active = 0;
1350 rib_dest_t *dest = rib_dest_from_rnode(rn);
1351
1352 /*
1353 * We have to install or update if a new route has been selected or
1354 * something has changed.
1355 */
1356 if (new != old || CHECK_FLAG(new->status, ROUTE_ENTRY_CHANGED)) {
1357 hook_call(rib_update, rn, "updating existing route");
1358
1359 /* Update the nexthop; we could determine here that nexthop is
1360 * inactive. */
1361 if (nexthop_active_update(rn, new, true))
1362 nh_active = 1;
1363
1364 /* If nexthop is active, install the selected route, if
1365 * appropriate. If
1366 * the install succeeds, cleanup flags for prior route, if
1367 * different from
1368 * newly selected.
1369 */
1370 if (nh_active) {
1371 if (IS_ZEBRA_DEBUG_RIB) {
1372 char buf[SRCDEST2STR_BUFFER];
1373 srcdest_rnode2str(rn, buf, sizeof(buf));
1374 if (new != old)
1375 zlog_debug(
1376 "%u:%s: Updating route rn %p, re %p (%s) old %p (%s)",
1377 zvrf_id(zvrf), buf, rn, new,
1378 zebra_route_string(new->type),
1379 old,
1380 zebra_route_string(old->type));
1381 else
1382 zlog_debug(
1383 "%u:%s: Updating route rn %p, re %p (%s)",
1384 zvrf_id(zvrf), buf, rn, new,
1385 zebra_route_string(new->type));
1386 }
1387
1388 /* If labeled-unicast route, uninstall transit LSP. */
1389 if (zebra_rib_labeled_unicast(old))
1390 zebra_mpls_lsp_uninstall(zvrf, rn, old);
1391
1392 /* Non-system route should be installed. */
1393 if (!RIB_SYSTEM_ROUTE(new)) {
1394 /* If labeled-unicast route, install transit
1395 * LSP. */
1396 if (zebra_rib_labeled_unicast(new))
1397 zebra_mpls_lsp_install(zvrf, rn, new);
1398
1399 rib_install_kernel(rn, new, old);
1400 } else {
1401 UNSET_FLAG(new->status, ROUTE_ENTRY_INSTALLED);
1402 /*
1403 * We do not need to install the
1404 * selected route because it
1405 * is already isntalled by
1406 * the system( ie not us )
1407 * so just mark it as winning
1408 * we do need to ensure that
1409 * if we uninstall a route
1410 * from ourselves we don't
1411 * over write this pointer
1412 */
1413 dest->selected_fib = NULL;
1414 }
1415 /* If install succeeded or system route, cleanup flags
1416 * for prior route. */
1417 if (new != old) {
1418 if (RIB_SYSTEM_ROUTE(new)) {
1419 if (!RIB_SYSTEM_ROUTE(old))
1420 rib_uninstall_kernel(rn, old);
1421 else
1422 UNSET_FLAG(
1423 old->status,
1424 ROUTE_ENTRY_INSTALLED);
1425 } else {
1426 UNSET_FLAG(old->status,
1427 ROUTE_ENTRY_INSTALLED);
1428 for (nexthop = old->ng.nexthop; nexthop;
1429 nexthop = nexthop->next)
1430 UNSET_FLAG(nexthop->flags,
1431 NEXTHOP_FLAG_FIB);
1432 }
1433 }
1434 }
1435
1436 /*
1437 * If nexthop for selected route is not active or install
1438 * failed, we
1439 * may need to uninstall and delete for redistribution.
1440 */
1441 if (!nh_active) {
1442 if (IS_ZEBRA_DEBUG_RIB) {
1443 char buf[SRCDEST2STR_BUFFER];
1444 srcdest_rnode2str(rn, buf, sizeof(buf));
1445 if (new != old)
1446 zlog_debug(
1447 "%u:%s: Deleting route rn %p, re %p (%s) old %p (%s) - nexthop inactive",
1448 zvrf_id(zvrf), buf, rn, new,
1449 zebra_route_string(new->type),
1450 old,
1451 zebra_route_string(old->type));
1452 else
1453 zlog_debug(
1454 "%u:%s: Deleting route rn %p, re %p (%s) - nexthop inactive",
1455 zvrf_id(zvrf), buf, rn, new,
1456 zebra_route_string(new->type));
1457 }
1458
1459 /* If labeled-unicast route, uninstall transit LSP. */
1460 if (zebra_rib_labeled_unicast(old))
1461 zebra_mpls_lsp_uninstall(zvrf, rn, old);
1462
1463 if (!RIB_SYSTEM_ROUTE(old))
1464 rib_uninstall_kernel(rn, old);
1465 else {
1466 UNSET_FLAG(old->status, ROUTE_ENTRY_INSTALLED);
1467 dest->selected_fib = NULL;
1468 }
1469 }
1470 } else {
1471 /*
1472 * Same route selected; check if in the FIB and if not,
1473 * re-install. This
1474 * is housekeeping code to deal with race conditions in kernel
1475 * with linux
1476 * netlink reporting interface up before IPv4 or IPv6 protocol
1477 * is ready
1478 * to add routes.
1479 */
1480 if (!RIB_SYSTEM_ROUTE(new)
1481 && !CHECK_FLAG(new->status, ROUTE_ENTRY_INSTALLED))
1482 rib_install_kernel(rn, new, NULL);
1483 }
1484
1485 /* Update prior route. */
1486 if (new != old) {
1487 /* Set real nexthop. */
1488 nexthop_active_update(rn, old, true);
1489 UNSET_FLAG(old->status, ROUTE_ENTRY_CHANGED);
1490 }
1491
1492 /* Clear changed flag. */
1493 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1494 }
1495
1496 /* Check if 'alternate' RIB entry is better than 'current'. */
1497 static struct route_entry *rib_choose_best(struct route_entry *current,
1498 struct route_entry *alternate)
1499 {
1500 if (current == NULL)
1501 return alternate;
1502
1503 /* filter route selection in following order:
1504 * - connected beats other types
1505 * - if both connected, loopback or vrf wins
1506 * - lower distance beats higher
1507 * - lower metric beats higher for equal distance
1508 * - last, hence oldest, route wins tie break.
1509 */
1510
1511 /* Connected routes. Check to see if either are a vrf
1512 * or loopback interface. If not, pick the last connected
1513 * route of the set of lowest metric connected routes.
1514 */
1515 if (alternate->type == ZEBRA_ROUTE_CONNECT) {
1516 if (current->type != ZEBRA_ROUTE_CONNECT)
1517 return alternate;
1518
1519 /* both are connected. are either loop or vrf? */
1520 struct nexthop *nexthop = NULL;
1521
1522 for (ALL_NEXTHOPS(alternate->ng, nexthop)) {
1523 if (if_is_loopback_or_vrf(if_lookup_by_index(
1524 nexthop->ifindex, alternate->vrf_id)))
1525 return alternate;
1526 }
1527
1528 for (ALL_NEXTHOPS(current->ng, nexthop)) {
1529 if (if_is_loopback_or_vrf(if_lookup_by_index(
1530 nexthop->ifindex, current->vrf_id)))
1531 return current;
1532 }
1533
1534 /* Neither are loop or vrf so pick best metric */
1535 if (alternate->metric <= current->metric)
1536 return alternate;
1537
1538 return current;
1539 }
1540
1541 if (current->type == ZEBRA_ROUTE_CONNECT)
1542 return current;
1543
1544 /* higher distance loses */
1545 if (alternate->distance < current->distance)
1546 return alternate;
1547 if (current->distance < alternate->distance)
1548 return current;
1549
1550 /* metric tie-breaks equal distance */
1551 if (alternate->metric <= current->metric)
1552 return alternate;
1553
1554 return current;
1555 }
1556
1557 /* Core function for processing routing information base. */
1558 static void rib_process(struct route_node *rn)
1559 {
1560 struct route_entry *re;
1561 struct route_entry *next;
1562 struct route_entry *old_selected = NULL;
1563 struct route_entry *new_selected = NULL;
1564 struct route_entry *old_fib = NULL;
1565 struct route_entry *new_fib = NULL;
1566 struct route_entry *best = NULL;
1567 char buf[SRCDEST2STR_BUFFER];
1568 rib_dest_t *dest;
1569 struct zebra_vrf *zvrf = NULL;
1570 const struct prefix *p, *src_p;
1571
1572 srcdest_rnode_prefixes(rn, &p, &src_p);
1573 vrf_id_t vrf_id = VRF_UNKNOWN;
1574
1575 assert(rn);
1576
1577 dest = rib_dest_from_rnode(rn);
1578 if (dest) {
1579 zvrf = rib_dest_vrf(dest);
1580 vrf_id = zvrf_id(zvrf);
1581 }
1582
1583 if (IS_ZEBRA_DEBUG_RIB)
1584 srcdest_rnode2str(rn, buf, sizeof(buf));
1585
1586 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1587 zlog_debug("%u:%s: Processing rn %p", vrf_id, buf, rn);
1588
1589 /*
1590 * we can have rn's that have a NULL info pointer
1591 * (dest). As such let's not let the deref happen
1592 * additionally we know RNODE_FOREACH_RE_SAFE
1593 * will not iterate so we are ok.
1594 */
1595 if (dest)
1596 old_fib = dest->selected_fib;
1597
1598 RNODE_FOREACH_RE_SAFE (rn, re, next) {
1599 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1600 zlog_debug(
1601 "%u:%s: Examine re %p (%s) status %x flags %x dist %d metric %d",
1602 vrf_id, buf, re, zebra_route_string(re->type),
1603 re->status, re->flags, re->distance,
1604 re->metric);
1605
1606 UNSET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
1607
1608 /* Currently selected re. */
1609 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)) {
1610 assert(old_selected == NULL);
1611 old_selected = re;
1612 }
1613
1614 /* Skip deleted entries from selection */
1615 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
1616 continue;
1617
1618 /* Skip unreachable nexthop. */
1619 /* This first call to nexthop_active_update is merely to
1620 * determine if
1621 * there's any change to nexthops associated with this RIB
1622 * entry. Now,
1623 * rib_process() can be invoked due to an external event such as
1624 * link
1625 * down or due to next-hop-tracking evaluation. In the latter
1626 * case,
1627 * a decision has already been made that the NHs have changed.
1628 * So, no
1629 * need to invoke a potentially expensive call again. Further,
1630 * since
1631 * the change might be in a recursive NH which is not caught in
1632 * the nexthop_active_update() code. Thus, we might miss changes
1633 * to
1634 * recursive NHs.
1635 */
1636 if (!CHECK_FLAG(re->status, ROUTE_ENTRY_CHANGED)
1637 && !nexthop_active_update(rn, re, false)) {
1638 if (re->type == ZEBRA_ROUTE_TABLE) {
1639 /* XXX: HERE BE DRAGONS!!!!!
1640 * In all honesty, I have not yet figured out
1641 * what this part
1642 * does or why the ROUTE_ENTRY_CHANGED test
1643 * above is correct
1644 * or why we need to delete a route here, and
1645 * also not whether
1646 * this concerns both selected and fib route, or
1647 * only selected
1648 * or only fib */
1649 /* This entry was denied by the 'ip protocol
1650 * table' route-map, we
1651 * need to delete it */
1652 if (re != old_selected) {
1653 if (IS_ZEBRA_DEBUG_RIB)
1654 zlog_debug(
1655 "%s: %u:%s: imported via import-table but denied "
1656 "by the ip protocol table route-map",
1657 __func__, vrf_id, buf);
1658 rib_unlink(rn, re);
1659 } else
1660 SET_FLAG(re->status,
1661 ROUTE_ENTRY_REMOVED);
1662 }
1663
1664 continue;
1665 }
1666
1667 /* Infinite distance. */
1668 if (re->distance == DISTANCE_INFINITY) {
1669 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1670 continue;
1671 }
1672
1673 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_FIB_OVERRIDE)) {
1674 best = rib_choose_best(new_fib, re);
1675 if (new_fib && best != new_fib)
1676 UNSET_FLAG(new_fib->status,
1677 ROUTE_ENTRY_CHANGED);
1678 new_fib = best;
1679 } else {
1680 best = rib_choose_best(new_selected, re);
1681 if (new_selected && best != new_selected)
1682 UNSET_FLAG(new_selected->status,
1683 ROUTE_ENTRY_CHANGED);
1684 new_selected = best;
1685 }
1686 if (best != re)
1687 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1688 } /* RNODE_FOREACH_RE */
1689
1690 /* If no FIB override route, use the selected route also for FIB */
1691 if (new_fib == NULL)
1692 new_fib = new_selected;
1693
1694 /* After the cycle is finished, the following pointers will be set:
1695 * old_selected --- RE entry currently having SELECTED
1696 * new_selected --- RE entry that is newly SELECTED
1697 * old_fib --- RE entry currently in kernel FIB
1698 * new_fib --- RE entry that is newly to be in kernel FIB
1699 *
1700 * new_selected will get SELECTED flag, and is going to be redistributed
1701 * the zclients. new_fib (which can be new_selected) will be installed
1702 * in kernel.
1703 */
1704
1705 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
1706 zlog_debug(
1707 "%u:%s: After processing: old_selected %p new_selected %p old_fib %p new_fib %p",
1708 vrf_id, buf, (void *)old_selected, (void *)new_selected,
1709 (void *)old_fib, (void *)new_fib);
1710 }
1711
1712 /* Buffer ROUTE_ENTRY_CHANGED here, because it will get cleared if
1713 * fib == selected */
1714 bool selected_changed = new_selected && CHECK_FLAG(new_selected->status,
1715 ROUTE_ENTRY_CHANGED);
1716
1717 /* Update fib according to selection results */
1718 if (new_fib && old_fib)
1719 rib_process_update_fib(zvrf, rn, old_fib, new_fib);
1720 else if (new_fib)
1721 rib_process_add_fib(zvrf, rn, new_fib);
1722 else if (old_fib)
1723 rib_process_del_fib(zvrf, rn, old_fib);
1724
1725 /* Update SELECTED entry */
1726 if (old_selected != new_selected || selected_changed) {
1727
1728 if (new_selected && new_selected != new_fib) {
1729 nexthop_active_update(rn, new_selected, true);
1730 UNSET_FLAG(new_selected->status, ROUTE_ENTRY_CHANGED);
1731 }
1732
1733 if (new_selected) {
1734 SET_FLAG(new_selected->flags, ZEBRA_FLAG_SELECTED);
1735
1736 /* Special case: new route is system route, so
1737 * dataplane update will not be done - ensure we
1738 * redistribute the route.
1739 */
1740 if (RIB_SYSTEM_ROUTE(new_selected))
1741 redistribute_update(p, src_p, new_selected,
1742 old_selected);
1743 }
1744
1745 if (old_selected) {
1746 if (!new_selected)
1747 redistribute_delete(p, src_p, old_selected);
1748 if (old_selected != new_selected)
1749 UNSET_FLAG(old_selected->flags,
1750 ZEBRA_FLAG_SELECTED);
1751 }
1752 }
1753
1754 /* Remove all RE entries queued for removal */
1755 RNODE_FOREACH_RE_SAFE (rn, re, next) {
1756 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
1757 if (IS_ZEBRA_DEBUG_RIB) {
1758 rnode_debug(rn, vrf_id, "rn %p, removing re %p",
1759 (void *)rn, (void *)re);
1760 }
1761 rib_unlink(rn, re);
1762 }
1763 }
1764
1765 /*
1766 * Check if the dest can be deleted now.
1767 */
1768 rib_gc_dest(rn);
1769 }
1770
1771 /*
1772 * Utility to match route with dplane context data
1773 */
1774 static bool rib_route_match_ctx(const struct route_entry *re,
1775 const struct zebra_dplane_ctx *ctx,
1776 bool is_update)
1777 {
1778 bool result = false;
1779
1780 if (is_update) {
1781 /*
1782 * In 'update' case, we test info about the 'previous' or
1783 * 'old' route
1784 */
1785 if ((re->type == dplane_ctx_get_old_type(ctx)) &&
1786 (re->instance == dplane_ctx_get_old_instance(ctx))) {
1787 result = true;
1788
1789 /* TODO -- we're using this extra test, but it's not
1790 * exactly clear why.
1791 */
1792 if (re->type == ZEBRA_ROUTE_STATIC &&
1793 (re->distance != dplane_ctx_get_old_distance(ctx) ||
1794 re->tag != dplane_ctx_get_old_tag(ctx))) {
1795 result = false;
1796 }
1797 }
1798
1799 } else {
1800 /*
1801 * Ordinary, single-route case using primary context info
1802 */
1803 if ((dplane_ctx_get_op(ctx) != DPLANE_OP_ROUTE_DELETE) &&
1804 CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
1805 /* Skip route that's been deleted */
1806 goto done;
1807 }
1808
1809 if ((re->type == dplane_ctx_get_type(ctx)) &&
1810 (re->instance == dplane_ctx_get_instance(ctx))) {
1811 result = true;
1812
1813 /* TODO -- we're using this extra test, but it's not
1814 * exactly clear why.
1815 */
1816 if (re->type == ZEBRA_ROUTE_STATIC &&
1817 (re->distance != dplane_ctx_get_distance(ctx) ||
1818 re->tag != dplane_ctx_get_tag(ctx))) {
1819 result = false;
1820 }
1821 }
1822 }
1823
1824 done:
1825
1826 return (result);
1827 }
1828
1829 /*
1830 * Route-update results processing after async dataplane update.
1831 */
1832 static void rib_process_result(struct zebra_dplane_ctx *ctx)
1833 {
1834 struct route_table *table = NULL;
1835 struct zebra_vrf *zvrf = NULL;
1836 struct route_node *rn = NULL;
1837 struct route_entry *re = NULL, *old_re = NULL, *rib;
1838 bool is_update = false;
1839 struct nexthop *nexthop, *ctx_nexthop;
1840 char dest_str[PREFIX_STRLEN] = "";
1841 enum dplane_op_e op;
1842 enum zebra_dplane_result status;
1843 const struct prefix *dest_pfx, *src_pfx;
1844
1845 /* Locate rn and re(s) from ctx */
1846
1847 table = zebra_vrf_table_with_table_id(dplane_ctx_get_afi(ctx),
1848 dplane_ctx_get_safi(ctx),
1849 dplane_ctx_get_vrf(ctx),
1850 dplane_ctx_get_table(ctx));
1851 if (table == NULL) {
1852 if (IS_ZEBRA_DEBUG_DPLANE) {
1853 zlog_debug("Failed to process dplane results: no table for afi %d, safi %d, vrf %u",
1854 dplane_ctx_get_afi(ctx),
1855 dplane_ctx_get_safi(ctx),
1856 dplane_ctx_get_vrf(ctx));
1857 }
1858 goto done;
1859 }
1860
1861 zvrf = vrf_info_lookup(dplane_ctx_get_vrf(ctx));
1862
1863 dest_pfx = dplane_ctx_get_dest(ctx);
1864
1865 /* Note well: only capturing the prefix string if debug is enabled here;
1866 * unconditional log messages will have to generate the string.
1867 */
1868 if (IS_ZEBRA_DEBUG_DPLANE)
1869 prefix2str(dest_pfx, dest_str, sizeof(dest_str));
1870
1871 src_pfx = dplane_ctx_get_src(ctx);
1872 rn = srcdest_rnode_get(table, dplane_ctx_get_dest(ctx),
1873 src_pfx ? (struct prefix_ipv6 *)src_pfx : NULL);
1874 if (rn == NULL) {
1875 if (IS_ZEBRA_DEBUG_DPLANE) {
1876 zlog_debug("Failed to process dplane results: no route for %u:%s",
1877 dplane_ctx_get_vrf(ctx), dest_str);
1878 }
1879 goto done;
1880 }
1881
1882 srcdest_rnode_prefixes(rn, &dest_pfx, &src_pfx);
1883
1884 op = dplane_ctx_get_op(ctx);
1885 status = dplane_ctx_get_status(ctx);
1886
1887 if (IS_ZEBRA_DEBUG_DPLANE_DETAIL)
1888 zlog_debug("%u:%s Processing dplane ctx %p, op %s result %s",
1889 dplane_ctx_get_vrf(ctx), dest_str, ctx,
1890 dplane_op2str(op), dplane_res2str(status));
1891
1892 /*
1893 * Update is a bit of a special case, where we may have both old and new
1894 * routes to post-process.
1895 */
1896 is_update = dplane_ctx_is_update(ctx);
1897
1898 /*
1899 * Take a pass through the routes, look for matches with the context
1900 * info.
1901 */
1902 RNODE_FOREACH_RE(rn, rib) {
1903
1904 if (re == NULL) {
1905 if (rib_route_match_ctx(rib, ctx, false))
1906 re = rib;
1907 }
1908
1909 /* Check for old route match */
1910 if (is_update && (old_re == NULL)) {
1911 if (rib_route_match_ctx(rib, ctx, true /*is_update*/))
1912 old_re = rib;
1913 }
1914
1915 /* Have we found the routes we need to work on? */
1916 if (re && ((!is_update || old_re)))
1917 break;
1918 }
1919
1920 /*
1921 * Check sequence number(s) to detect stale results before continuing
1922 */
1923 if (re) {
1924 if (re->dplane_sequence != dplane_ctx_get_seq(ctx)) {
1925 if (IS_ZEBRA_DEBUG_DPLANE_DETAIL)
1926 zlog_debug("%u:%s Stale dplane result for re %p",
1927 dplane_ctx_get_vrf(ctx),
1928 dest_str, re);
1929 } else
1930 UNSET_FLAG(re->status, ROUTE_ENTRY_QUEUED);
1931 }
1932
1933 if (old_re) {
1934 if (old_re->dplane_sequence != dplane_ctx_get_old_seq(ctx)) {
1935 if (IS_ZEBRA_DEBUG_DPLANE_DETAIL)
1936 zlog_debug("%u:%s Stale dplane result for old_re %p",
1937 dplane_ctx_get_vrf(ctx),
1938 dest_str, old_re);
1939 } else
1940 UNSET_FLAG(re->status, ROUTE_ENTRY_QUEUED);
1941 }
1942
1943 switch (op) {
1944 case DPLANE_OP_ROUTE_INSTALL:
1945 case DPLANE_OP_ROUTE_UPDATE:
1946 if (status == ZEBRA_DPLANE_REQUEST_SUCCESS) {
1947 if (re) {
1948 UNSET_FLAG(re->status, ROUTE_ENTRY_FAILED);
1949 SET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
1950 }
1951 /*
1952 * On an update operation from the same route type
1953 * context retrieval currently has no way to know
1954 * which was the old and which was the new.
1955 * So don't unset our flags that we just set.
1956 * We know redistribution is ok because the
1957 * old_re in this case is used for nothing
1958 * more than knowing whom to contact if necessary.
1959 */
1960 if (old_re && old_re != re) {
1961 UNSET_FLAG(old_re->status, ROUTE_ENTRY_FAILED);
1962 UNSET_FLAG(old_re->status,
1963 ROUTE_ENTRY_INSTALLED);
1964 }
1965 /* Update zebra nexthop FIB flag for each
1966 * nexthop that was installed.
1967 */
1968 for (ALL_NEXTHOPS_PTR(dplane_ctx_get_ng(ctx),
1969 ctx_nexthop)) {
1970
1971 if (!re)
1972 continue;
1973
1974 for (ALL_NEXTHOPS(re->ng, nexthop)) {
1975 if (nexthop_same(ctx_nexthop, nexthop))
1976 break;
1977 }
1978
1979 if (nexthop == NULL)
1980 continue;
1981
1982 if (CHECK_FLAG(nexthop->flags,
1983 NEXTHOP_FLAG_RECURSIVE))
1984 continue;
1985
1986 if (CHECK_FLAG(ctx_nexthop->flags,
1987 NEXTHOP_FLAG_FIB))
1988 SET_FLAG(nexthop->flags,
1989 NEXTHOP_FLAG_FIB);
1990 else
1991 UNSET_FLAG(nexthop->flags,
1992 NEXTHOP_FLAG_FIB);
1993 }
1994
1995 if (zvrf) {
1996 zvrf->installs++;
1997 /* Set flag for nexthop tracking processing */
1998 zvrf->flags |= ZEBRA_VRF_RIB_SCHEDULED;
1999 }
2000
2001 /* Redistribute */
2002 /*
2003 * TODO -- still calling the redist api using the
2004 * route_entries, and there's a corner-case here:
2005 * if there's no client for the 'new' route, a redist
2006 * deleting the 'old' route will be sent. But if the
2007 * 'old' context info was stale, 'old_re' will be
2008 * NULL here and that delete will not be sent.
2009 */
2010 if (re)
2011 redistribute_update(dest_pfx, src_pfx,
2012 re, old_re);
2013
2014 /* Notify route owner */
2015 zsend_route_notify_owner_ctx(ctx, ZAPI_ROUTE_INSTALLED);
2016
2017 } else {
2018 if (re)
2019 SET_FLAG(re->status, ROUTE_ENTRY_FAILED);
2020 if (old_re)
2021 SET_FLAG(old_re->status, ROUTE_ENTRY_FAILED);
2022 if (re)
2023 zsend_route_notify_owner(re, dest_pfx,
2024 ZAPI_ROUTE_FAIL_INSTALL);
2025
2026 zlog_warn("%u:%s: Route install failed",
2027 dplane_ctx_get_vrf(ctx),
2028 prefix2str(dest_pfx,
2029 dest_str, sizeof(dest_str)));
2030 }
2031 break;
2032 case DPLANE_OP_ROUTE_DELETE:
2033 if (re)
2034 SET_FLAG(re->status, ROUTE_ENTRY_FAILED);
2035 /*
2036 * In the delete case, the zebra core datastructs were
2037 * updated (or removed) at the time the delete was issued,
2038 * so we're just notifying the route owner.
2039 */
2040 if (status == ZEBRA_DPLANE_REQUEST_SUCCESS) {
2041 if (re) {
2042 UNSET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
2043 UNSET_FLAG(re->status, ROUTE_ENTRY_FAILED);
2044 }
2045 zsend_route_notify_owner_ctx(ctx, ZAPI_ROUTE_REMOVED);
2046
2047 if (zvrf)
2048 zvrf->removals++;
2049 } else {
2050 if (re)
2051 SET_FLAG(re->status, ROUTE_ENTRY_FAILED);
2052 zsend_route_notify_owner_ctx(ctx,
2053 ZAPI_ROUTE_REMOVE_FAIL);
2054
2055 zlog_warn("%u:%s: Route Deletion failure",
2056 dplane_ctx_get_vrf(ctx),
2057 prefix2str(dest_pfx,
2058 dest_str, sizeof(dest_str)));
2059 }
2060 break;
2061 default:
2062 break;
2063 }
2064 done:
2065
2066 if (rn)
2067 route_unlock_node(rn);
2068
2069 /* Return context to dataplane module */
2070 dplane_ctx_fini(&ctx);
2071 }
2072
2073 /* Take a list of route_node structs and return 1, if there was a record
2074 * picked from it and processed by rib_process(). Don't process more,
2075 * than one RN record; operate only in the specified sub-queue.
2076 */
2077 static unsigned int process_subq(struct list *subq, uint8_t qindex)
2078 {
2079 struct listnode *lnode = listhead(subq);
2080 struct route_node *rnode;
2081 rib_dest_t *dest;
2082 struct zebra_vrf *zvrf = NULL;
2083
2084 if (!lnode)
2085 return 0;
2086
2087 rnode = listgetdata(lnode);
2088 dest = rib_dest_from_rnode(rnode);
2089 if (dest)
2090 zvrf = rib_dest_vrf(dest);
2091
2092 rib_process(rnode);
2093
2094 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
2095 char buf[SRCDEST2STR_BUFFER];
2096 srcdest_rnode2str(rnode, buf, sizeof(buf));
2097 zlog_debug("%u:%s: rn %p dequeued from sub-queue %u",
2098 zvrf ? zvrf_id(zvrf) : 0, buf, rnode, qindex);
2099 }
2100
2101 if (rnode->info)
2102 UNSET_FLAG(rib_dest_from_rnode(rnode)->flags,
2103 RIB_ROUTE_QUEUED(qindex));
2104
2105 #if 0
2106 else
2107 {
2108 zlog_debug ("%s: called for route_node (%p, %d) with no ribs",
2109 __func__, rnode, rnode->lock);
2110 zlog_backtrace(LOG_DEBUG);
2111 }
2112 #endif
2113 route_unlock_node(rnode);
2114 list_delete_node(subq, lnode);
2115 return 1;
2116 }
2117
2118 /*
2119 * Perform next-hop tracking processing after RIB updates.
2120 */
2121 static void do_nht_processing(void)
2122 {
2123 struct vrf *vrf;
2124 struct zebra_vrf *zvrf;
2125
2126 /* Evaluate nexthops for those VRFs which underwent route processing.
2127 * This
2128 * should limit the evaluation to the necessary VRFs in most common
2129 * situations.
2130 */
2131 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id) {
2132 zvrf = vrf->info;
2133 if (zvrf == NULL || !(zvrf->flags & ZEBRA_VRF_RIB_SCHEDULED))
2134 continue;
2135
2136 if (IS_ZEBRA_DEBUG_RIB_DETAILED || IS_ZEBRA_DEBUG_NHT)
2137 zlog_debug("NHT processing check for zvrf %s",
2138 zvrf_name(zvrf));
2139
2140 zvrf->flags &= ~ZEBRA_VRF_RIB_SCHEDULED;
2141 zebra_evaluate_rnh(zvrf, AFI_IP, 0, RNH_NEXTHOP_TYPE, NULL);
2142 zebra_evaluate_rnh(zvrf, AFI_IP, 0, RNH_IMPORT_CHECK_TYPE,
2143 NULL);
2144 zebra_evaluate_rnh(zvrf, AFI_IP6, 0, RNH_NEXTHOP_TYPE, NULL);
2145 zebra_evaluate_rnh(zvrf, AFI_IP6, 0, RNH_IMPORT_CHECK_TYPE,
2146 NULL);
2147 }
2148
2149 /* Schedule LSPs for processing, if needed. */
2150 zvrf = vrf_info_lookup(VRF_DEFAULT);
2151 if (mpls_should_lsps_be_processed(zvrf)) {
2152 if (IS_ZEBRA_DEBUG_MPLS)
2153 zlog_debug(
2154 "%u: Scheduling all LSPs upon RIB completion",
2155 zvrf_id(zvrf));
2156 zebra_mpls_lsp_schedule(zvrf);
2157 mpls_unmark_lsps_for_processing(zvrf);
2158 }
2159 }
2160
2161 /* Dispatch the meta queue by picking, processing and unlocking the next RN from
2162 * a non-empty sub-queue with lowest priority. wq is equal to zebra->ribq and
2163 * data
2164 * is pointed to the meta queue structure.
2165 */
2166 static wq_item_status meta_queue_process(struct work_queue *dummy, void *data)
2167 {
2168 struct meta_queue *mq = data;
2169 unsigned i;
2170 uint32_t queue_len, queue_limit;
2171
2172 /* Ensure there's room for more dataplane updates */
2173 queue_limit = dplane_get_in_queue_limit();
2174 queue_len = dplane_get_in_queue_len();
2175 if (queue_len > queue_limit) {
2176 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2177 zlog_debug("rib queue: dplane queue len %u, limit %u, retrying",
2178 queue_len, queue_limit);
2179
2180 /* Ensure that the meta-queue is actually enqueued */
2181 if (work_queue_empty(zrouter.ribq))
2182 work_queue_add(zrouter.ribq, zrouter.mq);
2183
2184 return WQ_QUEUE_BLOCKED;
2185 }
2186
2187 for (i = 0; i < MQ_SIZE; i++)
2188 if (process_subq(mq->subq[i], i)) {
2189 mq->size--;
2190 break;
2191 }
2192 return mq->size ? WQ_REQUEUE : WQ_SUCCESS;
2193 }
2194
2195
2196 /*
2197 * Look into the RN and queue it into the highest priority queue
2198 * at this point in time for processing.
2199 *
2200 * We will enqueue a route node only once per invocation.
2201 *
2202 * There are two possibilities here that should be kept in mind.
2203 * If the original invocation has not been pulled off for processing
2204 * yet, A subsuquent invocation can have a route entry with a better
2205 * meta queue index value and we can have a situation where
2206 * we might have the same node enqueued 2 times. Not necessarily
2207 * an optimal situation but it should be ok.
2208 *
2209 * The other possibility is that the original invocation has not
2210 * been pulled off for processing yet, A subsusquent invocation
2211 * doesn't have a route_entry with a better meta-queue and the
2212 * original metaqueue index value will win and we'll end up with
2213 * the route node enqueued once.
2214 */
2215 static void rib_meta_queue_add(struct meta_queue *mq, struct route_node *rn)
2216 {
2217 struct route_entry *re = NULL, *curr_re = NULL;
2218 uint8_t qindex = MQ_SIZE, curr_qindex = MQ_SIZE;
2219 struct zebra_vrf *zvrf;
2220
2221 RNODE_FOREACH_RE (rn, curr_re) {
2222 curr_qindex = route_info[curr_re->type].meta_q_map;
2223
2224 if (curr_qindex <= qindex) {
2225 re = curr_re;
2226 qindex = curr_qindex;
2227 }
2228 }
2229
2230 if (!re)
2231 return;
2232
2233 /* Invariant: at this point we always have rn->info set. */
2234 if (CHECK_FLAG(rib_dest_from_rnode(rn)->flags,
2235 RIB_ROUTE_QUEUED(qindex))) {
2236 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2237 rnode_debug(rn, re->vrf_id,
2238 "rn %p is already queued in sub-queue %u",
2239 (void *)rn, qindex);
2240 return;
2241 }
2242
2243 SET_FLAG(rib_dest_from_rnode(rn)->flags, RIB_ROUTE_QUEUED(qindex));
2244 listnode_add(mq->subq[qindex], rn);
2245 route_lock_node(rn);
2246 mq->size++;
2247
2248 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2249 rnode_debug(rn, re->vrf_id, "queued rn %p into sub-queue %u",
2250 (void *)rn, qindex);
2251
2252 zvrf = zebra_vrf_lookup_by_id(re->vrf_id);
2253 if (zvrf)
2254 zvrf->flags |= ZEBRA_VRF_RIB_SCHEDULED;
2255 }
2256
2257 /* Add route_node to work queue and schedule processing */
2258 void rib_queue_add(struct route_node *rn)
2259 {
2260 assert(rn);
2261
2262 /* Pointless to queue a route_node with no RIB entries to add or remove
2263 */
2264 if (!rnode_to_ribs(rn)) {
2265 zlog_debug("%s: called for route_node (%p, %d) with no ribs",
2266 __func__, (void *)rn, rn->lock);
2267 zlog_backtrace(LOG_DEBUG);
2268 return;
2269 }
2270
2271 if (zrouter.ribq == NULL) {
2272 flog_err(EC_ZEBRA_WQ_NONEXISTENT,
2273 "%s: work_queue does not exist!", __func__);
2274 return;
2275 }
2276
2277 /*
2278 * The RIB queue should normally be either empty or holding the only
2279 * work_queue_item element. In the latter case this element would
2280 * hold a pointer to the meta queue structure, which must be used to
2281 * actually queue the route nodes to process. So create the MQ
2282 * holder, if necessary, then push the work into it in any case.
2283 * This semantics was introduced after 0.99.9 release.
2284 */
2285 if (work_queue_empty(zrouter.ribq))
2286 work_queue_add(zrouter.ribq, zrouter.mq);
2287
2288 rib_meta_queue_add(zrouter.mq, rn);
2289
2290 return;
2291 }
2292
2293 /* Create new meta queue.
2294 A destructor function doesn't seem to be necessary here.
2295 */
2296 static struct meta_queue *meta_queue_new(void)
2297 {
2298 struct meta_queue *new;
2299 unsigned i;
2300
2301 new = XCALLOC(MTYPE_WORK_QUEUE, sizeof(struct meta_queue));
2302
2303 for (i = 0; i < MQ_SIZE; i++) {
2304 new->subq[i] = list_new();
2305 assert(new->subq[i]);
2306 }
2307
2308 return new;
2309 }
2310
2311 void meta_queue_free(struct meta_queue *mq)
2312 {
2313 unsigned i;
2314
2315 for (i = 0; i < MQ_SIZE; i++)
2316 list_delete(&mq->subq[i]);
2317
2318 XFREE(MTYPE_WORK_QUEUE, mq);
2319 }
2320
2321 /* initialise zebra rib work queue */
2322 static void rib_queue_init(void)
2323 {
2324 if (!(zrouter.ribq = work_queue_new(zrouter.master,
2325 "route_node processing"))) {
2326 flog_err(EC_ZEBRA_WQ_NONEXISTENT,
2327 "%s: could not initialise work queue!", __func__);
2328 return;
2329 }
2330
2331 /* fill in the work queue spec */
2332 zrouter.ribq->spec.workfunc = &meta_queue_process;
2333 zrouter.ribq->spec.errorfunc = NULL;
2334 zrouter.ribq->spec.completion_func = NULL;
2335 /* XXX: TODO: These should be runtime configurable via vty */
2336 zrouter.ribq->spec.max_retries = 3;
2337 zrouter.ribq->spec.hold = ZEBRA_RIB_PROCESS_HOLD_TIME;
2338 zrouter.ribq->spec.retry = ZEBRA_RIB_PROCESS_RETRY_TIME;
2339
2340 if (!(zrouter.mq = meta_queue_new())) {
2341 flog_err(EC_ZEBRA_WQ_NONEXISTENT,
2342 "%s: could not initialise meta queue!", __func__);
2343 return;
2344 }
2345 return;
2346 }
2347
2348 /* RIB updates are processed via a queue of pointers to route_nodes.
2349 *
2350 * The queue length is bounded by the maximal size of the routing table,
2351 * as a route_node will not be requeued, if already queued.
2352 *
2353 * REs are submitted via rib_addnode or rib_delnode which set minimal
2354 * state, or static_install_route (when an existing RE is updated)
2355 * and then submit route_node to queue for best-path selection later.
2356 * Order of add/delete state changes are preserved for any given RE.
2357 *
2358 * Deleted REs are reaped during best-path selection.
2359 *
2360 * rib_addnode
2361 * |-> rib_link or unset ROUTE_ENTRY_REMOVE |->Update kernel with
2362 * |-------->| | best RE, if required
2363 * | |
2364 * static_install->|->rib_addqueue...... -> rib_process
2365 * | |
2366 * |-------->| |-> rib_unlink
2367 * |-> set ROUTE_ENTRY_REMOVE |
2368 * rib_delnode (RE freed)
2369 *
2370 * The 'info' pointer of a route_node points to a rib_dest_t
2371 * ('dest'). Queueing state for a route_node is kept on the dest. The
2372 * dest is created on-demand by rib_link() and is kept around at least
2373 * as long as there are ribs hanging off it (@see rib_gc_dest()).
2374 *
2375 * Refcounting (aka "locking" throughout the GNU Zebra and Quagga code):
2376 *
2377 * - route_nodes: refcounted by:
2378 * - dest attached to route_node:
2379 * - managed by: rib_link/rib_gc_dest
2380 * - route_node processing queue
2381 * - managed by: rib_addqueue, rib_process.
2382 *
2383 */
2384
2385 /* Add RE to head of the route node. */
2386 static void rib_link(struct route_node *rn, struct route_entry *re, int process)
2387 {
2388 struct route_entry *head;
2389 rib_dest_t *dest;
2390 afi_t afi;
2391 const char *rmap_name;
2392
2393 assert(re && rn);
2394
2395 dest = rib_dest_from_rnode(rn);
2396 if (!dest) {
2397 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2398 rnode_debug(rn, re->vrf_id, "rn %p adding dest", rn);
2399
2400 dest = XCALLOC(MTYPE_RIB_DEST, sizeof(rib_dest_t));
2401 route_lock_node(rn); /* rn route table reference */
2402 rn->info = dest;
2403 dest->rnode = rn;
2404 }
2405
2406 head = dest->routes;
2407 if (head) {
2408 head->prev = re;
2409 }
2410 re->next = head;
2411 dest->routes = re;
2412
2413 afi = (rn->p.family == AF_INET)
2414 ? AFI_IP
2415 : (rn->p.family == AF_INET6) ? AFI_IP6 : AFI_MAX;
2416 if (is_zebra_import_table_enabled(afi, re->table)) {
2417 rmap_name = zebra_get_import_table_route_map(afi, re->table);
2418 zebra_add_import_table_entry(rn, re, rmap_name);
2419 } else if (process)
2420 rib_queue_add(rn);
2421 }
2422
2423 static void rib_addnode(struct route_node *rn,
2424 struct route_entry *re, int process)
2425 {
2426 /* RE node has been un-removed before route-node is processed.
2427 * route_node must hence already be on the queue for processing..
2428 */
2429 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
2430 if (IS_ZEBRA_DEBUG_RIB)
2431 rnode_debug(rn, re->vrf_id, "rn %p, un-removed re %p",
2432 (void *)rn, (void *)re);
2433
2434 UNSET_FLAG(re->status, ROUTE_ENTRY_REMOVED);
2435 return;
2436 }
2437 rib_link(rn, re, process);
2438 }
2439
2440 /*
2441 * rib_unlink
2442 *
2443 * Detach a rib structure from a route_node.
2444 *
2445 * Note that a call to rib_unlink() should be followed by a call to
2446 * rib_gc_dest() at some point. This allows a rib_dest_t that is no
2447 * longer required to be deleted.
2448 */
2449 void rib_unlink(struct route_node *rn, struct route_entry *re)
2450 {
2451 rib_dest_t *dest;
2452
2453 assert(rn && re);
2454
2455 if (IS_ZEBRA_DEBUG_RIB)
2456 rnode_debug(rn, re->vrf_id, "rn %p, re %p", (void *)rn,
2457 (void *)re);
2458
2459 dest = rib_dest_from_rnode(rn);
2460
2461 if (re->next)
2462 re->next->prev = re->prev;
2463
2464 if (re->prev)
2465 re->prev->next = re->next;
2466 else {
2467 dest->routes = re->next;
2468 }
2469
2470 if (dest->selected_fib == re)
2471 dest->selected_fib = NULL;
2472
2473 nexthops_free(re->ng.nexthop);
2474 XFREE(MTYPE_RE, re);
2475 }
2476
2477 void rib_delnode(struct route_node *rn, struct route_entry *re)
2478 {
2479 afi_t afi;
2480
2481 if (IS_ZEBRA_DEBUG_RIB)
2482 rnode_debug(rn, re->vrf_id, "rn %p, re %p, removing",
2483 (void *)rn, (void *)re);
2484 SET_FLAG(re->status, ROUTE_ENTRY_REMOVED);
2485
2486 afi = (rn->p.family == AF_INET)
2487 ? AFI_IP
2488 : (rn->p.family == AF_INET6) ? AFI_IP6 : AFI_MAX;
2489 if (is_zebra_import_table_enabled(afi, re->table)) {
2490 zebra_del_import_table_entry(rn, re);
2491 /* Just clean up if non main table */
2492 if (IS_ZEBRA_DEBUG_RIB) {
2493 char buf[SRCDEST2STR_BUFFER];
2494 srcdest_rnode2str(rn, buf, sizeof(buf));
2495 zlog_debug("%u:%s: Freeing route rn %p, re %p (%s)",
2496 re->vrf_id, buf, rn, re,
2497 zebra_route_string(re->type));
2498 }
2499
2500 rib_unlink(rn, re);
2501 } else {
2502 rib_queue_add(rn);
2503 }
2504 }
2505
2506 /* This function dumps the contents of a given RE entry into
2507 * standard debug log. Calling function name and IP prefix in
2508 * question are passed as 1st and 2nd arguments.
2509 */
2510
2511 void _route_entry_dump(const char *func, union prefixconstptr pp,
2512 union prefixconstptr src_pp,
2513 const struct route_entry *re)
2514 {
2515 const struct prefix *src_p = src_pp.p;
2516 bool is_srcdst = src_p && src_p->prefixlen;
2517 char straddr[PREFIX_STRLEN];
2518 char srcaddr[PREFIX_STRLEN];
2519 struct nexthop *nexthop;
2520
2521 zlog_debug("%s: dumping RE entry %p for %s%s%s vrf %u", func,
2522 (const void *)re, prefix2str(pp, straddr, sizeof(straddr)),
2523 is_srcdst ? " from " : "",
2524 is_srcdst ? prefix2str(src_pp, srcaddr, sizeof(srcaddr))
2525 : "",
2526 re->vrf_id);
2527 zlog_debug("%s: uptime == %lu, type == %u, instance == %d, table == %d",
2528 func, (unsigned long)re->uptime, re->type, re->instance,
2529 re->table);
2530 zlog_debug(
2531 "%s: metric == %u, mtu == %u, distance == %u, flags == %u, status == %u",
2532 func, re->metric, re->mtu, re->distance, re->flags, re->status);
2533 zlog_debug("%s: nexthop_num == %u, nexthop_active_num == %u", func,
2534 re->nexthop_num, re->nexthop_active_num);
2535
2536 for (ALL_NEXTHOPS(re->ng, nexthop)) {
2537 struct interface *ifp;
2538 struct vrf *vrf = vrf_lookup_by_id(nexthop->vrf_id);
2539
2540 switch (nexthop->type) {
2541 case NEXTHOP_TYPE_BLACKHOLE:
2542 sprintf(straddr, "Blackhole");
2543 break;
2544 case NEXTHOP_TYPE_IFINDEX:
2545 ifp = if_lookup_by_index(nexthop->ifindex,
2546 nexthop->vrf_id);
2547 sprintf(straddr, "%s", ifp ? ifp->name : "Unknown");
2548 break;
2549 case NEXTHOP_TYPE_IPV4:
2550 /* fallthrough */
2551 case NEXTHOP_TYPE_IPV4_IFINDEX:
2552 inet_ntop(AF_INET, &nexthop->gate, straddr,
2553 INET6_ADDRSTRLEN);
2554 break;
2555 case NEXTHOP_TYPE_IPV6:
2556 case NEXTHOP_TYPE_IPV6_IFINDEX:
2557 inet_ntop(AF_INET6, &nexthop->gate, straddr,
2558 INET6_ADDRSTRLEN);
2559 break;
2560 }
2561 zlog_debug("%s: %s %s[%u] vrf %s(%u) with flags %s%s%s", func,
2562 (nexthop->rparent ? " NH" : "NH"), straddr,
2563 nexthop->ifindex, vrf ? vrf->name : "Unknown",
2564 nexthop->vrf_id,
2565 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE)
2566 ? "ACTIVE "
2567 : ""),
2568 (CHECK_FLAG(re->status, ROUTE_ENTRY_INSTALLED)
2569 ? "FIB "
2570 : ""),
2571 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE)
2572 ? "RECURSIVE"
2573 : ""));
2574 }
2575 zlog_debug("%s: dump complete", func);
2576 }
2577
2578 /* This is an exported helper to rtm_read() to dump the strange
2579 * RE entry found by rib_lookup_ipv4_route()
2580 */
2581
2582 void rib_lookup_and_dump(struct prefix_ipv4 *p, vrf_id_t vrf_id)
2583 {
2584 struct route_table *table;
2585 struct route_node *rn;
2586 struct route_entry *re;
2587 char prefix_buf[INET_ADDRSTRLEN];
2588
2589 /* Lookup table. */
2590 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
2591 if (!table) {
2592 flog_err(EC_ZEBRA_TABLE_LOOKUP_FAILED,
2593 "%s:%u zebra_vrf_table() returned NULL", __func__,
2594 vrf_id);
2595 return;
2596 }
2597
2598 /* Scan the RIB table for exactly matching RE entry. */
2599 rn = route_node_lookup(table, (struct prefix *)p);
2600
2601 /* No route for this prefix. */
2602 if (!rn) {
2603 zlog_debug("%s:%u lookup failed for %s", __func__, vrf_id,
2604 prefix2str((struct prefix *)p, prefix_buf,
2605 sizeof(prefix_buf)));
2606 return;
2607 }
2608
2609 /* Unlock node. */
2610 route_unlock_node(rn);
2611
2612 /* let's go */
2613 RNODE_FOREACH_RE (rn, re) {
2614 zlog_debug("%s:%u rn %p, re %p: %s, %s",
2615 __func__, vrf_id,
2616 (void *)rn, (void *)re,
2617 (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)
2618 ? "removed"
2619 : "NOT removed"),
2620 (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)
2621 ? "selected"
2622 : "NOT selected"));
2623 route_entry_dump(p, NULL, re);
2624 }
2625 }
2626
2627 /* Check if requested address assignment will fail due to another
2628 * route being installed by zebra in FIB already. Take necessary
2629 * actions, if needed: remove such a route from FIB and deSELECT
2630 * corresponding RE entry. Then put affected RN into RIBQ head.
2631 */
2632 void rib_lookup_and_pushup(struct prefix_ipv4 *p, vrf_id_t vrf_id)
2633 {
2634 struct route_table *table;
2635 struct route_node *rn;
2636 unsigned changed = 0;
2637 rib_dest_t *dest;
2638
2639 if (NULL == (table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id))) {
2640 flog_err(EC_ZEBRA_TABLE_LOOKUP_FAILED,
2641 "%s:%u zebra_vrf_table() returned NULL", __func__,
2642 vrf_id);
2643 return;
2644 }
2645
2646 /* No matches would be the simplest case. */
2647 if (NULL == (rn = route_node_lookup(table, (struct prefix *)p)))
2648 return;
2649
2650 /* Unlock node. */
2651 route_unlock_node(rn);
2652
2653 dest = rib_dest_from_rnode(rn);
2654 /* Check all RE entries. In case any changes have to be done, requeue
2655 * the RN into RIBQ head. If the routing message about the new connected
2656 * route (generated by the IP address we are going to assign very soon)
2657 * comes before the RIBQ is processed, the new RE entry will join
2658 * RIBQ record already on head. This is necessary for proper
2659 * revalidation
2660 * of the rest of the RE.
2661 */
2662 if (dest->selected_fib && !RIB_SYSTEM_ROUTE(dest->selected_fib)) {
2663 changed = 1;
2664 if (IS_ZEBRA_DEBUG_RIB) {
2665 char buf[PREFIX_STRLEN];
2666
2667 zlog_debug("%u:%s: freeing way for connected prefix",
2668 dest->selected_fib->vrf_id,
2669 prefix2str(&rn->p, buf, sizeof(buf)));
2670 route_entry_dump(&rn->p, NULL, dest->selected_fib);
2671 }
2672 rib_uninstall(rn, dest->selected_fib);
2673 }
2674 if (changed)
2675 rib_queue_add(rn);
2676 }
2677
2678 int rib_add_multipath(afi_t afi, safi_t safi, struct prefix *p,
2679 struct prefix_ipv6 *src_p, struct route_entry *re)
2680 {
2681 struct route_table *table;
2682 struct route_node *rn;
2683 struct route_entry *same = NULL;
2684 struct nexthop *nexthop;
2685 int ret = 0;
2686
2687 if (!re)
2688 return 0;
2689
2690 assert(!src_p || !src_p->prefixlen || afi == AFI_IP6);
2691
2692 /* Lookup table. */
2693 table = zebra_vrf_table_with_table_id(afi, safi, re->vrf_id, re->table);
2694 if (!table) {
2695 XFREE(MTYPE_RE, re);
2696 return 0;
2697 }
2698
2699 /* Make it sure prefixlen is applied to the prefix. */
2700 apply_mask(p);
2701 if (src_p)
2702 apply_mask_ipv6(src_p);
2703
2704 /* Set default distance by route type. */
2705 if (re->distance == 0) {
2706 re->distance = route_distance(re->type);
2707
2708 /* iBGP distance is 200. */
2709 if (re->type == ZEBRA_ROUTE_BGP
2710 && CHECK_FLAG(re->flags, ZEBRA_FLAG_IBGP))
2711 re->distance = 200;
2712 }
2713
2714 /* Lookup route node.*/
2715 rn = srcdest_rnode_get(table, p, src_p);
2716
2717 /*
2718 * If same type of route are installed, treat it as a implicit
2719 * withdraw.
2720 * If the user has specified the No route replace semantics
2721 * for the install don't do a route replace.
2722 */
2723 RNODE_FOREACH_RE (rn, same) {
2724 if (CHECK_FLAG(same->status, ROUTE_ENTRY_REMOVED))
2725 continue;
2726
2727 if (same->type != re->type)
2728 continue;
2729 if (same->instance != re->instance)
2730 continue;
2731 if (same->type == ZEBRA_ROUTE_KERNEL
2732 && same->metric != re->metric)
2733 continue;
2734
2735 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_RR_USE_DISTANCE) &&
2736 same->distance != re->distance)
2737 continue;
2738
2739 /*
2740 * We should allow duplicate connected routes
2741 * because of IPv6 link-local routes and unnumbered
2742 * interfaces on Linux.
2743 */
2744 if (same->type != ZEBRA_ROUTE_CONNECT)
2745 break;
2746 }
2747
2748 /* If this route is kernel route, set FIB flag to the route. */
2749 if (RIB_SYSTEM_ROUTE(re)) {
2750 SET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
2751 for (nexthop = re->ng.nexthop; nexthop; nexthop = nexthop->next)
2752 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
2753 }
2754
2755 /* Link new re to node.*/
2756 if (IS_ZEBRA_DEBUG_RIB) {
2757 rnode_debug(rn, re->vrf_id,
2758 "Inserting route rn %p, re %p (%s) existing %p",
2759 rn, re, zebra_route_string(re->type), same);
2760
2761 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2762 route_entry_dump(p, src_p, re);
2763 }
2764 rib_addnode(rn, re, 1);
2765 ret = 1;
2766
2767 /* Free implicit route.*/
2768 if (same) {
2769 rib_delnode(rn, same);
2770 ret = -1;
2771 }
2772
2773 route_unlock_node(rn);
2774 return ret;
2775 }
2776
2777 void rib_delete(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type,
2778 unsigned short instance, int flags, struct prefix *p,
2779 struct prefix_ipv6 *src_p, const struct nexthop *nh,
2780 uint32_t table_id, uint32_t metric, uint8_t distance,
2781 bool fromkernel)
2782 {
2783 struct route_table *table;
2784 struct route_node *rn;
2785 struct route_entry *re;
2786 struct route_entry *fib = NULL;
2787 struct route_entry *same = NULL;
2788 struct nexthop *rtnh;
2789 char buf2[INET6_ADDRSTRLEN];
2790 rib_dest_t *dest;
2791
2792 assert(!src_p || !src_p->prefixlen || afi == AFI_IP6);
2793
2794 /* Lookup table. */
2795 table = zebra_vrf_table_with_table_id(afi, safi, vrf_id, table_id);
2796 if (!table)
2797 return;
2798
2799 /* Apply mask. */
2800 apply_mask(p);
2801 if (src_p)
2802 apply_mask_ipv6(src_p);
2803
2804 /* Lookup route node. */
2805 rn = srcdest_rnode_lookup(table, p, src_p);
2806 if (!rn) {
2807 char dst_buf[PREFIX_STRLEN], src_buf[PREFIX_STRLEN];
2808
2809 prefix2str(p, dst_buf, sizeof(dst_buf));
2810 if (src_p && src_p->prefixlen)
2811 prefix2str(src_p, src_buf, sizeof(src_buf));
2812 else
2813 src_buf[0] = '\0';
2814
2815 if (IS_ZEBRA_DEBUG_RIB)
2816 zlog_debug("%u:%s%s%s doesn't exist in rib", vrf_id,
2817 dst_buf,
2818 (src_buf[0] != '\0') ? " from " : "",
2819 src_buf);
2820 return;
2821 }
2822
2823 dest = rib_dest_from_rnode(rn);
2824 fib = dest->selected_fib;
2825
2826 /* Lookup same type route. */
2827 RNODE_FOREACH_RE (rn, re) {
2828 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
2829 continue;
2830
2831 if (re->type != type)
2832 continue;
2833 if (re->instance != instance)
2834 continue;
2835 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_RR_USE_DISTANCE) &&
2836 distance != re->distance)
2837 continue;
2838
2839 if (re->type == ZEBRA_ROUTE_KERNEL && re->metric != metric)
2840 continue;
2841 if (re->type == ZEBRA_ROUTE_CONNECT && (rtnh = re->ng.nexthop)
2842 && rtnh->type == NEXTHOP_TYPE_IFINDEX && nh) {
2843 if (rtnh->ifindex != nh->ifindex)
2844 continue;
2845 same = re;
2846 break;
2847 }
2848 /* Make sure that the route found has the same gateway. */
2849 else {
2850 if (nh == NULL) {
2851 same = re;
2852 break;
2853 }
2854 for (ALL_NEXTHOPS(re->ng, rtnh))
2855 if (nexthop_same_no_recurse(rtnh, nh)) {
2856 same = re;
2857 break;
2858 }
2859 if (same)
2860 break;
2861 }
2862 }
2863 /* If same type of route can't be found and this message is from
2864 kernel. */
2865 if (!same) {
2866 /*
2867 * In the past(HA!) we could get here because
2868 * we were receiving a route delete from the
2869 * kernel and we're not marking the proto
2870 * as coming from it's appropriate originator.
2871 * Now that we are properly noticing the fact
2872 * that the kernel has deleted our route we
2873 * are not going to get called in this path
2874 * I am going to leave this here because
2875 * this might still work this way on non-linux
2876 * platforms as well as some weird state I have
2877 * not properly thought of yet.
2878 * If we can show that this code path is
2879 * dead then we can remove it.
2880 */
2881 if (fib && CHECK_FLAG(flags, ZEBRA_FLAG_SELFROUTE)) {
2882 if (IS_ZEBRA_DEBUG_RIB) {
2883 rnode_debug(rn, vrf_id,
2884 "rn %p, re %p (%s) was deleted from kernel, adding",
2885 rn, fib,
2886 zebra_route_string(fib->type));
2887 }
2888 if (allow_delete) {
2889 UNSET_FLAG(fib->status, ROUTE_ENTRY_INSTALLED);
2890 /* Unset flags. */
2891 for (rtnh = fib->ng.nexthop; rtnh;
2892 rtnh = rtnh->next)
2893 UNSET_FLAG(rtnh->flags,
2894 NEXTHOP_FLAG_FIB);
2895
2896 /*
2897 * This is a non FRR route
2898 * as such we should mark
2899 * it as deleted
2900 */
2901 dest->selected_fib = NULL;
2902 } else {
2903 /* This means someone else, other than Zebra,
2904 * has deleted
2905 * a Zebra router from the kernel. We will add
2906 * it back */
2907 rib_install_kernel(rn, fib, NULL);
2908 }
2909 } else {
2910 if (IS_ZEBRA_DEBUG_RIB) {
2911 if (nh)
2912 rnode_debug(
2913 rn, vrf_id,
2914 "via %s ifindex %d type %d "
2915 "doesn't exist in rib",
2916 inet_ntop(afi2family(afi),
2917 &nh->gate, buf2,
2918 sizeof(buf2)),
2919 nh->ifindex, type);
2920 else
2921 rnode_debug(
2922 rn, vrf_id,
2923 "type %d doesn't exist in rib",
2924 type);
2925 }
2926 route_unlock_node(rn);
2927 return;
2928 }
2929 }
2930
2931 if (same) {
2932 if (fromkernel && CHECK_FLAG(flags, ZEBRA_FLAG_SELFROUTE)
2933 && !allow_delete) {
2934 rib_install_kernel(rn, same, NULL);
2935 route_unlock_node(rn);
2936
2937 return;
2938 }
2939
2940 if (CHECK_FLAG(flags, ZEBRA_FLAG_EVPN_ROUTE)) {
2941 struct nexthop *tmp_nh;
2942
2943 for (ALL_NEXTHOPS(re->ng, tmp_nh)) {
2944 struct ipaddr vtep_ip;
2945
2946 memset(&vtep_ip, 0, sizeof(struct ipaddr));
2947 if (afi == AFI_IP) {
2948 vtep_ip.ipa_type = IPADDR_V4;
2949 memcpy(&(vtep_ip.ipaddr_v4),
2950 &(tmp_nh->gate.ipv4),
2951 sizeof(struct in_addr));
2952 } else {
2953 vtep_ip.ipa_type = IPADDR_V6;
2954 memcpy(&(vtep_ip.ipaddr_v6),
2955 &(tmp_nh->gate.ipv6),
2956 sizeof(struct in6_addr));
2957 }
2958 zebra_vxlan_evpn_vrf_route_del(re->vrf_id,
2959 &vtep_ip, p);
2960 }
2961 }
2962 rib_delnode(rn, same);
2963 }
2964
2965 route_unlock_node(rn);
2966 return;
2967 }
2968
2969
2970 int rib_add(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type,
2971 unsigned short instance, int flags, struct prefix *p,
2972 struct prefix_ipv6 *src_p, const struct nexthop *nh,
2973 uint32_t table_id, uint32_t metric, uint32_t mtu, uint8_t distance,
2974 route_tag_t tag)
2975 {
2976 struct route_entry *re;
2977 struct nexthop *nexthop;
2978
2979 /* Allocate new route_entry structure. */
2980 re = XCALLOC(MTYPE_RE, sizeof(struct route_entry));
2981 re->type = type;
2982 re->instance = instance;
2983 re->distance = distance;
2984 re->flags = flags;
2985 re->metric = metric;
2986 re->mtu = mtu;
2987 re->table = table_id;
2988 re->vrf_id = vrf_id;
2989 re->nexthop_num = 0;
2990 re->uptime = time(NULL);
2991 re->tag = tag;
2992
2993 /* Add nexthop. */
2994 nexthop = nexthop_new();
2995 *nexthop = *nh;
2996 route_entry_nexthop_add(re, nexthop);
2997
2998 return rib_add_multipath(afi, safi, p, src_p, re);
2999 }
3000
3001 /* Schedule routes of a particular table (address-family) based on event. */
3002 void rib_update_table(struct route_table *table, rib_update_event_t event)
3003 {
3004 struct route_node *rn;
3005 struct route_entry *re, *next;
3006
3007 /* Walk all routes and queue for processing, if appropriate for
3008 * the trigger event.
3009 */
3010 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
3011 /*
3012 * If we are looking at a route node and the node
3013 * has already been queued we don't
3014 * need to queue it up again
3015 */
3016 if (rn->info && CHECK_FLAG(rib_dest_from_rnode(rn)->flags,
3017 RIB_ROUTE_ANY_QUEUED))
3018 continue;
3019 switch (event) {
3020 case RIB_UPDATE_IF_CHANGE:
3021 /* Examine all routes that won't get processed by the
3022 * protocol or
3023 * triggered by nexthop evaluation (NHT). This would be
3024 * system,
3025 * kernel and certain static routes. Note that NHT will
3026 * get
3027 * triggered upon an interface event as connected routes
3028 * always
3029 * get queued for processing.
3030 */
3031 RNODE_FOREACH_RE_SAFE (rn, re, next) {
3032 struct nexthop *nh;
3033
3034 if (re->type != ZEBRA_ROUTE_SYSTEM
3035 && re->type != ZEBRA_ROUTE_KERNEL
3036 && re->type != ZEBRA_ROUTE_CONNECT
3037 && re->type != ZEBRA_ROUTE_STATIC)
3038 continue;
3039
3040 if (re->type != ZEBRA_ROUTE_STATIC) {
3041 rib_queue_add(rn);
3042 continue;
3043 }
3044
3045 for (nh = re->ng.nexthop; nh; nh = nh->next)
3046 if (!(nh->type == NEXTHOP_TYPE_IPV4
3047 || nh->type == NEXTHOP_TYPE_IPV6))
3048 break;
3049
3050 /* If we only have nexthops to a
3051 * gateway, NHT will
3052 * take care.
3053 */
3054 if (nh)
3055 rib_queue_add(rn);
3056 }
3057 break;
3058
3059 case RIB_UPDATE_RMAP_CHANGE:
3060 case RIB_UPDATE_OTHER:
3061 /* Right now, examine all routes. Can restrict to a
3062 * protocol in
3063 * some cases (TODO).
3064 */
3065 if (rnode_to_ribs(rn))
3066 rib_queue_add(rn);
3067 break;
3068
3069 default:
3070 break;
3071 }
3072 }
3073 }
3074
3075 /* RIB update function. */
3076 void rib_update(vrf_id_t vrf_id, rib_update_event_t event)
3077 {
3078 struct route_table *table;
3079
3080 /* Process routes of interested address-families. */
3081 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
3082 if (table) {
3083 if (IS_ZEBRA_DEBUG_EVENT)
3084 zlog_debug("%s : AFI_IP event %d", __func__, event);
3085 rib_update_table(table, event);
3086 }
3087
3088 table = zebra_vrf_table(AFI_IP6, SAFI_UNICAST, vrf_id);
3089 if (table) {
3090 if (IS_ZEBRA_DEBUG_EVENT)
3091 zlog_debug("%s : AFI_IP6 event %d", __func__, event);
3092 rib_update_table(table, event);
3093 }
3094 }
3095
3096 /* Delete self installed routes after zebra is relaunched. */
3097 void rib_sweep_table(struct route_table *table)
3098 {
3099 struct route_node *rn;
3100 struct route_entry *re;
3101 struct route_entry *next;
3102 struct nexthop *nexthop;
3103
3104 if (!table)
3105 return;
3106
3107 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
3108 RNODE_FOREACH_RE_SAFE (rn, re, next) {
3109 if (IS_ZEBRA_DEBUG_RIB)
3110 route_entry_dump(&rn->p, NULL, re);
3111
3112 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
3113 continue;
3114
3115 if (!CHECK_FLAG(re->flags, ZEBRA_FLAG_SELFROUTE))
3116 continue;
3117
3118 /*
3119 * So we are starting up and have received
3120 * routes from the kernel that we have installed
3121 * from a previous run of zebra but not cleaned
3122 * up ( say a kill -9 )
3123 * But since we haven't actually installed
3124 * them yet( we received them from the kernel )
3125 * we don't think they are active.
3126 * So let's pretend they are active to actually
3127 * remove them.
3128 * In all honesty I'm not sure if we should
3129 * mark them as active when we receive them
3130 * This is startup only so probably ok.
3131 *
3132 * If we ever decide to move rib_sweep_table
3133 * to a different spot (ie startup )
3134 * this decision needs to be revisited
3135 */
3136 SET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
3137 for (ALL_NEXTHOPS(re->ng, nexthop))
3138 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
3139
3140 rib_uninstall_kernel(rn, re);
3141 rib_delnode(rn, re);
3142 }
3143 }
3144 }
3145
3146 /* Sweep all RIB tables. */
3147 void rib_sweep_route(void)
3148 {
3149 struct vrf *vrf;
3150 struct zebra_vrf *zvrf;
3151
3152 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id) {
3153 if ((zvrf = vrf->info) == NULL)
3154 continue;
3155
3156 rib_sweep_table(zvrf->table[AFI_IP][SAFI_UNICAST]);
3157 rib_sweep_table(zvrf->table[AFI_IP6][SAFI_UNICAST]);
3158 }
3159
3160 zebra_router_sweep_route();
3161 }
3162
3163 /* Remove specific by protocol routes from 'table'. */
3164 unsigned long rib_score_proto_table(uint8_t proto, unsigned short instance,
3165 struct route_table *table)
3166 {
3167 struct route_node *rn;
3168 struct route_entry *re;
3169 struct route_entry *next;
3170 unsigned long n = 0;
3171
3172 if (table)
3173 for (rn = route_top(table); rn; rn = srcdest_route_next(rn))
3174 RNODE_FOREACH_RE_SAFE (rn, re, next) {
3175 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
3176 continue;
3177 if (re->type == proto
3178 && re->instance == instance) {
3179 rib_delnode(rn, re);
3180 n++;
3181 }
3182 }
3183 return n;
3184 }
3185
3186 /* Remove specific by protocol routes. */
3187 unsigned long rib_score_proto(uint8_t proto, unsigned short instance)
3188 {
3189 struct vrf *vrf;
3190 struct zebra_vrf *zvrf;
3191 unsigned long cnt = 0;
3192
3193 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id)
3194 if ((zvrf = vrf->info) != NULL)
3195 cnt += rib_score_proto_table(
3196 proto, instance,
3197 zvrf->table[AFI_IP][SAFI_UNICAST])
3198 + rib_score_proto_table(
3199 proto, instance,
3200 zvrf->table[AFI_IP6][SAFI_UNICAST]);
3201
3202 cnt += zebra_router_score_proto(proto, instance);
3203
3204 return cnt;
3205 }
3206
3207 /* Close RIB and clean up kernel routes. */
3208 void rib_close_table(struct route_table *table)
3209 {
3210 struct route_node *rn;
3211 rib_table_info_t *info;
3212 rib_dest_t *dest;
3213
3214 if (!table)
3215 return;
3216
3217 info = route_table_get_info(table);
3218
3219 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
3220 dest = rib_dest_from_rnode(rn);
3221
3222 if (dest && dest->selected_fib) {
3223 if (info->safi == SAFI_UNICAST)
3224 hook_call(rib_update, rn, NULL);
3225
3226 if (!RIB_SYSTEM_ROUTE(dest->selected_fib)) {
3227 rib_uninstall_kernel(rn, dest->selected_fib);
3228 dest->selected_fib = NULL;
3229 }
3230 }
3231 }
3232 }
3233
3234 /*
3235 * Handler for async dataplane results after a pseudowire installation
3236 */
3237 static int handle_pw_result(struct zebra_dplane_ctx *ctx)
3238 {
3239 struct zebra_pw *pw;
3240 struct zebra_vrf *vrf;
3241
3242 /* The pseudowire code assumes success - we act on an error
3243 * result for installation attempts here.
3244 */
3245 if (dplane_ctx_get_op(ctx) != DPLANE_OP_PW_INSTALL)
3246 goto done;
3247
3248 if (dplane_ctx_get_status(ctx) != ZEBRA_DPLANE_REQUEST_SUCCESS) {
3249 vrf = zebra_vrf_lookup_by_id(dplane_ctx_get_vrf(ctx));
3250 pw = zebra_pw_find(vrf, dplane_ctx_get_pw_ifname(ctx));
3251 if (pw)
3252 zebra_pw_install_failure(pw);
3253 }
3254
3255 done:
3256
3257 return 0;
3258 }
3259
3260
3261 /*
3262 * Handle results from the dataplane system. Dequeue update context
3263 * structs, dispatch to appropriate internal handlers.
3264 */
3265 static int rib_process_dplane_results(struct thread *thread)
3266 {
3267 struct zebra_dplane_ctx *ctx;
3268 struct dplane_ctx_q ctxlist;
3269
3270 /* Dequeue a list of completed updates with one lock/unlock cycle */
3271
3272 do {
3273 TAILQ_INIT(&ctxlist);
3274
3275 /* Take lock controlling queue of results */
3276 pthread_mutex_lock(&dplane_mutex);
3277 {
3278 /* Dequeue list of context structs */
3279 dplane_ctx_list_append(&ctxlist, &rib_dplane_q);
3280 }
3281 pthread_mutex_unlock(&dplane_mutex);
3282
3283 /* Dequeue context block */
3284 ctx = dplane_ctx_dequeue(&ctxlist);
3285
3286 /* If we've emptied the results queue, we're done */
3287 if (ctx == NULL)
3288 break;
3289
3290 while (ctx) {
3291 switch (dplane_ctx_get_op(ctx)) {
3292 case DPLANE_OP_ROUTE_INSTALL:
3293 case DPLANE_OP_ROUTE_UPDATE:
3294 case DPLANE_OP_ROUTE_DELETE:
3295 rib_process_result(ctx);
3296 break;
3297
3298 case DPLANE_OP_LSP_INSTALL:
3299 case DPLANE_OP_LSP_UPDATE:
3300 case DPLANE_OP_LSP_DELETE:
3301 zebra_mpls_lsp_dplane_result(ctx);
3302 break;
3303
3304 case DPLANE_OP_PW_INSTALL:
3305 case DPLANE_OP_PW_UNINSTALL:
3306 handle_pw_result(ctx);
3307 break;
3308
3309 default:
3310 /* Don't expect this: just return the struct? */
3311 dplane_ctx_fini(&ctx);
3312 break;
3313 } /* Dispatch by op code */
3314
3315 ctx = dplane_ctx_dequeue(&ctxlist);
3316 }
3317
3318 } while (1);
3319
3320 /* Check for nexthop tracking processing after finishing with results */
3321 do_nht_processing();
3322
3323 return 0;
3324 }
3325
3326 /*
3327 * Results are returned from the dataplane subsystem, in the context of
3328 * the dataplane pthread. We enqueue the results here for processing by
3329 * the main thread later.
3330 */
3331 static int rib_dplane_results(struct dplane_ctx_q *ctxlist)
3332 {
3333 /* Take lock controlling queue of results */
3334 pthread_mutex_lock(&dplane_mutex);
3335 {
3336 /* Enqueue context blocks */
3337 dplane_ctx_list_append(&rib_dplane_q, ctxlist);
3338 }
3339 pthread_mutex_unlock(&dplane_mutex);
3340
3341 /* Ensure event is signalled to zebra main pthread */
3342 thread_add_event(zrouter.master, rib_process_dplane_results, NULL, 0,
3343 &t_dplane);
3344
3345 return 0;
3346 }
3347
3348 /* Routing information base initialize. */
3349 void rib_init(void)
3350 {
3351 rib_queue_init();
3352
3353 /* Init dataplane, and register for results */
3354 pthread_mutex_init(&dplane_mutex, NULL);
3355 TAILQ_INIT(&rib_dplane_q);
3356 zebra_dplane_init(rib_dplane_results);
3357 }
3358
3359 /*
3360 * vrf_id_get_next
3361 *
3362 * Get the first vrf id that is greater than the given vrf id if any.
3363 *
3364 * Returns TRUE if a vrf id was found, FALSE otherwise.
3365 */
3366 static inline int vrf_id_get_next(vrf_id_t vrf_id, vrf_id_t *next_id_p)
3367 {
3368 struct vrf *vrf;
3369
3370 vrf = vrf_lookup_by_id(vrf_id);
3371 if (vrf) {
3372 vrf = RB_NEXT(vrf_id_head, vrf);
3373 if (vrf) {
3374 *next_id_p = vrf->vrf_id;
3375 return 1;
3376 }
3377 }
3378
3379 return 0;
3380 }
3381
3382 /*
3383 * rib_tables_iter_next
3384 *
3385 * Returns the next table in the iteration.
3386 */
3387 struct route_table *rib_tables_iter_next(rib_tables_iter_t *iter)
3388 {
3389 struct route_table *table;
3390
3391 /*
3392 * Array that helps us go over all AFI/SAFI combinations via one
3393 * index.
3394 */
3395 static struct {
3396 afi_t afi;
3397 safi_t safi;
3398 } afi_safis[] = {
3399 {AFI_IP, SAFI_UNICAST}, {AFI_IP, SAFI_MULTICAST},
3400 {AFI_IP, SAFI_LABELED_UNICAST}, {AFI_IP6, SAFI_UNICAST},
3401 {AFI_IP6, SAFI_MULTICAST}, {AFI_IP6, SAFI_LABELED_UNICAST},
3402 };
3403
3404 table = NULL;
3405
3406 switch (iter->state) {
3407
3408 case RIB_TABLES_ITER_S_INIT:
3409 iter->vrf_id = VRF_DEFAULT;
3410 iter->afi_safi_ix = -1;
3411
3412 /* Fall through */
3413
3414 case RIB_TABLES_ITER_S_ITERATING:
3415 iter->afi_safi_ix++;
3416 while (1) {
3417
3418 while (iter->afi_safi_ix
3419 < (int)ZEBRA_NUM_OF(afi_safis)) {
3420 table = zebra_vrf_table(
3421 afi_safis[iter->afi_safi_ix].afi,
3422 afi_safis[iter->afi_safi_ix].safi,
3423 iter->vrf_id);
3424 if (table)
3425 break;
3426
3427 iter->afi_safi_ix++;
3428 }
3429
3430 /*
3431 * Found another table in this vrf.
3432 */
3433 if (table)
3434 break;
3435
3436 /*
3437 * Done with all tables in the current vrf, go to the
3438 * next
3439 * one.
3440 */
3441 if (!vrf_id_get_next(iter->vrf_id, &iter->vrf_id))
3442 break;
3443
3444 iter->afi_safi_ix = 0;
3445 }
3446
3447 break;
3448
3449 case RIB_TABLES_ITER_S_DONE:
3450 return NULL;
3451 }
3452
3453 if (table)
3454 iter->state = RIB_TABLES_ITER_S_ITERATING;
3455 else
3456 iter->state = RIB_TABLES_ITER_S_DONE;
3457
3458 return table;
3459 }