]> git.proxmox.com Git - mirror_frr.git/blob - zebra/zebra_rib.c
Merge pull request #2981 from donaldsharp/v6_vxlan_bug
[mirror_frr.git] / zebra / zebra_rib.c
1 /* Routing Information Base.
2 * Copyright (C) 1997, 98, 99, 2001 Kunihiro Ishiguro
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; see the file COPYING; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include <zebra.h>
22
23 #include "command.h"
24 #include "if.h"
25 #include "linklist.h"
26 #include "log.h"
27 #include "log_int.h"
28 #include "memory.h"
29 #include "mpls.h"
30 #include "nexthop.h"
31 #include "prefix.h"
32 #include "prefix.h"
33 #include "routemap.h"
34 #include "sockunion.h"
35 #include "srcdest_table.h"
36 #include "table.h"
37 #include "thread.h"
38 #include "vrf.h"
39 #include "workqueue.h"
40
41 #include "zebra/connected.h"
42 #include "zebra/debug.h"
43 #include "zebra/interface.h"
44 #include "zebra/redistribute.h"
45 #include "zebra/rib.h"
46 #include "zebra/rt.h"
47 #include "zebra/zapi_msg.h"
48 #include "zebra/zebra_errors.h"
49 #include "zebra/zebra_memory.h"
50 #include "zebra/zebra_ns.h"
51 #include "zebra/zebra_rnh.h"
52 #include "zebra/zebra_routemap.h"
53 #include "zebra/zebra_vrf.h"
54 #include "zebra/zebra_vxlan.h"
55
56 DEFINE_HOOK(rib_update, (struct route_node * rn, const char *reason),
57 (rn, reason))
58
59 /* Should we allow non Quagga processes to delete our routes */
60 extern int allow_delete;
61
62 /* Each route type's string and default distance value. */
63 static const struct {
64 int key;
65 int distance;
66 } route_info[ZEBRA_ROUTE_MAX] = {
67 [ZEBRA_ROUTE_SYSTEM] = {ZEBRA_ROUTE_SYSTEM, 0},
68 [ZEBRA_ROUTE_KERNEL] = {ZEBRA_ROUTE_KERNEL, 0},
69 [ZEBRA_ROUTE_CONNECT] = {ZEBRA_ROUTE_CONNECT, 0},
70 [ZEBRA_ROUTE_STATIC] = {ZEBRA_ROUTE_STATIC, 1},
71 [ZEBRA_ROUTE_RIP] = {ZEBRA_ROUTE_RIP, 120},
72 [ZEBRA_ROUTE_RIPNG] = {ZEBRA_ROUTE_RIPNG, 120},
73 [ZEBRA_ROUTE_OSPF] = {ZEBRA_ROUTE_OSPF, 110},
74 [ZEBRA_ROUTE_OSPF6] = {ZEBRA_ROUTE_OSPF6, 110},
75 [ZEBRA_ROUTE_ISIS] = {ZEBRA_ROUTE_ISIS, 115},
76 [ZEBRA_ROUTE_BGP] = {ZEBRA_ROUTE_BGP, 20 /* IBGP is 200. */},
77 [ZEBRA_ROUTE_PIM] = {ZEBRA_ROUTE_PIM, 255},
78 [ZEBRA_ROUTE_EIGRP] = {ZEBRA_ROUTE_EIGRP, 90},
79 [ZEBRA_ROUTE_NHRP] = {ZEBRA_ROUTE_NHRP, 10},
80 [ZEBRA_ROUTE_HSLS] = {ZEBRA_ROUTE_HSLS, 255},
81 [ZEBRA_ROUTE_OLSR] = {ZEBRA_ROUTE_OLSR, 255},
82 [ZEBRA_ROUTE_TABLE] = {ZEBRA_ROUTE_TABLE, 150},
83 [ZEBRA_ROUTE_LDP] = {ZEBRA_ROUTE_LDP, 150},
84 [ZEBRA_ROUTE_VNC] = {ZEBRA_ROUTE_VNC, 20},
85 [ZEBRA_ROUTE_VNC_DIRECT] = {ZEBRA_ROUTE_VNC_DIRECT, 20},
86 [ZEBRA_ROUTE_VNC_DIRECT_RH] = {ZEBRA_ROUTE_VNC_DIRECT_RH, 20},
87 [ZEBRA_ROUTE_BGP_DIRECT] = {ZEBRA_ROUTE_BGP_DIRECT, 20},
88 [ZEBRA_ROUTE_BGP_DIRECT_EXT] = {ZEBRA_ROUTE_BGP_DIRECT_EXT, 20},
89 [ZEBRA_ROUTE_BABEL] = {ZEBRA_ROUTE_BABEL, 100},
90 [ZEBRA_ROUTE_SHARP] = {ZEBRA_ROUTE_SHARP, 150},
91
92 /* no entry/default: 150 */
93 };
94
95 /* RPF lookup behaviour */
96 static enum multicast_mode ipv4_multicast_mode = MCAST_NO_CONFIG;
97
98
99 static void __attribute__((format(printf, 5, 6)))
100 _rnode_zlog(const char *_func, vrf_id_t vrf_id, struct route_node *rn,
101 int priority, const char *msgfmt, ...)
102 {
103 char buf[SRCDEST2STR_BUFFER + sizeof(" (MRIB)")];
104 char msgbuf[512];
105 va_list ap;
106
107 va_start(ap, msgfmt);
108 vsnprintf(msgbuf, sizeof(msgbuf), msgfmt, ap);
109 va_end(ap);
110
111 if (rn) {
112 rib_table_info_t *info = srcdest_rnode_table_info(rn);
113 srcdest_rnode2str(rn, buf, sizeof(buf));
114
115 if (info->safi == SAFI_MULTICAST)
116 strcat(buf, " (MRIB)");
117 } else {
118 snprintf(buf, sizeof(buf), "{(route_node *) NULL}");
119 }
120
121 zlog(priority, "%s: %d:%s: %s", _func, vrf_id, buf, msgbuf);
122 }
123
124 #define rnode_debug(node, vrf_id, ...) \
125 _rnode_zlog(__func__, vrf_id, node, LOG_DEBUG, __VA_ARGS__)
126 #define rnode_info(node, ...) \
127 _rnode_zlog(__func__, vrf_id, node, LOG_INFO, __VA_ARGS__)
128
129 uint8_t route_distance(int type)
130 {
131 uint8_t distance;
132
133 if ((unsigned)type >= array_size(route_info))
134 distance = 150;
135 else
136 distance = route_info[type].distance;
137
138 return distance;
139 }
140
141 int is_zebra_valid_kernel_table(uint32_t table_id)
142 {
143 #ifdef linux
144 if ((table_id == RT_TABLE_UNSPEC) || (table_id == RT_TABLE_LOCAL)
145 || (table_id == RT_TABLE_COMPAT))
146 return 0;
147 #endif
148
149 return 1;
150 }
151
152 int is_zebra_main_routing_table(uint32_t table_id)
153 {
154 if ((table_id == RT_TABLE_MAIN)
155 || (table_id == zebrad.rtm_table_default))
156 return 1;
157 return 0;
158 }
159
160 int zebra_check_addr(const struct prefix *p)
161 {
162 if (p->family == AF_INET) {
163 uint32_t addr;
164
165 addr = p->u.prefix4.s_addr;
166 addr = ntohl(addr);
167
168 if (IPV4_NET127(addr) || IN_CLASSD(addr)
169 || IPV4_LINKLOCAL(addr))
170 return 0;
171 }
172 if (p->family == AF_INET6) {
173 if (IN6_IS_ADDR_LOOPBACK(&p->u.prefix6))
174 return 0;
175 if (IN6_IS_ADDR_LINKLOCAL(&p->u.prefix6))
176 return 0;
177 }
178 return 1;
179 }
180
181 /* Add nexthop to the end of a rib node's nexthop list */
182 void route_entry_nexthop_add(struct route_entry *re, struct nexthop *nexthop)
183 {
184 nexthop_add(&re->ng.nexthop, nexthop);
185 re->nexthop_num++;
186 }
187
188
189 /**
190 * copy_nexthop - copy a nexthop to the rib structure.
191 */
192 void route_entry_copy_nexthops(struct route_entry *re, struct nexthop *nh)
193 {
194 assert(!re->ng.nexthop);
195 copy_nexthops(&re->ng.nexthop, nh, NULL);
196 for (struct nexthop *nexthop = nh; nexthop; nexthop = nexthop->next)
197 re->nexthop_num++;
198 }
199
200 /* Delete specified nexthop from the list. */
201 void route_entry_nexthop_delete(struct route_entry *re, struct nexthop *nexthop)
202 {
203 if (nexthop->next)
204 nexthop->next->prev = nexthop->prev;
205 if (nexthop->prev)
206 nexthop->prev->next = nexthop->next;
207 else
208 re->ng.nexthop = nexthop->next;
209 re->nexthop_num--;
210 }
211
212
213 struct nexthop *route_entry_nexthop_ifindex_add(struct route_entry *re,
214 ifindex_t ifindex,
215 vrf_id_t nh_vrf_id)
216 {
217 struct nexthop *nexthop;
218
219 nexthop = nexthop_new();
220 nexthop->type = NEXTHOP_TYPE_IFINDEX;
221 nexthop->ifindex = ifindex;
222 nexthop->vrf_id = nh_vrf_id;
223
224 route_entry_nexthop_add(re, nexthop);
225
226 return nexthop;
227 }
228
229 struct nexthop *route_entry_nexthop_ipv4_add(struct route_entry *re,
230 struct in_addr *ipv4,
231 struct in_addr *src,
232 vrf_id_t nh_vrf_id)
233 {
234 struct nexthop *nexthop;
235
236 nexthop = nexthop_new();
237 nexthop->type = NEXTHOP_TYPE_IPV4;
238 nexthop->vrf_id = nh_vrf_id;
239 nexthop->gate.ipv4 = *ipv4;
240 if (src)
241 nexthop->src.ipv4 = *src;
242
243 route_entry_nexthop_add(re, nexthop);
244
245 return nexthop;
246 }
247
248 struct nexthop *route_entry_nexthop_ipv4_ifindex_add(struct route_entry *re,
249 struct in_addr *ipv4,
250 struct in_addr *src,
251 ifindex_t ifindex,
252 vrf_id_t nh_vrf_id)
253 {
254 struct nexthop *nexthop;
255 struct interface *ifp;
256
257 nexthop = nexthop_new();
258 nexthop->vrf_id = nh_vrf_id;
259 nexthop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
260 nexthop->gate.ipv4 = *ipv4;
261 if (src)
262 nexthop->src.ipv4 = *src;
263 nexthop->ifindex = ifindex;
264 ifp = if_lookup_by_index(nexthop->ifindex, nh_vrf_id);
265 /*Pending: need to think if null ifp here is ok during bootup?
266 There was a crash because ifp here was coming to be NULL */
267 if (ifp)
268 if (connected_is_unnumbered(ifp)
269 || CHECK_FLAG(re->flags, ZEBRA_FLAG_EVPN_ROUTE)) {
270 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK);
271 }
272
273 route_entry_nexthop_add(re, nexthop);
274
275 return nexthop;
276 }
277
278 struct nexthop *route_entry_nexthop_ipv6_add(struct route_entry *re,
279 struct in6_addr *ipv6,
280 vrf_id_t nh_vrf_id)
281 {
282 struct nexthop *nexthop;
283
284 nexthop = nexthop_new();
285 nexthop->vrf_id = nh_vrf_id;
286 nexthop->type = NEXTHOP_TYPE_IPV6;
287 nexthop->gate.ipv6 = *ipv6;
288
289 route_entry_nexthop_add(re, nexthop);
290
291 return nexthop;
292 }
293
294 struct nexthop *route_entry_nexthop_ipv6_ifindex_add(struct route_entry *re,
295 struct in6_addr *ipv6,
296 ifindex_t ifindex,
297 vrf_id_t nh_vrf_id)
298 {
299 struct nexthop *nexthop;
300
301 nexthop = nexthop_new();
302 nexthop->vrf_id = nh_vrf_id;
303 nexthop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
304 nexthop->gate.ipv6 = *ipv6;
305 nexthop->ifindex = ifindex;
306 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_EVPN_ROUTE))
307 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK);
308
309 route_entry_nexthop_add(re, nexthop);
310
311 return nexthop;
312 }
313
314 struct nexthop *route_entry_nexthop_blackhole_add(struct route_entry *re,
315 enum blackhole_type bh_type)
316 {
317 struct nexthop *nexthop;
318
319 nexthop = nexthop_new();
320 nexthop->vrf_id = VRF_DEFAULT;
321 nexthop->type = NEXTHOP_TYPE_BLACKHOLE;
322 nexthop->bh_type = bh_type;
323
324 route_entry_nexthop_add(re, nexthop);
325
326 return nexthop;
327 }
328
329 static void nexthop_set_resolved(afi_t afi, const struct nexthop *newhop,
330 struct nexthop *nexthop)
331 {
332 struct nexthop *resolved_hop;
333
334 resolved_hop = nexthop_new();
335 SET_FLAG(resolved_hop->flags, NEXTHOP_FLAG_ACTIVE);
336
337 resolved_hop->vrf_id = nexthop->vrf_id;
338 switch (newhop->type) {
339 case NEXTHOP_TYPE_IPV4:
340 case NEXTHOP_TYPE_IPV4_IFINDEX:
341 /* If the resolving route specifies a gateway, use it */
342 resolved_hop->type = newhop->type;
343 resolved_hop->gate.ipv4 = newhop->gate.ipv4;
344
345 if (newhop->ifindex) {
346 resolved_hop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
347 resolved_hop->ifindex = newhop->ifindex;
348 if (newhop->flags & NEXTHOP_FLAG_ONLINK)
349 resolved_hop->flags |= NEXTHOP_FLAG_ONLINK;
350 }
351 break;
352 case NEXTHOP_TYPE_IPV6:
353 case NEXTHOP_TYPE_IPV6_IFINDEX:
354 resolved_hop->type = newhop->type;
355 resolved_hop->gate.ipv6 = newhop->gate.ipv6;
356
357 if (newhop->ifindex) {
358 resolved_hop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
359 resolved_hop->ifindex = newhop->ifindex;
360 }
361 break;
362 case NEXTHOP_TYPE_IFINDEX:
363 /* If the resolving route is an interface route,
364 * it means the gateway we are looking up is connected
365 * to that interface. (The actual network is _not_ onlink).
366 * Therefore, the resolved route should have the original
367 * gateway as nexthop as it is directly connected.
368 *
369 * On Linux, we have to set the onlink netlink flag because
370 * otherwise, the kernel won't accept the route.
371 */
372 resolved_hop->flags |= NEXTHOP_FLAG_ONLINK;
373 if (afi == AFI_IP) {
374 resolved_hop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
375 resolved_hop->gate.ipv4 = nexthop->gate.ipv4;
376 } else if (afi == AFI_IP6) {
377 resolved_hop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
378 resolved_hop->gate.ipv6 = nexthop->gate.ipv6;
379 }
380 resolved_hop->ifindex = newhop->ifindex;
381 break;
382 case NEXTHOP_TYPE_BLACKHOLE:
383 resolved_hop->type = NEXTHOP_TYPE_BLACKHOLE;
384 resolved_hop->bh_type = nexthop->bh_type;
385 break;
386 }
387
388 /* Copy labels of the resolved route */
389 if (newhop->nh_label)
390 nexthop_add_labels(resolved_hop, newhop->nh_label_type,
391 newhop->nh_label->num_labels,
392 &newhop->nh_label->label[0]);
393
394 resolved_hop->rparent = nexthop;
395 nexthop_add(&nexthop->resolved, resolved_hop);
396 }
397
398 /* If force flag is not set, do not modify falgs at all for uninstall
399 the route from FIB. */
400 static int nexthop_active(afi_t afi, struct route_entry *re,
401 struct nexthop *nexthop, int set,
402 struct route_node *top)
403 {
404 struct prefix p;
405 struct route_table *table;
406 struct route_node *rn;
407 struct route_entry *match = NULL;
408 int resolved;
409 struct nexthop *newhop;
410 struct interface *ifp;
411 rib_dest_t *dest;
412
413 if ((nexthop->type == NEXTHOP_TYPE_IPV4)
414 || nexthop->type == NEXTHOP_TYPE_IPV6)
415 nexthop->ifindex = 0;
416
417 if (set) {
418 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE);
419 nexthops_free(nexthop->resolved);
420 nexthop->resolved = NULL;
421 re->nexthop_mtu = 0;
422 }
423
424 /* Next hops (remote VTEPs) for EVPN routes are fully resolved. */
425 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_EVPN_RVTEP))
426 return 1;
427
428 /* Skip nexthops that have been filtered out due to route-map */
429 /* The nexthops are specific to this route and so the same */
430 /* nexthop for a different route may not have this flag set */
431 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FILTERED))
432 return 0;
433
434 /*
435 * Check to see if we should trust the passed in information
436 * for UNNUMBERED interfaces as that we won't find the GW
437 * address in the routing table.
438 */
439 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK)) {
440 ifp = if_lookup_by_index(nexthop->ifindex, nexthop->vrf_id);
441 if (ifp && connected_is_unnumbered(ifp)) {
442 if (if_is_operative(ifp))
443 return 1;
444 else
445 return 0;
446 } else
447 return 0;
448 }
449
450 /* Make lookup prefix. */
451 memset(&p, 0, sizeof(struct prefix));
452 switch (afi) {
453 case AFI_IP:
454 p.family = AF_INET;
455 p.prefixlen = IPV4_MAX_PREFIXLEN;
456 p.u.prefix4 = nexthop->gate.ipv4;
457 break;
458 case AFI_IP6:
459 p.family = AF_INET6;
460 p.prefixlen = IPV6_MAX_PREFIXLEN;
461 p.u.prefix6 = nexthop->gate.ipv6;
462 break;
463 default:
464 assert(afi != AFI_IP && afi != AFI_IP6);
465 break;
466 }
467 /* Lookup table. */
468 table = zebra_vrf_table(afi, SAFI_UNICAST, nexthop->vrf_id);
469 if (!table)
470 return 0;
471
472 rn = route_node_match(table, (struct prefix *)&p);
473 while (rn) {
474 route_unlock_node(rn);
475
476 /* Lookup should halt if we've matched against ourselves ('top',
477 * if specified) - i.e., we cannot have a nexthop NH1 is
478 * resolved by a route NH1. The exception is if the route is a
479 * host route.
480 */
481 if (top && rn == top)
482 if (((afi == AFI_IP) && (rn->p.prefixlen != 32))
483 || ((afi == AFI_IP6) && (rn->p.prefixlen != 128)))
484 return 0;
485
486 /* Pick up selected route. */
487 /* However, do not resolve over default route unless explicitly
488 * allowed. */
489 if (is_default_prefix(&rn->p)
490 && !rnh_resolve_via_default(p.family))
491 return 0;
492
493 dest = rib_dest_from_rnode(rn);
494 if (dest && dest->selected_fib
495 && !CHECK_FLAG(dest->selected_fib->status,
496 ROUTE_ENTRY_REMOVED)
497 && dest->selected_fib->type != ZEBRA_ROUTE_TABLE)
498 match = dest->selected_fib;
499
500 /* If there is no selected route or matched route is EGP, go up
501 tree. */
502 if (!match) {
503 do {
504 rn = rn->parent;
505 } while (rn && rn->info == NULL);
506 if (rn)
507 route_lock_node(rn);
508
509 continue;
510 }
511
512 if (match->type == ZEBRA_ROUTE_CONNECT) {
513 /* Directly point connected route. */
514 newhop = match->ng.nexthop;
515 if (newhop) {
516 if (nexthop->type == NEXTHOP_TYPE_IPV4
517 || nexthop->type == NEXTHOP_TYPE_IPV6)
518 nexthop->ifindex = newhop->ifindex;
519 }
520 return 1;
521 } else if (CHECK_FLAG(re->flags, ZEBRA_FLAG_ALLOW_RECURSION)) {
522 resolved = 0;
523 for (ALL_NEXTHOPS(match->ng, newhop)) {
524 if (!CHECK_FLAG(newhop->flags,
525 NEXTHOP_FLAG_FIB))
526 continue;
527 if (CHECK_FLAG(newhop->flags,
528 NEXTHOP_FLAG_RECURSIVE))
529 continue;
530
531 if (set) {
532 SET_FLAG(nexthop->flags,
533 NEXTHOP_FLAG_RECURSIVE);
534 SET_FLAG(re->status,
535 ROUTE_ENTRY_NEXTHOPS_CHANGED);
536 nexthop_set_resolved(afi, newhop,
537 nexthop);
538 }
539 resolved = 1;
540 }
541 if (resolved && set)
542 re->nexthop_mtu = match->mtu;
543 return resolved;
544 } else if (re->type == ZEBRA_ROUTE_STATIC) {
545 resolved = 0;
546 for (ALL_NEXTHOPS(match->ng, newhop)) {
547 if (!CHECK_FLAG(newhop->flags,
548 NEXTHOP_FLAG_FIB))
549 continue;
550
551 if (set) {
552 SET_FLAG(nexthop->flags,
553 NEXTHOP_FLAG_RECURSIVE);
554 nexthop_set_resolved(afi, newhop,
555 nexthop);
556 }
557 resolved = 1;
558 }
559 if (resolved && set)
560 re->nexthop_mtu = match->mtu;
561 return resolved;
562 } else {
563 return 0;
564 }
565 }
566 return 0;
567 }
568
569 struct route_entry *rib_match(afi_t afi, safi_t safi, vrf_id_t vrf_id,
570 union g_addr *addr, struct route_node **rn_out)
571 {
572 struct prefix p;
573 struct route_table *table;
574 struct route_node *rn;
575 struct route_entry *match = NULL;
576 struct nexthop *newhop;
577
578 /* Lookup table. */
579 table = zebra_vrf_table(afi, safi, vrf_id);
580 if (!table)
581 return 0;
582
583 memset(&p, 0, sizeof(struct prefix));
584 p.family = afi;
585 if (afi == AFI_IP) {
586 p.u.prefix4 = addr->ipv4;
587 p.prefixlen = IPV4_MAX_PREFIXLEN;
588 } else {
589 p.u.prefix6 = addr->ipv6;
590 p.prefixlen = IPV6_MAX_PREFIXLEN;
591 }
592
593 rn = route_node_match(table, (struct prefix *)&p);
594
595 while (rn) {
596 rib_dest_t *dest;
597
598 route_unlock_node(rn);
599
600 dest = rib_dest_from_rnode(rn);
601 if (dest && dest->selected_fib
602 && !CHECK_FLAG(dest->selected_fib->status,
603 ROUTE_ENTRY_REMOVED))
604 match = dest->selected_fib;
605
606 /* If there is no selected route or matched route is EGP, go up
607 tree. */
608 if (!match) {
609 do {
610 rn = rn->parent;
611 } while (rn && rn->info == NULL);
612 if (rn)
613 route_lock_node(rn);
614 } else {
615 if (match->type != ZEBRA_ROUTE_CONNECT) {
616 int found = 0;
617 for (ALL_NEXTHOPS(match->ng, newhop))
618 if (CHECK_FLAG(newhop->flags,
619 NEXTHOP_FLAG_FIB)) {
620 found = 1;
621 break;
622 }
623 if (!found)
624 return NULL;
625 }
626
627 if (rn_out)
628 *rn_out = rn;
629 return match;
630 }
631 }
632 return NULL;
633 }
634
635 struct route_entry *rib_match_ipv4_multicast(vrf_id_t vrf_id,
636 struct in_addr addr,
637 struct route_node **rn_out)
638 {
639 struct route_entry *re = NULL, *mre = NULL, *ure = NULL;
640 struct route_node *m_rn = NULL, *u_rn = NULL;
641 union g_addr gaddr = {.ipv4 = addr};
642
643 switch (ipv4_multicast_mode) {
644 case MCAST_MRIB_ONLY:
645 return rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr,
646 rn_out);
647 case MCAST_URIB_ONLY:
648 return rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, rn_out);
649 case MCAST_NO_CONFIG:
650 case MCAST_MIX_MRIB_FIRST:
651 re = mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr,
652 &m_rn);
653 if (!mre)
654 re = ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id,
655 &gaddr, &u_rn);
656 break;
657 case MCAST_MIX_DISTANCE:
658 mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr, &m_rn);
659 ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, &u_rn);
660 if (mre && ure)
661 re = ure->distance < mre->distance ? ure : mre;
662 else if (mre)
663 re = mre;
664 else if (ure)
665 re = ure;
666 break;
667 case MCAST_MIX_PFXLEN:
668 mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr, &m_rn);
669 ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, &u_rn);
670 if (mre && ure)
671 re = u_rn->p.prefixlen > m_rn->p.prefixlen ? ure : mre;
672 else if (mre)
673 re = mre;
674 else if (ure)
675 re = ure;
676 break;
677 }
678
679 if (rn_out)
680 *rn_out = (re == mre) ? m_rn : u_rn;
681
682 if (IS_ZEBRA_DEBUG_RIB) {
683 char buf[BUFSIZ];
684 inet_ntop(AF_INET, &addr, buf, BUFSIZ);
685
686 zlog_debug("%s: %s: vrf: %u found %s, using %s",
687 __func__, buf, vrf_id,
688 mre ? (ure ? "MRIB+URIB" : "MRIB")
689 : ure ? "URIB" : "nothing",
690 re == ure ? "URIB" : re == mre ? "MRIB" : "none");
691 }
692 return re;
693 }
694
695 void multicast_mode_ipv4_set(enum multicast_mode mode)
696 {
697 if (IS_ZEBRA_DEBUG_RIB)
698 zlog_debug("%s: multicast lookup mode set (%d)", __func__,
699 mode);
700 ipv4_multicast_mode = mode;
701 }
702
703 enum multicast_mode multicast_mode_ipv4_get(void)
704 {
705 return ipv4_multicast_mode;
706 }
707
708 struct route_entry *rib_lookup_ipv4(struct prefix_ipv4 *p, vrf_id_t vrf_id)
709 {
710 struct route_table *table;
711 struct route_node *rn;
712 struct route_entry *match = NULL;
713 struct nexthop *nexthop;
714 rib_dest_t *dest;
715
716 /* Lookup table. */
717 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
718 if (!table)
719 return 0;
720
721 rn = route_node_lookup(table, (struct prefix *)p);
722
723 /* No route for this prefix. */
724 if (!rn)
725 return NULL;
726
727 /* Unlock node. */
728 route_unlock_node(rn);
729 dest = rib_dest_from_rnode(rn);
730
731 if (dest && dest->selected_fib
732 && !CHECK_FLAG(dest->selected_fib->status, ROUTE_ENTRY_REMOVED))
733 match = dest->selected_fib;
734
735 if (!match)
736 return NULL;
737
738 if (match->type == ZEBRA_ROUTE_CONNECT)
739 return match;
740
741 for (ALL_NEXTHOPS(match->ng, nexthop))
742 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB))
743 return match;
744
745 return NULL;
746 }
747
748 /*
749 * This clone function, unlike its original rib_lookup_ipv4(), checks
750 * if specified IPv4 route record (prefix/mask -> gate) exists in
751 * the whole RIB and has ROUTE_ENTRY_SELECTED_FIB set.
752 *
753 * Return values:
754 * -1: error
755 * 0: exact match found
756 * 1: a match was found with a different gate
757 * 2: connected route found
758 * 3: no matches found
759 */
760 int rib_lookup_ipv4_route(struct prefix_ipv4 *p, union sockunion *qgate,
761 vrf_id_t vrf_id)
762 {
763 struct route_table *table;
764 struct route_node *rn;
765 struct route_entry *match = NULL;
766 struct nexthop *nexthop;
767 int nexthops_active;
768 rib_dest_t *dest;
769
770 /* Lookup table. */
771 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
772 if (!table)
773 return ZEBRA_RIB_LOOKUP_ERROR;
774
775 /* Scan the RIB table for exactly matching RIB entry. */
776 rn = route_node_lookup(table, (struct prefix *)p);
777
778 /* No route for this prefix. */
779 if (!rn)
780 return ZEBRA_RIB_NOTFOUND;
781
782 /* Unlock node. */
783 route_unlock_node(rn);
784 dest = rib_dest_from_rnode(rn);
785
786 /* Find out if a "selected" RR for the discovered RIB entry exists ever.
787 */
788 if (dest && dest->selected_fib
789 && !CHECK_FLAG(dest->selected_fib->status, ROUTE_ENTRY_REMOVED))
790 match = dest->selected_fib;
791
792 /* None such found :( */
793 if (!match)
794 return ZEBRA_RIB_NOTFOUND;
795
796 if (match->type == ZEBRA_ROUTE_CONNECT)
797 return ZEBRA_RIB_FOUND_CONNECTED;
798
799 /* Ok, we have a cood candidate, let's check it's nexthop list... */
800 nexthops_active = 0;
801 for (ALL_NEXTHOPS(match->ng, nexthop))
802 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB)) {
803 nexthops_active = 1;
804 if (nexthop->gate.ipv4.s_addr == sockunion2ip(qgate))
805 return ZEBRA_RIB_FOUND_EXACT;
806 if (IS_ZEBRA_DEBUG_RIB) {
807 char gate_buf[INET_ADDRSTRLEN],
808 qgate_buf[INET_ADDRSTRLEN];
809 inet_ntop(AF_INET, &nexthop->gate.ipv4.s_addr,
810 gate_buf, INET_ADDRSTRLEN);
811 inet_ntop(AF_INET, &sockunion2ip(qgate),
812 qgate_buf, INET_ADDRSTRLEN);
813 zlog_debug("%s: qgate == %s, %s == %s",
814 __func__, qgate_buf,
815 nexthop->rparent ? "rgate" : "gate",
816 gate_buf);
817 }
818 }
819
820 if (nexthops_active)
821 return ZEBRA_RIB_FOUND_NOGATE;
822
823 return ZEBRA_RIB_NOTFOUND;
824 }
825
826 #define RIB_SYSTEM_ROUTE(R) \
827 ((R)->type == ZEBRA_ROUTE_KERNEL || (R)->type == ZEBRA_ROUTE_CONNECT)
828
829 /* This function verifies reachability of one given nexthop, which can be
830 * numbered or unnumbered, IPv4 or IPv6. The result is unconditionally stored
831 * in nexthop->flags field. If the 4th parameter, 'set', is non-zero,
832 * nexthop->ifindex will be updated appropriately as well.
833 * An existing route map can turn (otherwise active) nexthop into inactive, but
834 * not vice versa.
835 *
836 * The return value is the final value of 'ACTIVE' flag.
837 */
838
839 static unsigned nexthop_active_check(struct route_node *rn,
840 struct route_entry *re,
841 struct nexthop *nexthop, int set)
842 {
843 struct interface *ifp;
844 route_map_result_t ret = RMAP_MATCH;
845 int family;
846 char buf[SRCDEST2STR_BUFFER];
847 const struct prefix *p, *src_p;
848 srcdest_rnode_prefixes(rn, &p, &src_p);
849
850 if (rn->p.family == AF_INET)
851 family = AFI_IP;
852 else if (rn->p.family == AF_INET6)
853 family = AFI_IP6;
854 else
855 family = 0;
856 switch (nexthop->type) {
857 case NEXTHOP_TYPE_IFINDEX:
858 ifp = if_lookup_by_index(nexthop->ifindex, nexthop->vrf_id);
859 if (ifp && if_is_operative(ifp))
860 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
861 else
862 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
863 break;
864 case NEXTHOP_TYPE_IPV4:
865 case NEXTHOP_TYPE_IPV4_IFINDEX:
866 family = AFI_IP;
867 if (nexthop_active(AFI_IP, re, nexthop, set, rn))
868 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
869 else
870 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
871 break;
872 case NEXTHOP_TYPE_IPV6:
873 family = AFI_IP6;
874 if (nexthop_active(AFI_IP6, re, nexthop, set, rn))
875 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
876 else
877 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
878 break;
879 case NEXTHOP_TYPE_IPV6_IFINDEX:
880 /* RFC 5549, v4 prefix with v6 NH */
881 if (rn->p.family != AF_INET)
882 family = AFI_IP6;
883 if (IN6_IS_ADDR_LINKLOCAL(&nexthop->gate.ipv6)) {
884 ifp = if_lookup_by_index(nexthop->ifindex,
885 nexthop->vrf_id);
886 if (ifp && if_is_operative(ifp))
887 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
888 else
889 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
890 } else {
891 if (nexthop_active(AFI_IP6, re, nexthop, set, rn))
892 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
893 else
894 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
895 }
896 break;
897 case NEXTHOP_TYPE_BLACKHOLE:
898 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
899 break;
900 default:
901 break;
902 }
903 if (!CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE))
904 return 0;
905
906 /* XXX: What exactly do those checks do? Do we support
907 * e.g. IPv4 routes with IPv6 nexthops or vice versa? */
908 if (RIB_SYSTEM_ROUTE(re) || (family == AFI_IP && p->family != AF_INET)
909 || (family == AFI_IP6 && p->family != AF_INET6))
910 return CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
911
912 /* The original code didn't determine the family correctly
913 * e.g. for NEXTHOP_TYPE_IFINDEX. Retrieve the correct afi
914 * from the rib_table_info in those cases.
915 * Possibly it may be better to use only the rib_table_info
916 * in every case.
917 */
918 if (!family) {
919 rib_table_info_t *info;
920
921 info = srcdest_rnode_table_info(rn);
922 family = info->afi;
923 }
924
925 memset(&nexthop->rmap_src.ipv6, 0, sizeof(union g_addr));
926
927 /* It'll get set if required inside */
928 ret = zebra_route_map_check(family, re->type, re->instance, p, nexthop,
929 nexthop->vrf_id, re->tag);
930 if (ret == RMAP_DENYMATCH) {
931 if (IS_ZEBRA_DEBUG_RIB) {
932 srcdest_rnode2str(rn, buf, sizeof(buf));
933 zlog_debug(
934 "%u:%s: Filtering out with NH out %s due to route map",
935 re->vrf_id, buf,
936 ifindex2ifname(nexthop->ifindex,
937 nexthop->vrf_id));
938 }
939 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
940 }
941 return CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
942 }
943
944 /* Iterate over all nexthops of the given RIB entry and refresh their
945 * ACTIVE flag. re->nexthop_active_num is updated accordingly. If any
946 * nexthop is found to toggle the ACTIVE flag, the whole re structure
947 * is flagged with ROUTE_ENTRY_CHANGED. The 4th 'set' argument is
948 * transparently passed to nexthop_active_check().
949 *
950 * Return value is the new number of active nexthops.
951 */
952
953 static int nexthop_active_update(struct route_node *rn, struct route_entry *re,
954 int set)
955 {
956 struct nexthop *nexthop;
957 union g_addr prev_src;
958 unsigned int prev_active, new_active, old_num_nh;
959 ifindex_t prev_index;
960 old_num_nh = re->nexthop_active_num;
961
962 re->nexthop_active_num = 0;
963 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
964
965 for (nexthop = re->ng.nexthop; nexthop; nexthop = nexthop->next) {
966 /* No protocol daemon provides src and so we're skipping
967 * tracking it */
968 prev_src = nexthop->rmap_src;
969 prev_active = CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
970 prev_index = nexthop->ifindex;
971 if ((new_active = nexthop_active_check(rn, re, nexthop, set)))
972 re->nexthop_active_num++;
973 /* Don't allow src setting on IPv6 addr for now */
974 if (prev_active != new_active || prev_index != nexthop->ifindex
975 || ((nexthop->type >= NEXTHOP_TYPE_IFINDEX
976 && nexthop->type < NEXTHOP_TYPE_IPV6)
977 && prev_src.ipv4.s_addr
978 != nexthop->rmap_src.ipv4.s_addr)
979 || ((nexthop->type >= NEXTHOP_TYPE_IPV6
980 && nexthop->type < NEXTHOP_TYPE_BLACKHOLE)
981 && !(IPV6_ADDR_SAME(&prev_src.ipv6,
982 &nexthop->rmap_src.ipv6)))) {
983 SET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
984 SET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
985 }
986 }
987
988 if (old_num_nh != re->nexthop_active_num)
989 SET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
990
991 if (CHECK_FLAG(re->status, ROUTE_ENTRY_CHANGED)) {
992 SET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
993 }
994
995 return re->nexthop_active_num;
996 }
997
998 /*
999 * Is this RIB labeled-unicast? It must be of type BGP and all paths
1000 * (nexthops) must have a label.
1001 */
1002 int zebra_rib_labeled_unicast(struct route_entry *re)
1003 {
1004 struct nexthop *nexthop = NULL;
1005
1006 if (re->type != ZEBRA_ROUTE_BGP)
1007 return 0;
1008
1009 for (ALL_NEXTHOPS(re->ng, nexthop))
1010 if (!nexthop->nh_label || !nexthop->nh_label->num_labels)
1011 return 0;
1012
1013 return 1;
1014 }
1015
1016 void kernel_route_rib_pass_fail(struct route_node *rn, const struct prefix *p,
1017 struct route_entry *re,
1018 enum dp_results res)
1019 {
1020 struct nexthop *nexthop;
1021 char buf[PREFIX_STRLEN];
1022 rib_dest_t *dest;
1023
1024 dest = rib_dest_from_rnode(rn);
1025
1026 switch (res) {
1027 case DP_INSTALL_SUCCESS:
1028 dest->selected_fib = re;
1029 for (ALL_NEXTHOPS(re->ng, nexthop)) {
1030 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE))
1031 continue;
1032
1033 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE))
1034 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1035 else
1036 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1037 }
1038 zsend_route_notify_owner(re, p, ZAPI_ROUTE_INSTALLED);
1039 break;
1040 case DP_INSTALL_FAILURE:
1041 /*
1042 * I am not sure this is the right thing to do here
1043 * but the code always set selected_fib before
1044 * this assignment was moved here.
1045 */
1046 dest->selected_fib = re;
1047
1048 zsend_route_notify_owner(re, p, ZAPI_ROUTE_FAIL_INSTALL);
1049 zlog_warn("%u:%s: Route install failed", re->vrf_id,
1050 prefix2str(p, buf, sizeof(buf)));
1051 break;
1052 case DP_DELETE_SUCCESS:
1053 /*
1054 * The case where selected_fib is not re is
1055 * when we have received a system route
1056 * that is overriding our installed route
1057 * as such we should leave the selected_fib
1058 * pointer alone
1059 */
1060 if (dest->selected_fib == re)
1061 dest->selected_fib = NULL;
1062 for (ALL_NEXTHOPS(re->ng, nexthop))
1063 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1064
1065 zsend_route_notify_owner(re, p, ZAPI_ROUTE_REMOVED);
1066 break;
1067 case DP_DELETE_FAILURE:
1068 /*
1069 * Should we set this to NULL if the
1070 * delete fails?
1071 */
1072 dest->selected_fib = NULL;
1073 zlog_warn("%u:%s: Route Deletion failure", re->vrf_id,
1074 prefix2str(p, buf, sizeof(buf)));
1075
1076 zsend_route_notify_owner(re, p, ZAPI_ROUTE_REMOVE_FAIL);
1077 break;
1078 }
1079 }
1080
1081 /* Update flag indicates whether this is a "replace" or not. Currently, this
1082 * is only used for IPv4.
1083 */
1084 void rib_install_kernel(struct route_node *rn, struct route_entry *re,
1085 struct route_entry *old)
1086 {
1087 struct nexthop *nexthop;
1088 rib_table_info_t *info = srcdest_rnode_table_info(rn);
1089 const struct prefix *p, *src_p;
1090 struct zebra_vrf *zvrf = vrf_info_lookup(re->vrf_id);
1091
1092 srcdest_rnode_prefixes(rn, &p, &src_p);
1093
1094 if (info->safi != SAFI_UNICAST) {
1095 for (ALL_NEXTHOPS(re->ng, nexthop))
1096 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1097 return;
1098 } else {
1099 struct nexthop *prev;
1100
1101 for (ALL_NEXTHOPS(re->ng, nexthop)) {
1102 UNSET_FLAG (nexthop->flags, NEXTHOP_FLAG_DUPLICATE);
1103 for (ALL_NEXTHOPS(re->ng, prev)) {
1104 if (prev == nexthop)
1105 break;
1106 if (nexthop_same_firsthop(nexthop, prev)) {
1107 SET_FLAG(nexthop->flags,
1108 NEXTHOP_FLAG_DUPLICATE);
1109 break;
1110 }
1111 }
1112 }
1113 }
1114
1115 /*
1116 * If this is a replace to a new RE let the originator of the RE
1117 * know that they've lost
1118 */
1119 if (old && (old != re) && (old->type != re->type))
1120 zsend_route_notify_owner(old, p, ZAPI_ROUTE_BETTER_ADMIN_WON);
1121
1122 /*
1123 * Make sure we update the FPM any time we send new information to
1124 * the kernel.
1125 */
1126 hook_call(rib_update, rn, "installing in kernel");
1127 switch (kernel_route_rib(rn, p, src_p, old, re)) {
1128 case DP_REQUEST_QUEUED:
1129 flog_err(
1130 ZEBRA_ERR_DP_INVALID_RC,
1131 "No current known DataPlane interfaces can return this, please fix");
1132 break;
1133 case DP_REQUEST_FAILURE:
1134 flog_err(
1135 ZEBRA_ERR_DP_INSTALL_FAIL,
1136 "No current known Rib Install Failure cases, please fix");
1137 break;
1138 case DP_REQUEST_SUCCESS:
1139 zvrf->installs++;
1140 break;
1141 }
1142
1143 return;
1144 }
1145
1146 /* Uninstall the route from kernel. */
1147 void rib_uninstall_kernel(struct route_node *rn, struct route_entry *re)
1148 {
1149 struct nexthop *nexthop;
1150 rib_table_info_t *info = srcdest_rnode_table_info(rn);
1151 const struct prefix *p, *src_p;
1152 struct zebra_vrf *zvrf = vrf_info_lookup(re->vrf_id);
1153
1154 srcdest_rnode_prefixes(rn, &p, &src_p);
1155
1156 if (info->safi != SAFI_UNICAST) {
1157 for (ALL_NEXTHOPS(re->ng, nexthop))
1158 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1159 return;
1160 }
1161
1162 /*
1163 * Make sure we update the FPM any time we send new information to
1164 * the kernel.
1165 */
1166 hook_call(rib_update, rn, "uninstalling from kernel");
1167 switch (kernel_route_rib(rn, p, src_p, re, NULL)) {
1168 case DP_REQUEST_QUEUED:
1169 flog_err(
1170 ZEBRA_ERR_DP_INVALID_RC,
1171 "No current known DataPlane interfaces can return this, please fix");
1172 break;
1173 case DP_REQUEST_FAILURE:
1174 flog_err(
1175 ZEBRA_ERR_DP_INSTALL_FAIL,
1176 "No current known RIB Install Failure cases, please fix");
1177 break;
1178 case DP_REQUEST_SUCCESS:
1179 if (zvrf)
1180 zvrf->removals++;
1181 break;
1182 }
1183
1184 return;
1185 }
1186
1187 /* Uninstall the route from kernel. */
1188 static void rib_uninstall(struct route_node *rn, struct route_entry *re)
1189 {
1190 rib_table_info_t *info = srcdest_rnode_table_info(rn);
1191 rib_dest_t *dest = rib_dest_from_rnode(rn);
1192
1193 if (dest && dest->selected_fib == re) {
1194 if (info->safi == SAFI_UNICAST)
1195 hook_call(rib_update, rn, "rib_uninstall");
1196
1197 if (!RIB_SYSTEM_ROUTE(re))
1198 rib_uninstall_kernel(rn, re);
1199
1200 /* If labeled-unicast route, uninstall transit LSP. */
1201 if (zebra_rib_labeled_unicast(re))
1202 zebra_mpls_lsp_uninstall(info->zvrf, rn, re);
1203 }
1204
1205 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)) {
1206 const struct prefix *p, *src_p;
1207
1208 srcdest_rnode_prefixes(rn, &p, &src_p);
1209
1210 redistribute_delete(p, src_p, re);
1211 UNSET_FLAG(re->flags, ZEBRA_FLAG_SELECTED);
1212 }
1213 }
1214
1215 /*
1216 * rib_can_delete_dest
1217 *
1218 * Returns TRUE if the given dest can be deleted from the table.
1219 */
1220 static int rib_can_delete_dest(rib_dest_t *dest)
1221 {
1222 if (dest->routes) {
1223 return 0;
1224 }
1225
1226 /*
1227 * Don't delete the dest if we have to update the FPM about this
1228 * prefix.
1229 */
1230 if (CHECK_FLAG(dest->flags, RIB_DEST_UPDATE_FPM)
1231 || CHECK_FLAG(dest->flags, RIB_DEST_SENT_TO_FPM))
1232 return 0;
1233
1234 return 1;
1235 }
1236
1237 /*
1238 * rib_gc_dest
1239 *
1240 * Garbage collect the rib dest corresponding to the given route node
1241 * if appropriate.
1242 *
1243 * Returns TRUE if the dest was deleted, FALSE otherwise.
1244 */
1245 int rib_gc_dest(struct route_node *rn)
1246 {
1247 rib_dest_t *dest;
1248
1249 dest = rib_dest_from_rnode(rn);
1250 if (!dest)
1251 return 0;
1252
1253 if (!rib_can_delete_dest(dest))
1254 return 0;
1255
1256 if (IS_ZEBRA_DEBUG_RIB) {
1257 struct zebra_vrf *zvrf;
1258
1259 zvrf = rib_dest_vrf(dest);
1260 rnode_debug(rn, zvrf_id(zvrf), "removing dest from table");
1261 }
1262
1263 dest->rnode = NULL;
1264 XFREE(MTYPE_RIB_DEST, dest);
1265 rn->info = NULL;
1266
1267 /*
1268 * Release the one reference that we keep on the route node.
1269 */
1270 route_unlock_node(rn);
1271 return 1;
1272 }
1273
1274 static void rib_process_add_fib(struct zebra_vrf *zvrf, struct route_node *rn,
1275 struct route_entry *new)
1276 {
1277 rib_dest_t *dest = rib_dest_from_rnode(rn);
1278
1279 hook_call(rib_update, rn, "new route selected");
1280
1281 /* Update real nexthop. This may actually determine if nexthop is active
1282 * or not. */
1283 if (!nexthop_active_update(rn, new, 1)) {
1284 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1285 return;
1286 }
1287
1288 if (IS_ZEBRA_DEBUG_RIB) {
1289 char buf[SRCDEST2STR_BUFFER];
1290 srcdest_rnode2str(rn, buf, sizeof(buf));
1291 zlog_debug("%u:%s: Adding route rn %p, re %p (type %d)",
1292 zvrf_id(zvrf), buf, rn, new, new->type);
1293 }
1294
1295 /* If labeled-unicast route, install transit LSP. */
1296 if (zebra_rib_labeled_unicast(new))
1297 zebra_mpls_lsp_install(zvrf, rn, new);
1298
1299 if (!RIB_SYSTEM_ROUTE(new))
1300 rib_install_kernel(rn, new, NULL);
1301 else
1302 dest->selected_fib = new;
1303
1304 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1305 }
1306
1307 static void rib_process_del_fib(struct zebra_vrf *zvrf, struct route_node *rn,
1308 struct route_entry *old)
1309 {
1310 rib_dest_t *dest = rib_dest_from_rnode(rn);
1311 hook_call(rib_update, rn, "removing existing route");
1312
1313 /* Uninstall from kernel. */
1314 if (IS_ZEBRA_DEBUG_RIB) {
1315 char buf[SRCDEST2STR_BUFFER];
1316 srcdest_rnode2str(rn, buf, sizeof(buf));
1317 zlog_debug("%u:%s: Deleting route rn %p, re %p (type %d)",
1318 zvrf_id(zvrf), buf, rn, old, old->type);
1319 }
1320
1321 /* If labeled-unicast route, uninstall transit LSP. */
1322 if (zebra_rib_labeled_unicast(old))
1323 zebra_mpls_lsp_uninstall(zvrf, rn, old);
1324
1325 if (!RIB_SYSTEM_ROUTE(old))
1326 rib_uninstall_kernel(rn, old);
1327 else {
1328 /*
1329 * We are setting this to NULL here
1330 * because that is what we traditionally
1331 * have been doing. I am not positive
1332 * that this is the right thing to do
1333 * but let's leave the code alone
1334 * for the RIB_SYSTEM_ROUTE case
1335 */
1336 dest->selected_fib = NULL;
1337 }
1338
1339 /* Update nexthop for route, reset changed flag. */
1340 nexthop_active_update(rn, old, 1);
1341 UNSET_FLAG(old->status, ROUTE_ENTRY_CHANGED);
1342 }
1343
1344 static void rib_process_update_fib(struct zebra_vrf *zvrf,
1345 struct route_node *rn,
1346 struct route_entry *old,
1347 struct route_entry *new)
1348 {
1349 struct nexthop *nexthop = NULL;
1350 int nh_active = 0;
1351 rib_dest_t *dest = rib_dest_from_rnode(rn);
1352
1353 /*
1354 * We have to install or update if a new route has been selected or
1355 * something has changed.
1356 */
1357 if (new != old || CHECK_FLAG(new->status, ROUTE_ENTRY_CHANGED)) {
1358 hook_call(rib_update, rn, "updating existing route");
1359
1360 /* Update the nexthop; we could determine here that nexthop is
1361 * inactive. */
1362 if (nexthop_active_update(rn, new, 1))
1363 nh_active = 1;
1364
1365 /* If nexthop is active, install the selected route, if
1366 * appropriate. If
1367 * the install succeeds, cleanup flags for prior route, if
1368 * different from
1369 * newly selected.
1370 */
1371 if (nh_active) {
1372 if (IS_ZEBRA_DEBUG_RIB) {
1373 char buf[SRCDEST2STR_BUFFER];
1374 srcdest_rnode2str(rn, buf, sizeof(buf));
1375 if (new != old)
1376 zlog_debug(
1377 "%u:%s: Updating route rn %p, re %p (type %d) "
1378 "old %p (type %d)",
1379 zvrf_id(zvrf), buf, rn, new,
1380 new->type, old, old->type);
1381 else
1382 zlog_debug(
1383 "%u:%s: Updating route rn %p, re %p (type %d)",
1384 zvrf_id(zvrf), buf, rn, new,
1385 new->type);
1386 }
1387
1388 /* If labeled-unicast route, uninstall transit LSP. */
1389 if (zebra_rib_labeled_unicast(old))
1390 zebra_mpls_lsp_uninstall(zvrf, rn, old);
1391
1392 /* Non-system route should be installed. */
1393 if (!RIB_SYSTEM_ROUTE(new)) {
1394 /* If labeled-unicast route, install transit
1395 * LSP. */
1396 if (zebra_rib_labeled_unicast(new))
1397 zebra_mpls_lsp_install(zvrf, rn, new);
1398
1399 rib_install_kernel(rn, new, old);
1400 } else {
1401 /*
1402 * We do not need to install the
1403 * selected route because it
1404 * is already isntalled by
1405 * the system( ie not us )
1406 * so just mark it as winning
1407 * we do need to ensure that
1408 * if we uninstall a route
1409 * from ourselves we don't
1410 * over write this pointer
1411 */
1412 dest->selected_fib = NULL;
1413 }
1414 /* If install succeeded or system route, cleanup flags
1415 * for prior route. */
1416 if (new != old) {
1417 if (RIB_SYSTEM_ROUTE(new)) {
1418 if (!RIB_SYSTEM_ROUTE(old))
1419 rib_uninstall_kernel(rn, old);
1420 } else {
1421 for (nexthop = old->ng.nexthop; nexthop;
1422 nexthop = nexthop->next)
1423 UNSET_FLAG(nexthop->flags,
1424 NEXTHOP_FLAG_FIB);
1425 }
1426 }
1427 }
1428
1429 /*
1430 * If nexthop for selected route is not active or install
1431 * failed, we
1432 * may need to uninstall and delete for redistribution.
1433 */
1434 if (!nh_active) {
1435 if (IS_ZEBRA_DEBUG_RIB) {
1436 char buf[SRCDEST2STR_BUFFER];
1437 srcdest_rnode2str(rn, buf, sizeof(buf));
1438 if (new != old)
1439 zlog_debug(
1440 "%u:%s: Deleting route rn %p, re %p (type %d) "
1441 "old %p (type %d) - nexthop inactive",
1442 zvrf_id(zvrf), buf, rn, new,
1443 new->type, old, old->type);
1444 else
1445 zlog_debug(
1446 "%u:%s: Deleting route rn %p, re %p (type %d) - nexthop inactive",
1447 zvrf_id(zvrf), buf, rn, new,
1448 new->type);
1449 }
1450
1451 /* If labeled-unicast route, uninstall transit LSP. */
1452 if (zebra_rib_labeled_unicast(old))
1453 zebra_mpls_lsp_uninstall(zvrf, rn, old);
1454
1455 if (!RIB_SYSTEM_ROUTE(old))
1456 rib_uninstall_kernel(rn, old);
1457 else
1458 dest->selected_fib = NULL;
1459 }
1460 } else {
1461 /*
1462 * Same route selected; check if in the FIB and if not,
1463 * re-install. This
1464 * is housekeeping code to deal with race conditions in kernel
1465 * with linux
1466 * netlink reporting interface up before IPv4 or IPv6 protocol
1467 * is ready
1468 * to add routes.
1469 */
1470 if (!RIB_SYSTEM_ROUTE(new)) {
1471 bool in_fib = false;
1472
1473 for (ALL_NEXTHOPS(new->ng, nexthop))
1474 if (CHECK_FLAG(nexthop->flags,
1475 NEXTHOP_FLAG_FIB)) {
1476 in_fib = true;
1477 break;
1478 }
1479 if (!in_fib)
1480 rib_install_kernel(rn, new, NULL);
1481 }
1482 }
1483
1484 /* Update prior route. */
1485 if (new != old) {
1486 /* Set real nexthop. */
1487 nexthop_active_update(rn, old, 1);
1488 UNSET_FLAG(old->status, ROUTE_ENTRY_CHANGED);
1489 }
1490
1491 /* Clear changed flag. */
1492 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1493 }
1494
1495 /* Check if 'alternate' RIB entry is better than 'current'. */
1496 static struct route_entry *rib_choose_best(struct route_entry *current,
1497 struct route_entry *alternate)
1498 {
1499 if (current == NULL)
1500 return alternate;
1501
1502 /* filter route selection in following order:
1503 * - connected beats other types
1504 * - if both connected, loopback or vrf wins
1505 * - lower distance beats higher
1506 * - lower metric beats higher for equal distance
1507 * - last, hence oldest, route wins tie break.
1508 */
1509
1510 /* Connected routes. Check to see if either are a vrf
1511 * or loopback interface. If not, pick the last connected
1512 * route of the set of lowest metric connected routes.
1513 */
1514 if (alternate->type == ZEBRA_ROUTE_CONNECT) {
1515 if (current->type != ZEBRA_ROUTE_CONNECT)
1516 return alternate;
1517
1518 /* both are connected. are either loop or vrf? */
1519 struct nexthop *nexthop = NULL;
1520
1521 for (ALL_NEXTHOPS(alternate->ng, nexthop)) {
1522 if (if_is_loopback_or_vrf(if_lookup_by_index(
1523 nexthop->ifindex, alternate->vrf_id)))
1524 return alternate;
1525 }
1526
1527 for (ALL_NEXTHOPS(current->ng, nexthop)) {
1528 if (if_is_loopback_or_vrf(if_lookup_by_index(
1529 nexthop->ifindex, current->vrf_id)))
1530 return current;
1531 }
1532
1533 /* Neither are loop or vrf so pick best metric */
1534 if (alternate->metric <= current->metric)
1535 return alternate;
1536
1537 return current;
1538 }
1539
1540 if (current->type == ZEBRA_ROUTE_CONNECT)
1541 return current;
1542
1543 /* higher distance loses */
1544 if (alternate->distance < current->distance)
1545 return alternate;
1546 if (current->distance < alternate->distance)
1547 return current;
1548
1549 /* metric tie-breaks equal distance */
1550 if (alternate->metric <= current->metric)
1551 return alternate;
1552
1553 return current;
1554 }
1555
1556 /* Core function for processing routing information base. */
1557 static void rib_process(struct route_node *rn)
1558 {
1559 struct route_entry *re;
1560 struct route_entry *next;
1561 struct route_entry *old_selected = NULL;
1562 struct route_entry *new_selected = NULL;
1563 struct route_entry *old_fib = NULL;
1564 struct route_entry *new_fib = NULL;
1565 struct route_entry *best = NULL;
1566 char buf[SRCDEST2STR_BUFFER];
1567 rib_dest_t *dest;
1568 struct zebra_vrf *zvrf = NULL;
1569 const struct prefix *p, *src_p;
1570
1571 srcdest_rnode_prefixes(rn, &p, &src_p);
1572 vrf_id_t vrf_id = VRF_UNKNOWN;
1573
1574 assert(rn);
1575
1576 dest = rib_dest_from_rnode(rn);
1577 if (dest) {
1578 zvrf = rib_dest_vrf(dest);
1579 vrf_id = zvrf_id(zvrf);
1580 }
1581
1582 if (IS_ZEBRA_DEBUG_RIB)
1583 srcdest_rnode2str(rn, buf, sizeof(buf));
1584
1585 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1586 zlog_debug("%u:%s: Processing rn %p", vrf_id, buf, rn);
1587
1588 /*
1589 * we can have rn's that have a NULL info pointer
1590 * (dest). As such let's not let the deref happen
1591 * additionally we know RNODE_FOREACH_RE_SAFE
1592 * will not iterate so we are ok.
1593 */
1594 if (dest)
1595 old_fib = dest->selected_fib;
1596
1597 RNODE_FOREACH_RE_SAFE (rn, re, next) {
1598 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1599 zlog_debug(
1600 "%u:%s: Examine re %p (type %d) status %x flags %x "
1601 "dist %d metric %d",
1602 vrf_id, buf, re, re->type, re->status,
1603 re->flags, re->distance, re->metric);
1604
1605 UNSET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
1606
1607 /* Currently selected re. */
1608 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)) {
1609 assert(old_selected == NULL);
1610 old_selected = re;
1611 }
1612
1613 /* Skip deleted entries from selection */
1614 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
1615 continue;
1616
1617 /* Skip unreachable nexthop. */
1618 /* This first call to nexthop_active_update is merely to
1619 * determine if
1620 * there's any change to nexthops associated with this RIB
1621 * entry. Now,
1622 * rib_process() can be invoked due to an external event such as
1623 * link
1624 * down or due to next-hop-tracking evaluation. In the latter
1625 * case,
1626 * a decision has already been made that the NHs have changed.
1627 * So, no
1628 * need to invoke a potentially expensive call again. Further,
1629 * since
1630 * the change might be in a recursive NH which is not caught in
1631 * the nexthop_active_update() code. Thus, we might miss changes
1632 * to
1633 * recursive NHs.
1634 */
1635 if (!CHECK_FLAG(re->status, ROUTE_ENTRY_CHANGED)
1636 && !nexthop_active_update(rn, re, 0)) {
1637 if (re->type == ZEBRA_ROUTE_TABLE) {
1638 /* XXX: HERE BE DRAGONS!!!!!
1639 * In all honesty, I have not yet figured out
1640 * what this part
1641 * does or why the ROUTE_ENTRY_CHANGED test
1642 * above is correct
1643 * or why we need to delete a route here, and
1644 * also not whether
1645 * this concerns both selected and fib route, or
1646 * only selected
1647 * or only fib */
1648 /* This entry was denied by the 'ip protocol
1649 * table' route-map, we
1650 * need to delete it */
1651 if (re != old_selected) {
1652 if (IS_ZEBRA_DEBUG_RIB)
1653 zlog_debug(
1654 "%s: %u:%s: imported via import-table but denied "
1655 "by the ip protocol table route-map",
1656 __func__, vrf_id, buf);
1657 rib_unlink(rn, re);
1658 } else
1659 SET_FLAG(re->status,
1660 ROUTE_ENTRY_REMOVED);
1661 }
1662
1663 continue;
1664 }
1665
1666 /* Infinite distance. */
1667 if (re->distance == DISTANCE_INFINITY) {
1668 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1669 continue;
1670 }
1671
1672 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_FIB_OVERRIDE)) {
1673 best = rib_choose_best(new_fib, re);
1674 if (new_fib && best != new_fib)
1675 UNSET_FLAG(new_fib->status,
1676 ROUTE_ENTRY_CHANGED);
1677 new_fib = best;
1678 } else {
1679 best = rib_choose_best(new_selected, re);
1680 if (new_selected && best != new_selected)
1681 UNSET_FLAG(new_selected->status,
1682 ROUTE_ENTRY_CHANGED);
1683 new_selected = best;
1684 }
1685 if (best != re)
1686 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1687 } /* RNODE_FOREACH_RE */
1688
1689 /* If no FIB override route, use the selected route also for FIB */
1690 if (new_fib == NULL)
1691 new_fib = new_selected;
1692
1693 /* After the cycle is finished, the following pointers will be set:
1694 * old_selected --- RE entry currently having SELECTED
1695 * new_selected --- RE entry that is newly SELECTED
1696 * old_fib --- RE entry currently in kernel FIB
1697 * new_fib --- RE entry that is newly to be in kernel FIB
1698 *
1699 * new_selected will get SELECTED flag, and is going to be redistributed
1700 * the zclients. new_fib (which can be new_selected) will be installed
1701 * in kernel.
1702 */
1703
1704 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
1705 zlog_debug(
1706 "%u:%s: After processing: old_selected %p new_selected %p old_fib %p new_fib %p",
1707 vrf_id, buf, (void *)old_selected, (void *)new_selected,
1708 (void *)old_fib, (void *)new_fib);
1709 }
1710
1711 /* Buffer ROUTE_ENTRY_CHANGED here, because it will get cleared if
1712 * fib == selected */
1713 bool selected_changed = new_selected && CHECK_FLAG(new_selected->status,
1714 ROUTE_ENTRY_CHANGED);
1715
1716 /* Update fib according to selection results */
1717 if (new_fib && old_fib)
1718 rib_process_update_fib(zvrf, rn, old_fib, new_fib);
1719 else if (new_fib)
1720 rib_process_add_fib(zvrf, rn, new_fib);
1721 else if (old_fib)
1722 rib_process_del_fib(zvrf, rn, old_fib);
1723
1724 /* Redistribute SELECTED entry */
1725 if (old_selected != new_selected || selected_changed) {
1726 struct nexthop *nexthop = NULL;
1727
1728 /* Check if we have a FIB route for the destination, otherwise,
1729 * don't redistribute it */
1730 if (new_fib) {
1731 for (ALL_NEXTHOPS(new_fib->ng, nexthop)) {
1732 if (CHECK_FLAG(nexthop->flags,
1733 NEXTHOP_FLAG_FIB)) {
1734 break;
1735 }
1736 }
1737 }
1738 if (!nexthop)
1739 new_selected = NULL;
1740
1741 if (new_selected && new_selected != new_fib) {
1742 nexthop_active_update(rn, new_selected, 1);
1743 UNSET_FLAG(new_selected->status, ROUTE_ENTRY_CHANGED);
1744 }
1745
1746 if (old_selected) {
1747 if (!new_selected)
1748 redistribute_delete(p, src_p, old_selected);
1749 if (old_selected != new_selected)
1750 UNSET_FLAG(old_selected->flags,
1751 ZEBRA_FLAG_SELECTED);
1752 }
1753
1754 if (new_selected) {
1755 /* Install new or replace existing redistributed entry
1756 */
1757 SET_FLAG(new_selected->flags, ZEBRA_FLAG_SELECTED);
1758 redistribute_update(p, src_p, new_selected,
1759 old_selected);
1760 }
1761 }
1762
1763 /* Remove all RE entries queued for removal */
1764 RNODE_FOREACH_RE_SAFE (rn, re, next) {
1765 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
1766 if (IS_ZEBRA_DEBUG_RIB) {
1767 rnode_debug(rn, vrf_id, "rn %p, removing re %p",
1768 (void *)rn, (void *)re);
1769 }
1770 rib_unlink(rn, re);
1771 }
1772 }
1773
1774 /*
1775 * Check if the dest can be deleted now.
1776 */
1777 rib_gc_dest(rn);
1778 }
1779
1780 /* Take a list of route_node structs and return 1, if there was a record
1781 * picked from it and processed by rib_process(). Don't process more,
1782 * than one RN record; operate only in the specified sub-queue.
1783 */
1784 static unsigned int process_subq(struct list *subq, uint8_t qindex)
1785 {
1786 struct listnode *lnode = listhead(subq);
1787 struct route_node *rnode;
1788 rib_dest_t *dest;
1789 struct zebra_vrf *zvrf = NULL;
1790
1791 if (!lnode)
1792 return 0;
1793
1794 rnode = listgetdata(lnode);
1795 dest = rib_dest_from_rnode(rnode);
1796 if (dest)
1797 zvrf = rib_dest_vrf(dest);
1798
1799 rib_process(rnode);
1800
1801 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
1802 char buf[SRCDEST2STR_BUFFER];
1803 srcdest_rnode2str(rnode, buf, sizeof(buf));
1804 zlog_debug("%u:%s: rn %p dequeued from sub-queue %u",
1805 zvrf ? zvrf_id(zvrf) : 0, buf, rnode, qindex);
1806 }
1807
1808 if (rnode->info)
1809 UNSET_FLAG(rib_dest_from_rnode(rnode)->flags,
1810 RIB_ROUTE_QUEUED(qindex));
1811
1812 #if 0
1813 else
1814 {
1815 zlog_debug ("%s: called for route_node (%p, %d) with no ribs",
1816 __func__, rnode, rnode->lock);
1817 zlog_backtrace(LOG_DEBUG);
1818 }
1819 #endif
1820 route_unlock_node(rnode);
1821 list_delete_node(subq, lnode);
1822 return 1;
1823 }
1824
1825 /*
1826 * All meta queues have been processed. Trigger next-hop evaluation.
1827 */
1828 static void meta_queue_process_complete(struct work_queue *dummy)
1829 {
1830 struct vrf *vrf;
1831 struct zebra_vrf *zvrf;
1832
1833 /* Evaluate nexthops for those VRFs which underwent route processing.
1834 * This
1835 * should limit the evaluation to the necessary VRFs in most common
1836 * situations.
1837 */
1838 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id) {
1839 zvrf = vrf->info;
1840 if (zvrf == NULL || !(zvrf->flags & ZEBRA_VRF_RIB_SCHEDULED))
1841 continue;
1842
1843 zvrf->flags &= ~ZEBRA_VRF_RIB_SCHEDULED;
1844 zebra_evaluate_rnh(zvrf_id(zvrf), AF_INET, 0, RNH_NEXTHOP_TYPE,
1845 NULL);
1846 zebra_evaluate_rnh(zvrf_id(zvrf), AF_INET, 0,
1847 RNH_IMPORT_CHECK_TYPE, NULL);
1848 zebra_evaluate_rnh(zvrf_id(zvrf), AF_INET6, 0, RNH_NEXTHOP_TYPE,
1849 NULL);
1850 zebra_evaluate_rnh(zvrf_id(zvrf), AF_INET6, 0,
1851 RNH_IMPORT_CHECK_TYPE, NULL);
1852 }
1853
1854 /* Schedule LSPs for processing, if needed. */
1855 zvrf = vrf_info_lookup(VRF_DEFAULT);
1856 if (mpls_should_lsps_be_processed(zvrf)) {
1857 if (IS_ZEBRA_DEBUG_MPLS)
1858 zlog_debug(
1859 "%u: Scheduling all LSPs upon RIB completion",
1860 zvrf_id(zvrf));
1861 zebra_mpls_lsp_schedule(zvrf);
1862 mpls_unmark_lsps_for_processing(zvrf);
1863 }
1864 }
1865
1866 /* Dispatch the meta queue by picking, processing and unlocking the next RN from
1867 * a non-empty sub-queue with lowest priority. wq is equal to zebra->ribq and
1868 * data
1869 * is pointed to the meta queue structure.
1870 */
1871 static wq_item_status meta_queue_process(struct work_queue *dummy, void *data)
1872 {
1873 struct meta_queue *mq = data;
1874 unsigned i;
1875
1876 for (i = 0; i < MQ_SIZE; i++)
1877 if (process_subq(mq->subq[i], i)) {
1878 mq->size--;
1879 break;
1880 }
1881 return mq->size ? WQ_REQUEUE : WQ_SUCCESS;
1882 }
1883
1884 /*
1885 * Map from rib types to queue type (priority) in meta queue
1886 */
1887 static const uint8_t meta_queue_map[ZEBRA_ROUTE_MAX] = {
1888 [ZEBRA_ROUTE_SYSTEM] = 4,
1889 [ZEBRA_ROUTE_KERNEL] = 0,
1890 [ZEBRA_ROUTE_CONNECT] = 0,
1891 [ZEBRA_ROUTE_STATIC] = 1,
1892 [ZEBRA_ROUTE_RIP] = 2,
1893 [ZEBRA_ROUTE_RIPNG] = 2,
1894 [ZEBRA_ROUTE_OSPF] = 2,
1895 [ZEBRA_ROUTE_OSPF6] = 2,
1896 [ZEBRA_ROUTE_ISIS] = 2,
1897 [ZEBRA_ROUTE_BGP] = 3,
1898 [ZEBRA_ROUTE_PIM] = 4, // Shouldn't happen but for safety
1899 [ZEBRA_ROUTE_EIGRP] = 2,
1900 [ZEBRA_ROUTE_NHRP] = 2,
1901 [ZEBRA_ROUTE_HSLS] = 4,
1902 [ZEBRA_ROUTE_OLSR] = 4,
1903 [ZEBRA_ROUTE_TABLE] = 1,
1904 [ZEBRA_ROUTE_LDP] = 4,
1905 [ZEBRA_ROUTE_VNC] = 3,
1906 [ZEBRA_ROUTE_VNC_DIRECT] = 3,
1907 [ZEBRA_ROUTE_VNC_DIRECT_RH] = 3,
1908 [ZEBRA_ROUTE_BGP_DIRECT] = 3,
1909 [ZEBRA_ROUTE_BGP_DIRECT_EXT] = 3,
1910 [ZEBRA_ROUTE_BABEL] = 2,
1911 [ZEBRA_ROUTE_ALL] = 4, // Shouldn't happen but for safety
1912 };
1913
1914 /* Look into the RN and queue it into one or more priority queues,
1915 * increasing the size for each data push done.
1916 */
1917 static void rib_meta_queue_add(struct meta_queue *mq, struct route_node *rn)
1918 {
1919 struct route_entry *re;
1920
1921 RNODE_FOREACH_RE (rn, re) {
1922 uint8_t qindex = meta_queue_map[re->type];
1923 struct zebra_vrf *zvrf;
1924
1925 /* Invariant: at this point we always have rn->info set. */
1926 if (CHECK_FLAG(rib_dest_from_rnode(rn)->flags,
1927 RIB_ROUTE_QUEUED(qindex))) {
1928 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1929 rnode_debug(
1930 rn, re->vrf_id,
1931 "rn %p is already queued in sub-queue %u",
1932 (void *)rn, qindex);
1933 continue;
1934 }
1935
1936 SET_FLAG(rib_dest_from_rnode(rn)->flags,
1937 RIB_ROUTE_QUEUED(qindex));
1938 listnode_add(mq->subq[qindex], rn);
1939 route_lock_node(rn);
1940 mq->size++;
1941
1942 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1943 rnode_debug(rn, re->vrf_id,
1944 "queued rn %p into sub-queue %u",
1945 (void *)rn, qindex);
1946
1947 zvrf = zebra_vrf_lookup_by_id(re->vrf_id);
1948 if (zvrf)
1949 zvrf->flags |= ZEBRA_VRF_RIB_SCHEDULED;
1950 }
1951 }
1952
1953 /* Add route_node to work queue and schedule processing */
1954 void rib_queue_add(struct route_node *rn)
1955 {
1956 assert(rn);
1957
1958 /* Pointless to queue a route_node with no RIB entries to add or remove
1959 */
1960 if (!rnode_to_ribs(rn)) {
1961 zlog_debug("%s: called for route_node (%p, %d) with no ribs",
1962 __func__, (void *)rn, rn->lock);
1963 zlog_backtrace(LOG_DEBUG);
1964 return;
1965 }
1966
1967 if (zebrad.ribq == NULL) {
1968 flog_err(ZEBRA_ERR_WQ_NONEXISTENT,
1969 "%s: work_queue does not exist!", __func__);
1970 return;
1971 }
1972
1973 /*
1974 * The RIB queue should normally be either empty or holding the only
1975 * work_queue_item element. In the latter case this element would
1976 * hold a pointer to the meta queue structure, which must be used to
1977 * actually queue the route nodes to process. So create the MQ
1978 * holder, if necessary, then push the work into it in any case.
1979 * This semantics was introduced after 0.99.9 release.
1980 */
1981 if (work_queue_empty(zebrad.ribq))
1982 work_queue_add(zebrad.ribq, zebrad.mq);
1983
1984 rib_meta_queue_add(zebrad.mq, rn);
1985
1986 return;
1987 }
1988
1989 /* Create new meta queue.
1990 A destructor function doesn't seem to be necessary here.
1991 */
1992 static struct meta_queue *meta_queue_new(void)
1993 {
1994 struct meta_queue *new;
1995 unsigned i;
1996
1997 new = XCALLOC(MTYPE_WORK_QUEUE, sizeof(struct meta_queue));
1998
1999 for (i = 0; i < MQ_SIZE; i++) {
2000 new->subq[i] = list_new();
2001 assert(new->subq[i]);
2002 }
2003
2004 return new;
2005 }
2006
2007 void meta_queue_free(struct meta_queue *mq)
2008 {
2009 unsigned i;
2010
2011 for (i = 0; i < MQ_SIZE; i++)
2012 list_delete_and_null(&mq->subq[i]);
2013
2014 XFREE(MTYPE_WORK_QUEUE, mq);
2015 }
2016
2017 /* initialise zebra rib work queue */
2018 static void rib_queue_init(struct zebra_t *zebra)
2019 {
2020 assert(zebra);
2021
2022 if (!(zebra->ribq =
2023 work_queue_new(zebra->master, "route_node processing"))) {
2024 flog_err(ZEBRA_ERR_WQ_NONEXISTENT,
2025 "%s: could not initialise work queue!", __func__);
2026 return;
2027 }
2028
2029 /* fill in the work queue spec */
2030 zebra->ribq->spec.workfunc = &meta_queue_process;
2031 zebra->ribq->spec.errorfunc = NULL;
2032 zebra->ribq->spec.completion_func = &meta_queue_process_complete;
2033 /* XXX: TODO: These should be runtime configurable via vty */
2034 zebra->ribq->spec.max_retries = 3;
2035 zebra->ribq->spec.hold = ZEBRA_RIB_PROCESS_HOLD_TIME;
2036
2037 if (!(zebra->mq = meta_queue_new())) {
2038 flog_err(ZEBRA_ERR_WQ_NONEXISTENT,
2039 "%s: could not initialise meta queue!", __func__);
2040 return;
2041 }
2042 return;
2043 }
2044
2045 /* RIB updates are processed via a queue of pointers to route_nodes.
2046 *
2047 * The queue length is bounded by the maximal size of the routing table,
2048 * as a route_node will not be requeued, if already queued.
2049 *
2050 * REs are submitted via rib_addnode or rib_delnode which set minimal
2051 * state, or static_install_route (when an existing RE is updated)
2052 * and then submit route_node to queue for best-path selection later.
2053 * Order of add/delete state changes are preserved for any given RE.
2054 *
2055 * Deleted REs are reaped during best-path selection.
2056 *
2057 * rib_addnode
2058 * |-> rib_link or unset ROUTE_ENTRY_REMOVE |->Update kernel with
2059 * |-------->| | best RE, if required
2060 * | |
2061 * static_install->|->rib_addqueue...... -> rib_process
2062 * | |
2063 * |-------->| |-> rib_unlink
2064 * |-> set ROUTE_ENTRY_REMOVE |
2065 * rib_delnode (RE freed)
2066 *
2067 * The 'info' pointer of a route_node points to a rib_dest_t
2068 * ('dest'). Queueing state for a route_node is kept on the dest. The
2069 * dest is created on-demand by rib_link() and is kept around at least
2070 * as long as there are ribs hanging off it (@see rib_gc_dest()).
2071 *
2072 * Refcounting (aka "locking" throughout the GNU Zebra and Quagga code):
2073 *
2074 * - route_nodes: refcounted by:
2075 * - dest attached to route_node:
2076 * - managed by: rib_link/rib_gc_dest
2077 * - route_node processing queue
2078 * - managed by: rib_addqueue, rib_process.
2079 *
2080 */
2081
2082 /* Add RE to head of the route node. */
2083 static void rib_link(struct route_node *rn, struct route_entry *re, int process)
2084 {
2085 struct route_entry *head;
2086 rib_dest_t *dest;
2087 afi_t afi;
2088 const char *rmap_name;
2089
2090 assert(re && rn);
2091
2092 dest = rib_dest_from_rnode(rn);
2093 if (!dest) {
2094 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2095 rnode_debug(rn, re->vrf_id, "rn %p adding dest", rn);
2096
2097 dest = XCALLOC(MTYPE_RIB_DEST, sizeof(rib_dest_t));
2098 route_lock_node(rn); /* rn route table reference */
2099 rn->info = dest;
2100 dest->rnode = rn;
2101 }
2102
2103 head = dest->routes;
2104 if (head) {
2105 head->prev = re;
2106 }
2107 re->next = head;
2108 dest->routes = re;
2109
2110 afi = (rn->p.family == AF_INET)
2111 ? AFI_IP
2112 : (rn->p.family == AF_INET6) ? AFI_IP6 : AFI_MAX;
2113 if (is_zebra_import_table_enabled(afi, re->table)) {
2114 rmap_name = zebra_get_import_table_route_map(afi, re->table);
2115 zebra_add_import_table_entry(rn, re, rmap_name);
2116 } else if (process)
2117 rib_queue_add(rn);
2118 }
2119
2120 static void rib_addnode(struct route_node *rn,
2121 struct route_entry *re, int process)
2122 {
2123 /* RE node has been un-removed before route-node is processed.
2124 * route_node must hence already be on the queue for processing..
2125 */
2126 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
2127 if (IS_ZEBRA_DEBUG_RIB)
2128 rnode_debug(rn, re->vrf_id, "rn %p, un-removed re %p",
2129 (void *)rn, (void *)re);
2130
2131 UNSET_FLAG(re->status, ROUTE_ENTRY_REMOVED);
2132 return;
2133 }
2134 rib_link(rn, re, process);
2135 }
2136
2137 /*
2138 * rib_unlink
2139 *
2140 * Detach a rib structure from a route_node.
2141 *
2142 * Note that a call to rib_unlink() should be followed by a call to
2143 * rib_gc_dest() at some point. This allows a rib_dest_t that is no
2144 * longer required to be deleted.
2145 */
2146 void rib_unlink(struct route_node *rn, struct route_entry *re)
2147 {
2148 rib_dest_t *dest;
2149
2150 assert(rn && re);
2151
2152 if (IS_ZEBRA_DEBUG_RIB)
2153 rnode_debug(rn, re->vrf_id, "rn %p, re %p", (void *)rn,
2154 (void *)re);
2155
2156 dest = rib_dest_from_rnode(rn);
2157
2158 if (re->next)
2159 re->next->prev = re->prev;
2160
2161 if (re->prev)
2162 re->prev->next = re->next;
2163 else {
2164 dest->routes = re->next;
2165 }
2166
2167 if (dest->selected_fib == re)
2168 dest->selected_fib = NULL;
2169
2170 nexthops_free(re->ng.nexthop);
2171 XFREE(MTYPE_RE, re);
2172 }
2173
2174 void rib_delnode(struct route_node *rn, struct route_entry *re)
2175 {
2176 afi_t afi;
2177
2178 if (IS_ZEBRA_DEBUG_RIB)
2179 rnode_debug(rn, re->vrf_id, "rn %p, re %p, removing",
2180 (void *)rn, (void *)re);
2181 SET_FLAG(re->status, ROUTE_ENTRY_REMOVED);
2182
2183 afi = (rn->p.family == AF_INET)
2184 ? AFI_IP
2185 : (rn->p.family == AF_INET6) ? AFI_IP6 : AFI_MAX;
2186 if (is_zebra_import_table_enabled(afi, re->table)) {
2187 zebra_del_import_table_entry(rn, re);
2188 /* Just clean up if non main table */
2189 if (IS_ZEBRA_DEBUG_RIB) {
2190 char buf[SRCDEST2STR_BUFFER];
2191 srcdest_rnode2str(rn, buf, sizeof(buf));
2192 zlog_debug(
2193 "%u:%s: Freeing route rn %p, re %p (type %d)",
2194 re->vrf_id, buf, rn, re, re->type);
2195 }
2196
2197 rib_unlink(rn, re);
2198 } else {
2199 rib_queue_add(rn);
2200 }
2201 }
2202
2203 /* This function dumps the contents of a given RE entry into
2204 * standard debug log. Calling function name and IP prefix in
2205 * question are passed as 1st and 2nd arguments.
2206 */
2207
2208 void _route_entry_dump(const char *func, union prefixconstptr pp,
2209 union prefixconstptr src_pp,
2210 const struct route_entry *re)
2211 {
2212 const struct prefix *src_p = src_pp.p;
2213 bool is_srcdst = src_p && src_p->prefixlen;
2214 char straddr[PREFIX_STRLEN];
2215 char srcaddr[PREFIX_STRLEN];
2216 struct nexthop *nexthop;
2217
2218 zlog_debug("%s: dumping RE entry %p for %s%s%s vrf %u", func,
2219 (const void *)re, prefix2str(pp, straddr, sizeof(straddr)),
2220 is_srcdst ? " from " : "",
2221 is_srcdst ? prefix2str(src_pp, srcaddr, sizeof(srcaddr))
2222 : "",
2223 re->vrf_id);
2224 zlog_debug("%s: uptime == %lu, type == %u, instance == %d, table == %d",
2225 func, (unsigned long)re->uptime, re->type, re->instance,
2226 re->table);
2227 zlog_debug(
2228 "%s: metric == %u, mtu == %u, distance == %u, flags == %u, status == %u",
2229 func, re->metric, re->mtu, re->distance, re->flags, re->status);
2230 zlog_debug("%s: nexthop_num == %u, nexthop_active_num == %u", func,
2231 re->nexthop_num, re->nexthop_active_num);
2232
2233 for (ALL_NEXTHOPS(re->ng, nexthop)) {
2234 struct interface *ifp;
2235 struct vrf *vrf = vrf_lookup_by_id(nexthop->vrf_id);
2236
2237 switch (nexthop->type) {
2238 case NEXTHOP_TYPE_BLACKHOLE:
2239 sprintf(straddr, "Blackhole");
2240 break;
2241 case NEXTHOP_TYPE_IFINDEX:
2242 ifp = if_lookup_by_index(nexthop->ifindex,
2243 nexthop->vrf_id);
2244 sprintf(straddr, "%s", ifp ? ifp->name : "Unknown");
2245 break;
2246 case NEXTHOP_TYPE_IPV4:
2247 /* fallthrough */
2248 case NEXTHOP_TYPE_IPV4_IFINDEX:
2249 inet_ntop(AF_INET, &nexthop->gate, straddr,
2250 INET6_ADDRSTRLEN);
2251 break;
2252 case NEXTHOP_TYPE_IPV6:
2253 case NEXTHOP_TYPE_IPV6_IFINDEX:
2254 inet_ntop(AF_INET6, &nexthop->gate, straddr,
2255 INET6_ADDRSTRLEN);
2256 break;
2257 }
2258 zlog_debug("%s: %s %s[%u] vrf %s(%u) with flags %s%s%s", func,
2259 (nexthop->rparent ? " NH" : "NH"), straddr,
2260 nexthop->ifindex, vrf ? vrf->name : "Unknown",
2261 nexthop->vrf_id,
2262 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE)
2263 ? "ACTIVE "
2264 : ""),
2265 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB)
2266 ? "FIB "
2267 : ""),
2268 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE)
2269 ? "RECURSIVE"
2270 : ""));
2271 }
2272 zlog_debug("%s: dump complete", func);
2273 }
2274
2275 /* This is an exported helper to rtm_read() to dump the strange
2276 * RE entry found by rib_lookup_ipv4_route()
2277 */
2278
2279 void rib_lookup_and_dump(struct prefix_ipv4 *p, vrf_id_t vrf_id)
2280 {
2281 struct route_table *table;
2282 struct route_node *rn;
2283 struct route_entry *re;
2284 char prefix_buf[INET_ADDRSTRLEN];
2285
2286 /* Lookup table. */
2287 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
2288 if (!table) {
2289 flog_err(ZEBRA_ERR_TABLE_LOOKUP_FAILED,
2290 "%s:%u zebra_vrf_table() returned NULL", __func__,
2291 vrf_id);
2292 return;
2293 }
2294
2295 /* Scan the RIB table for exactly matching RE entry. */
2296 rn = route_node_lookup(table, (struct prefix *)p);
2297
2298 /* No route for this prefix. */
2299 if (!rn) {
2300 zlog_debug("%s:%u lookup failed for %s", __func__, vrf_id,
2301 prefix2str((struct prefix *)p, prefix_buf,
2302 sizeof(prefix_buf)));
2303 return;
2304 }
2305
2306 /* Unlock node. */
2307 route_unlock_node(rn);
2308
2309 /* let's go */
2310 RNODE_FOREACH_RE (rn, re) {
2311 zlog_debug("%s:%u rn %p, re %p: %s, %s",
2312 __func__, vrf_id,
2313 (void *)rn, (void *)re,
2314 (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)
2315 ? "removed"
2316 : "NOT removed"),
2317 (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)
2318 ? "selected"
2319 : "NOT selected"));
2320 route_entry_dump(p, NULL, re);
2321 }
2322 }
2323
2324 /* Check if requested address assignment will fail due to another
2325 * route being installed by zebra in FIB already. Take necessary
2326 * actions, if needed: remove such a route from FIB and deSELECT
2327 * corresponding RE entry. Then put affected RN into RIBQ head.
2328 */
2329 void rib_lookup_and_pushup(struct prefix_ipv4 *p, vrf_id_t vrf_id)
2330 {
2331 struct route_table *table;
2332 struct route_node *rn;
2333 unsigned changed = 0;
2334 rib_dest_t *dest;
2335
2336 if (NULL == (table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id))) {
2337 flog_err(ZEBRA_ERR_TABLE_LOOKUP_FAILED,
2338 "%s:%u zebra_vrf_table() returned NULL", __func__,
2339 vrf_id);
2340 return;
2341 }
2342
2343 /* No matches would be the simplest case. */
2344 if (NULL == (rn = route_node_lookup(table, (struct prefix *)p)))
2345 return;
2346
2347 /* Unlock node. */
2348 route_unlock_node(rn);
2349
2350 dest = rib_dest_from_rnode(rn);
2351 /* Check all RE entries. In case any changes have to be done, requeue
2352 * the RN into RIBQ head. If the routing message about the new connected
2353 * route (generated by the IP address we are going to assign very soon)
2354 * comes before the RIBQ is processed, the new RE entry will join
2355 * RIBQ record already on head. This is necessary for proper
2356 * revalidation
2357 * of the rest of the RE.
2358 */
2359 if (dest->selected_fib && !RIB_SYSTEM_ROUTE(dest->selected_fib)) {
2360 changed = 1;
2361 if (IS_ZEBRA_DEBUG_RIB) {
2362 char buf[PREFIX_STRLEN];
2363
2364 zlog_debug("%u:%s: freeing way for connected prefix",
2365 dest->selected_fib->vrf_id,
2366 prefix2str(&rn->p, buf, sizeof(buf)));
2367 route_entry_dump(&rn->p, NULL, dest->selected_fib);
2368 }
2369 rib_uninstall(rn, dest->selected_fib);
2370 }
2371 if (changed)
2372 rib_queue_add(rn);
2373 }
2374
2375 int rib_add_multipath(afi_t afi, safi_t safi, struct prefix *p,
2376 struct prefix_ipv6 *src_p, struct route_entry *re)
2377 {
2378 struct route_table *table;
2379 struct route_node *rn;
2380 struct route_entry *same = NULL;
2381 struct nexthop *nexthop;
2382 int ret = 0;
2383
2384 if (!re)
2385 return 0;
2386
2387 assert(!src_p || !src_p->prefixlen || afi == AFI_IP6);
2388
2389 /* Lookup table. */
2390 table = zebra_vrf_table_with_table_id(afi, safi, re->vrf_id, re->table);
2391 if (!table) {
2392 XFREE(MTYPE_RE, re);
2393 return 0;
2394 }
2395
2396 /* Make it sure prefixlen is applied to the prefix. */
2397 apply_mask(p);
2398 if (src_p)
2399 apply_mask_ipv6(src_p);
2400
2401 /* Set default distance by route type. */
2402 if (re->distance == 0) {
2403 re->distance = route_distance(re->type);
2404
2405 /* iBGP distance is 200. */
2406 if (re->type == ZEBRA_ROUTE_BGP
2407 && CHECK_FLAG(re->flags, ZEBRA_FLAG_IBGP))
2408 re->distance = 200;
2409 }
2410
2411 /* Lookup route node.*/
2412 rn = srcdest_rnode_get(table, p, src_p);
2413
2414 /*
2415 * If same type of route are installed, treat it as a implicit
2416 * withdraw.
2417 * If the user has specified the No route replace semantics
2418 * for the install don't do a route replace.
2419 */
2420 RNODE_FOREACH_RE (rn, same) {
2421 if (CHECK_FLAG(same->status, ROUTE_ENTRY_REMOVED))
2422 continue;
2423
2424 if (same->type != re->type)
2425 continue;
2426 if (same->instance != re->instance)
2427 continue;
2428 if (same->type == ZEBRA_ROUTE_KERNEL
2429 && same->metric != re->metric)
2430 continue;
2431
2432 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_RR_USE_DISTANCE) &&
2433 same->distance != re->distance)
2434 continue;
2435
2436 /*
2437 * We should allow duplicate connected routes
2438 * because of IPv6 link-local routes and unnumbered
2439 * interfaces on Linux.
2440 */
2441 if (same->type != ZEBRA_ROUTE_CONNECT)
2442 break;
2443 }
2444
2445 /* If this route is kernel route, set FIB flag to the route. */
2446 if (RIB_SYSTEM_ROUTE(re))
2447 for (nexthop = re->ng.nexthop; nexthop; nexthop = nexthop->next)
2448 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
2449
2450 /* Link new re to node.*/
2451 if (IS_ZEBRA_DEBUG_RIB) {
2452 rnode_debug(
2453 rn, re->vrf_id,
2454 "Inserting route rn %p, re %p (type %d) existing %p",
2455 (void *)rn, (void *)re, re->type, (void *)same);
2456
2457 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2458 route_entry_dump(p, src_p, re);
2459 }
2460 rib_addnode(rn, re, 1);
2461 ret = 1;
2462
2463 /* Free implicit route.*/
2464 if (same) {
2465 rib_delnode(rn, same);
2466 ret = -1;
2467 }
2468
2469 route_unlock_node(rn);
2470 return ret;
2471 }
2472
2473 void rib_delete(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type,
2474 unsigned short instance, int flags, struct prefix *p,
2475 struct prefix_ipv6 *src_p, const struct nexthop *nh,
2476 uint32_t table_id, uint32_t metric, uint8_t distance,
2477 bool fromkernel)
2478 {
2479 struct route_table *table;
2480 struct route_node *rn;
2481 struct route_entry *re;
2482 struct route_entry *fib = NULL;
2483 struct route_entry *same = NULL;
2484 struct nexthop *rtnh;
2485 char buf2[INET6_ADDRSTRLEN];
2486 rib_dest_t *dest;
2487
2488 assert(!src_p || !src_p->prefixlen || afi == AFI_IP6);
2489
2490 /* Lookup table. */
2491 table = zebra_vrf_table_with_table_id(afi, safi, vrf_id, table_id);
2492 if (!table)
2493 return;
2494
2495 /* Apply mask. */
2496 apply_mask(p);
2497 if (src_p)
2498 apply_mask_ipv6(src_p);
2499
2500 /* Lookup route node. */
2501 rn = srcdest_rnode_lookup(table, p, src_p);
2502 if (!rn) {
2503 char dst_buf[PREFIX_STRLEN], src_buf[PREFIX_STRLEN];
2504
2505 prefix2str(p, dst_buf, sizeof(dst_buf));
2506 if (src_p && src_p->prefixlen)
2507 prefix2str(src_p, src_buf, sizeof(src_buf));
2508 else
2509 src_buf[0] = '\0';
2510
2511 if (IS_ZEBRA_DEBUG_RIB)
2512 zlog_debug("%u:%s%s%s doesn't exist in rib", vrf_id,
2513 dst_buf,
2514 (src_buf[0] != '\0') ? " from " : "",
2515 src_buf);
2516 return;
2517 }
2518
2519 dest = rib_dest_from_rnode(rn);
2520 fib = dest->selected_fib;
2521
2522 /* Lookup same type route. */
2523 RNODE_FOREACH_RE (rn, re) {
2524 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
2525 continue;
2526
2527 if (re->type != type)
2528 continue;
2529 if (re->instance != instance)
2530 continue;
2531 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_RR_USE_DISTANCE) &&
2532 distance != re->distance)
2533 continue;
2534
2535 if (re->type == ZEBRA_ROUTE_KERNEL && re->metric != metric)
2536 continue;
2537 if (re->type == ZEBRA_ROUTE_CONNECT && (rtnh = re->ng.nexthop)
2538 && rtnh->type == NEXTHOP_TYPE_IFINDEX && nh) {
2539 if (rtnh->ifindex != nh->ifindex)
2540 continue;
2541 same = re;
2542 break;
2543 }
2544 /* Make sure that the route found has the same gateway. */
2545 else {
2546 if (nh == NULL) {
2547 same = re;
2548 break;
2549 }
2550 for (ALL_NEXTHOPS(re->ng, rtnh))
2551 if (nexthop_same_no_recurse(rtnh, nh)) {
2552 same = re;
2553 break;
2554 }
2555 if (same)
2556 break;
2557 }
2558 }
2559 /* If same type of route can't be found and this message is from
2560 kernel. */
2561 if (!same) {
2562 /*
2563 * In the past(HA!) we could get here because
2564 * we were receiving a route delete from the
2565 * kernel and we're not marking the proto
2566 * as coming from it's appropriate originator.
2567 * Now that we are properly noticing the fact
2568 * that the kernel has deleted our route we
2569 * are not going to get called in this path
2570 * I am going to leave this here because
2571 * this might still work this way on non-linux
2572 * platforms as well as some weird state I have
2573 * not properly thought of yet.
2574 * If we can show that this code path is
2575 * dead then we can remove it.
2576 */
2577 if (fib && CHECK_FLAG(flags, ZEBRA_FLAG_SELFROUTE)) {
2578 if (IS_ZEBRA_DEBUG_RIB) {
2579 rnode_debug(
2580 rn, vrf_id,
2581 "rn %p, re %p (type %d) was deleted from kernel, adding",
2582 rn, fib, fib->type);
2583 }
2584 if (allow_delete) {
2585 /* Unset flags. */
2586 for (rtnh = fib->ng.nexthop; rtnh;
2587 rtnh = rtnh->next)
2588 UNSET_FLAG(rtnh->flags,
2589 NEXTHOP_FLAG_FIB);
2590
2591 /*
2592 * This is a non FRR route
2593 * as such we should mark
2594 * it as deleted
2595 */
2596 dest->selected_fib = NULL;
2597 } else {
2598 /* This means someone else, other than Zebra,
2599 * has deleted
2600 * a Zebra router from the kernel. We will add
2601 * it back */
2602 rib_install_kernel(rn, fib, NULL);
2603 }
2604 } else {
2605 if (IS_ZEBRA_DEBUG_RIB) {
2606 if (nh)
2607 rnode_debug(
2608 rn, vrf_id,
2609 "via %s ifindex %d type %d "
2610 "doesn't exist in rib",
2611 inet_ntop(afi2family(afi),
2612 &nh->gate, buf2,
2613 sizeof(buf2)),
2614 nh->ifindex, type);
2615 else
2616 rnode_debug(
2617 rn, vrf_id,
2618 "type %d doesn't exist in rib",
2619 type);
2620 }
2621 route_unlock_node(rn);
2622 return;
2623 }
2624 }
2625
2626 if (same) {
2627 if (fromkernel && CHECK_FLAG(flags, ZEBRA_FLAG_SELFROUTE)
2628 && !allow_delete) {
2629 rib_install_kernel(rn, same, NULL);
2630 route_unlock_node(rn);
2631
2632 return;
2633 }
2634
2635 if (CHECK_FLAG(flags, ZEBRA_FLAG_EVPN_ROUTE)) {
2636 struct nexthop *tmp_nh;
2637
2638 for (ALL_NEXTHOPS(re->ng, tmp_nh)) {
2639 struct ipaddr vtep_ip;
2640
2641 memset(&vtep_ip, 0, sizeof(struct ipaddr));
2642 if (afi == AFI_IP) {
2643 vtep_ip.ipa_type = IPADDR_V4;
2644 memcpy(&(vtep_ip.ipaddr_v4),
2645 &(tmp_nh->gate.ipv4),
2646 sizeof(struct in_addr));
2647 } else {
2648 vtep_ip.ipa_type = IPADDR_V6;
2649 memcpy(&(vtep_ip.ipaddr_v6),
2650 &(tmp_nh->gate.ipv6),
2651 sizeof(struct in6_addr));
2652 }
2653 zebra_vxlan_evpn_vrf_route_del(re->vrf_id,
2654 &vtep_ip, p);
2655 }
2656 }
2657 rib_delnode(rn, same);
2658 }
2659
2660 route_unlock_node(rn);
2661 return;
2662 }
2663
2664
2665 int rib_add(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type,
2666 unsigned short instance, int flags, struct prefix *p,
2667 struct prefix_ipv6 *src_p, const struct nexthop *nh,
2668 uint32_t table_id, uint32_t metric, uint32_t mtu, uint8_t distance,
2669 route_tag_t tag)
2670 {
2671 struct route_entry *re;
2672 struct nexthop *nexthop;
2673
2674 /* Allocate new route_entry structure. */
2675 re = XCALLOC(MTYPE_RE, sizeof(struct route_entry));
2676 re->type = type;
2677 re->instance = instance;
2678 re->distance = distance;
2679 re->flags = flags;
2680 re->metric = metric;
2681 re->mtu = mtu;
2682 re->table = table_id;
2683 re->vrf_id = vrf_id;
2684 re->nexthop_num = 0;
2685 re->uptime = time(NULL);
2686 re->tag = tag;
2687
2688 /* Add nexthop. */
2689 nexthop = nexthop_new();
2690 *nexthop = *nh;
2691 route_entry_nexthop_add(re, nexthop);
2692
2693 return rib_add_multipath(afi, safi, p, src_p, re);
2694 }
2695
2696 /* Schedule routes of a particular table (address-family) based on event. */
2697 void rib_update_table(struct route_table *table, rib_update_event_t event)
2698 {
2699 struct route_node *rn;
2700 struct route_entry *re, *next;
2701
2702 /* Walk all routes and queue for processing, if appropriate for
2703 * the trigger event.
2704 */
2705 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
2706 /*
2707 * If we are looking at a route node and the node
2708 * has already been queued we don't
2709 * need to queue it up again
2710 */
2711 if (rn->info && CHECK_FLAG(rib_dest_from_rnode(rn)->flags,
2712 RIB_ROUTE_ANY_QUEUED))
2713 continue;
2714 switch (event) {
2715 case RIB_UPDATE_IF_CHANGE:
2716 /* Examine all routes that won't get processed by the
2717 * protocol or
2718 * triggered by nexthop evaluation (NHT). This would be
2719 * system,
2720 * kernel and certain static routes. Note that NHT will
2721 * get
2722 * triggered upon an interface event as connected routes
2723 * always
2724 * get queued for processing.
2725 */
2726 RNODE_FOREACH_RE_SAFE (rn, re, next) {
2727 struct nexthop *nh;
2728
2729 if (re->type != ZEBRA_ROUTE_SYSTEM
2730 && re->type != ZEBRA_ROUTE_KERNEL
2731 && re->type != ZEBRA_ROUTE_CONNECT
2732 && re->type != ZEBRA_ROUTE_STATIC)
2733 continue;
2734
2735 if (re->type != ZEBRA_ROUTE_STATIC) {
2736 rib_queue_add(rn);
2737 continue;
2738 }
2739
2740 for (nh = re->ng.nexthop; nh; nh = nh->next)
2741 if (!(nh->type == NEXTHOP_TYPE_IPV4
2742 || nh->type == NEXTHOP_TYPE_IPV6))
2743 break;
2744
2745 /* If we only have nexthops to a
2746 * gateway, NHT will
2747 * take care.
2748 */
2749 if (nh)
2750 rib_queue_add(rn);
2751 }
2752 break;
2753
2754 case RIB_UPDATE_RMAP_CHANGE:
2755 case RIB_UPDATE_OTHER:
2756 /* Right now, examine all routes. Can restrict to a
2757 * protocol in
2758 * some cases (TODO).
2759 */
2760 if (rnode_to_ribs(rn))
2761 rib_queue_add(rn);
2762 break;
2763
2764 default:
2765 break;
2766 }
2767 }
2768 }
2769
2770 /* RIB update function. */
2771 void rib_update(vrf_id_t vrf_id, rib_update_event_t event)
2772 {
2773 struct route_table *table;
2774
2775 /* Process routes of interested address-families. */
2776 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
2777 if (table) {
2778 if (IS_ZEBRA_DEBUG_EVENT)
2779 zlog_debug("%s : AFI_IP event %d", __func__, event);
2780 rib_update_table(table, event);
2781 }
2782
2783 table = zebra_vrf_table(AFI_IP6, SAFI_UNICAST, vrf_id);
2784 if (table) {
2785 if (IS_ZEBRA_DEBUG_EVENT)
2786 zlog_debug("%s : AFI_IP6 event %d", __func__, event);
2787 rib_update_table(table, event);
2788 }
2789 }
2790
2791 /* Delete self installed routes after zebra is relaunched. */
2792 void rib_sweep_table(struct route_table *table)
2793 {
2794 struct route_node *rn;
2795 struct route_entry *re;
2796 struct route_entry *next;
2797 struct nexthop *nexthop;
2798
2799 if (!table)
2800 return;
2801
2802 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
2803 RNODE_FOREACH_RE_SAFE (rn, re, next) {
2804 if (IS_ZEBRA_DEBUG_RIB)
2805 route_entry_dump(&rn->p, NULL, re);
2806
2807 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
2808 continue;
2809
2810 if (!CHECK_FLAG(re->flags, ZEBRA_FLAG_SELFROUTE))
2811 continue;
2812
2813 /*
2814 * So we are starting up and have received
2815 * routes from the kernel that we have installed
2816 * from a previous run of zebra but not cleaned
2817 * up ( say a kill -9 )
2818 * But since we haven't actually installed
2819 * them yet( we received them from the kernel )
2820 * we don't think they are active.
2821 * So let's pretend they are active to actually
2822 * remove them.
2823 * In all honesty I'm not sure if we should
2824 * mark them as active when we receive them
2825 * This is startup only so probably ok.
2826 *
2827 * If we ever decide to move rib_sweep_table
2828 * to a different spot (ie startup )
2829 * this decision needs to be revisited
2830 */
2831 for (ALL_NEXTHOPS(re->ng, nexthop))
2832 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
2833
2834 rib_uninstall_kernel(rn, re);
2835 rib_delnode(rn, re);
2836 }
2837 }
2838 }
2839
2840 /* Sweep all RIB tables. */
2841 void rib_sweep_route(void)
2842 {
2843 struct vrf *vrf;
2844 struct zebra_vrf *zvrf;
2845
2846 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id) {
2847 if ((zvrf = vrf->info) == NULL)
2848 continue;
2849
2850 rib_sweep_table(zvrf->table[AFI_IP][SAFI_UNICAST]);
2851 rib_sweep_table(zvrf->table[AFI_IP6][SAFI_UNICAST]);
2852 }
2853
2854 zebra_ns_sweep_route();
2855 }
2856
2857 /* Remove specific by protocol routes from 'table'. */
2858 unsigned long rib_score_proto_table(uint8_t proto, unsigned short instance,
2859 struct route_table *table)
2860 {
2861 struct route_node *rn;
2862 struct route_entry *re;
2863 struct route_entry *next;
2864 unsigned long n = 0;
2865
2866 if (table)
2867 for (rn = route_top(table); rn; rn = srcdest_route_next(rn))
2868 RNODE_FOREACH_RE_SAFE (rn, re, next) {
2869 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
2870 continue;
2871 if (re->type == proto
2872 && re->instance == instance) {
2873 rib_delnode(rn, re);
2874 n++;
2875 }
2876 }
2877 return n;
2878 }
2879
2880 /* Remove specific by protocol routes. */
2881 unsigned long rib_score_proto(uint8_t proto, unsigned short instance)
2882 {
2883 struct vrf *vrf;
2884 struct zebra_vrf *zvrf;
2885 unsigned long cnt = 0;
2886
2887 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id)
2888 if ((zvrf = vrf->info) != NULL)
2889 cnt += rib_score_proto_table(
2890 proto, instance,
2891 zvrf->table[AFI_IP][SAFI_UNICAST])
2892 + rib_score_proto_table(
2893 proto, instance,
2894 zvrf->table[AFI_IP6][SAFI_UNICAST]);
2895
2896 cnt += zebra_ns_score_proto(proto, instance);
2897
2898 return cnt;
2899 }
2900
2901 /* Close RIB and clean up kernel routes. */
2902 void rib_close_table(struct route_table *table)
2903 {
2904 struct route_node *rn;
2905 rib_table_info_t *info;
2906 rib_dest_t *dest;
2907
2908 if (!table)
2909 return;
2910
2911 info = table->info;
2912
2913 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
2914 dest = rib_dest_from_rnode(rn);
2915
2916 if (dest && dest->selected_fib) {
2917 if (info->safi == SAFI_UNICAST)
2918 hook_call(rib_update, rn, NULL);
2919
2920 if (!RIB_SYSTEM_ROUTE(dest->selected_fib))
2921 rib_uninstall_kernel(rn, dest->selected_fib);
2922 }
2923 }
2924 }
2925
2926 /* Routing information base initialize. */
2927 void rib_init(void)
2928 {
2929 rib_queue_init(&zebrad);
2930 }
2931
2932 /*
2933 * vrf_id_get_next
2934 *
2935 * Get the first vrf id that is greater than the given vrf id if any.
2936 *
2937 * Returns TRUE if a vrf id was found, FALSE otherwise.
2938 */
2939 static inline int vrf_id_get_next(vrf_id_t vrf_id, vrf_id_t *next_id_p)
2940 {
2941 struct vrf *vrf;
2942
2943 vrf = vrf_lookup_by_id(vrf_id);
2944 if (vrf) {
2945 vrf = RB_NEXT(vrf_id_head, vrf);
2946 if (vrf) {
2947 *next_id_p = vrf->vrf_id;
2948 return 1;
2949 }
2950 }
2951
2952 return 0;
2953 }
2954
2955 /*
2956 * rib_tables_iter_next
2957 *
2958 * Returns the next table in the iteration.
2959 */
2960 struct route_table *rib_tables_iter_next(rib_tables_iter_t *iter)
2961 {
2962 struct route_table *table;
2963
2964 /*
2965 * Array that helps us go over all AFI/SAFI combinations via one
2966 * index.
2967 */
2968 static struct {
2969 afi_t afi;
2970 safi_t safi;
2971 } afi_safis[] = {
2972 {AFI_IP, SAFI_UNICAST}, {AFI_IP, SAFI_MULTICAST},
2973 {AFI_IP, SAFI_LABELED_UNICAST}, {AFI_IP6, SAFI_UNICAST},
2974 {AFI_IP6, SAFI_MULTICAST}, {AFI_IP6, SAFI_LABELED_UNICAST},
2975 };
2976
2977 table = NULL;
2978
2979 switch (iter->state) {
2980
2981 case RIB_TABLES_ITER_S_INIT:
2982 iter->vrf_id = VRF_DEFAULT;
2983 iter->afi_safi_ix = -1;
2984
2985 /* Fall through */
2986
2987 case RIB_TABLES_ITER_S_ITERATING:
2988 iter->afi_safi_ix++;
2989 while (1) {
2990
2991 while (iter->afi_safi_ix
2992 < (int)ZEBRA_NUM_OF(afi_safis)) {
2993 table = zebra_vrf_table(
2994 afi_safis[iter->afi_safi_ix].afi,
2995 afi_safis[iter->afi_safi_ix].safi,
2996 iter->vrf_id);
2997 if (table)
2998 break;
2999
3000 iter->afi_safi_ix++;
3001 }
3002
3003 /*
3004 * Found another table in this vrf.
3005 */
3006 if (table)
3007 break;
3008
3009 /*
3010 * Done with all tables in the current vrf, go to the
3011 * next
3012 * one.
3013 */
3014 if (!vrf_id_get_next(iter->vrf_id, &iter->vrf_id))
3015 break;
3016
3017 iter->afi_safi_ix = 0;
3018 }
3019
3020 break;
3021
3022 case RIB_TABLES_ITER_S_DONE:
3023 return NULL;
3024 }
3025
3026 if (table)
3027 iter->state = RIB_TABLES_ITER_S_ITERATING;
3028 else
3029 iter->state = RIB_TABLES_ITER_S_DONE;
3030
3031 return table;
3032 }