]> git.proxmox.com Git - mirror_frr.git/blob - zebra/zebra_rib.c
Merge pull request #3907 from donaldsharp/pim_election
[mirror_frr.git] / zebra / zebra_rib.c
1 /* Routing Information Base.
2 * Copyright (C) 1997, 98, 99, 2001 Kunihiro Ishiguro
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; see the file COPYING; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include <zebra.h>
22
23 #include "command.h"
24 #include "if.h"
25 #include "linklist.h"
26 #include "log.h"
27 #include "log_int.h"
28 #include "memory.h"
29 #include "mpls.h"
30 #include "nexthop.h"
31 #include "prefix.h"
32 #include "prefix.h"
33 #include "routemap.h"
34 #include "sockunion.h"
35 #include "srcdest_table.h"
36 #include "table.h"
37 #include "thread.h"
38 #include "vrf.h"
39 #include "workqueue.h"
40
41 #include "zebra/zebra_router.h"
42 #include "zebra/connected.h"
43 #include "zebra/debug.h"
44 #include "zebra/interface.h"
45 #include "zebra/redistribute.h"
46 #include "zebra/rib.h"
47 #include "zebra/rt.h"
48 #include "zebra/zapi_msg.h"
49 #include "zebra/zebra_errors.h"
50 #include "zebra/zebra_memory.h"
51 #include "zebra/zebra_ns.h"
52 #include "zebra/zebra_rnh.h"
53 #include "zebra/zebra_routemap.h"
54 #include "zebra/zebra_vrf.h"
55 #include "zebra/zebra_vxlan.h"
56 #include "zebra/zapi_msg.h"
57 #include "zebra/zebra_dplane.h"
58
59 /*
60 * Event, list, and mutex for delivery of dataplane results
61 */
62 static pthread_mutex_t dplane_mutex;
63 static struct thread *t_dplane;
64 static struct dplane_ctx_q rib_dplane_q;
65
66 DEFINE_HOOK(rib_update, (struct route_node * rn, const char *reason),
67 (rn, reason))
68
69 /* Should we allow non Quagga processes to delete our routes */
70 extern int allow_delete;
71
72 /* Each route type's string and default distance value. */
73 static const struct {
74 int key;
75 int distance;
76 uint8_t meta_q_map;
77 } route_info[ZEBRA_ROUTE_MAX] = {
78 [ZEBRA_ROUTE_SYSTEM] = {ZEBRA_ROUTE_SYSTEM, 0, 4},
79 [ZEBRA_ROUTE_KERNEL] = {ZEBRA_ROUTE_KERNEL, 0, 0},
80 [ZEBRA_ROUTE_CONNECT] = {ZEBRA_ROUTE_CONNECT, 0, 0},
81 [ZEBRA_ROUTE_STATIC] = {ZEBRA_ROUTE_STATIC, 1, 1},
82 [ZEBRA_ROUTE_RIP] = {ZEBRA_ROUTE_RIP, 120, 2},
83 [ZEBRA_ROUTE_RIPNG] = {ZEBRA_ROUTE_RIPNG, 120, 2},
84 [ZEBRA_ROUTE_OSPF] = {ZEBRA_ROUTE_OSPF, 110, 2},
85 [ZEBRA_ROUTE_OSPF6] = {ZEBRA_ROUTE_OSPF6, 110, 2},
86 [ZEBRA_ROUTE_ISIS] = {ZEBRA_ROUTE_ISIS, 115, 2},
87 [ZEBRA_ROUTE_BGP] = {ZEBRA_ROUTE_BGP, 20 /* IBGP is 200. */, 3},
88 [ZEBRA_ROUTE_PIM] = {ZEBRA_ROUTE_PIM, 255, 4},
89 [ZEBRA_ROUTE_EIGRP] = {ZEBRA_ROUTE_EIGRP, 90, 2},
90 [ZEBRA_ROUTE_NHRP] = {ZEBRA_ROUTE_NHRP, 10, 2},
91 [ZEBRA_ROUTE_HSLS] = {ZEBRA_ROUTE_HSLS, 255, 4},
92 [ZEBRA_ROUTE_OLSR] = {ZEBRA_ROUTE_OLSR, 255, 4},
93 [ZEBRA_ROUTE_TABLE] = {ZEBRA_ROUTE_TABLE, 150, 1},
94 [ZEBRA_ROUTE_LDP] = {ZEBRA_ROUTE_LDP, 150, 4},
95 [ZEBRA_ROUTE_VNC] = {ZEBRA_ROUTE_VNC, 20, 3},
96 [ZEBRA_ROUTE_VNC_DIRECT] = {ZEBRA_ROUTE_VNC_DIRECT, 20, 3},
97 [ZEBRA_ROUTE_VNC_DIRECT_RH] = {ZEBRA_ROUTE_VNC_DIRECT_RH, 20, 3},
98 [ZEBRA_ROUTE_BGP_DIRECT] = {ZEBRA_ROUTE_BGP_DIRECT, 20, 3},
99 [ZEBRA_ROUTE_BGP_DIRECT_EXT] = {ZEBRA_ROUTE_BGP_DIRECT_EXT, 20, 3},
100 [ZEBRA_ROUTE_BABEL] = {ZEBRA_ROUTE_BABEL, 100, 2},
101 [ZEBRA_ROUTE_SHARP] = {ZEBRA_ROUTE_SHARP, 150, 4},
102
103 /* no entry/default: 150 */
104 };
105
106 /* RPF lookup behaviour */
107 static enum multicast_mode ipv4_multicast_mode = MCAST_NO_CONFIG;
108
109
110 static void __attribute__((format(printf, 5, 6)))
111 _rnode_zlog(const char *_func, vrf_id_t vrf_id, struct route_node *rn,
112 int priority, const char *msgfmt, ...)
113 {
114 char buf[SRCDEST2STR_BUFFER + sizeof(" (MRIB)")];
115 char msgbuf[512];
116 va_list ap;
117
118 va_start(ap, msgfmt);
119 vsnprintf(msgbuf, sizeof(msgbuf), msgfmt, ap);
120 va_end(ap);
121
122 if (rn) {
123 rib_table_info_t *info = srcdest_rnode_table_info(rn);
124 srcdest_rnode2str(rn, buf, sizeof(buf));
125
126 if (info->safi == SAFI_MULTICAST)
127 strcat(buf, " (MRIB)");
128 } else {
129 snprintf(buf, sizeof(buf), "{(route_node *) NULL}");
130 }
131
132 zlog(priority, "%s: %d:%s: %s", _func, vrf_id, buf, msgbuf);
133 }
134
135 #define rnode_debug(node, vrf_id, ...) \
136 _rnode_zlog(__func__, vrf_id, node, LOG_DEBUG, __VA_ARGS__)
137 #define rnode_info(node, ...) \
138 _rnode_zlog(__func__, vrf_id, node, LOG_INFO, __VA_ARGS__)
139
140 uint8_t route_distance(int type)
141 {
142 uint8_t distance;
143
144 if ((unsigned)type >= array_size(route_info))
145 distance = 150;
146 else
147 distance = route_info[type].distance;
148
149 return distance;
150 }
151
152 int is_zebra_valid_kernel_table(uint32_t table_id)
153 {
154 #ifdef linux
155 if ((table_id == RT_TABLE_UNSPEC) || (table_id == RT_TABLE_LOCAL)
156 || (table_id == RT_TABLE_COMPAT))
157 return 0;
158 #endif
159
160 return 1;
161 }
162
163 int is_zebra_main_routing_table(uint32_t table_id)
164 {
165 if ((table_id == RT_TABLE_MAIN)
166 || (table_id == zrouter.rtm_table_default))
167 return 1;
168 return 0;
169 }
170
171 int zebra_check_addr(const struct prefix *p)
172 {
173 if (p->family == AF_INET) {
174 uint32_t addr;
175
176 addr = p->u.prefix4.s_addr;
177 addr = ntohl(addr);
178
179 if (IPV4_NET127(addr) || IN_CLASSD(addr)
180 || IPV4_LINKLOCAL(addr))
181 return 0;
182 }
183 if (p->family == AF_INET6) {
184 if (IN6_IS_ADDR_LOOPBACK(&p->u.prefix6))
185 return 0;
186 if (IN6_IS_ADDR_LINKLOCAL(&p->u.prefix6))
187 return 0;
188 }
189 return 1;
190 }
191
192 /* Add nexthop to the end of a rib node's nexthop list */
193 void route_entry_nexthop_add(struct route_entry *re, struct nexthop *nexthop)
194 {
195 nexthop_add(&re->ng.nexthop, nexthop);
196 re->nexthop_num++;
197 }
198
199
200 /**
201 * copy_nexthop - copy a nexthop to the rib structure.
202 */
203 void route_entry_copy_nexthops(struct route_entry *re, struct nexthop *nh)
204 {
205 assert(!re->ng.nexthop);
206 copy_nexthops(&re->ng.nexthop, nh, NULL);
207 for (struct nexthop *nexthop = nh; nexthop; nexthop = nexthop->next)
208 re->nexthop_num++;
209 }
210
211 /* Delete specified nexthop from the list. */
212 void route_entry_nexthop_delete(struct route_entry *re, struct nexthop *nexthop)
213 {
214 if (nexthop->next)
215 nexthop->next->prev = nexthop->prev;
216 if (nexthop->prev)
217 nexthop->prev->next = nexthop->next;
218 else
219 re->ng.nexthop = nexthop->next;
220 re->nexthop_num--;
221 }
222
223
224 struct nexthop *route_entry_nexthop_ifindex_add(struct route_entry *re,
225 ifindex_t ifindex,
226 vrf_id_t nh_vrf_id)
227 {
228 struct nexthop *nexthop;
229
230 nexthop = nexthop_new();
231 nexthop->type = NEXTHOP_TYPE_IFINDEX;
232 nexthop->ifindex = ifindex;
233 nexthop->vrf_id = nh_vrf_id;
234
235 route_entry_nexthop_add(re, nexthop);
236
237 return nexthop;
238 }
239
240 struct nexthop *route_entry_nexthop_ipv4_add(struct route_entry *re,
241 struct in_addr *ipv4,
242 struct in_addr *src,
243 vrf_id_t nh_vrf_id)
244 {
245 struct nexthop *nexthop;
246
247 nexthop = nexthop_new();
248 nexthop->type = NEXTHOP_TYPE_IPV4;
249 nexthop->vrf_id = nh_vrf_id;
250 nexthop->gate.ipv4 = *ipv4;
251 if (src)
252 nexthop->src.ipv4 = *src;
253
254 route_entry_nexthop_add(re, nexthop);
255
256 return nexthop;
257 }
258
259 struct nexthop *route_entry_nexthop_ipv4_ifindex_add(struct route_entry *re,
260 struct in_addr *ipv4,
261 struct in_addr *src,
262 ifindex_t ifindex,
263 vrf_id_t nh_vrf_id)
264 {
265 struct nexthop *nexthop;
266 struct interface *ifp;
267
268 nexthop = nexthop_new();
269 nexthop->vrf_id = nh_vrf_id;
270 nexthop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
271 nexthop->gate.ipv4 = *ipv4;
272 if (src)
273 nexthop->src.ipv4 = *src;
274 nexthop->ifindex = ifindex;
275 ifp = if_lookup_by_index(nexthop->ifindex, nh_vrf_id);
276 /*Pending: need to think if null ifp here is ok during bootup?
277 There was a crash because ifp here was coming to be NULL */
278 if (ifp)
279 if (connected_is_unnumbered(ifp))
280 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK);
281
282 route_entry_nexthop_add(re, nexthop);
283
284 return nexthop;
285 }
286
287 struct nexthop *route_entry_nexthop_ipv6_add(struct route_entry *re,
288 struct in6_addr *ipv6,
289 vrf_id_t nh_vrf_id)
290 {
291 struct nexthop *nexthop;
292
293 nexthop = nexthop_new();
294 nexthop->vrf_id = nh_vrf_id;
295 nexthop->type = NEXTHOP_TYPE_IPV6;
296 nexthop->gate.ipv6 = *ipv6;
297
298 route_entry_nexthop_add(re, nexthop);
299
300 return nexthop;
301 }
302
303 struct nexthop *route_entry_nexthop_ipv6_ifindex_add(struct route_entry *re,
304 struct in6_addr *ipv6,
305 ifindex_t ifindex,
306 vrf_id_t nh_vrf_id)
307 {
308 struct nexthop *nexthop;
309
310 nexthop = nexthop_new();
311 nexthop->vrf_id = nh_vrf_id;
312 nexthop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
313 nexthop->gate.ipv6 = *ipv6;
314 nexthop->ifindex = ifindex;
315
316 route_entry_nexthop_add(re, nexthop);
317
318 return nexthop;
319 }
320
321 struct nexthop *route_entry_nexthop_blackhole_add(struct route_entry *re,
322 enum blackhole_type bh_type)
323 {
324 struct nexthop *nexthop;
325
326 nexthop = nexthop_new();
327 nexthop->vrf_id = VRF_DEFAULT;
328 nexthop->type = NEXTHOP_TYPE_BLACKHOLE;
329 nexthop->bh_type = bh_type;
330
331 route_entry_nexthop_add(re, nexthop);
332
333 return nexthop;
334 }
335
336 static void nexthop_set_resolved(afi_t afi, const struct nexthop *newhop,
337 struct nexthop *nexthop)
338 {
339 struct nexthop *resolved_hop;
340
341 resolved_hop = nexthop_new();
342 SET_FLAG(resolved_hop->flags, NEXTHOP_FLAG_ACTIVE);
343
344 resolved_hop->vrf_id = nexthop->vrf_id;
345 switch (newhop->type) {
346 case NEXTHOP_TYPE_IPV4:
347 case NEXTHOP_TYPE_IPV4_IFINDEX:
348 /* If the resolving route specifies a gateway, use it */
349 resolved_hop->type = newhop->type;
350 resolved_hop->gate.ipv4 = newhop->gate.ipv4;
351
352 if (newhop->ifindex) {
353 resolved_hop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
354 resolved_hop->ifindex = newhop->ifindex;
355 }
356 break;
357 case NEXTHOP_TYPE_IPV6:
358 case NEXTHOP_TYPE_IPV6_IFINDEX:
359 resolved_hop->type = newhop->type;
360 resolved_hop->gate.ipv6 = newhop->gate.ipv6;
361
362 if (newhop->ifindex) {
363 resolved_hop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
364 resolved_hop->ifindex = newhop->ifindex;
365 }
366 break;
367 case NEXTHOP_TYPE_IFINDEX:
368 /* If the resolving route is an interface route,
369 * it means the gateway we are looking up is connected
370 * to that interface. (The actual network is _not_ onlink).
371 * Therefore, the resolved route should have the original
372 * gateway as nexthop as it is directly connected.
373 *
374 * On Linux, we have to set the onlink netlink flag because
375 * otherwise, the kernel won't accept the route.
376 */
377 resolved_hop->flags |= NEXTHOP_FLAG_ONLINK;
378 if (afi == AFI_IP) {
379 resolved_hop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
380 resolved_hop->gate.ipv4 = nexthop->gate.ipv4;
381 } else if (afi == AFI_IP6) {
382 resolved_hop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
383 resolved_hop->gate.ipv6 = nexthop->gate.ipv6;
384 }
385 resolved_hop->ifindex = newhop->ifindex;
386 break;
387 case NEXTHOP_TYPE_BLACKHOLE:
388 resolved_hop->type = NEXTHOP_TYPE_BLACKHOLE;
389 resolved_hop->bh_type = nexthop->bh_type;
390 break;
391 }
392
393 if (newhop->flags & NEXTHOP_FLAG_ONLINK)
394 resolved_hop->flags |= NEXTHOP_FLAG_ONLINK;
395
396 /* Copy labels of the resolved route */
397 if (newhop->nh_label)
398 nexthop_add_labels(resolved_hop, newhop->nh_label_type,
399 newhop->nh_label->num_labels,
400 &newhop->nh_label->label[0]);
401
402 resolved_hop->rparent = nexthop;
403 nexthop_add(&nexthop->resolved, resolved_hop);
404 }
405
406 /* If force flag is not set, do not modify falgs at all for uninstall
407 the route from FIB. */
408 static int nexthop_active(afi_t afi, struct route_entry *re,
409 struct nexthop *nexthop, bool set,
410 struct route_node *top)
411 {
412 struct prefix p;
413 struct route_table *table;
414 struct route_node *rn;
415 struct route_entry *match = NULL;
416 int resolved;
417 struct nexthop *newhop;
418 struct interface *ifp;
419 rib_dest_t *dest;
420
421 if ((nexthop->type == NEXTHOP_TYPE_IPV4)
422 || nexthop->type == NEXTHOP_TYPE_IPV6)
423 nexthop->ifindex = 0;
424
425 if (set) {
426 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE);
427 nexthops_free(nexthop->resolved);
428 nexthop->resolved = NULL;
429 re->nexthop_mtu = 0;
430 }
431
432 /*
433 * If the kernel has sent us a route, then
434 * by golly gee whiz it's a good route.
435 */
436 if (re->type == ZEBRA_ROUTE_KERNEL ||
437 re->type == ZEBRA_ROUTE_SYSTEM)
438 return 1;
439
440 /* Skip nexthops that have been filtered out due to route-map */
441 /* The nexthops are specific to this route and so the same */
442 /* nexthop for a different route may not have this flag set */
443 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FILTERED)) {
444 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
445 zlog_debug("\t%s: Nexthop Filtered",
446 __PRETTY_FUNCTION__);
447 return 0;
448 }
449
450 /*
451 * Check to see if we should trust the passed in information
452 * for UNNUMBERED interfaces as that we won't find the GW
453 * address in the routing table.
454 * This check should suffice to handle IPv4 or IPv6 routes
455 * sourced from EVPN routes which are installed with the
456 * next hop as the remote VTEP IP.
457 */
458 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK)) {
459 ifp = if_lookup_by_index(nexthop->ifindex, nexthop->vrf_id);
460 if (!ifp) {
461 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
462 zlog_debug(
463 "\t%s: Onlink and interface: %u[%u] does not exist",
464 __PRETTY_FUNCTION__, nexthop->ifindex,
465 nexthop->vrf_id);
466 return 0;
467 }
468 if (connected_is_unnumbered(ifp)) {
469 if (if_is_operative(ifp))
470 return 1;
471 else {
472 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
473 zlog_debug(
474 "\t%s: Onlink and interface %s is not operative",
475 __PRETTY_FUNCTION__, ifp->name);
476 return 0;
477 }
478 }
479 if (!if_is_operative(ifp)) {
480 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
481 zlog_debug(
482 "\t%s: Interface %s is not unnumbered",
483 __PRETTY_FUNCTION__,
484 ifp ? ifp->name : "Unknown");
485 return 0;
486 }
487 }
488
489 /* Make lookup prefix. */
490 memset(&p, 0, sizeof(struct prefix));
491 switch (afi) {
492 case AFI_IP:
493 p.family = AF_INET;
494 p.prefixlen = IPV4_MAX_PREFIXLEN;
495 p.u.prefix4 = nexthop->gate.ipv4;
496 break;
497 case AFI_IP6:
498 p.family = AF_INET6;
499 p.prefixlen = IPV6_MAX_PREFIXLEN;
500 p.u.prefix6 = nexthop->gate.ipv6;
501 break;
502 default:
503 assert(afi != AFI_IP && afi != AFI_IP6);
504 break;
505 }
506 /* Lookup table. */
507 table = zebra_vrf_table(afi, SAFI_UNICAST, nexthop->vrf_id);
508 if (!table) {
509 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
510 zlog_debug("\t%s: Table not found",
511 __PRETTY_FUNCTION__);
512 return 0;
513 }
514
515 rn = route_node_match(table, (struct prefix *)&p);
516 while (rn) {
517 route_unlock_node(rn);
518
519 /* Lookup should halt if we've matched against ourselves ('top',
520 * if specified) - i.e., we cannot have a nexthop NH1 is
521 * resolved by a route NH1. The exception is if the route is a
522 * host route.
523 */
524 if (top && rn == top)
525 if (((afi == AFI_IP) && (rn->p.prefixlen != 32))
526 || ((afi == AFI_IP6) && (rn->p.prefixlen != 128))) {
527 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
528 zlog_debug(
529 "\t%s: Matched against ourself and prefix length is not max bit length",
530 __PRETTY_FUNCTION__);
531 return 0;
532 }
533
534 /* Pick up selected route. */
535 /* However, do not resolve over default route unless explicitly
536 * allowed. */
537 if (is_default_prefix(&rn->p)
538 && !rnh_resolve_via_default(p.family)) {
539 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
540 zlog_debug(
541 "\t:%s: Resolved against default route",
542 __PRETTY_FUNCTION__);
543 return 0;
544 }
545
546 dest = rib_dest_from_rnode(rn);
547 if (dest && dest->selected_fib
548 && !CHECK_FLAG(dest->selected_fib->status,
549 ROUTE_ENTRY_REMOVED)
550 && dest->selected_fib->type != ZEBRA_ROUTE_TABLE)
551 match = dest->selected_fib;
552
553 /* If there is no selected route or matched route is EGP, go up
554 tree. */
555 if (!match) {
556 do {
557 rn = rn->parent;
558 } while (rn && rn->info == NULL);
559 if (rn)
560 route_lock_node(rn);
561
562 continue;
563 }
564
565 if (match->type == ZEBRA_ROUTE_CONNECT) {
566 /* Directly point connected route. */
567 newhop = match->ng.nexthop;
568 if (newhop) {
569 if (nexthop->type == NEXTHOP_TYPE_IPV4
570 || nexthop->type == NEXTHOP_TYPE_IPV6)
571 nexthop->ifindex = newhop->ifindex;
572 }
573 return 1;
574 } else if (CHECK_FLAG(re->flags, ZEBRA_FLAG_ALLOW_RECURSION)) {
575 resolved = 0;
576 for (ALL_NEXTHOPS(match->ng, newhop)) {
577 if (!CHECK_FLAG(match->status,
578 ROUTE_ENTRY_INSTALLED))
579 continue;
580 if (CHECK_FLAG(newhop->flags,
581 NEXTHOP_FLAG_RECURSIVE))
582 continue;
583
584 if (set) {
585 SET_FLAG(nexthop->flags,
586 NEXTHOP_FLAG_RECURSIVE);
587 SET_FLAG(re->status,
588 ROUTE_ENTRY_NEXTHOPS_CHANGED);
589 nexthop_set_resolved(afi, newhop,
590 nexthop);
591 }
592 resolved = 1;
593 }
594 if (resolved && set)
595 re->nexthop_mtu = match->mtu;
596 if (!resolved && IS_ZEBRA_DEBUG_RIB_DETAILED)
597 zlog_debug("\t%s: Recursion failed to find",
598 __PRETTY_FUNCTION__);
599 return resolved;
600 } else if (re->type == ZEBRA_ROUTE_STATIC) {
601 resolved = 0;
602 for (ALL_NEXTHOPS(match->ng, newhop)) {
603 if (!CHECK_FLAG(match->status,
604 ROUTE_ENTRY_INSTALLED))
605 continue;
606 if (CHECK_FLAG(newhop->flags,
607 NEXTHOP_FLAG_RECURSIVE))
608 continue;
609
610 if (set) {
611 SET_FLAG(nexthop->flags,
612 NEXTHOP_FLAG_RECURSIVE);
613 nexthop_set_resolved(afi, newhop,
614 nexthop);
615 }
616 resolved = 1;
617 }
618 if (resolved && set)
619 re->nexthop_mtu = match->mtu;
620
621 if (!resolved && IS_ZEBRA_DEBUG_RIB_DETAILED)
622 zlog_debug(
623 "\t%s: Static route unable to resolve",
624 __PRETTY_FUNCTION__);
625 return resolved;
626 } else {
627 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
628 zlog_debug("\t%s: Route Type %s has not turned on recursion",
629 __PRETTY_FUNCTION__,
630 zebra_route_string(re->type));
631 if (re->type == ZEBRA_ROUTE_BGP &&
632 !CHECK_FLAG(re->flags, ZEBRA_FLAG_IBGP))
633 zlog_debug("\tEBGP: see \"disable-ebgp-connected-route-check\" or \"disable-connected-check\"");
634 }
635 return 0;
636 }
637 }
638 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
639 zlog_debug("\t%s: Nexthop did not lookup in table",
640 __PRETTY_FUNCTION__);
641 return 0;
642 }
643
644 struct route_entry *rib_match(afi_t afi, safi_t safi, vrf_id_t vrf_id,
645 union g_addr *addr, struct route_node **rn_out)
646 {
647 struct prefix p;
648 struct route_table *table;
649 struct route_node *rn;
650 struct route_entry *match = NULL;
651
652 /* Lookup table. */
653 table = zebra_vrf_table(afi, safi, vrf_id);
654 if (!table)
655 return 0;
656
657 memset(&p, 0, sizeof(struct prefix));
658 p.family = afi;
659 if (afi == AFI_IP) {
660 p.u.prefix4 = addr->ipv4;
661 p.prefixlen = IPV4_MAX_PREFIXLEN;
662 } else {
663 p.u.prefix6 = addr->ipv6;
664 p.prefixlen = IPV6_MAX_PREFIXLEN;
665 }
666
667 rn = route_node_match(table, (struct prefix *)&p);
668
669 while (rn) {
670 rib_dest_t *dest;
671
672 route_unlock_node(rn);
673
674 dest = rib_dest_from_rnode(rn);
675 if (dest && dest->selected_fib
676 && !CHECK_FLAG(dest->selected_fib->status,
677 ROUTE_ENTRY_REMOVED))
678 match = dest->selected_fib;
679
680 /* If there is no selected route or matched route is EGP, go up
681 tree. */
682 if (!match) {
683 do {
684 rn = rn->parent;
685 } while (rn && rn->info == NULL);
686 if (rn)
687 route_lock_node(rn);
688 } else {
689 if (match->type != ZEBRA_ROUTE_CONNECT) {
690 if (!CHECK_FLAG(match->status,
691 ROUTE_ENTRY_INSTALLED))
692 return NULL;
693 }
694
695 if (rn_out)
696 *rn_out = rn;
697 return match;
698 }
699 }
700 return NULL;
701 }
702
703 struct route_entry *rib_match_ipv4_multicast(vrf_id_t vrf_id,
704 struct in_addr addr,
705 struct route_node **rn_out)
706 {
707 struct route_entry *re = NULL, *mre = NULL, *ure = NULL;
708 struct route_node *m_rn = NULL, *u_rn = NULL;
709 union g_addr gaddr = {.ipv4 = addr};
710
711 switch (ipv4_multicast_mode) {
712 case MCAST_MRIB_ONLY:
713 return rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr,
714 rn_out);
715 case MCAST_URIB_ONLY:
716 return rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, rn_out);
717 case MCAST_NO_CONFIG:
718 case MCAST_MIX_MRIB_FIRST:
719 re = mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr,
720 &m_rn);
721 if (!mre)
722 re = ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id,
723 &gaddr, &u_rn);
724 break;
725 case MCAST_MIX_DISTANCE:
726 mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr, &m_rn);
727 ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, &u_rn);
728 if (mre && ure)
729 re = ure->distance < mre->distance ? ure : mre;
730 else if (mre)
731 re = mre;
732 else if (ure)
733 re = ure;
734 break;
735 case MCAST_MIX_PFXLEN:
736 mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr, &m_rn);
737 ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, &u_rn);
738 if (mre && ure)
739 re = u_rn->p.prefixlen > m_rn->p.prefixlen ? ure : mre;
740 else if (mre)
741 re = mre;
742 else if (ure)
743 re = ure;
744 break;
745 }
746
747 if (rn_out)
748 *rn_out = (re == mre) ? m_rn : u_rn;
749
750 if (IS_ZEBRA_DEBUG_RIB) {
751 char buf[BUFSIZ];
752 inet_ntop(AF_INET, &addr, buf, BUFSIZ);
753
754 zlog_debug("%s: %s: vrf: %u found %s, using %s",
755 __func__, buf, vrf_id,
756 mre ? (ure ? "MRIB+URIB" : "MRIB")
757 : ure ? "URIB" : "nothing",
758 re == ure ? "URIB" : re == mre ? "MRIB" : "none");
759 }
760 return re;
761 }
762
763 void multicast_mode_ipv4_set(enum multicast_mode mode)
764 {
765 if (IS_ZEBRA_DEBUG_RIB)
766 zlog_debug("%s: multicast lookup mode set (%d)", __func__,
767 mode);
768 ipv4_multicast_mode = mode;
769 }
770
771 enum multicast_mode multicast_mode_ipv4_get(void)
772 {
773 return ipv4_multicast_mode;
774 }
775
776 struct route_entry *rib_lookup_ipv4(struct prefix_ipv4 *p, vrf_id_t vrf_id)
777 {
778 struct route_table *table;
779 struct route_node *rn;
780 struct route_entry *match = NULL;
781 rib_dest_t *dest;
782
783 /* Lookup table. */
784 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
785 if (!table)
786 return 0;
787
788 rn = route_node_lookup(table, (struct prefix *)p);
789
790 /* No route for this prefix. */
791 if (!rn)
792 return NULL;
793
794 /* Unlock node. */
795 route_unlock_node(rn);
796 dest = rib_dest_from_rnode(rn);
797
798 if (dest && dest->selected_fib
799 && !CHECK_FLAG(dest->selected_fib->status, ROUTE_ENTRY_REMOVED))
800 match = dest->selected_fib;
801
802 if (!match)
803 return NULL;
804
805 if (match->type == ZEBRA_ROUTE_CONNECT)
806 return match;
807
808 if (CHECK_FLAG(match->status, ROUTE_ENTRY_INSTALLED))
809 return match;
810
811 return NULL;
812 }
813
814 #define RIB_SYSTEM_ROUTE(R) \
815 ((R)->type == ZEBRA_ROUTE_KERNEL || (R)->type == ZEBRA_ROUTE_CONNECT)
816
817 #define RIB_KERNEL_ROUTE(R) \
818 ((R)->type == ZEBRA_ROUTE_KERNEL)
819
820 /* This function verifies reachability of one given nexthop, which can be
821 * numbered or unnumbered, IPv4 or IPv6. The result is unconditionally stored
822 * in nexthop->flags field. If the 4th parameter, 'set', is non-zero,
823 * nexthop->ifindex will be updated appropriately as well.
824 * An existing route map can turn (otherwise active) nexthop into inactive, but
825 * not vice versa.
826 *
827 * The return value is the final value of 'ACTIVE' flag.
828 */
829
830 static unsigned nexthop_active_check(struct route_node *rn,
831 struct route_entry *re,
832 struct nexthop *nexthop, bool set)
833 {
834 struct interface *ifp;
835 route_map_result_t ret = RMAP_MATCH;
836 int family;
837 char buf[SRCDEST2STR_BUFFER];
838 const struct prefix *p, *src_p;
839 struct zebra_vrf *zvrf;
840
841 srcdest_rnode_prefixes(rn, &p, &src_p);
842
843 if (rn->p.family == AF_INET)
844 family = AFI_IP;
845 else if (rn->p.family == AF_INET6)
846 family = AFI_IP6;
847 else
848 family = 0;
849 switch (nexthop->type) {
850 case NEXTHOP_TYPE_IFINDEX:
851 ifp = if_lookup_by_index(nexthop->ifindex, nexthop->vrf_id);
852 if (ifp && if_is_operative(ifp))
853 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
854 else
855 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
856 break;
857 case NEXTHOP_TYPE_IPV4:
858 case NEXTHOP_TYPE_IPV4_IFINDEX:
859 family = AFI_IP;
860 if (nexthop_active(AFI_IP, re, nexthop, set, rn))
861 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
862 else
863 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
864 break;
865 case NEXTHOP_TYPE_IPV6:
866 family = AFI_IP6;
867 if (nexthop_active(AFI_IP6, re, nexthop, set, rn))
868 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
869 else
870 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
871 break;
872 case NEXTHOP_TYPE_IPV6_IFINDEX:
873 /* RFC 5549, v4 prefix with v6 NH */
874 if (rn->p.family != AF_INET)
875 family = AFI_IP6;
876 if (IN6_IS_ADDR_LINKLOCAL(&nexthop->gate.ipv6)) {
877 ifp = if_lookup_by_index(nexthop->ifindex,
878 nexthop->vrf_id);
879 if (ifp && if_is_operative(ifp))
880 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
881 else
882 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
883 } else {
884 if (nexthop_active(AFI_IP6, re, nexthop, set, rn))
885 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
886 else
887 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
888 }
889 break;
890 case NEXTHOP_TYPE_BLACKHOLE:
891 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
892 break;
893 default:
894 break;
895 }
896 if (!CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE)) {
897 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
898 zlog_debug("\t%s: Unable to find a active nexthop",
899 __PRETTY_FUNCTION__);
900 return 0;
901 }
902
903 /* XXX: What exactly do those checks do? Do we support
904 * e.g. IPv4 routes with IPv6 nexthops or vice versa?
905 */
906 if (RIB_SYSTEM_ROUTE(re) || (family == AFI_IP && p->family != AF_INET)
907 || (family == AFI_IP6 && p->family != AF_INET6))
908 return CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
909
910 /* The original code didn't determine the family correctly
911 * e.g. for NEXTHOP_TYPE_IFINDEX. Retrieve the correct afi
912 * from the rib_table_info in those cases.
913 * Possibly it may be better to use only the rib_table_info
914 * in every case.
915 */
916 if (!family) {
917 rib_table_info_t *info;
918
919 info = srcdest_rnode_table_info(rn);
920 family = info->afi;
921 }
922
923 memset(&nexthop->rmap_src.ipv6, 0, sizeof(union g_addr));
924
925 zvrf = zebra_vrf_lookup_by_id(nexthop->vrf_id);
926 if (!zvrf) {
927 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
928 zlog_debug("\t%s: zvrf is NULL", __PRETTY_FUNCTION__);
929 return CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
930 }
931
932 /* It'll get set if required inside */
933 ret = zebra_route_map_check(family, re->type, re->instance, p,
934 nexthop, zvrf, re->tag);
935 if (ret == RMAP_DENYMATCH) {
936 if (IS_ZEBRA_DEBUG_RIB) {
937 srcdest_rnode2str(rn, buf, sizeof(buf));
938 zlog_debug(
939 "%u:%s: Filtering out with NH out %s due to route map",
940 re->vrf_id, buf,
941 ifindex2ifname(nexthop->ifindex,
942 nexthop->vrf_id));
943 }
944 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
945 }
946 return CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
947 }
948
949 /* Iterate over all nexthops of the given RIB entry and refresh their
950 * ACTIVE flag. re->nexthop_active_num is updated accordingly. If any
951 * nexthop is found to toggle the ACTIVE flag, the whole re structure
952 * is flagged with ROUTE_ENTRY_CHANGED. The 4th 'set' argument is
953 * transparently passed to nexthop_active_check().
954 *
955 * Return value is the new number of active nexthops.
956 */
957
958 static int nexthop_active_update(struct route_node *rn, struct route_entry *re,
959 bool set)
960 {
961 struct nexthop *nexthop;
962 union g_addr prev_src;
963 unsigned int prev_active, new_active, old_num_nh;
964 ifindex_t prev_index;
965
966 old_num_nh = re->nexthop_active_num;
967
968 re->nexthop_active_num = 0;
969 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
970
971 for (nexthop = re->ng.nexthop; nexthop; nexthop = nexthop->next) {
972 /* No protocol daemon provides src and so we're skipping
973 * tracking it */
974 prev_src = nexthop->rmap_src;
975 prev_active = CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
976 prev_index = nexthop->ifindex;
977 /*
978 * We need to respect the multipath_num here
979 * as that what we should be able to install from
980 * a multipath perpsective should not be a data plane
981 * decision point.
982 */
983 new_active = nexthop_active_check(rn, re, nexthop, set);
984 if (new_active && re->nexthop_active_num >= multipath_num) {
985 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
986 new_active = 0;
987 }
988 if (new_active)
989 re->nexthop_active_num++;
990 /* Don't allow src setting on IPv6 addr for now */
991 if (prev_active != new_active || prev_index != nexthop->ifindex
992 || ((nexthop->type >= NEXTHOP_TYPE_IFINDEX
993 && nexthop->type < NEXTHOP_TYPE_IPV6)
994 && prev_src.ipv4.s_addr
995 != nexthop->rmap_src.ipv4.s_addr)
996 || ((nexthop->type >= NEXTHOP_TYPE_IPV6
997 && nexthop->type < NEXTHOP_TYPE_BLACKHOLE)
998 && !(IPV6_ADDR_SAME(&prev_src.ipv6,
999 &nexthop->rmap_src.ipv6)))) {
1000 SET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1001 SET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
1002 }
1003 }
1004
1005 if (old_num_nh != re->nexthop_active_num)
1006 SET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1007
1008 if (CHECK_FLAG(re->status, ROUTE_ENTRY_CHANGED)) {
1009 SET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
1010 }
1011
1012 return re->nexthop_active_num;
1013 }
1014
1015 /*
1016 * Is this RIB labeled-unicast? It must be of type BGP and all paths
1017 * (nexthops) must have a label.
1018 */
1019 int zebra_rib_labeled_unicast(struct route_entry *re)
1020 {
1021 struct nexthop *nexthop = NULL;
1022
1023 if (re->type != ZEBRA_ROUTE_BGP)
1024 return 0;
1025
1026 for (ALL_NEXTHOPS(re->ng, nexthop))
1027 if (!nexthop->nh_label || !nexthop->nh_label->num_labels)
1028 return 0;
1029
1030 return 1;
1031 }
1032
1033 /* Update flag indicates whether this is a "replace" or not. Currently, this
1034 * is only used for IPv4.
1035 */
1036 void rib_install_kernel(struct route_node *rn, struct route_entry *re,
1037 struct route_entry *old)
1038 {
1039 struct nexthop *nexthop;
1040 rib_table_info_t *info = srcdest_rnode_table_info(rn);
1041 struct zebra_vrf *zvrf = vrf_info_lookup(re->vrf_id);
1042 const struct prefix *p, *src_p;
1043 enum zebra_dplane_result ret;
1044
1045 rib_dest_t *dest = rib_dest_from_rnode(rn);
1046
1047 srcdest_rnode_prefixes(rn, &p, &src_p);
1048
1049 if (info->safi != SAFI_UNICAST) {
1050 for (ALL_NEXTHOPS(re->ng, nexthop))
1051 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1052 return;
1053 } else {
1054 struct nexthop *prev;
1055
1056 for (ALL_NEXTHOPS(re->ng, nexthop)) {
1057 UNSET_FLAG (nexthop->flags, NEXTHOP_FLAG_DUPLICATE);
1058 for (ALL_NEXTHOPS(re->ng, prev)) {
1059 if (prev == nexthop)
1060 break;
1061 if (nexthop_same_firsthop(nexthop, prev)) {
1062 SET_FLAG(nexthop->flags,
1063 NEXTHOP_FLAG_DUPLICATE);
1064 break;
1065 }
1066 }
1067 }
1068 }
1069
1070 /*
1071 * If this is a replace to a new RE let the originator of the RE
1072 * know that they've lost
1073 */
1074 if (old && (old != re) && (old->type != re->type))
1075 zsend_route_notify_owner(old, p, ZAPI_ROUTE_BETTER_ADMIN_WON);
1076
1077 /* Update fib selection */
1078 dest->selected_fib = re;
1079
1080 /*
1081 * Make sure we update the FPM any time we send new information to
1082 * the kernel.
1083 */
1084 hook_call(rib_update, rn, "installing in kernel");
1085
1086 /* Send add or update */
1087 if (old)
1088 ret = dplane_route_update(rn, re, old);
1089 else
1090 ret = dplane_route_add(rn, re);
1091
1092 switch (ret) {
1093 case ZEBRA_DPLANE_REQUEST_QUEUED:
1094 SET_FLAG(re->status, ROUTE_ENTRY_QUEUED);
1095 if (old)
1096 SET_FLAG(old->status, ROUTE_ENTRY_QUEUED);
1097 if (zvrf)
1098 zvrf->installs_queued++;
1099 break;
1100 case ZEBRA_DPLANE_REQUEST_FAILURE:
1101 {
1102 char str[SRCDEST2STR_BUFFER];
1103
1104 srcdest_rnode2str(rn, str, sizeof(str));
1105 flog_err(EC_ZEBRA_DP_INSTALL_FAIL,
1106 "%u:%s: Failed to enqueue dataplane install",
1107 re->vrf_id, str);
1108 break;
1109 }
1110 case ZEBRA_DPLANE_REQUEST_SUCCESS:
1111 if (zvrf)
1112 zvrf->installs++;
1113 break;
1114 }
1115
1116 return;
1117 }
1118
1119 /* Uninstall the route from kernel. */
1120 void rib_uninstall_kernel(struct route_node *rn, struct route_entry *re)
1121 {
1122 struct nexthop *nexthop;
1123 rib_table_info_t *info = srcdest_rnode_table_info(rn);
1124 struct zebra_vrf *zvrf = vrf_info_lookup(re->vrf_id);
1125
1126 if (info->safi != SAFI_UNICAST) {
1127 UNSET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
1128 for (ALL_NEXTHOPS(re->ng, nexthop))
1129 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1130 return;
1131 }
1132
1133 /*
1134 * Make sure we update the FPM any time we send new information to
1135 * the dataplane.
1136 */
1137 hook_call(rib_update, rn, "uninstalling from kernel");
1138
1139 switch (dplane_route_delete(rn, re)) {
1140 case ZEBRA_DPLANE_REQUEST_QUEUED:
1141 if (zvrf)
1142 zvrf->removals_queued++;
1143 break;
1144 case ZEBRA_DPLANE_REQUEST_FAILURE:
1145 {
1146 char str[SRCDEST2STR_BUFFER];
1147
1148 srcdest_rnode2str(rn, str, sizeof(str));
1149 flog_err(EC_ZEBRA_DP_INSTALL_FAIL,
1150 "%u:%s: Failed to enqueue dataplane uninstall",
1151 re->vrf_id, str);
1152 break;
1153 }
1154 case ZEBRA_DPLANE_REQUEST_SUCCESS:
1155 if (zvrf)
1156 zvrf->removals++;
1157 break;
1158 }
1159
1160 return;
1161 }
1162
1163 /* Uninstall the route from kernel. */
1164 static void rib_uninstall(struct route_node *rn, struct route_entry *re)
1165 {
1166 rib_table_info_t *info = srcdest_rnode_table_info(rn);
1167 rib_dest_t *dest = rib_dest_from_rnode(rn);
1168 struct nexthop *nexthop;
1169
1170 if (dest && dest->selected_fib == re) {
1171 if (info->safi == SAFI_UNICAST)
1172 hook_call(rib_update, rn, "rib_uninstall");
1173
1174 /* If labeled-unicast route, uninstall transit LSP. */
1175 if (zebra_rib_labeled_unicast(re))
1176 zebra_mpls_lsp_uninstall(info->zvrf, rn, re);
1177
1178 if (!RIB_SYSTEM_ROUTE(re))
1179 rib_uninstall_kernel(rn, re);
1180 else
1181 UNSET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
1182
1183 dest->selected_fib = NULL;
1184
1185 for (ALL_NEXTHOPS(re->ng, nexthop))
1186 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1187 }
1188
1189 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)) {
1190 const struct prefix *p, *src_p;
1191
1192 srcdest_rnode_prefixes(rn, &p, &src_p);
1193
1194 redistribute_delete(p, src_p, re);
1195 UNSET_FLAG(re->flags, ZEBRA_FLAG_SELECTED);
1196 }
1197 }
1198
1199 /*
1200 * rib_can_delete_dest
1201 *
1202 * Returns TRUE if the given dest can be deleted from the table.
1203 */
1204 static int rib_can_delete_dest(rib_dest_t *dest)
1205 {
1206 if (dest->routes) {
1207 return 0;
1208 }
1209
1210 /*
1211 * Don't delete the dest if we have to update the FPM about this
1212 * prefix.
1213 */
1214 if (CHECK_FLAG(dest->flags, RIB_DEST_UPDATE_FPM)
1215 || CHECK_FLAG(dest->flags, RIB_DEST_SENT_TO_FPM))
1216 return 0;
1217
1218 return 1;
1219 }
1220
1221 /*
1222 * rib_gc_dest
1223 *
1224 * Garbage collect the rib dest corresponding to the given route node
1225 * if appropriate.
1226 *
1227 * Returns TRUE if the dest was deleted, FALSE otherwise.
1228 */
1229 int rib_gc_dest(struct route_node *rn)
1230 {
1231 rib_dest_t *dest;
1232
1233 dest = rib_dest_from_rnode(rn);
1234 if (!dest)
1235 return 0;
1236
1237 if (!rib_can_delete_dest(dest))
1238 return 0;
1239
1240 if (IS_ZEBRA_DEBUG_RIB) {
1241 struct zebra_vrf *zvrf;
1242
1243 zvrf = rib_dest_vrf(dest);
1244 rnode_debug(rn, zvrf_id(zvrf), "removing dest from table");
1245 }
1246
1247 dest->rnode = NULL;
1248 XFREE(MTYPE_RIB_DEST, dest);
1249 rn->info = NULL;
1250
1251 /*
1252 * Release the one reference that we keep on the route node.
1253 */
1254 route_unlock_node(rn);
1255 return 1;
1256 }
1257
1258 static void rib_process_add_fib(struct zebra_vrf *zvrf, struct route_node *rn,
1259 struct route_entry *new)
1260 {
1261 rib_dest_t *dest = rib_dest_from_rnode(rn);
1262
1263 hook_call(rib_update, rn, "new route selected");
1264
1265 /* Update real nexthop. This may actually determine if nexthop is active
1266 * or not. */
1267 if (!nexthop_active_update(rn, new, true)) {
1268 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1269 return;
1270 }
1271
1272 if (IS_ZEBRA_DEBUG_RIB) {
1273 char buf[SRCDEST2STR_BUFFER];
1274 srcdest_rnode2str(rn, buf, sizeof(buf));
1275 zlog_debug("%u:%s: Adding route rn %p, re %p (%s)",
1276 zvrf_id(zvrf), buf, rn, new,
1277 zebra_route_string(new->type));
1278 }
1279
1280 /* If labeled-unicast route, install transit LSP. */
1281 if (zebra_rib_labeled_unicast(new))
1282 zebra_mpls_lsp_install(zvrf, rn, new);
1283
1284 if (!RIB_SYSTEM_ROUTE(new))
1285 rib_install_kernel(rn, new, NULL);
1286 else
1287 dest->selected_fib = new;
1288
1289 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1290 }
1291
1292 static void rib_process_del_fib(struct zebra_vrf *zvrf, struct route_node *rn,
1293 struct route_entry *old)
1294 {
1295 rib_dest_t *dest = rib_dest_from_rnode(rn);
1296 hook_call(rib_update, rn, "removing existing route");
1297
1298 /* Uninstall from kernel. */
1299 if (IS_ZEBRA_DEBUG_RIB) {
1300 char buf[SRCDEST2STR_BUFFER];
1301 srcdest_rnode2str(rn, buf, sizeof(buf));
1302 zlog_debug("%u:%s: Deleting route rn %p, re %p (%s)",
1303 zvrf_id(zvrf), buf, rn, old,
1304 zebra_route_string(old->type));
1305 }
1306
1307 /* If labeled-unicast route, uninstall transit LSP. */
1308 if (zebra_rib_labeled_unicast(old))
1309 zebra_mpls_lsp_uninstall(zvrf, rn, old);
1310
1311 if (!RIB_SYSTEM_ROUTE(old))
1312 rib_uninstall_kernel(rn, old);
1313 else {
1314 UNSET_FLAG(old->status, ROUTE_ENTRY_INSTALLED);
1315 /*
1316 * We are setting this to NULL here
1317 * because that is what we traditionally
1318 * have been doing. I am not positive
1319 * that this is the right thing to do
1320 * but let's leave the code alone
1321 * for the RIB_SYSTEM_ROUTE case
1322 */
1323 dest->selected_fib = NULL;
1324 }
1325
1326 /* Update nexthop for route, reset changed flag. */
1327 /* Note: this code also handles the Linux case when an interface goes
1328 * down, causing the kernel to delete routes without sending DELROUTE
1329 * notifications
1330 */
1331 if (!nexthop_active_update(rn, old, true) &&
1332 (RIB_KERNEL_ROUTE(old)))
1333 SET_FLAG(old->status, ROUTE_ENTRY_REMOVED);
1334 else
1335 UNSET_FLAG(old->status, ROUTE_ENTRY_CHANGED);
1336 }
1337
1338 static void rib_process_update_fib(struct zebra_vrf *zvrf,
1339 struct route_node *rn,
1340 struct route_entry *old,
1341 struct route_entry *new)
1342 {
1343 struct nexthop *nexthop = NULL;
1344 int nh_active = 0;
1345 rib_dest_t *dest = rib_dest_from_rnode(rn);
1346
1347 /*
1348 * We have to install or update if a new route has been selected or
1349 * something has changed.
1350 */
1351 if (new != old || CHECK_FLAG(new->status, ROUTE_ENTRY_CHANGED)) {
1352 hook_call(rib_update, rn, "updating existing route");
1353
1354 /* Update the nexthop; we could determine here that nexthop is
1355 * inactive. */
1356 if (nexthop_active_update(rn, new, true))
1357 nh_active = 1;
1358
1359 /* If nexthop is active, install the selected route, if
1360 * appropriate. If
1361 * the install succeeds, cleanup flags for prior route, if
1362 * different from
1363 * newly selected.
1364 */
1365 if (nh_active) {
1366 if (IS_ZEBRA_DEBUG_RIB) {
1367 char buf[SRCDEST2STR_BUFFER];
1368 srcdest_rnode2str(rn, buf, sizeof(buf));
1369 if (new != old)
1370 zlog_debug(
1371 "%u:%s: Updating route rn %p, re %p (%s) old %p (%s)",
1372 zvrf_id(zvrf), buf, rn, new,
1373 zebra_route_string(new->type),
1374 old,
1375 zebra_route_string(old->type));
1376 else
1377 zlog_debug(
1378 "%u:%s: Updating route rn %p, re %p (%s)",
1379 zvrf_id(zvrf), buf, rn, new,
1380 zebra_route_string(new->type));
1381 }
1382
1383 /* If labeled-unicast route, uninstall transit LSP. */
1384 if (zebra_rib_labeled_unicast(old))
1385 zebra_mpls_lsp_uninstall(zvrf, rn, old);
1386
1387 /* Non-system route should be installed. */
1388 if (!RIB_SYSTEM_ROUTE(new)) {
1389 /* If labeled-unicast route, install transit
1390 * LSP. */
1391 if (zebra_rib_labeled_unicast(new))
1392 zebra_mpls_lsp_install(zvrf, rn, new);
1393
1394 rib_install_kernel(rn, new, old);
1395 } else {
1396 UNSET_FLAG(new->status, ROUTE_ENTRY_INSTALLED);
1397 /*
1398 * We do not need to install the
1399 * selected route because it
1400 * is already isntalled by
1401 * the system( ie not us )
1402 * so just mark it as winning
1403 * we do need to ensure that
1404 * if we uninstall a route
1405 * from ourselves we don't
1406 * over write this pointer
1407 */
1408 dest->selected_fib = NULL;
1409 }
1410 /* If install succeeded or system route, cleanup flags
1411 * for prior route. */
1412 if (new != old) {
1413 if (RIB_SYSTEM_ROUTE(new)) {
1414 if (!RIB_SYSTEM_ROUTE(old))
1415 rib_uninstall_kernel(rn, old);
1416 else
1417 UNSET_FLAG(
1418 old->status,
1419 ROUTE_ENTRY_INSTALLED);
1420 } else {
1421 UNSET_FLAG(old->status,
1422 ROUTE_ENTRY_INSTALLED);
1423 for (nexthop = old->ng.nexthop; nexthop;
1424 nexthop = nexthop->next)
1425 UNSET_FLAG(nexthop->flags,
1426 NEXTHOP_FLAG_FIB);
1427 }
1428 }
1429 }
1430
1431 /*
1432 * If nexthop for selected route is not active or install
1433 * failed, we
1434 * may need to uninstall and delete for redistribution.
1435 */
1436 if (!nh_active) {
1437 if (IS_ZEBRA_DEBUG_RIB) {
1438 char buf[SRCDEST2STR_BUFFER];
1439 srcdest_rnode2str(rn, buf, sizeof(buf));
1440 if (new != old)
1441 zlog_debug(
1442 "%u:%s: Deleting route rn %p, re %p (%s) old %p (%s) - nexthop inactive",
1443 zvrf_id(zvrf), buf, rn, new,
1444 zebra_route_string(new->type),
1445 old,
1446 zebra_route_string(old->type));
1447 else
1448 zlog_debug(
1449 "%u:%s: Deleting route rn %p, re %p (%s) - nexthop inactive",
1450 zvrf_id(zvrf), buf, rn, new,
1451 zebra_route_string(new->type));
1452 }
1453
1454 /* If labeled-unicast route, uninstall transit LSP. */
1455 if (zebra_rib_labeled_unicast(old))
1456 zebra_mpls_lsp_uninstall(zvrf, rn, old);
1457
1458 if (!RIB_SYSTEM_ROUTE(old))
1459 rib_uninstall_kernel(rn, old);
1460 else {
1461 UNSET_FLAG(old->status, ROUTE_ENTRY_INSTALLED);
1462 dest->selected_fib = NULL;
1463 }
1464 }
1465 } else {
1466 /*
1467 * Same route selected; check if in the FIB and if not,
1468 * re-install. This
1469 * is housekeeping code to deal with race conditions in kernel
1470 * with linux
1471 * netlink reporting interface up before IPv4 or IPv6 protocol
1472 * is ready
1473 * to add routes.
1474 */
1475 if (!RIB_SYSTEM_ROUTE(new)
1476 && !CHECK_FLAG(new->status, ROUTE_ENTRY_INSTALLED))
1477 rib_install_kernel(rn, new, NULL);
1478 }
1479
1480 /* Update prior route. */
1481 if (new != old) {
1482 /* Set real nexthop. */
1483 nexthop_active_update(rn, old, true);
1484 UNSET_FLAG(old->status, ROUTE_ENTRY_CHANGED);
1485 }
1486
1487 /* Clear changed flag. */
1488 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1489 }
1490
1491 /* Check if 'alternate' RIB entry is better than 'current'. */
1492 static struct route_entry *rib_choose_best(struct route_entry *current,
1493 struct route_entry *alternate)
1494 {
1495 if (current == NULL)
1496 return alternate;
1497
1498 /* filter route selection in following order:
1499 * - connected beats other types
1500 * - if both connected, loopback or vrf wins
1501 * - lower distance beats higher
1502 * - lower metric beats higher for equal distance
1503 * - last, hence oldest, route wins tie break.
1504 */
1505
1506 /* Connected routes. Check to see if either are a vrf
1507 * or loopback interface. If not, pick the last connected
1508 * route of the set of lowest metric connected routes.
1509 */
1510 if (alternate->type == ZEBRA_ROUTE_CONNECT) {
1511 if (current->type != ZEBRA_ROUTE_CONNECT)
1512 return alternate;
1513
1514 /* both are connected. are either loop or vrf? */
1515 struct nexthop *nexthop = NULL;
1516
1517 for (ALL_NEXTHOPS(alternate->ng, nexthop)) {
1518 if (if_is_loopback_or_vrf(if_lookup_by_index(
1519 nexthop->ifindex, alternate->vrf_id)))
1520 return alternate;
1521 }
1522
1523 for (ALL_NEXTHOPS(current->ng, nexthop)) {
1524 if (if_is_loopback_or_vrf(if_lookup_by_index(
1525 nexthop->ifindex, current->vrf_id)))
1526 return current;
1527 }
1528
1529 /* Neither are loop or vrf so pick best metric */
1530 if (alternate->metric <= current->metric)
1531 return alternate;
1532
1533 return current;
1534 }
1535
1536 if (current->type == ZEBRA_ROUTE_CONNECT)
1537 return current;
1538
1539 /* higher distance loses */
1540 if (alternate->distance < current->distance)
1541 return alternate;
1542 if (current->distance < alternate->distance)
1543 return current;
1544
1545 /* metric tie-breaks equal distance */
1546 if (alternate->metric <= current->metric)
1547 return alternate;
1548
1549 return current;
1550 }
1551
1552 /* Core function for processing routing information base. */
1553 static void rib_process(struct route_node *rn)
1554 {
1555 struct route_entry *re;
1556 struct route_entry *next;
1557 struct route_entry *old_selected = NULL;
1558 struct route_entry *new_selected = NULL;
1559 struct route_entry *old_fib = NULL;
1560 struct route_entry *new_fib = NULL;
1561 struct route_entry *best = NULL;
1562 char buf[SRCDEST2STR_BUFFER];
1563 rib_dest_t *dest;
1564 struct zebra_vrf *zvrf = NULL;
1565 const struct prefix *p, *src_p;
1566
1567 srcdest_rnode_prefixes(rn, &p, &src_p);
1568 vrf_id_t vrf_id = VRF_UNKNOWN;
1569
1570 assert(rn);
1571
1572 dest = rib_dest_from_rnode(rn);
1573 if (dest) {
1574 zvrf = rib_dest_vrf(dest);
1575 vrf_id = zvrf_id(zvrf);
1576 }
1577
1578 if (IS_ZEBRA_DEBUG_RIB)
1579 srcdest_rnode2str(rn, buf, sizeof(buf));
1580
1581 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1582 zlog_debug("%u:%s: Processing rn %p", vrf_id, buf, rn);
1583
1584 /*
1585 * we can have rn's that have a NULL info pointer
1586 * (dest). As such let's not let the deref happen
1587 * additionally we know RNODE_FOREACH_RE_SAFE
1588 * will not iterate so we are ok.
1589 */
1590 if (dest)
1591 old_fib = dest->selected_fib;
1592
1593 RNODE_FOREACH_RE_SAFE (rn, re, next) {
1594 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1595 zlog_debug(
1596 "%u:%s: Examine re %p (%s) status %x flags %x dist %d metric %d",
1597 vrf_id, buf, re, zebra_route_string(re->type),
1598 re->status, re->flags, re->distance,
1599 re->metric);
1600
1601 UNSET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
1602
1603 /* Currently selected re. */
1604 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)) {
1605 assert(old_selected == NULL);
1606 old_selected = re;
1607 }
1608
1609 /* Skip deleted entries from selection */
1610 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
1611 continue;
1612
1613 /* Skip unreachable nexthop. */
1614 /* This first call to nexthop_active_update is merely to
1615 * determine if
1616 * there's any change to nexthops associated with this RIB
1617 * entry. Now,
1618 * rib_process() can be invoked due to an external event such as
1619 * link
1620 * down or due to next-hop-tracking evaluation. In the latter
1621 * case,
1622 * a decision has already been made that the NHs have changed.
1623 * So, no
1624 * need to invoke a potentially expensive call again. Further,
1625 * since
1626 * the change might be in a recursive NH which is not caught in
1627 * the nexthop_active_update() code. Thus, we might miss changes
1628 * to
1629 * recursive NHs.
1630 */
1631 if (!CHECK_FLAG(re->status, ROUTE_ENTRY_CHANGED)
1632 && !nexthop_active_update(rn, re, false)) {
1633 if (re->type == ZEBRA_ROUTE_TABLE) {
1634 /* XXX: HERE BE DRAGONS!!!!!
1635 * In all honesty, I have not yet figured out
1636 * what this part
1637 * does or why the ROUTE_ENTRY_CHANGED test
1638 * above is correct
1639 * or why we need to delete a route here, and
1640 * also not whether
1641 * this concerns both selected and fib route, or
1642 * only selected
1643 * or only fib */
1644 /* This entry was denied by the 'ip protocol
1645 * table' route-map, we
1646 * need to delete it */
1647 if (re != old_selected) {
1648 if (IS_ZEBRA_DEBUG_RIB)
1649 zlog_debug(
1650 "%s: %u:%s: imported via import-table but denied "
1651 "by the ip protocol table route-map",
1652 __func__, vrf_id, buf);
1653 rib_unlink(rn, re);
1654 } else
1655 SET_FLAG(re->status,
1656 ROUTE_ENTRY_REMOVED);
1657 }
1658
1659 continue;
1660 }
1661
1662 /* Infinite distance. */
1663 if (re->distance == DISTANCE_INFINITY) {
1664 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1665 continue;
1666 }
1667
1668 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_FIB_OVERRIDE)) {
1669 best = rib_choose_best(new_fib, re);
1670 if (new_fib && best != new_fib)
1671 UNSET_FLAG(new_fib->status,
1672 ROUTE_ENTRY_CHANGED);
1673 new_fib = best;
1674 } else {
1675 best = rib_choose_best(new_selected, re);
1676 if (new_selected && best != new_selected)
1677 UNSET_FLAG(new_selected->status,
1678 ROUTE_ENTRY_CHANGED);
1679 new_selected = best;
1680 }
1681 if (best != re)
1682 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1683 } /* RNODE_FOREACH_RE */
1684
1685 /* If no FIB override route, use the selected route also for FIB */
1686 if (new_fib == NULL)
1687 new_fib = new_selected;
1688
1689 /* After the cycle is finished, the following pointers will be set:
1690 * old_selected --- RE entry currently having SELECTED
1691 * new_selected --- RE entry that is newly SELECTED
1692 * old_fib --- RE entry currently in kernel FIB
1693 * new_fib --- RE entry that is newly to be in kernel FIB
1694 *
1695 * new_selected will get SELECTED flag, and is going to be redistributed
1696 * the zclients. new_fib (which can be new_selected) will be installed
1697 * in kernel.
1698 */
1699
1700 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
1701 zlog_debug(
1702 "%u:%s: After processing: old_selected %p new_selected %p old_fib %p new_fib %p",
1703 vrf_id, buf, (void *)old_selected, (void *)new_selected,
1704 (void *)old_fib, (void *)new_fib);
1705 }
1706
1707 /* Buffer ROUTE_ENTRY_CHANGED here, because it will get cleared if
1708 * fib == selected */
1709 bool selected_changed = new_selected && CHECK_FLAG(new_selected->status,
1710 ROUTE_ENTRY_CHANGED);
1711
1712 /* Update fib according to selection results */
1713 if (new_fib && old_fib)
1714 rib_process_update_fib(zvrf, rn, old_fib, new_fib);
1715 else if (new_fib)
1716 rib_process_add_fib(zvrf, rn, new_fib);
1717 else if (old_fib)
1718 rib_process_del_fib(zvrf, rn, old_fib);
1719
1720 /* Update SELECTED entry */
1721 if (old_selected != new_selected || selected_changed) {
1722
1723 if (new_selected && new_selected != new_fib) {
1724 nexthop_active_update(rn, new_selected, true);
1725 UNSET_FLAG(new_selected->status, ROUTE_ENTRY_CHANGED);
1726 }
1727
1728 if (new_selected) {
1729 SET_FLAG(new_selected->flags, ZEBRA_FLAG_SELECTED);
1730
1731 /* Special case: new route is system route, so
1732 * dataplane update will not be done - ensure we
1733 * redistribute the route.
1734 */
1735 if (RIB_SYSTEM_ROUTE(new_selected))
1736 redistribute_update(p, src_p, new_selected,
1737 old_selected);
1738 }
1739
1740 if (old_selected) {
1741 if (!new_selected)
1742 redistribute_delete(p, src_p, old_selected);
1743 if (old_selected != new_selected)
1744 UNSET_FLAG(old_selected->flags,
1745 ZEBRA_FLAG_SELECTED);
1746 }
1747 }
1748
1749 /* Remove all RE entries queued for removal */
1750 RNODE_FOREACH_RE_SAFE (rn, re, next) {
1751 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
1752 if (IS_ZEBRA_DEBUG_RIB) {
1753 rnode_debug(rn, vrf_id, "rn %p, removing re %p",
1754 (void *)rn, (void *)re);
1755 }
1756 rib_unlink(rn, re);
1757 }
1758 }
1759
1760 /*
1761 * Check if the dest can be deleted now.
1762 */
1763 rib_gc_dest(rn);
1764 }
1765
1766 /*
1767 * Utility to match route with dplane context data
1768 */
1769 static bool rib_route_match_ctx(const struct route_entry *re,
1770 const struct zebra_dplane_ctx *ctx,
1771 bool is_update)
1772 {
1773 bool result = false;
1774
1775 if (is_update) {
1776 /*
1777 * In 'update' case, we test info about the 'previous' or
1778 * 'old' route
1779 */
1780 if ((re->type == dplane_ctx_get_old_type(ctx)) &&
1781 (re->instance == dplane_ctx_get_old_instance(ctx))) {
1782 result = true;
1783
1784 /* TODO -- we're using this extra test, but it's not
1785 * exactly clear why.
1786 */
1787 if (re->type == ZEBRA_ROUTE_STATIC &&
1788 (re->distance != dplane_ctx_get_old_distance(ctx) ||
1789 re->tag != dplane_ctx_get_old_tag(ctx))) {
1790 result = false;
1791 }
1792 }
1793
1794 } else {
1795 /*
1796 * Ordinary, single-route case using primary context info
1797 */
1798 if ((dplane_ctx_get_op(ctx) != DPLANE_OP_ROUTE_DELETE) &&
1799 CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
1800 /* Skip route that's been deleted */
1801 goto done;
1802 }
1803
1804 if ((re->type == dplane_ctx_get_type(ctx)) &&
1805 (re->instance == dplane_ctx_get_instance(ctx))) {
1806 result = true;
1807
1808 /* TODO -- we're using this extra test, but it's not
1809 * exactly clear why.
1810 */
1811 if (re->type == ZEBRA_ROUTE_STATIC &&
1812 (re->distance != dplane_ctx_get_distance(ctx) ||
1813 re->tag != dplane_ctx_get_tag(ctx))) {
1814 result = false;
1815 }
1816 }
1817 }
1818
1819 done:
1820
1821 return (result);
1822 }
1823
1824 /*
1825 * Route-update results processing after async dataplane update.
1826 */
1827 static void rib_process_result(struct zebra_dplane_ctx *ctx)
1828 {
1829 struct route_table *table = NULL;
1830 struct zebra_vrf *zvrf = NULL;
1831 struct route_node *rn = NULL;
1832 struct route_entry *re = NULL, *old_re = NULL, *rib;
1833 bool is_update = false;
1834 struct nexthop *nexthop, *ctx_nexthop;
1835 char dest_str[PREFIX_STRLEN] = "";
1836 enum dplane_op_e op;
1837 enum zebra_dplane_result status;
1838 const struct prefix *dest_pfx, *src_pfx;
1839
1840 /* Locate rn and re(s) from ctx */
1841
1842 table = zebra_vrf_table_with_table_id(dplane_ctx_get_afi(ctx),
1843 dplane_ctx_get_safi(ctx),
1844 dplane_ctx_get_vrf(ctx),
1845 dplane_ctx_get_table(ctx));
1846 if (table == NULL) {
1847 if (IS_ZEBRA_DEBUG_DPLANE) {
1848 zlog_debug("Failed to process dplane results: no table for afi %d, safi %d, vrf %u",
1849 dplane_ctx_get_afi(ctx),
1850 dplane_ctx_get_safi(ctx),
1851 dplane_ctx_get_vrf(ctx));
1852 }
1853 goto done;
1854 }
1855
1856 zvrf = vrf_info_lookup(dplane_ctx_get_vrf(ctx));
1857
1858 dest_pfx = dplane_ctx_get_dest(ctx);
1859
1860 /* Note well: only capturing the prefix string if debug is enabled here;
1861 * unconditional log messages will have to generate the string.
1862 */
1863 if (IS_ZEBRA_DEBUG_DPLANE)
1864 prefix2str(dest_pfx, dest_str, sizeof(dest_str));
1865
1866 src_pfx = dplane_ctx_get_src(ctx);
1867 rn = srcdest_rnode_get(table, dplane_ctx_get_dest(ctx),
1868 src_pfx ? (struct prefix_ipv6 *)src_pfx : NULL);
1869 if (rn == NULL) {
1870 if (IS_ZEBRA_DEBUG_DPLANE) {
1871 zlog_debug("Failed to process dplane results: no route for %u:%s",
1872 dplane_ctx_get_vrf(ctx), dest_str);
1873 }
1874 goto done;
1875 }
1876
1877 srcdest_rnode_prefixes(rn, &dest_pfx, &src_pfx);
1878
1879 op = dplane_ctx_get_op(ctx);
1880 status = dplane_ctx_get_status(ctx);
1881
1882 if (IS_ZEBRA_DEBUG_DPLANE_DETAIL)
1883 zlog_debug("%u:%s Processing dplane ctx %p, op %s result %s",
1884 dplane_ctx_get_vrf(ctx), dest_str, ctx,
1885 dplane_op2str(op), dplane_res2str(status));
1886
1887 /*
1888 * Update is a bit of a special case, where we may have both old and new
1889 * routes to post-process.
1890 */
1891 is_update = dplane_ctx_is_update(ctx);
1892
1893 /*
1894 * Take a pass through the routes, look for matches with the context
1895 * info.
1896 */
1897 RNODE_FOREACH_RE(rn, rib) {
1898
1899 if (re == NULL) {
1900 if (rib_route_match_ctx(rib, ctx, false))
1901 re = rib;
1902 }
1903
1904 /* Check for old route match */
1905 if (is_update && (old_re == NULL)) {
1906 if (rib_route_match_ctx(rib, ctx, true /*is_update*/))
1907 old_re = rib;
1908 }
1909
1910 /* Have we found the routes we need to work on? */
1911 if (re && ((!is_update || old_re)))
1912 break;
1913 }
1914
1915 /*
1916 * Check sequence number(s) to detect stale results before continuing
1917 */
1918 if (re) {
1919 if (re->dplane_sequence != dplane_ctx_get_seq(ctx)) {
1920 if (IS_ZEBRA_DEBUG_DPLANE_DETAIL)
1921 zlog_debug("%u:%s Stale dplane result for re %p",
1922 dplane_ctx_get_vrf(ctx),
1923 dest_str, re);
1924 } else
1925 UNSET_FLAG(re->status, ROUTE_ENTRY_QUEUED);
1926 }
1927
1928 if (old_re) {
1929 if (old_re->dplane_sequence != dplane_ctx_get_old_seq(ctx)) {
1930 if (IS_ZEBRA_DEBUG_DPLANE_DETAIL)
1931 zlog_debug("%u:%s Stale dplane result for old_re %p",
1932 dplane_ctx_get_vrf(ctx),
1933 dest_str, old_re);
1934 } else
1935 UNSET_FLAG(re->status, ROUTE_ENTRY_QUEUED);
1936 }
1937
1938 switch (op) {
1939 case DPLANE_OP_ROUTE_INSTALL:
1940 case DPLANE_OP_ROUTE_UPDATE:
1941 if (status == ZEBRA_DPLANE_REQUEST_SUCCESS) {
1942 if (re) {
1943 UNSET_FLAG(re->status, ROUTE_ENTRY_FAILED);
1944 SET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
1945 }
1946 /*
1947 * On an update operation from the same route type
1948 * context retrieval currently has no way to know
1949 * which was the old and which was the new.
1950 * So don't unset our flags that we just set.
1951 * We know redistribution is ok because the
1952 * old_re in this case is used for nothing
1953 * more than knowing whom to contact if necessary.
1954 */
1955 if (old_re && old_re != re) {
1956 UNSET_FLAG(old_re->status, ROUTE_ENTRY_FAILED);
1957 UNSET_FLAG(old_re->status,
1958 ROUTE_ENTRY_INSTALLED);
1959 }
1960 /* Update zebra nexthop FIB flag for each
1961 * nexthop that was installed.
1962 */
1963 for (ALL_NEXTHOPS_PTR(dplane_ctx_get_ng(ctx),
1964 ctx_nexthop)) {
1965
1966 if (!re)
1967 continue;
1968
1969 for (ALL_NEXTHOPS(re->ng, nexthop)) {
1970 if (nexthop_same(ctx_nexthop, nexthop))
1971 break;
1972 }
1973
1974 if (nexthop == NULL)
1975 continue;
1976
1977 if (CHECK_FLAG(nexthop->flags,
1978 NEXTHOP_FLAG_RECURSIVE))
1979 continue;
1980
1981 if (CHECK_FLAG(ctx_nexthop->flags,
1982 NEXTHOP_FLAG_FIB))
1983 SET_FLAG(nexthop->flags,
1984 NEXTHOP_FLAG_FIB);
1985 else
1986 UNSET_FLAG(nexthop->flags,
1987 NEXTHOP_FLAG_FIB);
1988 }
1989
1990 if (zvrf) {
1991 zvrf->installs++;
1992 /* Set flag for nexthop tracking processing */
1993 zvrf->flags |= ZEBRA_VRF_RIB_SCHEDULED;
1994 }
1995
1996 /* Redistribute */
1997 /*
1998 * TODO -- still calling the redist api using the
1999 * route_entries, and there's a corner-case here:
2000 * if there's no client for the 'new' route, a redist
2001 * deleting the 'old' route will be sent. But if the
2002 * 'old' context info was stale, 'old_re' will be
2003 * NULL here and that delete will not be sent.
2004 */
2005 if (re)
2006 redistribute_update(dest_pfx, src_pfx,
2007 re, old_re);
2008
2009 /* Notify route owner */
2010 zsend_route_notify_owner_ctx(ctx, ZAPI_ROUTE_INSTALLED);
2011
2012 } else {
2013 if (re)
2014 SET_FLAG(re->status, ROUTE_ENTRY_FAILED);
2015 if (old_re)
2016 SET_FLAG(old_re->status, ROUTE_ENTRY_FAILED);
2017 if (re)
2018 zsend_route_notify_owner(re, dest_pfx,
2019 ZAPI_ROUTE_FAIL_INSTALL);
2020
2021 zlog_warn("%u:%s: Route install failed",
2022 dplane_ctx_get_vrf(ctx),
2023 prefix2str(dest_pfx,
2024 dest_str, sizeof(dest_str)));
2025 }
2026 break;
2027 case DPLANE_OP_ROUTE_DELETE:
2028 if (re)
2029 SET_FLAG(re->status, ROUTE_ENTRY_FAILED);
2030 /*
2031 * In the delete case, the zebra core datastructs were
2032 * updated (or removed) at the time the delete was issued,
2033 * so we're just notifying the route owner.
2034 */
2035 if (status == ZEBRA_DPLANE_REQUEST_SUCCESS) {
2036 if (re) {
2037 UNSET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
2038 UNSET_FLAG(re->status, ROUTE_ENTRY_FAILED);
2039 }
2040 zsend_route_notify_owner_ctx(ctx, ZAPI_ROUTE_REMOVED);
2041
2042 if (zvrf)
2043 zvrf->removals++;
2044 } else {
2045 if (re)
2046 SET_FLAG(re->status, ROUTE_ENTRY_FAILED);
2047 zsend_route_notify_owner_ctx(ctx,
2048 ZAPI_ROUTE_REMOVE_FAIL);
2049
2050 zlog_warn("%u:%s: Route Deletion failure",
2051 dplane_ctx_get_vrf(ctx),
2052 prefix2str(dest_pfx,
2053 dest_str, sizeof(dest_str)));
2054 }
2055 break;
2056 default:
2057 break;
2058 }
2059 done:
2060
2061 if (rn)
2062 route_unlock_node(rn);
2063
2064 /* Return context to dataplane module */
2065 dplane_ctx_fini(&ctx);
2066 }
2067
2068 /* Take a list of route_node structs and return 1, if there was a record
2069 * picked from it and processed by rib_process(). Don't process more,
2070 * than one RN record; operate only in the specified sub-queue.
2071 */
2072 static unsigned int process_subq(struct list *subq, uint8_t qindex)
2073 {
2074 struct listnode *lnode = listhead(subq);
2075 struct route_node *rnode;
2076 rib_dest_t *dest;
2077 struct zebra_vrf *zvrf = NULL;
2078
2079 if (!lnode)
2080 return 0;
2081
2082 rnode = listgetdata(lnode);
2083 dest = rib_dest_from_rnode(rnode);
2084 if (dest)
2085 zvrf = rib_dest_vrf(dest);
2086
2087 rib_process(rnode);
2088
2089 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
2090 char buf[SRCDEST2STR_BUFFER];
2091 srcdest_rnode2str(rnode, buf, sizeof(buf));
2092 zlog_debug("%u:%s: rn %p dequeued from sub-queue %u",
2093 zvrf ? zvrf_id(zvrf) : 0, buf, rnode, qindex);
2094 }
2095
2096 if (rnode->info)
2097 UNSET_FLAG(rib_dest_from_rnode(rnode)->flags,
2098 RIB_ROUTE_QUEUED(qindex));
2099
2100 #if 0
2101 else
2102 {
2103 zlog_debug ("%s: called for route_node (%p, %d) with no ribs",
2104 __func__, rnode, rnode->lock);
2105 zlog_backtrace(LOG_DEBUG);
2106 }
2107 #endif
2108 route_unlock_node(rnode);
2109 list_delete_node(subq, lnode);
2110 return 1;
2111 }
2112
2113 /*
2114 * Perform next-hop tracking processing after RIB updates.
2115 */
2116 static void do_nht_processing(void)
2117 {
2118 struct vrf *vrf;
2119 struct zebra_vrf *zvrf;
2120
2121 /* Evaluate nexthops for those VRFs which underwent route processing.
2122 * This
2123 * should limit the evaluation to the necessary VRFs in most common
2124 * situations.
2125 */
2126 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id) {
2127 zvrf = vrf->info;
2128 if (zvrf == NULL || !(zvrf->flags & ZEBRA_VRF_RIB_SCHEDULED))
2129 continue;
2130
2131 if (IS_ZEBRA_DEBUG_RIB_DETAILED || IS_ZEBRA_DEBUG_NHT)
2132 zlog_debug("NHT processing check for zvrf %s",
2133 zvrf_name(zvrf));
2134
2135 zvrf->flags &= ~ZEBRA_VRF_RIB_SCHEDULED;
2136 zebra_evaluate_rnh(zvrf, AFI_IP, 0, RNH_NEXTHOP_TYPE, NULL);
2137 zebra_evaluate_rnh(zvrf, AFI_IP, 0, RNH_IMPORT_CHECK_TYPE,
2138 NULL);
2139 zebra_evaluate_rnh(zvrf, AFI_IP6, 0, RNH_NEXTHOP_TYPE, NULL);
2140 zebra_evaluate_rnh(zvrf, AFI_IP6, 0, RNH_IMPORT_CHECK_TYPE,
2141 NULL);
2142 }
2143
2144 /* Schedule LSPs for processing, if needed. */
2145 zvrf = vrf_info_lookup(VRF_DEFAULT);
2146 if (mpls_should_lsps_be_processed(zvrf)) {
2147 if (IS_ZEBRA_DEBUG_MPLS)
2148 zlog_debug(
2149 "%u: Scheduling all LSPs upon RIB completion",
2150 zvrf_id(zvrf));
2151 zebra_mpls_lsp_schedule(zvrf);
2152 mpls_unmark_lsps_for_processing(zvrf);
2153 }
2154 }
2155
2156 /* Dispatch the meta queue by picking, processing and unlocking the next RN from
2157 * a non-empty sub-queue with lowest priority. wq is equal to zebra->ribq and
2158 * data
2159 * is pointed to the meta queue structure.
2160 */
2161 static wq_item_status meta_queue_process(struct work_queue *dummy, void *data)
2162 {
2163 struct meta_queue *mq = data;
2164 unsigned i;
2165 uint32_t queue_len, queue_limit;
2166
2167 /* Ensure there's room for more dataplane updates */
2168 queue_limit = dplane_get_in_queue_limit();
2169 queue_len = dplane_get_in_queue_len();
2170 if (queue_len > queue_limit) {
2171 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2172 zlog_debug("rib queue: dplane queue len %u, limit %u, retrying",
2173 queue_len, queue_limit);
2174
2175 /* Ensure that the meta-queue is actually enqueued */
2176 if (work_queue_empty(zrouter.ribq))
2177 work_queue_add(zrouter.ribq, zrouter.mq);
2178
2179 return WQ_QUEUE_BLOCKED;
2180 }
2181
2182 for (i = 0; i < MQ_SIZE; i++)
2183 if (process_subq(mq->subq[i], i)) {
2184 mq->size--;
2185 break;
2186 }
2187 return mq->size ? WQ_REQUEUE : WQ_SUCCESS;
2188 }
2189
2190
2191 /*
2192 * Look into the RN and queue it into the highest priority queue
2193 * at this point in time for processing.
2194 *
2195 * We will enqueue a route node only once per invocation.
2196 *
2197 * There are two possibilities here that should be kept in mind.
2198 * If the original invocation has not been pulled off for processing
2199 * yet, A subsuquent invocation can have a route entry with a better
2200 * meta queue index value and we can have a situation where
2201 * we might have the same node enqueued 2 times. Not necessarily
2202 * an optimal situation but it should be ok.
2203 *
2204 * The other possibility is that the original invocation has not
2205 * been pulled off for processing yet, A subsusquent invocation
2206 * doesn't have a route_entry with a better meta-queue and the
2207 * original metaqueue index value will win and we'll end up with
2208 * the route node enqueued once.
2209 */
2210 static void rib_meta_queue_add(struct meta_queue *mq, struct route_node *rn)
2211 {
2212 struct route_entry *re = NULL, *curr_re = NULL;
2213 uint8_t qindex = MQ_SIZE, curr_qindex = MQ_SIZE;
2214 struct zebra_vrf *zvrf;
2215
2216 RNODE_FOREACH_RE (rn, curr_re) {
2217 curr_qindex = route_info[curr_re->type].meta_q_map;
2218
2219 if (curr_qindex <= qindex) {
2220 re = curr_re;
2221 qindex = curr_qindex;
2222 }
2223 }
2224
2225 if (!re)
2226 return;
2227
2228 /* Invariant: at this point we always have rn->info set. */
2229 if (CHECK_FLAG(rib_dest_from_rnode(rn)->flags,
2230 RIB_ROUTE_QUEUED(qindex))) {
2231 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2232 rnode_debug(rn, re->vrf_id,
2233 "rn %p is already queued in sub-queue %u",
2234 (void *)rn, qindex);
2235 return;
2236 }
2237
2238 SET_FLAG(rib_dest_from_rnode(rn)->flags, RIB_ROUTE_QUEUED(qindex));
2239 listnode_add(mq->subq[qindex], rn);
2240 route_lock_node(rn);
2241 mq->size++;
2242
2243 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2244 rnode_debug(rn, re->vrf_id, "queued rn %p into sub-queue %u",
2245 (void *)rn, qindex);
2246
2247 zvrf = zebra_vrf_lookup_by_id(re->vrf_id);
2248 if (zvrf)
2249 zvrf->flags |= ZEBRA_VRF_RIB_SCHEDULED;
2250 }
2251
2252 /* Add route_node to work queue and schedule processing */
2253 void rib_queue_add(struct route_node *rn)
2254 {
2255 assert(rn);
2256
2257 /* Pointless to queue a route_node with no RIB entries to add or remove
2258 */
2259 if (!rnode_to_ribs(rn)) {
2260 zlog_debug("%s: called for route_node (%p, %d) with no ribs",
2261 __func__, (void *)rn, rn->lock);
2262 zlog_backtrace(LOG_DEBUG);
2263 return;
2264 }
2265
2266 if (zrouter.ribq == NULL) {
2267 flog_err(EC_ZEBRA_WQ_NONEXISTENT,
2268 "%s: work_queue does not exist!", __func__);
2269 return;
2270 }
2271
2272 /*
2273 * The RIB queue should normally be either empty or holding the only
2274 * work_queue_item element. In the latter case this element would
2275 * hold a pointer to the meta queue structure, which must be used to
2276 * actually queue the route nodes to process. So create the MQ
2277 * holder, if necessary, then push the work into it in any case.
2278 * This semantics was introduced after 0.99.9 release.
2279 */
2280 if (work_queue_empty(zrouter.ribq))
2281 work_queue_add(zrouter.ribq, zrouter.mq);
2282
2283 rib_meta_queue_add(zrouter.mq, rn);
2284
2285 return;
2286 }
2287
2288 /* Create new meta queue.
2289 A destructor function doesn't seem to be necessary here.
2290 */
2291 static struct meta_queue *meta_queue_new(void)
2292 {
2293 struct meta_queue *new;
2294 unsigned i;
2295
2296 new = XCALLOC(MTYPE_WORK_QUEUE, sizeof(struct meta_queue));
2297
2298 for (i = 0; i < MQ_SIZE; i++) {
2299 new->subq[i] = list_new();
2300 assert(new->subq[i]);
2301 }
2302
2303 return new;
2304 }
2305
2306 void meta_queue_free(struct meta_queue *mq)
2307 {
2308 unsigned i;
2309
2310 for (i = 0; i < MQ_SIZE; i++)
2311 list_delete(&mq->subq[i]);
2312
2313 XFREE(MTYPE_WORK_QUEUE, mq);
2314 }
2315
2316 /* initialise zebra rib work queue */
2317 static void rib_queue_init(void)
2318 {
2319 if (!(zrouter.ribq = work_queue_new(zrouter.master,
2320 "route_node processing"))) {
2321 flog_err(EC_ZEBRA_WQ_NONEXISTENT,
2322 "%s: could not initialise work queue!", __func__);
2323 return;
2324 }
2325
2326 /* fill in the work queue spec */
2327 zrouter.ribq->spec.workfunc = &meta_queue_process;
2328 zrouter.ribq->spec.errorfunc = NULL;
2329 zrouter.ribq->spec.completion_func = NULL;
2330 /* XXX: TODO: These should be runtime configurable via vty */
2331 zrouter.ribq->spec.max_retries = 3;
2332 zrouter.ribq->spec.hold = ZEBRA_RIB_PROCESS_HOLD_TIME;
2333 zrouter.ribq->spec.retry = ZEBRA_RIB_PROCESS_RETRY_TIME;
2334
2335 if (!(zrouter.mq = meta_queue_new())) {
2336 flog_err(EC_ZEBRA_WQ_NONEXISTENT,
2337 "%s: could not initialise meta queue!", __func__);
2338 return;
2339 }
2340 return;
2341 }
2342
2343 /* RIB updates are processed via a queue of pointers to route_nodes.
2344 *
2345 * The queue length is bounded by the maximal size of the routing table,
2346 * as a route_node will not be requeued, if already queued.
2347 *
2348 * REs are submitted via rib_addnode or rib_delnode which set minimal
2349 * state, or static_install_route (when an existing RE is updated)
2350 * and then submit route_node to queue for best-path selection later.
2351 * Order of add/delete state changes are preserved for any given RE.
2352 *
2353 * Deleted REs are reaped during best-path selection.
2354 *
2355 * rib_addnode
2356 * |-> rib_link or unset ROUTE_ENTRY_REMOVE |->Update kernel with
2357 * |-------->| | best RE, if required
2358 * | |
2359 * static_install->|->rib_addqueue...... -> rib_process
2360 * | |
2361 * |-------->| |-> rib_unlink
2362 * |-> set ROUTE_ENTRY_REMOVE |
2363 * rib_delnode (RE freed)
2364 *
2365 * The 'info' pointer of a route_node points to a rib_dest_t
2366 * ('dest'). Queueing state for a route_node is kept on the dest. The
2367 * dest is created on-demand by rib_link() and is kept around at least
2368 * as long as there are ribs hanging off it (@see rib_gc_dest()).
2369 *
2370 * Refcounting (aka "locking" throughout the GNU Zebra and Quagga code):
2371 *
2372 * - route_nodes: refcounted by:
2373 * - dest attached to route_node:
2374 * - managed by: rib_link/rib_gc_dest
2375 * - route_node processing queue
2376 * - managed by: rib_addqueue, rib_process.
2377 *
2378 */
2379
2380 /* Add RE to head of the route node. */
2381 static void rib_link(struct route_node *rn, struct route_entry *re, int process)
2382 {
2383 struct route_entry *head;
2384 rib_dest_t *dest;
2385 afi_t afi;
2386 const char *rmap_name;
2387
2388 assert(re && rn);
2389
2390 dest = rib_dest_from_rnode(rn);
2391 if (!dest) {
2392 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2393 rnode_debug(rn, re->vrf_id, "rn %p adding dest", rn);
2394
2395 dest = XCALLOC(MTYPE_RIB_DEST, sizeof(rib_dest_t));
2396 route_lock_node(rn); /* rn route table reference */
2397 rn->info = dest;
2398 dest->rnode = rn;
2399 }
2400
2401 head = dest->routes;
2402 if (head) {
2403 head->prev = re;
2404 }
2405 re->next = head;
2406 dest->routes = re;
2407
2408 afi = (rn->p.family == AF_INET)
2409 ? AFI_IP
2410 : (rn->p.family == AF_INET6) ? AFI_IP6 : AFI_MAX;
2411 if (is_zebra_import_table_enabled(afi, re->table)) {
2412 rmap_name = zebra_get_import_table_route_map(afi, re->table);
2413 zebra_add_import_table_entry(rn, re, rmap_name);
2414 } else if (process)
2415 rib_queue_add(rn);
2416 }
2417
2418 static void rib_addnode(struct route_node *rn,
2419 struct route_entry *re, int process)
2420 {
2421 /* RE node has been un-removed before route-node is processed.
2422 * route_node must hence already be on the queue for processing..
2423 */
2424 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
2425 if (IS_ZEBRA_DEBUG_RIB)
2426 rnode_debug(rn, re->vrf_id, "rn %p, un-removed re %p",
2427 (void *)rn, (void *)re);
2428
2429 UNSET_FLAG(re->status, ROUTE_ENTRY_REMOVED);
2430 return;
2431 }
2432 rib_link(rn, re, process);
2433 }
2434
2435 /*
2436 * rib_unlink
2437 *
2438 * Detach a rib structure from a route_node.
2439 *
2440 * Note that a call to rib_unlink() should be followed by a call to
2441 * rib_gc_dest() at some point. This allows a rib_dest_t that is no
2442 * longer required to be deleted.
2443 */
2444 void rib_unlink(struct route_node *rn, struct route_entry *re)
2445 {
2446 rib_dest_t *dest;
2447
2448 assert(rn && re);
2449
2450 if (IS_ZEBRA_DEBUG_RIB)
2451 rnode_debug(rn, re->vrf_id, "rn %p, re %p", (void *)rn,
2452 (void *)re);
2453
2454 dest = rib_dest_from_rnode(rn);
2455
2456 if (re->next)
2457 re->next->prev = re->prev;
2458
2459 if (re->prev)
2460 re->prev->next = re->next;
2461 else {
2462 dest->routes = re->next;
2463 }
2464
2465 if (dest->selected_fib == re)
2466 dest->selected_fib = NULL;
2467
2468 nexthops_free(re->ng.nexthop);
2469 XFREE(MTYPE_RE, re);
2470 }
2471
2472 void rib_delnode(struct route_node *rn, struct route_entry *re)
2473 {
2474 afi_t afi;
2475
2476 if (IS_ZEBRA_DEBUG_RIB)
2477 rnode_debug(rn, re->vrf_id, "rn %p, re %p, removing",
2478 (void *)rn, (void *)re);
2479 SET_FLAG(re->status, ROUTE_ENTRY_REMOVED);
2480
2481 afi = (rn->p.family == AF_INET)
2482 ? AFI_IP
2483 : (rn->p.family == AF_INET6) ? AFI_IP6 : AFI_MAX;
2484 if (is_zebra_import_table_enabled(afi, re->table)) {
2485 zebra_del_import_table_entry(rn, re);
2486 /* Just clean up if non main table */
2487 if (IS_ZEBRA_DEBUG_RIB) {
2488 char buf[SRCDEST2STR_BUFFER];
2489 srcdest_rnode2str(rn, buf, sizeof(buf));
2490 zlog_debug("%u:%s: Freeing route rn %p, re %p (%s)",
2491 re->vrf_id, buf, rn, re,
2492 zebra_route_string(re->type));
2493 }
2494
2495 rib_unlink(rn, re);
2496 } else {
2497 rib_queue_add(rn);
2498 }
2499 }
2500
2501 /* This function dumps the contents of a given RE entry into
2502 * standard debug log. Calling function name and IP prefix in
2503 * question are passed as 1st and 2nd arguments.
2504 */
2505
2506 void _route_entry_dump(const char *func, union prefixconstptr pp,
2507 union prefixconstptr src_pp,
2508 const struct route_entry *re)
2509 {
2510 const struct prefix *src_p = src_pp.p;
2511 bool is_srcdst = src_p && src_p->prefixlen;
2512 char straddr[PREFIX_STRLEN];
2513 char srcaddr[PREFIX_STRLEN];
2514 struct nexthop *nexthop;
2515
2516 zlog_debug("%s: dumping RE entry %p for %s%s%s vrf %u", func,
2517 (const void *)re, prefix2str(pp, straddr, sizeof(straddr)),
2518 is_srcdst ? " from " : "",
2519 is_srcdst ? prefix2str(src_pp, srcaddr, sizeof(srcaddr))
2520 : "",
2521 re->vrf_id);
2522 zlog_debug("%s: uptime == %lu, type == %u, instance == %d, table == %d",
2523 func, (unsigned long)re->uptime, re->type, re->instance,
2524 re->table);
2525 zlog_debug(
2526 "%s: metric == %u, mtu == %u, distance == %u, flags == %u, status == %u",
2527 func, re->metric, re->mtu, re->distance, re->flags, re->status);
2528 zlog_debug("%s: nexthop_num == %u, nexthop_active_num == %u", func,
2529 re->nexthop_num, re->nexthop_active_num);
2530
2531 for (ALL_NEXTHOPS(re->ng, nexthop)) {
2532 struct interface *ifp;
2533 struct vrf *vrf = vrf_lookup_by_id(nexthop->vrf_id);
2534
2535 switch (nexthop->type) {
2536 case NEXTHOP_TYPE_BLACKHOLE:
2537 sprintf(straddr, "Blackhole");
2538 break;
2539 case NEXTHOP_TYPE_IFINDEX:
2540 ifp = if_lookup_by_index(nexthop->ifindex,
2541 nexthop->vrf_id);
2542 sprintf(straddr, "%s", ifp ? ifp->name : "Unknown");
2543 break;
2544 case NEXTHOP_TYPE_IPV4:
2545 /* fallthrough */
2546 case NEXTHOP_TYPE_IPV4_IFINDEX:
2547 inet_ntop(AF_INET, &nexthop->gate, straddr,
2548 INET6_ADDRSTRLEN);
2549 break;
2550 case NEXTHOP_TYPE_IPV6:
2551 case NEXTHOP_TYPE_IPV6_IFINDEX:
2552 inet_ntop(AF_INET6, &nexthop->gate, straddr,
2553 INET6_ADDRSTRLEN);
2554 break;
2555 }
2556 zlog_debug("%s: %s %s[%u] vrf %s(%u) with flags %s%s%s", func,
2557 (nexthop->rparent ? " NH" : "NH"), straddr,
2558 nexthop->ifindex, vrf ? vrf->name : "Unknown",
2559 nexthop->vrf_id,
2560 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE)
2561 ? "ACTIVE "
2562 : ""),
2563 (CHECK_FLAG(re->status, ROUTE_ENTRY_INSTALLED)
2564 ? "FIB "
2565 : ""),
2566 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE)
2567 ? "RECURSIVE"
2568 : ""));
2569 }
2570 zlog_debug("%s: dump complete", func);
2571 }
2572
2573 /* This is an exported helper to rtm_read() to dump the strange
2574 * RE entry found by rib_lookup_ipv4_route()
2575 */
2576
2577 void rib_lookup_and_dump(struct prefix_ipv4 *p, vrf_id_t vrf_id)
2578 {
2579 struct route_table *table;
2580 struct route_node *rn;
2581 struct route_entry *re;
2582 char prefix_buf[INET_ADDRSTRLEN];
2583
2584 /* Lookup table. */
2585 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
2586 if (!table) {
2587 flog_err(EC_ZEBRA_TABLE_LOOKUP_FAILED,
2588 "%s:%u zebra_vrf_table() returned NULL", __func__,
2589 vrf_id);
2590 return;
2591 }
2592
2593 /* Scan the RIB table for exactly matching RE entry. */
2594 rn = route_node_lookup(table, (struct prefix *)p);
2595
2596 /* No route for this prefix. */
2597 if (!rn) {
2598 zlog_debug("%s:%u lookup failed for %s", __func__, vrf_id,
2599 prefix2str((struct prefix *)p, prefix_buf,
2600 sizeof(prefix_buf)));
2601 return;
2602 }
2603
2604 /* Unlock node. */
2605 route_unlock_node(rn);
2606
2607 /* let's go */
2608 RNODE_FOREACH_RE (rn, re) {
2609 zlog_debug("%s:%u rn %p, re %p: %s, %s",
2610 __func__, vrf_id,
2611 (void *)rn, (void *)re,
2612 (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)
2613 ? "removed"
2614 : "NOT removed"),
2615 (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)
2616 ? "selected"
2617 : "NOT selected"));
2618 route_entry_dump(p, NULL, re);
2619 }
2620 }
2621
2622 /* Check if requested address assignment will fail due to another
2623 * route being installed by zebra in FIB already. Take necessary
2624 * actions, if needed: remove such a route from FIB and deSELECT
2625 * corresponding RE entry. Then put affected RN into RIBQ head.
2626 */
2627 void rib_lookup_and_pushup(struct prefix_ipv4 *p, vrf_id_t vrf_id)
2628 {
2629 struct route_table *table;
2630 struct route_node *rn;
2631 unsigned changed = 0;
2632 rib_dest_t *dest;
2633
2634 if (NULL == (table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id))) {
2635 flog_err(EC_ZEBRA_TABLE_LOOKUP_FAILED,
2636 "%s:%u zebra_vrf_table() returned NULL", __func__,
2637 vrf_id);
2638 return;
2639 }
2640
2641 /* No matches would be the simplest case. */
2642 if (NULL == (rn = route_node_lookup(table, (struct prefix *)p)))
2643 return;
2644
2645 /* Unlock node. */
2646 route_unlock_node(rn);
2647
2648 dest = rib_dest_from_rnode(rn);
2649 /* Check all RE entries. In case any changes have to be done, requeue
2650 * the RN into RIBQ head. If the routing message about the new connected
2651 * route (generated by the IP address we are going to assign very soon)
2652 * comes before the RIBQ is processed, the new RE entry will join
2653 * RIBQ record already on head. This is necessary for proper
2654 * revalidation
2655 * of the rest of the RE.
2656 */
2657 if (dest->selected_fib && !RIB_SYSTEM_ROUTE(dest->selected_fib)) {
2658 changed = 1;
2659 if (IS_ZEBRA_DEBUG_RIB) {
2660 char buf[PREFIX_STRLEN];
2661
2662 zlog_debug("%u:%s: freeing way for connected prefix",
2663 dest->selected_fib->vrf_id,
2664 prefix2str(&rn->p, buf, sizeof(buf)));
2665 route_entry_dump(&rn->p, NULL, dest->selected_fib);
2666 }
2667 rib_uninstall(rn, dest->selected_fib);
2668 }
2669 if (changed)
2670 rib_queue_add(rn);
2671 }
2672
2673 int rib_add_multipath(afi_t afi, safi_t safi, struct prefix *p,
2674 struct prefix_ipv6 *src_p, struct route_entry *re)
2675 {
2676 struct route_table *table;
2677 struct route_node *rn;
2678 struct route_entry *same = NULL;
2679 struct nexthop *nexthop;
2680 int ret = 0;
2681
2682 if (!re)
2683 return 0;
2684
2685 assert(!src_p || !src_p->prefixlen || afi == AFI_IP6);
2686
2687 /* Lookup table. */
2688 table = zebra_vrf_table_with_table_id(afi, safi, re->vrf_id, re->table);
2689 if (!table) {
2690 XFREE(MTYPE_RE, re);
2691 return 0;
2692 }
2693
2694 /* Make it sure prefixlen is applied to the prefix. */
2695 apply_mask(p);
2696 if (src_p)
2697 apply_mask_ipv6(src_p);
2698
2699 /* Set default distance by route type. */
2700 if (re->distance == 0) {
2701 re->distance = route_distance(re->type);
2702
2703 /* iBGP distance is 200. */
2704 if (re->type == ZEBRA_ROUTE_BGP
2705 && CHECK_FLAG(re->flags, ZEBRA_FLAG_IBGP))
2706 re->distance = 200;
2707 }
2708
2709 /* Lookup route node.*/
2710 rn = srcdest_rnode_get(table, p, src_p);
2711
2712 /*
2713 * If same type of route are installed, treat it as a implicit
2714 * withdraw.
2715 * If the user has specified the No route replace semantics
2716 * for the install don't do a route replace.
2717 */
2718 RNODE_FOREACH_RE (rn, same) {
2719 if (CHECK_FLAG(same->status, ROUTE_ENTRY_REMOVED))
2720 continue;
2721
2722 if (same->type != re->type)
2723 continue;
2724 if (same->instance != re->instance)
2725 continue;
2726 if (same->type == ZEBRA_ROUTE_KERNEL
2727 && same->metric != re->metric)
2728 continue;
2729
2730 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_RR_USE_DISTANCE) &&
2731 same->distance != re->distance)
2732 continue;
2733
2734 /*
2735 * We should allow duplicate connected routes
2736 * because of IPv6 link-local routes and unnumbered
2737 * interfaces on Linux.
2738 */
2739 if (same->type != ZEBRA_ROUTE_CONNECT)
2740 break;
2741 }
2742
2743 /* If this route is kernel route, set FIB flag to the route. */
2744 if (RIB_SYSTEM_ROUTE(re)) {
2745 SET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
2746 for (nexthop = re->ng.nexthop; nexthop; nexthop = nexthop->next)
2747 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
2748 }
2749
2750 /* Link new re to node.*/
2751 if (IS_ZEBRA_DEBUG_RIB) {
2752 rnode_debug(rn, re->vrf_id,
2753 "Inserting route rn %p, re %p (%s) existing %p",
2754 rn, re, zebra_route_string(re->type), same);
2755
2756 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2757 route_entry_dump(p, src_p, re);
2758 }
2759 rib_addnode(rn, re, 1);
2760 ret = 1;
2761
2762 /* Free implicit route.*/
2763 if (same) {
2764 rib_delnode(rn, same);
2765 ret = -1;
2766 }
2767
2768 route_unlock_node(rn);
2769 return ret;
2770 }
2771
2772 void rib_delete(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type,
2773 unsigned short instance, int flags, struct prefix *p,
2774 struct prefix_ipv6 *src_p, const struct nexthop *nh,
2775 uint32_t table_id, uint32_t metric, uint8_t distance,
2776 bool fromkernel)
2777 {
2778 struct route_table *table;
2779 struct route_node *rn;
2780 struct route_entry *re;
2781 struct route_entry *fib = NULL;
2782 struct route_entry *same = NULL;
2783 struct nexthop *rtnh;
2784 char buf2[INET6_ADDRSTRLEN];
2785 rib_dest_t *dest;
2786
2787 assert(!src_p || !src_p->prefixlen || afi == AFI_IP6);
2788
2789 /* Lookup table. */
2790 table = zebra_vrf_table_with_table_id(afi, safi, vrf_id, table_id);
2791 if (!table)
2792 return;
2793
2794 /* Apply mask. */
2795 apply_mask(p);
2796 if (src_p)
2797 apply_mask_ipv6(src_p);
2798
2799 /* Lookup route node. */
2800 rn = srcdest_rnode_lookup(table, p, src_p);
2801 if (!rn) {
2802 char dst_buf[PREFIX_STRLEN], src_buf[PREFIX_STRLEN];
2803
2804 prefix2str(p, dst_buf, sizeof(dst_buf));
2805 if (src_p && src_p->prefixlen)
2806 prefix2str(src_p, src_buf, sizeof(src_buf));
2807 else
2808 src_buf[0] = '\0';
2809
2810 if (IS_ZEBRA_DEBUG_RIB)
2811 zlog_debug("%u:%s%s%s doesn't exist in rib", vrf_id,
2812 dst_buf,
2813 (src_buf[0] != '\0') ? " from " : "",
2814 src_buf);
2815 return;
2816 }
2817
2818 dest = rib_dest_from_rnode(rn);
2819 fib = dest->selected_fib;
2820
2821 /* Lookup same type route. */
2822 RNODE_FOREACH_RE (rn, re) {
2823 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
2824 continue;
2825
2826 if (re->type != type)
2827 continue;
2828 if (re->instance != instance)
2829 continue;
2830 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_RR_USE_DISTANCE) &&
2831 distance != re->distance)
2832 continue;
2833
2834 if (re->type == ZEBRA_ROUTE_KERNEL && re->metric != metric)
2835 continue;
2836 if (re->type == ZEBRA_ROUTE_CONNECT && (rtnh = re->ng.nexthop)
2837 && rtnh->type == NEXTHOP_TYPE_IFINDEX && nh) {
2838 if (rtnh->ifindex != nh->ifindex)
2839 continue;
2840 same = re;
2841 break;
2842 }
2843 /* Make sure that the route found has the same gateway. */
2844 else {
2845 if (nh == NULL) {
2846 same = re;
2847 break;
2848 }
2849 for (ALL_NEXTHOPS(re->ng, rtnh))
2850 if (nexthop_same_no_recurse(rtnh, nh)) {
2851 same = re;
2852 break;
2853 }
2854 if (same)
2855 break;
2856 }
2857 }
2858 /* If same type of route can't be found and this message is from
2859 kernel. */
2860 if (!same) {
2861 /*
2862 * In the past(HA!) we could get here because
2863 * we were receiving a route delete from the
2864 * kernel and we're not marking the proto
2865 * as coming from it's appropriate originator.
2866 * Now that we are properly noticing the fact
2867 * that the kernel has deleted our route we
2868 * are not going to get called in this path
2869 * I am going to leave this here because
2870 * this might still work this way on non-linux
2871 * platforms as well as some weird state I have
2872 * not properly thought of yet.
2873 * If we can show that this code path is
2874 * dead then we can remove it.
2875 */
2876 if (fib && CHECK_FLAG(flags, ZEBRA_FLAG_SELFROUTE)) {
2877 if (IS_ZEBRA_DEBUG_RIB) {
2878 rnode_debug(rn, vrf_id,
2879 "rn %p, re %p (%s) was deleted from kernel, adding",
2880 rn, fib,
2881 zebra_route_string(fib->type));
2882 }
2883 if (allow_delete) {
2884 UNSET_FLAG(fib->status, ROUTE_ENTRY_INSTALLED);
2885 /* Unset flags. */
2886 for (rtnh = fib->ng.nexthop; rtnh;
2887 rtnh = rtnh->next)
2888 UNSET_FLAG(rtnh->flags,
2889 NEXTHOP_FLAG_FIB);
2890
2891 /*
2892 * This is a non FRR route
2893 * as such we should mark
2894 * it as deleted
2895 */
2896 dest->selected_fib = NULL;
2897 } else {
2898 /* This means someone else, other than Zebra,
2899 * has deleted
2900 * a Zebra router from the kernel. We will add
2901 * it back */
2902 rib_install_kernel(rn, fib, NULL);
2903 }
2904 } else {
2905 if (IS_ZEBRA_DEBUG_RIB) {
2906 if (nh)
2907 rnode_debug(
2908 rn, vrf_id,
2909 "via %s ifindex %d type %d "
2910 "doesn't exist in rib",
2911 inet_ntop(afi2family(afi),
2912 &nh->gate, buf2,
2913 sizeof(buf2)),
2914 nh->ifindex, type);
2915 else
2916 rnode_debug(
2917 rn, vrf_id,
2918 "type %d doesn't exist in rib",
2919 type);
2920 }
2921 route_unlock_node(rn);
2922 return;
2923 }
2924 }
2925
2926 if (same) {
2927 if (fromkernel && CHECK_FLAG(flags, ZEBRA_FLAG_SELFROUTE)
2928 && !allow_delete) {
2929 rib_install_kernel(rn, same, NULL);
2930 route_unlock_node(rn);
2931
2932 return;
2933 }
2934
2935 /* Special handling for IPv4 or IPv6 routes sourced from
2936 * EVPN - the nexthop (and associated MAC) need to be
2937 * uninstalled if no more refs.
2938 */
2939 if (CHECK_FLAG(flags, ZEBRA_FLAG_EVPN_ROUTE)) {
2940 struct nexthop *tmp_nh;
2941
2942 for (ALL_NEXTHOPS(re->ng, tmp_nh)) {
2943 struct ipaddr vtep_ip;
2944
2945 memset(&vtep_ip, 0, sizeof(struct ipaddr));
2946 if (afi == AFI_IP) {
2947 vtep_ip.ipa_type = IPADDR_V4;
2948 memcpy(&(vtep_ip.ipaddr_v4),
2949 &(tmp_nh->gate.ipv4),
2950 sizeof(struct in_addr));
2951 } else {
2952 vtep_ip.ipa_type = IPADDR_V6;
2953 memcpy(&(vtep_ip.ipaddr_v6),
2954 &(tmp_nh->gate.ipv6),
2955 sizeof(struct in6_addr));
2956 }
2957 zebra_vxlan_evpn_vrf_route_del(re->vrf_id,
2958 &vtep_ip, p);
2959 }
2960 }
2961 rib_delnode(rn, same);
2962 }
2963
2964 route_unlock_node(rn);
2965 return;
2966 }
2967
2968
2969 int rib_add(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type,
2970 unsigned short instance, int flags, struct prefix *p,
2971 struct prefix_ipv6 *src_p, const struct nexthop *nh,
2972 uint32_t table_id, uint32_t metric, uint32_t mtu, uint8_t distance,
2973 route_tag_t tag)
2974 {
2975 struct route_entry *re;
2976 struct nexthop *nexthop;
2977
2978 /* Allocate new route_entry structure. */
2979 re = XCALLOC(MTYPE_RE, sizeof(struct route_entry));
2980 re->type = type;
2981 re->instance = instance;
2982 re->distance = distance;
2983 re->flags = flags;
2984 re->metric = metric;
2985 re->mtu = mtu;
2986 re->table = table_id;
2987 re->vrf_id = vrf_id;
2988 re->nexthop_num = 0;
2989 re->uptime = time(NULL);
2990 re->tag = tag;
2991
2992 /* Add nexthop. */
2993 nexthop = nexthop_new();
2994 *nexthop = *nh;
2995 route_entry_nexthop_add(re, nexthop);
2996
2997 return rib_add_multipath(afi, safi, p, src_p, re);
2998 }
2999
3000 /* Schedule routes of a particular table (address-family) based on event. */
3001 void rib_update_table(struct route_table *table, rib_update_event_t event)
3002 {
3003 struct route_node *rn;
3004 struct route_entry *re, *next;
3005
3006 /* Walk all routes and queue for processing, if appropriate for
3007 * the trigger event.
3008 */
3009 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
3010 /*
3011 * If we are looking at a route node and the node
3012 * has already been queued we don't
3013 * need to queue it up again
3014 */
3015 if (rn->info && CHECK_FLAG(rib_dest_from_rnode(rn)->flags,
3016 RIB_ROUTE_ANY_QUEUED))
3017 continue;
3018 switch (event) {
3019 case RIB_UPDATE_IF_CHANGE:
3020 /* Examine all routes that won't get processed by the
3021 * protocol or
3022 * triggered by nexthop evaluation (NHT). This would be
3023 * system,
3024 * kernel and certain static routes. Note that NHT will
3025 * get
3026 * triggered upon an interface event as connected routes
3027 * always
3028 * get queued for processing.
3029 */
3030 RNODE_FOREACH_RE_SAFE (rn, re, next) {
3031 struct nexthop *nh;
3032
3033 if (re->type != ZEBRA_ROUTE_SYSTEM
3034 && re->type != ZEBRA_ROUTE_KERNEL
3035 && re->type != ZEBRA_ROUTE_CONNECT
3036 && re->type != ZEBRA_ROUTE_STATIC)
3037 continue;
3038
3039 if (re->type != ZEBRA_ROUTE_STATIC) {
3040 rib_queue_add(rn);
3041 continue;
3042 }
3043
3044 for (nh = re->ng.nexthop; nh; nh = nh->next)
3045 if (!(nh->type == NEXTHOP_TYPE_IPV4
3046 || nh->type == NEXTHOP_TYPE_IPV6))
3047 break;
3048
3049 /* If we only have nexthops to a
3050 * gateway, NHT will
3051 * take care.
3052 */
3053 if (nh)
3054 rib_queue_add(rn);
3055 }
3056 break;
3057
3058 case RIB_UPDATE_RMAP_CHANGE:
3059 case RIB_UPDATE_OTHER:
3060 /* Right now, examine all routes. Can restrict to a
3061 * protocol in
3062 * some cases (TODO).
3063 */
3064 if (rnode_to_ribs(rn))
3065 rib_queue_add(rn);
3066 break;
3067
3068 default:
3069 break;
3070 }
3071 }
3072 }
3073
3074 /* RIB update function. */
3075 void rib_update(vrf_id_t vrf_id, rib_update_event_t event)
3076 {
3077 struct route_table *table;
3078
3079 /* Process routes of interested address-families. */
3080 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
3081 if (table) {
3082 if (IS_ZEBRA_DEBUG_EVENT)
3083 zlog_debug("%s : AFI_IP event %d", __func__, event);
3084 rib_update_table(table, event);
3085 }
3086
3087 table = zebra_vrf_table(AFI_IP6, SAFI_UNICAST, vrf_id);
3088 if (table) {
3089 if (IS_ZEBRA_DEBUG_EVENT)
3090 zlog_debug("%s : AFI_IP6 event %d", __func__, event);
3091 rib_update_table(table, event);
3092 }
3093 }
3094
3095 /* Delete self installed routes after zebra is relaunched. */
3096 void rib_sweep_table(struct route_table *table)
3097 {
3098 struct route_node *rn;
3099 struct route_entry *re;
3100 struct route_entry *next;
3101 struct nexthop *nexthop;
3102
3103 if (!table)
3104 return;
3105
3106 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
3107 RNODE_FOREACH_RE_SAFE (rn, re, next) {
3108 if (IS_ZEBRA_DEBUG_RIB)
3109 route_entry_dump(&rn->p, NULL, re);
3110
3111 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
3112 continue;
3113
3114 if (!CHECK_FLAG(re->flags, ZEBRA_FLAG_SELFROUTE))
3115 continue;
3116
3117 /*
3118 * So we are starting up and have received
3119 * routes from the kernel that we have installed
3120 * from a previous run of zebra but not cleaned
3121 * up ( say a kill -9 )
3122 * But since we haven't actually installed
3123 * them yet( we received them from the kernel )
3124 * we don't think they are active.
3125 * So let's pretend they are active to actually
3126 * remove them.
3127 * In all honesty I'm not sure if we should
3128 * mark them as active when we receive them
3129 * This is startup only so probably ok.
3130 *
3131 * If we ever decide to move rib_sweep_table
3132 * to a different spot (ie startup )
3133 * this decision needs to be revisited
3134 */
3135 SET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
3136 for (ALL_NEXTHOPS(re->ng, nexthop))
3137 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
3138
3139 rib_uninstall_kernel(rn, re);
3140 rib_delnode(rn, re);
3141 }
3142 }
3143 }
3144
3145 /* Sweep all RIB tables. */
3146 void rib_sweep_route(void)
3147 {
3148 struct vrf *vrf;
3149 struct zebra_vrf *zvrf;
3150
3151 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id) {
3152 if ((zvrf = vrf->info) == NULL)
3153 continue;
3154
3155 rib_sweep_table(zvrf->table[AFI_IP][SAFI_UNICAST]);
3156 rib_sweep_table(zvrf->table[AFI_IP6][SAFI_UNICAST]);
3157 }
3158
3159 zebra_router_sweep_route();
3160 }
3161
3162 /* Remove specific by protocol routes from 'table'. */
3163 unsigned long rib_score_proto_table(uint8_t proto, unsigned short instance,
3164 struct route_table *table)
3165 {
3166 struct route_node *rn;
3167 struct route_entry *re;
3168 struct route_entry *next;
3169 unsigned long n = 0;
3170
3171 if (table)
3172 for (rn = route_top(table); rn; rn = srcdest_route_next(rn))
3173 RNODE_FOREACH_RE_SAFE (rn, re, next) {
3174 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
3175 continue;
3176 if (re->type == proto
3177 && re->instance == instance) {
3178 rib_delnode(rn, re);
3179 n++;
3180 }
3181 }
3182 return n;
3183 }
3184
3185 /* Remove specific by protocol routes. */
3186 unsigned long rib_score_proto(uint8_t proto, unsigned short instance)
3187 {
3188 struct vrf *vrf;
3189 struct zebra_vrf *zvrf;
3190 unsigned long cnt = 0;
3191
3192 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id)
3193 if ((zvrf = vrf->info) != NULL)
3194 cnt += rib_score_proto_table(
3195 proto, instance,
3196 zvrf->table[AFI_IP][SAFI_UNICAST])
3197 + rib_score_proto_table(
3198 proto, instance,
3199 zvrf->table[AFI_IP6][SAFI_UNICAST]);
3200
3201 cnt += zebra_router_score_proto(proto, instance);
3202
3203 return cnt;
3204 }
3205
3206 /* Close RIB and clean up kernel routes. */
3207 void rib_close_table(struct route_table *table)
3208 {
3209 struct route_node *rn;
3210 rib_table_info_t *info;
3211 rib_dest_t *dest;
3212
3213 if (!table)
3214 return;
3215
3216 info = route_table_get_info(table);
3217
3218 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
3219 dest = rib_dest_from_rnode(rn);
3220
3221 if (dest && dest->selected_fib) {
3222 if (info->safi == SAFI_UNICAST)
3223 hook_call(rib_update, rn, NULL);
3224
3225 if (!RIB_SYSTEM_ROUTE(dest->selected_fib)) {
3226 rib_uninstall_kernel(rn, dest->selected_fib);
3227 dest->selected_fib = NULL;
3228 }
3229 }
3230 }
3231 }
3232
3233 /*
3234 * Handler for async dataplane results after a pseudowire installation
3235 */
3236 static int handle_pw_result(struct zebra_dplane_ctx *ctx)
3237 {
3238 struct zebra_pw *pw;
3239 struct zebra_vrf *vrf;
3240
3241 /* The pseudowire code assumes success - we act on an error
3242 * result for installation attempts here.
3243 */
3244 if (dplane_ctx_get_op(ctx) != DPLANE_OP_PW_INSTALL)
3245 goto done;
3246
3247 if (dplane_ctx_get_status(ctx) != ZEBRA_DPLANE_REQUEST_SUCCESS) {
3248 vrf = zebra_vrf_lookup_by_id(dplane_ctx_get_vrf(ctx));
3249 pw = zebra_pw_find(vrf, dplane_ctx_get_pw_ifname(ctx));
3250 if (pw)
3251 zebra_pw_install_failure(pw);
3252 }
3253
3254 done:
3255
3256 return 0;
3257 }
3258
3259
3260 /*
3261 * Handle results from the dataplane system. Dequeue update context
3262 * structs, dispatch to appropriate internal handlers.
3263 */
3264 static int rib_process_dplane_results(struct thread *thread)
3265 {
3266 struct zebra_dplane_ctx *ctx;
3267 struct dplane_ctx_q ctxlist;
3268
3269 /* Dequeue a list of completed updates with one lock/unlock cycle */
3270
3271 do {
3272 TAILQ_INIT(&ctxlist);
3273
3274 /* Take lock controlling queue of results */
3275 pthread_mutex_lock(&dplane_mutex);
3276 {
3277 /* Dequeue list of context structs */
3278 dplane_ctx_list_append(&ctxlist, &rib_dplane_q);
3279 }
3280 pthread_mutex_unlock(&dplane_mutex);
3281
3282 /* Dequeue context block */
3283 ctx = dplane_ctx_dequeue(&ctxlist);
3284
3285 /* If we've emptied the results queue, we're done */
3286 if (ctx == NULL)
3287 break;
3288
3289 while (ctx) {
3290 switch (dplane_ctx_get_op(ctx)) {
3291 case DPLANE_OP_ROUTE_INSTALL:
3292 case DPLANE_OP_ROUTE_UPDATE:
3293 case DPLANE_OP_ROUTE_DELETE:
3294 rib_process_result(ctx);
3295 break;
3296
3297 case DPLANE_OP_LSP_INSTALL:
3298 case DPLANE_OP_LSP_UPDATE:
3299 case DPLANE_OP_LSP_DELETE:
3300 zebra_mpls_lsp_dplane_result(ctx);
3301 break;
3302
3303 case DPLANE_OP_PW_INSTALL:
3304 case DPLANE_OP_PW_UNINSTALL:
3305 handle_pw_result(ctx);
3306 break;
3307
3308 default:
3309 /* Don't expect this: just return the struct? */
3310 dplane_ctx_fini(&ctx);
3311 break;
3312 } /* Dispatch by op code */
3313
3314 ctx = dplane_ctx_dequeue(&ctxlist);
3315 }
3316
3317 } while (1);
3318
3319 /* Check for nexthop tracking processing after finishing with results */
3320 do_nht_processing();
3321
3322 return 0;
3323 }
3324
3325 /*
3326 * Results are returned from the dataplane subsystem, in the context of
3327 * the dataplane pthread. We enqueue the results here for processing by
3328 * the main thread later.
3329 */
3330 static int rib_dplane_results(struct dplane_ctx_q *ctxlist)
3331 {
3332 /* Take lock controlling queue of results */
3333 pthread_mutex_lock(&dplane_mutex);
3334 {
3335 /* Enqueue context blocks */
3336 dplane_ctx_list_append(&rib_dplane_q, ctxlist);
3337 }
3338 pthread_mutex_unlock(&dplane_mutex);
3339
3340 /* Ensure event is signalled to zebra main pthread */
3341 thread_add_event(zrouter.master, rib_process_dplane_results, NULL, 0,
3342 &t_dplane);
3343
3344 return 0;
3345 }
3346
3347 /* Routing information base initialize. */
3348 void rib_init(void)
3349 {
3350 rib_queue_init();
3351
3352 /* Init dataplane, and register for results */
3353 pthread_mutex_init(&dplane_mutex, NULL);
3354 TAILQ_INIT(&rib_dplane_q);
3355 zebra_dplane_init(rib_dplane_results);
3356 }
3357
3358 /*
3359 * vrf_id_get_next
3360 *
3361 * Get the first vrf id that is greater than the given vrf id if any.
3362 *
3363 * Returns TRUE if a vrf id was found, FALSE otherwise.
3364 */
3365 static inline int vrf_id_get_next(vrf_id_t vrf_id, vrf_id_t *next_id_p)
3366 {
3367 struct vrf *vrf;
3368
3369 vrf = vrf_lookup_by_id(vrf_id);
3370 if (vrf) {
3371 vrf = RB_NEXT(vrf_id_head, vrf);
3372 if (vrf) {
3373 *next_id_p = vrf->vrf_id;
3374 return 1;
3375 }
3376 }
3377
3378 return 0;
3379 }
3380
3381 /*
3382 * rib_tables_iter_next
3383 *
3384 * Returns the next table in the iteration.
3385 */
3386 struct route_table *rib_tables_iter_next(rib_tables_iter_t *iter)
3387 {
3388 struct route_table *table;
3389
3390 /*
3391 * Array that helps us go over all AFI/SAFI combinations via one
3392 * index.
3393 */
3394 static struct {
3395 afi_t afi;
3396 safi_t safi;
3397 } afi_safis[] = {
3398 {AFI_IP, SAFI_UNICAST}, {AFI_IP, SAFI_MULTICAST},
3399 {AFI_IP, SAFI_LABELED_UNICAST}, {AFI_IP6, SAFI_UNICAST},
3400 {AFI_IP6, SAFI_MULTICAST}, {AFI_IP6, SAFI_LABELED_UNICAST},
3401 };
3402
3403 table = NULL;
3404
3405 switch (iter->state) {
3406
3407 case RIB_TABLES_ITER_S_INIT:
3408 iter->vrf_id = VRF_DEFAULT;
3409 iter->afi_safi_ix = -1;
3410
3411 /* Fall through */
3412
3413 case RIB_TABLES_ITER_S_ITERATING:
3414 iter->afi_safi_ix++;
3415 while (1) {
3416
3417 while (iter->afi_safi_ix
3418 < (int)ZEBRA_NUM_OF(afi_safis)) {
3419 table = zebra_vrf_table(
3420 afi_safis[iter->afi_safi_ix].afi,
3421 afi_safis[iter->afi_safi_ix].safi,
3422 iter->vrf_id);
3423 if (table)
3424 break;
3425
3426 iter->afi_safi_ix++;
3427 }
3428
3429 /*
3430 * Found another table in this vrf.
3431 */
3432 if (table)
3433 break;
3434
3435 /*
3436 * Done with all tables in the current vrf, go to the
3437 * next
3438 * one.
3439 */
3440 if (!vrf_id_get_next(iter->vrf_id, &iter->vrf_id))
3441 break;
3442
3443 iter->afi_safi_ix = 0;
3444 }
3445
3446 break;
3447
3448 case RIB_TABLES_ITER_S_DONE:
3449 return NULL;
3450 }
3451
3452 if (table)
3453 iter->state = RIB_TABLES_ITER_S_ITERATING;
3454 else
3455 iter->state = RIB_TABLES_ITER_S_DONE;
3456
3457 return table;
3458 }