]> git.proxmox.com Git - mirror_frr.git/blob - zebra/zebra_rib.c
Merge pull request #4549 from donaldsharp/multiple_instance
[mirror_frr.git] / zebra / zebra_rib.c
1 /* Routing Information Base.
2 * Copyright (C) 1997, 98, 99, 2001 Kunihiro Ishiguro
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; see the file COPYING; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include <zebra.h>
22
23 #include "command.h"
24 #include "if.h"
25 #include "linklist.h"
26 #include "log.h"
27 #include "memory.h"
28 #include "mpls.h"
29 #include "nexthop.h"
30 #include "prefix.h"
31 #include "prefix.h"
32 #include "routemap.h"
33 #include "sockunion.h"
34 #include "srcdest_table.h"
35 #include "table.h"
36 #include "thread.h"
37 #include "vrf.h"
38 #include "workqueue.h"
39
40 #include "zebra/zebra_router.h"
41 #include "zebra/connected.h"
42 #include "zebra/debug.h"
43 #include "zebra/interface.h"
44 #include "zebra/redistribute.h"
45 #include "zebra/rib.h"
46 #include "zebra/rt.h"
47 #include "zebra/zapi_msg.h"
48 #include "zebra/zebra_errors.h"
49 #include "zebra/zebra_memory.h"
50 #include "zebra/zebra_ns.h"
51 #include "zebra/zebra_rnh.h"
52 #include "zebra/zebra_routemap.h"
53 #include "zebra/zebra_vrf.h"
54 #include "zebra/zebra_vxlan.h"
55 #include "zebra/zapi_msg.h"
56 #include "zebra/zebra_dplane.h"
57 #include "zebra/zebra_nhg.h"
58
59 /*
60 * Event, list, and mutex for delivery of dataplane results
61 */
62 static pthread_mutex_t dplane_mutex;
63 static struct thread *t_dplane;
64 static struct dplane_ctx_q rib_dplane_q;
65
66 DEFINE_HOOK(rib_update, (struct route_node * rn, const char *reason),
67 (rn, reason))
68
69 /* Should we allow non Quagga processes to delete our routes */
70 extern int allow_delete;
71
72 /* Each route type's string and default distance value. */
73 static const struct {
74 int key;
75 uint8_t distance;
76 uint8_t meta_q_map;
77 } route_info[ZEBRA_ROUTE_MAX] = {
78 [ZEBRA_ROUTE_SYSTEM] = {ZEBRA_ROUTE_SYSTEM, 0, 4},
79 [ZEBRA_ROUTE_KERNEL] = {ZEBRA_ROUTE_KERNEL, 0, 0},
80 [ZEBRA_ROUTE_CONNECT] = {ZEBRA_ROUTE_CONNECT, 0, 0},
81 [ZEBRA_ROUTE_STATIC] = {ZEBRA_ROUTE_STATIC, 1, 1},
82 [ZEBRA_ROUTE_RIP] = {ZEBRA_ROUTE_RIP, 120, 2},
83 [ZEBRA_ROUTE_RIPNG] = {ZEBRA_ROUTE_RIPNG, 120, 2},
84 [ZEBRA_ROUTE_OSPF] = {ZEBRA_ROUTE_OSPF, 110, 2},
85 [ZEBRA_ROUTE_OSPF6] = {ZEBRA_ROUTE_OSPF6, 110, 2},
86 [ZEBRA_ROUTE_ISIS] = {ZEBRA_ROUTE_ISIS, 115, 2},
87 [ZEBRA_ROUTE_BGP] = {ZEBRA_ROUTE_BGP, 20 /* IBGP is 200. */, 3},
88 [ZEBRA_ROUTE_PIM] = {ZEBRA_ROUTE_PIM, 255, 4},
89 [ZEBRA_ROUTE_EIGRP] = {ZEBRA_ROUTE_EIGRP, 90, 2},
90 [ZEBRA_ROUTE_NHRP] = {ZEBRA_ROUTE_NHRP, 10, 2},
91 [ZEBRA_ROUTE_HSLS] = {ZEBRA_ROUTE_HSLS, 255, 4},
92 [ZEBRA_ROUTE_OLSR] = {ZEBRA_ROUTE_OLSR, 255, 4},
93 [ZEBRA_ROUTE_TABLE] = {ZEBRA_ROUTE_TABLE, 150, 1},
94 [ZEBRA_ROUTE_LDP] = {ZEBRA_ROUTE_LDP, 150, 4},
95 [ZEBRA_ROUTE_VNC] = {ZEBRA_ROUTE_VNC, 20, 3},
96 [ZEBRA_ROUTE_VNC_DIRECT] = {ZEBRA_ROUTE_VNC_DIRECT, 20, 3},
97 [ZEBRA_ROUTE_VNC_DIRECT_RH] = {ZEBRA_ROUTE_VNC_DIRECT_RH, 20, 3},
98 [ZEBRA_ROUTE_BGP_DIRECT] = {ZEBRA_ROUTE_BGP_DIRECT, 20, 3},
99 [ZEBRA_ROUTE_BGP_DIRECT_EXT] = {ZEBRA_ROUTE_BGP_DIRECT_EXT, 20, 3},
100 [ZEBRA_ROUTE_BABEL] = {ZEBRA_ROUTE_BABEL, 100, 2},
101 [ZEBRA_ROUTE_SHARP] = {ZEBRA_ROUTE_SHARP, 150, 4},
102 [ZEBRA_ROUTE_PBR] = {ZEBRA_ROUTE_PBR, 200, 4},
103 [ZEBRA_ROUTE_BFD] = {ZEBRA_ROUTE_BFD, 255, 4},
104 [ZEBRA_ROUTE_OPENFABRIC] = {ZEBRA_ROUTE_OPENFABRIC, 115, 2},
105 [ZEBRA_ROUTE_VRRP] = {ZEBRA_ROUTE_VRRP, 255, 4}
106 /* Any new route type added to zebra, should be mirrored here */
107
108 /* no entry/default: 150 */
109 };
110
111 static void __attribute__((format(printf, 5, 6)))
112 _rnode_zlog(const char *_func, vrf_id_t vrf_id, struct route_node *rn,
113 int priority, const char *msgfmt, ...)
114 {
115 char buf[SRCDEST2STR_BUFFER + sizeof(" (MRIB)")];
116 char msgbuf[512];
117 va_list ap;
118
119 va_start(ap, msgfmt);
120 vsnprintf(msgbuf, sizeof(msgbuf), msgfmt, ap);
121 va_end(ap);
122
123 if (rn) {
124 rib_table_info_t *info = srcdest_rnode_table_info(rn);
125 srcdest_rnode2str(rn, buf, sizeof(buf));
126
127 if (info->safi == SAFI_MULTICAST)
128 strlcat(buf, " (MRIB)", sizeof(buf));
129 } else {
130 snprintf(buf, sizeof(buf), "{(route_node *) NULL}");
131 }
132
133 zlog(priority, "%s: %d:%s: %s", _func, vrf_id, buf, msgbuf);
134 }
135
136 #define rnode_debug(node, vrf_id, ...) \
137 _rnode_zlog(__func__, vrf_id, node, LOG_DEBUG, __VA_ARGS__)
138 #define rnode_info(node, ...) \
139 _rnode_zlog(__func__, vrf_id, node, LOG_INFO, __VA_ARGS__)
140
141 uint8_t route_distance(int type)
142 {
143 uint8_t distance;
144
145 if ((unsigned)type >= array_size(route_info))
146 distance = 150;
147 else
148 distance = route_info[type].distance;
149
150 return distance;
151 }
152
153 int is_zebra_valid_kernel_table(uint32_t table_id)
154 {
155 #ifdef linux
156 if ((table_id == RT_TABLE_UNSPEC) || (table_id == RT_TABLE_LOCAL)
157 || (table_id == RT_TABLE_COMPAT))
158 return 0;
159 #endif
160
161 return 1;
162 }
163
164 int is_zebra_main_routing_table(uint32_t table_id)
165 {
166 if (table_id == RT_TABLE_MAIN)
167 return 1;
168 return 0;
169 }
170
171 int zebra_check_addr(const struct prefix *p)
172 {
173 if (p->family == AF_INET) {
174 uint32_t addr;
175
176 addr = p->u.prefix4.s_addr;
177 addr = ntohl(addr);
178
179 if (IPV4_NET127(addr) || IN_CLASSD(addr)
180 || IPV4_LINKLOCAL(addr))
181 return 0;
182 }
183 if (p->family == AF_INET6) {
184 if (IN6_IS_ADDR_LOOPBACK(&p->u.prefix6))
185 return 0;
186 if (IN6_IS_ADDR_LINKLOCAL(&p->u.prefix6))
187 return 0;
188 }
189 return 1;
190 }
191
192 /* Add nexthop to the end of a rib node's nexthop list */
193 void route_entry_nexthop_add(struct route_entry *re, struct nexthop *nexthop)
194 {
195 nexthop_add(&re->ng.nexthop, nexthop);
196 re->nexthop_num++;
197 }
198
199
200 /**
201 * copy_nexthop - copy a nexthop to the rib structure.
202 */
203 void route_entry_copy_nexthops(struct route_entry *re, struct nexthop *nh)
204 {
205 assert(!re->ng.nexthop);
206 copy_nexthops(&re->ng.nexthop, nh, NULL);
207 for (struct nexthop *nexthop = nh; nexthop; nexthop = nexthop->next)
208 re->nexthop_num++;
209 }
210
211 /* Delete specified nexthop from the list. */
212 void route_entry_nexthop_delete(struct route_entry *re, struct nexthop *nexthop)
213 {
214 if (nexthop->next)
215 nexthop->next->prev = nexthop->prev;
216 if (nexthop->prev)
217 nexthop->prev->next = nexthop->next;
218 else
219 re->ng.nexthop = nexthop->next;
220 re->nexthop_num--;
221 }
222
223
224 struct nexthop *route_entry_nexthop_ifindex_add(struct route_entry *re,
225 ifindex_t ifindex,
226 vrf_id_t nh_vrf_id)
227 {
228 struct nexthop *nexthop;
229
230 nexthop = nexthop_new();
231 nexthop->type = NEXTHOP_TYPE_IFINDEX;
232 nexthop->ifindex = ifindex;
233 nexthop->vrf_id = nh_vrf_id;
234
235 route_entry_nexthop_add(re, nexthop);
236
237 return nexthop;
238 }
239
240 struct nexthop *route_entry_nexthop_ipv4_add(struct route_entry *re,
241 struct in_addr *ipv4,
242 struct in_addr *src,
243 vrf_id_t nh_vrf_id)
244 {
245 struct nexthop *nexthop;
246
247 nexthop = nexthop_new();
248 nexthop->type = NEXTHOP_TYPE_IPV4;
249 nexthop->vrf_id = nh_vrf_id;
250 nexthop->gate.ipv4 = *ipv4;
251 if (src)
252 nexthop->src.ipv4 = *src;
253
254 route_entry_nexthop_add(re, nexthop);
255
256 return nexthop;
257 }
258
259 struct nexthop *route_entry_nexthop_ipv4_ifindex_add(struct route_entry *re,
260 struct in_addr *ipv4,
261 struct in_addr *src,
262 ifindex_t ifindex,
263 vrf_id_t nh_vrf_id)
264 {
265 struct nexthop *nexthop;
266 struct interface *ifp;
267
268 nexthop = nexthop_new();
269 nexthop->vrf_id = nh_vrf_id;
270 nexthop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
271 nexthop->gate.ipv4 = *ipv4;
272 if (src)
273 nexthop->src.ipv4 = *src;
274 nexthop->ifindex = ifindex;
275 ifp = if_lookup_by_index(nexthop->ifindex, nh_vrf_id);
276 /*Pending: need to think if null ifp here is ok during bootup?
277 There was a crash because ifp here was coming to be NULL */
278 if (ifp)
279 if (connected_is_unnumbered(ifp))
280 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK);
281
282 route_entry_nexthop_add(re, nexthop);
283
284 return nexthop;
285 }
286
287 struct nexthop *route_entry_nexthop_ipv6_add(struct route_entry *re,
288 struct in6_addr *ipv6,
289 vrf_id_t nh_vrf_id)
290 {
291 struct nexthop *nexthop;
292
293 nexthop = nexthop_new();
294 nexthop->vrf_id = nh_vrf_id;
295 nexthop->type = NEXTHOP_TYPE_IPV6;
296 nexthop->gate.ipv6 = *ipv6;
297
298 route_entry_nexthop_add(re, nexthop);
299
300 return nexthop;
301 }
302
303 struct nexthop *route_entry_nexthop_ipv6_ifindex_add(struct route_entry *re,
304 struct in6_addr *ipv6,
305 ifindex_t ifindex,
306 vrf_id_t nh_vrf_id)
307 {
308 struct nexthop *nexthop;
309
310 nexthop = nexthop_new();
311 nexthop->vrf_id = nh_vrf_id;
312 nexthop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
313 nexthop->gate.ipv6 = *ipv6;
314 nexthop->ifindex = ifindex;
315
316 route_entry_nexthop_add(re, nexthop);
317
318 return nexthop;
319 }
320
321 struct nexthop *route_entry_nexthop_blackhole_add(struct route_entry *re,
322 enum blackhole_type bh_type)
323 {
324 struct nexthop *nexthop;
325
326 nexthop = nexthop_new();
327 nexthop->vrf_id = VRF_DEFAULT;
328 nexthop->type = NEXTHOP_TYPE_BLACKHOLE;
329 nexthop->bh_type = bh_type;
330
331 route_entry_nexthop_add(re, nexthop);
332
333 return nexthop;
334 }
335
336 struct route_entry *rib_match(afi_t afi, safi_t safi, vrf_id_t vrf_id,
337 union g_addr *addr, struct route_node **rn_out)
338 {
339 struct prefix p;
340 struct route_table *table;
341 struct route_node *rn;
342 struct route_entry *match = NULL;
343
344 /* Lookup table. */
345 table = zebra_vrf_table(afi, safi, vrf_id);
346 if (!table)
347 return 0;
348
349 memset(&p, 0, sizeof(struct prefix));
350 p.family = afi;
351 if (afi == AFI_IP) {
352 p.u.prefix4 = addr->ipv4;
353 p.prefixlen = IPV4_MAX_PREFIXLEN;
354 } else {
355 p.u.prefix6 = addr->ipv6;
356 p.prefixlen = IPV6_MAX_PREFIXLEN;
357 }
358
359 rn = route_node_match(table, (struct prefix *)&p);
360
361 while (rn) {
362 rib_dest_t *dest;
363
364 route_unlock_node(rn);
365
366 dest = rib_dest_from_rnode(rn);
367 if (dest && dest->selected_fib
368 && !CHECK_FLAG(dest->selected_fib->status,
369 ROUTE_ENTRY_REMOVED))
370 match = dest->selected_fib;
371
372 /* If there is no selected route or matched route is EGP, go up
373 tree. */
374 if (!match) {
375 do {
376 rn = rn->parent;
377 } while (rn && rn->info == NULL);
378 if (rn)
379 route_lock_node(rn);
380 } else {
381 if (match->type != ZEBRA_ROUTE_CONNECT) {
382 if (!CHECK_FLAG(match->status,
383 ROUTE_ENTRY_INSTALLED))
384 return NULL;
385 }
386
387 if (rn_out)
388 *rn_out = rn;
389 return match;
390 }
391 }
392 return NULL;
393 }
394
395 struct route_entry *rib_match_ipv4_multicast(vrf_id_t vrf_id,
396 struct in_addr addr,
397 struct route_node **rn_out)
398 {
399 struct route_entry *re = NULL, *mre = NULL, *ure = NULL;
400 struct route_node *m_rn = NULL, *u_rn = NULL;
401 union g_addr gaddr = {.ipv4 = addr};
402
403 switch (zrouter.ipv4_multicast_mode) {
404 case MCAST_MRIB_ONLY:
405 return rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr,
406 rn_out);
407 case MCAST_URIB_ONLY:
408 return rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, rn_out);
409 case MCAST_NO_CONFIG:
410 case MCAST_MIX_MRIB_FIRST:
411 re = mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr,
412 &m_rn);
413 if (!mre)
414 re = ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id,
415 &gaddr, &u_rn);
416 break;
417 case MCAST_MIX_DISTANCE:
418 mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr, &m_rn);
419 ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, &u_rn);
420 if (mre && ure)
421 re = ure->distance < mre->distance ? ure : mre;
422 else if (mre)
423 re = mre;
424 else if (ure)
425 re = ure;
426 break;
427 case MCAST_MIX_PFXLEN:
428 mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr, &m_rn);
429 ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, &u_rn);
430 if (mre && ure)
431 re = u_rn->p.prefixlen > m_rn->p.prefixlen ? ure : mre;
432 else if (mre)
433 re = mre;
434 else if (ure)
435 re = ure;
436 break;
437 }
438
439 if (rn_out)
440 *rn_out = (re == mre) ? m_rn : u_rn;
441
442 if (IS_ZEBRA_DEBUG_RIB) {
443 char buf[BUFSIZ];
444 inet_ntop(AF_INET, &addr, buf, BUFSIZ);
445
446 zlog_debug("%s: %s: vrf: %u found %s, using %s",
447 __func__, buf, vrf_id,
448 mre ? (ure ? "MRIB+URIB" : "MRIB")
449 : ure ? "URIB" : "nothing",
450 re == ure ? "URIB" : re == mre ? "MRIB" : "none");
451 }
452 return re;
453 }
454
455 struct route_entry *rib_lookup_ipv4(struct prefix_ipv4 *p, vrf_id_t vrf_id)
456 {
457 struct route_table *table;
458 struct route_node *rn;
459 struct route_entry *match = NULL;
460 rib_dest_t *dest;
461
462 /* Lookup table. */
463 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
464 if (!table)
465 return 0;
466
467 rn = route_node_lookup(table, (struct prefix *)p);
468
469 /* No route for this prefix. */
470 if (!rn)
471 return NULL;
472
473 /* Unlock node. */
474 route_unlock_node(rn);
475 dest = rib_dest_from_rnode(rn);
476
477 if (dest && dest->selected_fib
478 && !CHECK_FLAG(dest->selected_fib->status, ROUTE_ENTRY_REMOVED))
479 match = dest->selected_fib;
480
481 if (!match)
482 return NULL;
483
484 if (match->type == ZEBRA_ROUTE_CONNECT)
485 return match;
486
487 if (CHECK_FLAG(match->status, ROUTE_ENTRY_INSTALLED))
488 return match;
489
490 return NULL;
491 }
492
493 /*
494 * Is this RIB labeled-unicast? It must be of type BGP and all paths
495 * (nexthops) must have a label.
496 */
497 int zebra_rib_labeled_unicast(struct route_entry *re)
498 {
499 struct nexthop *nexthop = NULL;
500
501 if (re->type != ZEBRA_ROUTE_BGP)
502 return 0;
503
504 for (ALL_NEXTHOPS(re->ng, nexthop))
505 if (!nexthop->nh_label || !nexthop->nh_label->num_labels)
506 return 0;
507
508 return 1;
509 }
510
511 /* Update flag indicates whether this is a "replace" or not. Currently, this
512 * is only used for IPv4.
513 */
514 void rib_install_kernel(struct route_node *rn, struct route_entry *re,
515 struct route_entry *old)
516 {
517 struct nexthop *nexthop;
518 rib_table_info_t *info = srcdest_rnode_table_info(rn);
519 struct zebra_vrf *zvrf = vrf_info_lookup(re->vrf_id);
520 const struct prefix *p, *src_p;
521 enum zebra_dplane_result ret;
522
523 rib_dest_t *dest = rib_dest_from_rnode(rn);
524
525 srcdest_rnode_prefixes(rn, &p, &src_p);
526
527 if (info->safi != SAFI_UNICAST) {
528 for (ALL_NEXTHOPS(re->ng, nexthop))
529 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
530 return;
531 } else {
532 struct nexthop *prev;
533
534 for (ALL_NEXTHOPS(re->ng, nexthop)) {
535 UNSET_FLAG (nexthop->flags, NEXTHOP_FLAG_DUPLICATE);
536 for (ALL_NEXTHOPS(re->ng, prev)) {
537 if (prev == nexthop)
538 break;
539 if (nexthop_same_firsthop(nexthop, prev)) {
540 SET_FLAG(nexthop->flags,
541 NEXTHOP_FLAG_DUPLICATE);
542 break;
543 }
544 }
545 }
546 }
547
548 /*
549 * If this is a replace to a new RE let the originator of the RE
550 * know that they've lost
551 */
552 if (old && (old != re) && (old->type != re->type))
553 zsend_route_notify_owner(old, p, ZAPI_ROUTE_BETTER_ADMIN_WON);
554
555 /* Update fib selection */
556 dest->selected_fib = re;
557
558 /*
559 * Make sure we update the FPM any time we send new information to
560 * the kernel.
561 */
562 hook_call(rib_update, rn, "installing in kernel");
563
564 /* Send add or update */
565 if (old)
566 ret = dplane_route_update(rn, re, old);
567 else
568 ret = dplane_route_add(rn, re);
569
570 switch (ret) {
571 case ZEBRA_DPLANE_REQUEST_QUEUED:
572 SET_FLAG(re->status, ROUTE_ENTRY_QUEUED);
573
574 if (old) {
575 SET_FLAG(old->status, ROUTE_ENTRY_QUEUED);
576
577 /* Free old FIB nexthop group */
578 if (old->fib_ng.nexthop) {
579 nexthops_free(old->fib_ng.nexthop);
580 old->fib_ng.nexthop = NULL;
581 }
582
583 if (!RIB_SYSTEM_ROUTE(old)) {
584 /* Clear old route's FIB flags */
585 for (ALL_NEXTHOPS(old->ng, nexthop)) {
586 UNSET_FLAG(nexthop->flags,
587 NEXTHOP_FLAG_FIB);
588 }
589 }
590 }
591
592 if (zvrf)
593 zvrf->installs_queued++;
594 break;
595 case ZEBRA_DPLANE_REQUEST_FAILURE:
596 {
597 char str[SRCDEST2STR_BUFFER];
598
599 srcdest_rnode2str(rn, str, sizeof(str));
600 flog_err(EC_ZEBRA_DP_INSTALL_FAIL,
601 "%u:%s: Failed to enqueue dataplane install",
602 re->vrf_id, str);
603 break;
604 }
605 case ZEBRA_DPLANE_REQUEST_SUCCESS:
606 if (zvrf)
607 zvrf->installs++;
608 break;
609 }
610
611 return;
612 }
613
614 /* Uninstall the route from kernel. */
615 void rib_uninstall_kernel(struct route_node *rn, struct route_entry *re)
616 {
617 struct nexthop *nexthop;
618 rib_table_info_t *info = srcdest_rnode_table_info(rn);
619 struct zebra_vrf *zvrf = vrf_info_lookup(re->vrf_id);
620
621 if (info->safi != SAFI_UNICAST) {
622 UNSET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
623 for (ALL_NEXTHOPS(re->ng, nexthop))
624 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
625 return;
626 }
627
628 /*
629 * Make sure we update the FPM any time we send new information to
630 * the dataplane.
631 */
632 hook_call(rib_update, rn, "uninstalling from kernel");
633
634 switch (dplane_route_delete(rn, re)) {
635 case ZEBRA_DPLANE_REQUEST_QUEUED:
636 if (zvrf)
637 zvrf->removals_queued++;
638 break;
639 case ZEBRA_DPLANE_REQUEST_FAILURE:
640 {
641 char str[SRCDEST2STR_BUFFER];
642
643 srcdest_rnode2str(rn, str, sizeof(str));
644 flog_err(EC_ZEBRA_DP_INSTALL_FAIL,
645 "%u:%s: Failed to enqueue dataplane uninstall",
646 re->vrf_id, str);
647 break;
648 }
649 case ZEBRA_DPLANE_REQUEST_SUCCESS:
650 if (zvrf)
651 zvrf->removals++;
652 break;
653 }
654
655 return;
656 }
657
658 /* Uninstall the route from kernel. */
659 static void rib_uninstall(struct route_node *rn, struct route_entry *re)
660 {
661 rib_table_info_t *info = srcdest_rnode_table_info(rn);
662 rib_dest_t *dest = rib_dest_from_rnode(rn);
663 struct nexthop *nexthop;
664
665 if (dest && dest->selected_fib == re) {
666 if (info->safi == SAFI_UNICAST)
667 hook_call(rib_update, rn, "rib_uninstall");
668
669 /* If labeled-unicast route, uninstall transit LSP. */
670 if (zebra_rib_labeled_unicast(re))
671 zebra_mpls_lsp_uninstall(info->zvrf, rn, re);
672
673 rib_uninstall_kernel(rn, re);
674
675 dest->selected_fib = NULL;
676
677 /* Free FIB nexthop group, if present */
678 if (re->fib_ng.nexthop) {
679 nexthops_free(re->fib_ng.nexthop);
680 re->fib_ng.nexthop = NULL;
681 }
682
683 for (ALL_NEXTHOPS(re->ng, nexthop))
684 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
685 }
686
687 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)) {
688 const struct prefix *p, *src_p;
689
690 srcdest_rnode_prefixes(rn, &p, &src_p);
691
692 redistribute_delete(p, src_p, re);
693 UNSET_FLAG(re->flags, ZEBRA_FLAG_SELECTED);
694 }
695 }
696
697 /*
698 * rib_can_delete_dest
699 *
700 * Returns TRUE if the given dest can be deleted from the table.
701 */
702 static int rib_can_delete_dest(rib_dest_t *dest)
703 {
704 if (re_list_first(&dest->routes)) {
705 return 0;
706 }
707
708 /*
709 * Unresolved rnh's are stored on the default route's list
710 *
711 * dest->rnode can also be the source prefix node in an
712 * ipv6 sourcedest table. Fortunately the prefix of a
713 * source prefix node can never be the default prefix.
714 */
715 if (is_default_prefix(&dest->rnode->p))
716 return 0;
717
718 /*
719 * Don't delete the dest if we have to update the FPM about this
720 * prefix.
721 */
722 if (CHECK_FLAG(dest->flags, RIB_DEST_UPDATE_FPM)
723 || CHECK_FLAG(dest->flags, RIB_DEST_SENT_TO_FPM))
724 return 0;
725
726 return 1;
727 }
728
729 void zebra_rib_evaluate_rn_nexthops(struct route_node *rn, uint32_t seq)
730 {
731 rib_dest_t *dest = rib_dest_from_rnode(rn);
732 struct rnh *rnh;
733
734 /*
735 * We are storing the rnh's associated withb
736 * the tracked nexthop as a list of the rn's.
737 * Unresolved rnh's are placed at the top
738 * of the tree list.( 0.0.0.0/0 for v4 and 0::0/0 for v6 )
739 * As such for each rn we need to walk up the tree
740 * and see if any rnh's need to see if they
741 * would match a more specific route
742 */
743 while (rn) {
744 if (IS_ZEBRA_DEBUG_NHT_DETAILED) {
745 char buf[PREFIX_STRLEN];
746
747 zlog_debug("%s: %s Being examined for Nexthop Tracking Count: %zd",
748 __PRETTY_FUNCTION__,
749 srcdest_rnode2str(rn, buf, sizeof(buf)),
750 dest ? rnh_list_count(&dest->nht) : 0);
751 }
752 if (!dest) {
753 rn = rn->parent;
754 if (rn)
755 dest = rib_dest_from_rnode(rn);
756 continue;
757 }
758 /*
759 * If we have any rnh's stored in the nht list
760 * then we know that this route node was used for
761 * nht resolution and as such we need to call the
762 * nexthop tracking evaluation code
763 */
764 frr_each_safe(rnh_list, &dest->nht, rnh) {
765 struct zebra_vrf *zvrf =
766 zebra_vrf_lookup_by_id(rnh->vrf_id);
767 struct prefix *p = &rnh->node->p;
768
769 if (IS_ZEBRA_DEBUG_NHT_DETAILED) {
770 char buf1[PREFIX_STRLEN];
771 char buf2[PREFIX_STRLEN];
772
773 zlog_debug("%u:%s has Nexthop(%s) Type: %s depending on it, evaluating %u:%u",
774 zvrf->vrf->vrf_id,
775 srcdest_rnode2str(rn, buf1,
776 sizeof(buf1)),
777 prefix2str(p, buf2, sizeof(buf2)),
778 rnh_type2str(rnh->type),
779 seq, rnh->seqno);
780 }
781
782 /*
783 * If we have evaluated this node on this pass
784 * already, due to following the tree up
785 * then we know that we can move onto the next
786 * rnh to process.
787 *
788 * Additionally we call zebra_evaluate_rnh
789 * when we gc the dest. In this case we know
790 * that there must be no other re's where
791 * we were originally as such we know that
792 * that sequence number is ok to respect.
793 */
794 if (rnh->seqno == seq) {
795 if (IS_ZEBRA_DEBUG_NHT_DETAILED)
796 zlog_debug(
797 "\tNode processed and moved already");
798 continue;
799 }
800
801 rnh->seqno = seq;
802 zebra_evaluate_rnh(zvrf, family2afi(p->family), 0,
803 rnh->type, p);
804 }
805
806 rn = rn->parent;
807 if (rn)
808 dest = rib_dest_from_rnode(rn);
809 }
810 }
811
812 /*
813 * rib_gc_dest
814 *
815 * Garbage collect the rib dest corresponding to the given route node
816 * if appropriate.
817 *
818 * Returns TRUE if the dest was deleted, FALSE otherwise.
819 */
820 int rib_gc_dest(struct route_node *rn)
821 {
822 rib_dest_t *dest;
823
824 dest = rib_dest_from_rnode(rn);
825 if (!dest)
826 return 0;
827
828 if (!rib_can_delete_dest(dest))
829 return 0;
830
831 if (IS_ZEBRA_DEBUG_RIB) {
832 struct zebra_vrf *zvrf;
833
834 zvrf = rib_dest_vrf(dest);
835 rnode_debug(rn, zvrf_id(zvrf), "removing dest from table");
836 }
837
838 zebra_rib_evaluate_rn_nexthops(rn, zebra_router_get_next_sequence());
839
840 dest->rnode = NULL;
841 rnh_list_fini(&dest->nht);
842 XFREE(MTYPE_RIB_DEST, dest);
843 rn->info = NULL;
844
845 /*
846 * Release the one reference that we keep on the route node.
847 */
848 route_unlock_node(rn);
849 return 1;
850 }
851
852 static void rib_process_add_fib(struct zebra_vrf *zvrf, struct route_node *rn,
853 struct route_entry *new)
854 {
855 hook_call(rib_update, rn, "new route selected");
856
857 /* Update real nexthop. This may actually determine if nexthop is active
858 * or not. */
859 if (!nexthop_group_active_nexthop_num(&new->ng)) {
860 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
861 return;
862 }
863
864 if (IS_ZEBRA_DEBUG_RIB) {
865 char buf[SRCDEST2STR_BUFFER];
866 srcdest_rnode2str(rn, buf, sizeof(buf));
867 zlog_debug("%u:%s: Adding route rn %p, re %p (%s)",
868 zvrf_id(zvrf), buf, rn, new,
869 zebra_route_string(new->type));
870 }
871
872 /* If labeled-unicast route, install transit LSP. */
873 if (zebra_rib_labeled_unicast(new))
874 zebra_mpls_lsp_install(zvrf, rn, new);
875
876 rib_install_kernel(rn, new, NULL);
877
878 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
879 }
880
881 static void rib_process_del_fib(struct zebra_vrf *zvrf, struct route_node *rn,
882 struct route_entry *old)
883 {
884 hook_call(rib_update, rn, "removing existing route");
885
886 /* Uninstall from kernel. */
887 if (IS_ZEBRA_DEBUG_RIB) {
888 char buf[SRCDEST2STR_BUFFER];
889 srcdest_rnode2str(rn, buf, sizeof(buf));
890 zlog_debug("%u:%s: Deleting route rn %p, re %p (%s)",
891 zvrf_id(zvrf), buf, rn, old,
892 zebra_route_string(old->type));
893 }
894
895 /* If labeled-unicast route, uninstall transit LSP. */
896 if (zebra_rib_labeled_unicast(old))
897 zebra_mpls_lsp_uninstall(zvrf, rn, old);
898
899 rib_uninstall_kernel(rn, old);
900
901 /* Update nexthop for route, reset changed flag. */
902 /* Note: this code also handles the Linux case when an interface goes
903 * down, causing the kernel to delete routes without sending DELROUTE
904 * notifications
905 */
906 if (RIB_KERNEL_ROUTE(old))
907 SET_FLAG(old->status, ROUTE_ENTRY_REMOVED);
908 else
909 UNSET_FLAG(old->status, ROUTE_ENTRY_CHANGED);
910 }
911
912 static void rib_process_update_fib(struct zebra_vrf *zvrf,
913 struct route_node *rn,
914 struct route_entry *old,
915 struct route_entry *new)
916 {
917 int nh_active = 0;
918
919 /*
920 * We have to install or update if a new route has been selected or
921 * something has changed.
922 */
923 if (new != old || CHECK_FLAG(new->status, ROUTE_ENTRY_CHANGED)) {
924 hook_call(rib_update, rn, "updating existing route");
925
926 /* Update the nexthop; we could determine here that nexthop is
927 * inactive. */
928 if (nexthop_group_active_nexthop_num(&new->ng))
929 nh_active = 1;
930
931 /* If nexthop is active, install the selected route, if
932 * appropriate. If
933 * the install succeeds, cleanup flags for prior route, if
934 * different from
935 * newly selected.
936 */
937 if (nh_active) {
938 if (IS_ZEBRA_DEBUG_RIB) {
939 char buf[SRCDEST2STR_BUFFER];
940 srcdest_rnode2str(rn, buf, sizeof(buf));
941 if (new != old)
942 zlog_debug(
943 "%u:%s: Updating route rn %p, re %p (%s) old %p (%s)",
944 zvrf_id(zvrf), buf, rn, new,
945 zebra_route_string(new->type),
946 old,
947 zebra_route_string(old->type));
948 else
949 zlog_debug(
950 "%u:%s: Updating route rn %p, re %p (%s)",
951 zvrf_id(zvrf), buf, rn, new,
952 zebra_route_string(new->type));
953 }
954
955 /* If labeled-unicast route, uninstall transit LSP. */
956 if (zebra_rib_labeled_unicast(old))
957 zebra_mpls_lsp_uninstall(zvrf, rn, old);
958
959 /*
960 * Non-system route should be installed.
961 * If labeled-unicast route, install transit
962 * LSP.
963 */
964 if (zebra_rib_labeled_unicast(new))
965 zebra_mpls_lsp_install(zvrf, rn, new);
966
967 rib_install_kernel(rn, new, old);
968 }
969
970 /*
971 * If nexthop for selected route is not active or install
972 * failed, we
973 * may need to uninstall and delete for redistribution.
974 */
975 if (!nh_active) {
976 if (IS_ZEBRA_DEBUG_RIB) {
977 char buf[SRCDEST2STR_BUFFER];
978 srcdest_rnode2str(rn, buf, sizeof(buf));
979 if (new != old)
980 zlog_debug(
981 "%u:%s: Deleting route rn %p, re %p (%s) old %p (%s) - nexthop inactive",
982 zvrf_id(zvrf), buf, rn, new,
983 zebra_route_string(new->type),
984 old,
985 zebra_route_string(old->type));
986 else
987 zlog_debug(
988 "%u:%s: Deleting route rn %p, re %p (%s) - nexthop inactive",
989 zvrf_id(zvrf), buf, rn, new,
990 zebra_route_string(new->type));
991 }
992
993 /* If labeled-unicast route, uninstall transit LSP. */
994 if (zebra_rib_labeled_unicast(old))
995 zebra_mpls_lsp_uninstall(zvrf, rn, old);
996
997 rib_uninstall_kernel(rn, old);
998 }
999 } else {
1000 /*
1001 * Same route selected; check if in the FIB and if not,
1002 * re-install. This is housekeeping code to deal with
1003 * race conditions in kernel with linux netlink reporting
1004 * interface up before IPv4 or IPv6 protocol is ready
1005 * to add routes.
1006 */
1007 if (!CHECK_FLAG(new->status, ROUTE_ENTRY_INSTALLED) ||
1008 RIB_SYSTEM_ROUTE(new))
1009 rib_install_kernel(rn, new, NULL);
1010 }
1011
1012 /* Update prior route. */
1013 if (new != old)
1014 UNSET_FLAG(old->status, ROUTE_ENTRY_CHANGED);
1015
1016 /* Clear changed flag. */
1017 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1018 }
1019
1020 /* Check if 'alternate' RIB entry is better than 'current'. */
1021 static struct route_entry *rib_choose_best(struct route_entry *current,
1022 struct route_entry *alternate)
1023 {
1024 if (current == NULL)
1025 return alternate;
1026
1027 /* filter route selection in following order:
1028 * - connected beats other types
1029 * - if both connected, loopback or vrf wins
1030 * - lower distance beats higher
1031 * - lower metric beats higher for equal distance
1032 * - last, hence oldest, route wins tie break.
1033 */
1034
1035 /* Connected routes. Check to see if either are a vrf
1036 * or loopback interface. If not, pick the last connected
1037 * route of the set of lowest metric connected routes.
1038 */
1039 if (alternate->type == ZEBRA_ROUTE_CONNECT) {
1040 if (current->type != ZEBRA_ROUTE_CONNECT)
1041 return alternate;
1042
1043 /* both are connected. are either loop or vrf? */
1044 struct nexthop *nexthop = NULL;
1045
1046 for (ALL_NEXTHOPS(alternate->ng, nexthop)) {
1047 if (if_is_loopback_or_vrf(if_lookup_by_index(
1048 nexthop->ifindex, alternate->vrf_id)))
1049 return alternate;
1050 }
1051
1052 for (ALL_NEXTHOPS(current->ng, nexthop)) {
1053 if (if_is_loopback_or_vrf(if_lookup_by_index(
1054 nexthop->ifindex, current->vrf_id)))
1055 return current;
1056 }
1057
1058 /* Neither are loop or vrf so pick best metric */
1059 if (alternate->metric <= current->metric)
1060 return alternate;
1061
1062 return current;
1063 }
1064
1065 if (current->type == ZEBRA_ROUTE_CONNECT)
1066 return current;
1067
1068 /* higher distance loses */
1069 if (alternate->distance < current->distance)
1070 return alternate;
1071 if (current->distance < alternate->distance)
1072 return current;
1073
1074 /* metric tie-breaks equal distance */
1075 if (alternate->metric <= current->metric)
1076 return alternate;
1077
1078 return current;
1079 }
1080
1081 /* Core function for processing routing information base. */
1082 static void rib_process(struct route_node *rn)
1083 {
1084 struct route_entry *re;
1085 struct route_entry *next;
1086 struct route_entry *old_selected = NULL;
1087 struct route_entry *new_selected = NULL;
1088 struct route_entry *old_fib = NULL;
1089 struct route_entry *new_fib = NULL;
1090 struct route_entry *best = NULL;
1091 char buf[SRCDEST2STR_BUFFER];
1092 rib_dest_t *dest;
1093 struct zebra_vrf *zvrf = NULL;
1094 const struct prefix *p, *src_p;
1095
1096 srcdest_rnode_prefixes(rn, &p, &src_p);
1097 vrf_id_t vrf_id = VRF_UNKNOWN;
1098
1099 assert(rn);
1100
1101 dest = rib_dest_from_rnode(rn);
1102 if (dest) {
1103 zvrf = rib_dest_vrf(dest);
1104 vrf_id = zvrf_id(zvrf);
1105 }
1106
1107 if (IS_ZEBRA_DEBUG_RIB)
1108 srcdest_rnode2str(rn, buf, sizeof(buf));
1109
1110 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1111 zlog_debug("%u:%s: Processing rn %p", vrf_id, buf, rn);
1112
1113 /*
1114 * we can have rn's that have a NULL info pointer
1115 * (dest). As such let's not let the deref happen
1116 * additionally we know RNODE_FOREACH_RE_SAFE
1117 * will not iterate so we are ok.
1118 */
1119 if (dest)
1120 old_fib = dest->selected_fib;
1121
1122 RNODE_FOREACH_RE_SAFE (rn, re, next) {
1123 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1124 zlog_debug(
1125 "%u:%s: Examine re %p (%s) status %x flags %x dist %d metric %d",
1126 vrf_id, buf, re, zebra_route_string(re->type),
1127 re->status, re->flags, re->distance,
1128 re->metric);
1129
1130 UNSET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
1131
1132 /* Currently selected re. */
1133 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)) {
1134 assert(old_selected == NULL);
1135 old_selected = re;
1136 }
1137
1138 /* Skip deleted entries from selection */
1139 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
1140 continue;
1141
1142 /* Skip unreachable nexthop. */
1143 /* This first call to nexthop_active_update is merely to
1144 * determine if there's any change to nexthops associated
1145 * with this RIB entry. Now, rib_process() can be invoked due
1146 * to an external event such as link down or due to
1147 * next-hop-tracking evaluation. In the latter case,
1148 * a decision has already been made that the NHs have changed.
1149 * So, no need to invoke a potentially expensive call again.
1150 * Further, since the change might be in a recursive NH which
1151 * is not caught in the nexthop_active_update() code. Thus, we
1152 * might miss changes to recursive NHs.
1153 */
1154 if (CHECK_FLAG(re->status, ROUTE_ENTRY_CHANGED)
1155 && !nexthop_active_update(rn, re)) {
1156 if (re->type == ZEBRA_ROUTE_TABLE) {
1157 /* XXX: HERE BE DRAGONS!!!!!
1158 * In all honesty, I have not yet figured out
1159 * what this part does or why the
1160 * ROUTE_ENTRY_CHANGED test above is correct
1161 * or why we need to delete a route here, and
1162 * also not whether this concerns both selected
1163 * and fib route, or only selected
1164 * or only fib
1165 *
1166 * This entry was denied by the 'ip protocol
1167 * table' route-map, we need to delete it */
1168 if (re != old_selected) {
1169 if (IS_ZEBRA_DEBUG_RIB)
1170 zlog_debug(
1171 "%s: %u:%s: imported via import-table but denied "
1172 "by the ip protocol table route-map",
1173 __func__, vrf_id, buf);
1174 rib_unlink(rn, re);
1175 } else
1176 SET_FLAG(re->status,
1177 ROUTE_ENTRY_REMOVED);
1178 }
1179
1180 continue;
1181 }
1182
1183 /* Infinite distance. */
1184 if (re->distance == DISTANCE_INFINITY) {
1185 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1186 continue;
1187 }
1188
1189 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_FIB_OVERRIDE)) {
1190 best = rib_choose_best(new_fib, re);
1191 if (new_fib && best != new_fib)
1192 UNSET_FLAG(new_fib->status,
1193 ROUTE_ENTRY_CHANGED);
1194 new_fib = best;
1195 } else {
1196 best = rib_choose_best(new_selected, re);
1197 if (new_selected && best != new_selected)
1198 UNSET_FLAG(new_selected->status,
1199 ROUTE_ENTRY_CHANGED);
1200 new_selected = best;
1201 }
1202 if (best != re)
1203 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1204 } /* RNODE_FOREACH_RE */
1205
1206 /* If no FIB override route, use the selected route also for FIB */
1207 if (new_fib == NULL)
1208 new_fib = new_selected;
1209
1210 /* After the cycle is finished, the following pointers will be set:
1211 * old_selected --- RE entry currently having SELECTED
1212 * new_selected --- RE entry that is newly SELECTED
1213 * old_fib --- RE entry currently in kernel FIB
1214 * new_fib --- RE entry that is newly to be in kernel FIB
1215 *
1216 * new_selected will get SELECTED flag, and is going to be redistributed
1217 * the zclients. new_fib (which can be new_selected) will be installed
1218 * in kernel.
1219 */
1220
1221 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
1222 zlog_debug(
1223 "%u:%s: After processing: old_selected %p new_selected %p old_fib %p new_fib %p",
1224 vrf_id, buf, (void *)old_selected, (void *)new_selected,
1225 (void *)old_fib, (void *)new_fib);
1226 }
1227
1228 /* Buffer ROUTE_ENTRY_CHANGED here, because it will get cleared if
1229 * fib == selected */
1230 bool selected_changed = new_selected && CHECK_FLAG(new_selected->status,
1231 ROUTE_ENTRY_CHANGED);
1232
1233 /* Update fib according to selection results */
1234 if (new_fib && old_fib)
1235 rib_process_update_fib(zvrf, rn, old_fib, new_fib);
1236 else if (new_fib)
1237 rib_process_add_fib(zvrf, rn, new_fib);
1238 else if (old_fib)
1239 rib_process_del_fib(zvrf, rn, old_fib);
1240
1241 /* Update SELECTED entry */
1242 if (old_selected != new_selected || selected_changed) {
1243
1244 if (new_selected && new_selected != new_fib)
1245 UNSET_FLAG(new_selected->status, ROUTE_ENTRY_CHANGED);
1246
1247 if (new_selected)
1248 SET_FLAG(new_selected->flags, ZEBRA_FLAG_SELECTED);
1249
1250 if (old_selected) {
1251 if (!new_selected)
1252 redistribute_delete(p, src_p, old_selected);
1253 if (old_selected != new_selected)
1254 UNSET_FLAG(old_selected->flags,
1255 ZEBRA_FLAG_SELECTED);
1256 }
1257 }
1258
1259 /* Remove all RE entries queued for removal */
1260 RNODE_FOREACH_RE_SAFE (rn, re, next) {
1261 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
1262 if (IS_ZEBRA_DEBUG_RIB) {
1263 rnode_debug(rn, vrf_id, "rn %p, removing re %p",
1264 (void *)rn, (void *)re);
1265 }
1266 rib_unlink(rn, re);
1267 }
1268 }
1269
1270 /*
1271 * Check if the dest can be deleted now.
1272 */
1273 rib_gc_dest(rn);
1274 }
1275
1276 static void zebra_rib_evaluate_mpls(struct route_node *rn)
1277 {
1278 rib_dest_t *dest = rib_dest_from_rnode(rn);
1279 struct zebra_vrf *zvrf = vrf_info_lookup(VRF_DEFAULT);
1280
1281 if (!dest)
1282 return;
1283
1284 if (CHECK_FLAG(dest->flags, RIB_DEST_UPDATE_LSPS)) {
1285 if (IS_ZEBRA_DEBUG_MPLS)
1286 zlog_debug(
1287 "%u: Scheduling all LSPs upon RIB completion",
1288 zvrf_id(zvrf));
1289 zebra_mpls_lsp_schedule(zvrf);
1290 mpls_unmark_lsps_for_processing(rn);
1291 }
1292 }
1293
1294 /*
1295 * Utility to match route with dplane context data
1296 */
1297 static bool rib_route_match_ctx(const struct route_entry *re,
1298 const struct zebra_dplane_ctx *ctx,
1299 bool is_update)
1300 {
1301 bool result = false;
1302
1303 if (is_update) {
1304 /*
1305 * In 'update' case, we test info about the 'previous' or
1306 * 'old' route
1307 */
1308 if ((re->type == dplane_ctx_get_old_type(ctx)) &&
1309 (re->instance == dplane_ctx_get_old_instance(ctx))) {
1310 result = true;
1311
1312 /* TODO -- we're using this extra test, but it's not
1313 * exactly clear why.
1314 */
1315 if (re->type == ZEBRA_ROUTE_STATIC &&
1316 (re->distance != dplane_ctx_get_old_distance(ctx) ||
1317 re->tag != dplane_ctx_get_old_tag(ctx))) {
1318 result = false;
1319 }
1320 }
1321
1322 } else {
1323 /*
1324 * Ordinary, single-route case using primary context info
1325 */
1326 if ((dplane_ctx_get_op(ctx) != DPLANE_OP_ROUTE_DELETE) &&
1327 CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
1328 /* Skip route that's been deleted */
1329 goto done;
1330 }
1331
1332 if ((re->type == dplane_ctx_get_type(ctx)) &&
1333 (re->instance == dplane_ctx_get_instance(ctx))) {
1334 result = true;
1335
1336 /* TODO -- we're using this extra test, but it's not
1337 * exactly clear why.
1338 */
1339 if (re->type == ZEBRA_ROUTE_STATIC &&
1340 (re->distance != dplane_ctx_get_distance(ctx) ||
1341 re->tag != dplane_ctx_get_tag(ctx))) {
1342 result = false;
1343 }
1344 }
1345 }
1346
1347 done:
1348
1349 return (result);
1350 }
1351
1352 static void zebra_rib_fixup_system(struct route_node *rn)
1353 {
1354 struct route_entry *re;
1355
1356 RNODE_FOREACH_RE(rn, re) {
1357 struct nexthop *nhop;
1358
1359 if (!RIB_SYSTEM_ROUTE(re))
1360 continue;
1361
1362 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
1363 continue;
1364
1365 SET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
1366
1367 for (ALL_NEXTHOPS(re->ng, nhop)) {
1368 if (CHECK_FLAG(nhop->flags, NEXTHOP_FLAG_RECURSIVE))
1369 continue;
1370
1371 SET_FLAG(nhop->flags, NEXTHOP_FLAG_FIB);
1372 }
1373 }
1374 }
1375
1376 /*
1377 * Update a route from a dplane context. This consolidates common code
1378 * that can be used in processing of results from FIB updates, and in
1379 * async notification processing.
1380 * The return is 'true' if the installed nexthops changed; 'false' otherwise.
1381 */
1382 static bool rib_update_re_from_ctx(struct route_entry *re,
1383 struct route_node *rn,
1384 struct zebra_dplane_ctx *ctx)
1385 {
1386 char dest_str[PREFIX_STRLEN] = "";
1387 char nh_str[NEXTHOP_STRLEN];
1388 struct nexthop *nexthop, *ctx_nexthop;
1389 bool matched;
1390 const struct nexthop_group *ctxnhg;
1391 bool is_selected = false; /* Is 're' currently the selected re? */
1392 bool changed_p = false; /* Change to nexthops? */
1393 rib_dest_t *dest;
1394
1395 /* Note well: only capturing the prefix string if debug is enabled here;
1396 * unconditional log messages will have to generate the string.
1397 */
1398 if (IS_ZEBRA_DEBUG_RIB)
1399 prefix2str(&(rn->p), dest_str, sizeof(dest_str));
1400
1401 dest = rib_dest_from_rnode(rn);
1402 if (dest)
1403 is_selected = (re == dest->selected_fib);
1404
1405 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1406 zlog_debug("update_from_ctx: %u:%s: %sSELECTED",
1407 re->vrf_id, dest_str, (is_selected ? "" : "NOT "));
1408
1409 /* Update zebra's nexthop FIB flag for each nexthop that was installed.
1410 * If the installed set differs from the set requested by the rib/owner,
1411 * we use the fib-specific nexthop-group to record the actual FIB
1412 * status.
1413 */
1414
1415 /*
1416 * First check the fib nexthop-group, if it's present. The comparison
1417 * here is quite strict: we require that the fib sets match exactly.
1418 */
1419 matched = false;
1420 do {
1421 if (re->fib_ng.nexthop == NULL)
1422 break;
1423
1424 matched = true;
1425
1426 /* First check the route's fib nexthops */
1427 for (ALL_NEXTHOPS(re->fib_ng, nexthop)) {
1428
1429 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE))
1430 continue;
1431
1432 ctx_nexthop = NULL;
1433 for (ALL_NEXTHOPS_PTR(dplane_ctx_get_ng(ctx),
1434 ctx_nexthop)) {
1435 if (nexthop_same(ctx_nexthop, nexthop))
1436 break;
1437 }
1438
1439 if (ctx_nexthop == NULL) {
1440 /* Nexthop not in the new installed set */
1441 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
1442 nexthop2str(nexthop, nh_str,
1443 sizeof(nh_str));
1444 zlog_debug("update_from_ctx: no match for fib nh %s",
1445 nh_str);
1446 }
1447
1448 matched = false;
1449 break;
1450 }
1451 }
1452
1453 if (!matched)
1454 break;
1455
1456 /* Check the new installed set */
1457 ctx_nexthop = NULL;
1458 for (ALL_NEXTHOPS_PTR(dplane_ctx_get_ng(ctx), ctx_nexthop)) {
1459
1460 if (CHECK_FLAG(ctx_nexthop->flags,
1461 NEXTHOP_FLAG_RECURSIVE))
1462 continue;
1463
1464 /* Compare with the current group's nexthops */
1465 nexthop = NULL;
1466 for (ALL_NEXTHOPS(re->fib_ng, nexthop)) {
1467 if (nexthop_same(nexthop, ctx_nexthop))
1468 break;
1469 }
1470
1471 if (nexthop == NULL) {
1472 /* Nexthop not in the old installed set */
1473 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
1474 nexthop2str(ctx_nexthop, nh_str,
1475 sizeof(nh_str));
1476 zlog_debug("update_from_ctx: no fib match for notif nh %s",
1477 nh_str);
1478 }
1479 matched = false;
1480 break;
1481 }
1482 }
1483
1484 } while (0);
1485
1486 /* If the new FIB set matches the existing FIB set, we're done. */
1487 if (matched) {
1488 if (IS_ZEBRA_DEBUG_RIB)
1489 zlog_debug("%u:%s update_from_ctx(): existing fib nhg, no change",
1490 re->vrf_id, dest_str);
1491 goto done;
1492
1493 } else if (re->fib_ng.nexthop) {
1494 /*
1495 * Free stale fib list and move on to check the rib nhg.
1496 */
1497 if (IS_ZEBRA_DEBUG_RIB)
1498 zlog_debug("%u:%s update_from_ctx(): replacing fib nhg",
1499 re->vrf_id, dest_str);
1500 nexthops_free(re->fib_ng.nexthop);
1501 re->fib_ng.nexthop = NULL;
1502
1503 /* Note that the installed nexthops have changed */
1504 changed_p = true;
1505 } else {
1506 if (IS_ZEBRA_DEBUG_RIB)
1507 zlog_debug("%u:%s update_from_ctx(): no fib nhg",
1508 re->vrf_id, dest_str);
1509 }
1510
1511 /*
1512 * Compare with the rib nexthop group. The comparison here is different:
1513 * the RIB group may be a superset of the list installed in the FIB. We
1514 * walk the RIB group, looking for the 'installable' candidate
1515 * nexthops, and then check those against the set
1516 * that is actually installed.
1517 */
1518 matched = true;
1519 for (ALL_NEXTHOPS(re->ng, nexthop)) {
1520
1521 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE))
1522 continue;
1523
1524 if (!CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE))
1525 continue;
1526
1527 /* Check for a FIB nexthop corresponding to the RIB nexthop */
1528 ctx_nexthop = NULL;
1529 for (ALL_NEXTHOPS_PTR(dplane_ctx_get_ng(ctx), ctx_nexthop)) {
1530 if (nexthop_same(ctx_nexthop, nexthop))
1531 break;
1532 }
1533
1534 /* If the FIB doesn't know about the nexthop,
1535 * it's not installed
1536 */
1537 if (ctx_nexthop == NULL) {
1538 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
1539 nexthop2str(nexthop, nh_str, sizeof(nh_str));
1540 zlog_debug("update_from_ctx: no notif match for rib nh %s",
1541 nh_str);
1542 }
1543 matched = false;
1544
1545 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB))
1546 changed_p = true;
1547
1548 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1549 break;
1550 }
1551
1552 if (CHECK_FLAG(ctx_nexthop->flags, NEXTHOP_FLAG_FIB)) {
1553 if (!CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB))
1554 changed_p = true;
1555
1556 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1557 } else {
1558 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB))
1559 changed_p = true;
1560
1561 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1562 }
1563 }
1564
1565 /* If all nexthops were processed, we're done */
1566 if (matched) {
1567 if (IS_ZEBRA_DEBUG_RIB)
1568 zlog_debug("%u:%s update_from_ctx(): rib nhg matched, changed '%s'",
1569 re->vrf_id, dest_str,
1570 (changed_p ? "true" : "false"));
1571 goto done;
1572 }
1573
1574 /* FIB nexthop set differs from the RIB set:
1575 * create a fib-specific nexthop-group
1576 */
1577 if (IS_ZEBRA_DEBUG_RIB)
1578 zlog_debug("%u:%s update_from_ctx(): changed %s, adding new fib nhg",
1579 re->vrf_id, dest_str,
1580 (changed_p ? "true" : "false"));
1581
1582 ctxnhg = dplane_ctx_get_ng(ctx);
1583
1584 if (ctxnhg->nexthop)
1585 copy_nexthops(&(re->fib_ng.nexthop), ctxnhg->nexthop, NULL);
1586 else {
1587 /* Bit of a special case when the fib has _no_ installed
1588 * nexthops.
1589 */
1590 nexthop = nexthop_new();
1591 nexthop->type = NEXTHOP_TYPE_IPV4;
1592 nexthop_add(&(re->fib_ng.nexthop), nexthop);
1593 }
1594
1595 done:
1596 return changed_p;
1597 }
1598
1599 /*
1600 * Helper to locate a zebra route-node from a dplane context. This is used
1601 * when processing dplane results, e.g. Note well: the route-node is returned
1602 * with a ref held - route_unlock_node() must be called eventually.
1603 */
1604 static struct route_node *
1605 rib_find_rn_from_ctx(const struct zebra_dplane_ctx *ctx)
1606 {
1607 struct route_table *table = NULL;
1608 struct route_node *rn = NULL;
1609 const struct prefix *dest_pfx, *src_pfx;
1610
1611 /* Locate rn and re(s) from ctx */
1612
1613 table = zebra_vrf_table_with_table_id(dplane_ctx_get_afi(ctx),
1614 dplane_ctx_get_safi(ctx),
1615 dplane_ctx_get_vrf(ctx),
1616 dplane_ctx_get_table(ctx));
1617 if (table == NULL) {
1618 if (IS_ZEBRA_DEBUG_DPLANE) {
1619 zlog_debug("Failed to find route for ctx: no table for afi %d, safi %d, vrf %u",
1620 dplane_ctx_get_afi(ctx),
1621 dplane_ctx_get_safi(ctx),
1622 dplane_ctx_get_vrf(ctx));
1623 }
1624 goto done;
1625 }
1626
1627 dest_pfx = dplane_ctx_get_dest(ctx);
1628 src_pfx = dplane_ctx_get_src(ctx);
1629
1630 rn = srcdest_rnode_get(table, dest_pfx,
1631 src_pfx ? (struct prefix_ipv6 *)src_pfx : NULL);
1632
1633 done:
1634 return rn;
1635 }
1636
1637
1638
1639 /*
1640 * Route-update results processing after async dataplane update.
1641 */
1642 static void rib_process_result(struct zebra_dplane_ctx *ctx)
1643 {
1644 struct zebra_vrf *zvrf = NULL;
1645 struct route_node *rn = NULL;
1646 struct route_entry *re = NULL, *old_re = NULL, *rib;
1647 bool is_update = false;
1648 char dest_str[PREFIX_STRLEN] = "";
1649 enum dplane_op_e op;
1650 enum zebra_dplane_result status;
1651 const struct prefix *dest_pfx, *src_pfx;
1652 uint32_t seq;
1653 bool fib_changed = false;
1654
1655 zvrf = vrf_info_lookup(dplane_ctx_get_vrf(ctx));
1656 dest_pfx = dplane_ctx_get_dest(ctx);
1657
1658 /* Note well: only capturing the prefix string if debug is enabled here;
1659 * unconditional log messages will have to generate the string.
1660 */
1661 if (IS_ZEBRA_DEBUG_DPLANE)
1662 prefix2str(dest_pfx, dest_str, sizeof(dest_str));
1663
1664 /* Locate rn and re(s) from ctx */
1665 rn = rib_find_rn_from_ctx(ctx);
1666 if (rn == NULL) {
1667 if (IS_ZEBRA_DEBUG_DPLANE) {
1668 zlog_debug("Failed to process dplane results: no route for %u:%s",
1669 dplane_ctx_get_vrf(ctx), dest_str);
1670 }
1671 goto done;
1672 }
1673
1674 srcdest_rnode_prefixes(rn, &dest_pfx, &src_pfx);
1675
1676 op = dplane_ctx_get_op(ctx);
1677 status = dplane_ctx_get_status(ctx);
1678
1679 if (IS_ZEBRA_DEBUG_DPLANE_DETAIL)
1680 zlog_debug("%u:%s Processing dplane ctx %p, op %s result %s",
1681 dplane_ctx_get_vrf(ctx), dest_str, ctx,
1682 dplane_op2str(op), dplane_res2str(status));
1683
1684 /*
1685 * Update is a bit of a special case, where we may have both old and new
1686 * routes to post-process.
1687 */
1688 is_update = dplane_ctx_is_update(ctx);
1689
1690 /*
1691 * Take a pass through the routes, look for matches with the context
1692 * info.
1693 */
1694 RNODE_FOREACH_RE(rn, rib) {
1695
1696 if (re == NULL) {
1697 if (rib_route_match_ctx(rib, ctx, false))
1698 re = rib;
1699 }
1700
1701 /* Check for old route match */
1702 if (is_update && (old_re == NULL)) {
1703 if (rib_route_match_ctx(rib, ctx, true /*is_update*/))
1704 old_re = rib;
1705 }
1706
1707 /* Have we found the routes we need to work on? */
1708 if (re && ((!is_update || old_re)))
1709 break;
1710 }
1711
1712 seq = dplane_ctx_get_seq(ctx);
1713
1714 /*
1715 * Check sequence number(s) to detect stale results before continuing
1716 */
1717 if (re) {
1718 if (re->dplane_sequence != seq) {
1719 if (IS_ZEBRA_DEBUG_DPLANE_DETAIL)
1720 zlog_debug("%u:%s Stale dplane result for re %p",
1721 dplane_ctx_get_vrf(ctx),
1722 dest_str, re);
1723 } else
1724 UNSET_FLAG(re->status, ROUTE_ENTRY_QUEUED);
1725 }
1726
1727 if (old_re) {
1728 if (old_re->dplane_sequence != dplane_ctx_get_old_seq(ctx)) {
1729 if (IS_ZEBRA_DEBUG_DPLANE_DETAIL)
1730 zlog_debug("%u:%s Stale dplane result for old_re %p",
1731 dplane_ctx_get_vrf(ctx),
1732 dest_str, old_re);
1733 } else
1734 UNSET_FLAG(old_re->status, ROUTE_ENTRY_QUEUED);
1735 }
1736
1737 switch (op) {
1738 case DPLANE_OP_ROUTE_INSTALL:
1739 case DPLANE_OP_ROUTE_UPDATE:
1740 if (status == ZEBRA_DPLANE_REQUEST_SUCCESS) {
1741 if (re) {
1742 UNSET_FLAG(re->status, ROUTE_ENTRY_FAILED);
1743 SET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
1744 }
1745 /*
1746 * On an update operation from the same route type
1747 * context retrieval currently has no way to know
1748 * which was the old and which was the new.
1749 * So don't unset our flags that we just set.
1750 * We know redistribution is ok because the
1751 * old_re in this case is used for nothing
1752 * more than knowing whom to contact if necessary.
1753 */
1754 if (old_re && old_re != re) {
1755 UNSET_FLAG(old_re->status, ROUTE_ENTRY_FAILED);
1756 UNSET_FLAG(old_re->status,
1757 ROUTE_ENTRY_INSTALLED);
1758 }
1759
1760 /* Update zebra route based on the results in
1761 * the context struct.
1762 */
1763 if (re) {
1764 fib_changed =
1765 rib_update_re_from_ctx(re, rn, ctx);
1766
1767 if (!fib_changed) {
1768 if (IS_ZEBRA_DEBUG_DPLANE_DETAIL)
1769 zlog_debug("%u:%s no fib change for re",
1770 dplane_ctx_get_vrf(
1771 ctx),
1772 dest_str);
1773 }
1774
1775 /* Redistribute */
1776 redistribute_update(dest_pfx, src_pfx,
1777 re, NULL);
1778 }
1779
1780 /*
1781 * System routes are weird in that they
1782 * allow multiple to be installed that match
1783 * to the same prefix, so after we get the
1784 * result we need to clean them up so that
1785 * we can actually use them.
1786 */
1787 if ((re && RIB_SYSTEM_ROUTE(re)) ||
1788 (old_re && RIB_SYSTEM_ROUTE(old_re)))
1789 zebra_rib_fixup_system(rn);
1790
1791 if (zvrf)
1792 zvrf->installs++;
1793
1794 /* Notify route owner */
1795 zsend_route_notify_owner_ctx(ctx, ZAPI_ROUTE_INSTALLED);
1796
1797 } else {
1798 if (re) {
1799 SET_FLAG(re->status, ROUTE_ENTRY_FAILED);
1800 UNSET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
1801 } if (old_re)
1802 SET_FLAG(old_re->status, ROUTE_ENTRY_FAILED);
1803 if (re)
1804 zsend_route_notify_owner(re, dest_pfx,
1805 ZAPI_ROUTE_FAIL_INSTALL);
1806
1807 zlog_warn("%u:%s: Route install failed",
1808 dplane_ctx_get_vrf(ctx),
1809 prefix2str(dest_pfx,
1810 dest_str, sizeof(dest_str)));
1811 }
1812 break;
1813 case DPLANE_OP_ROUTE_DELETE:
1814 if (re)
1815 SET_FLAG(re->status, ROUTE_ENTRY_FAILED);
1816 /*
1817 * In the delete case, the zebra core datastructs were
1818 * updated (or removed) at the time the delete was issued,
1819 * so we're just notifying the route owner.
1820 */
1821 if (status == ZEBRA_DPLANE_REQUEST_SUCCESS) {
1822 if (re) {
1823 UNSET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
1824 UNSET_FLAG(re->status, ROUTE_ENTRY_FAILED);
1825 }
1826 zsend_route_notify_owner_ctx(ctx, ZAPI_ROUTE_REMOVED);
1827
1828 if (zvrf)
1829 zvrf->removals++;
1830 } else {
1831 if (re)
1832 SET_FLAG(re->status, ROUTE_ENTRY_FAILED);
1833 zsend_route_notify_owner_ctx(ctx,
1834 ZAPI_ROUTE_REMOVE_FAIL);
1835
1836 zlog_warn("%u:%s: Route Deletion failure",
1837 dplane_ctx_get_vrf(ctx),
1838 prefix2str(dest_pfx,
1839 dest_str, sizeof(dest_str)));
1840 }
1841
1842 /*
1843 * System routes are weird in that they
1844 * allow multiple to be installed that match
1845 * to the same prefix, so after we get the
1846 * result we need to clean them up so that
1847 * we can actually use them.
1848 */
1849 if ((re && RIB_SYSTEM_ROUTE(re)) ||
1850 (old_re && RIB_SYSTEM_ROUTE(old_re)))
1851 zebra_rib_fixup_system(rn);
1852 break;
1853 default:
1854 break;
1855 }
1856
1857 zebra_rib_evaluate_rn_nexthops(rn, seq);
1858 zebra_rib_evaluate_mpls(rn);
1859 done:
1860
1861 if (rn)
1862 route_unlock_node(rn);
1863
1864 /* Return context to dataplane module */
1865 dplane_ctx_fini(&ctx);
1866 }
1867
1868 /*
1869 * Handle notification from async dataplane: the dataplane has detected
1870 * some change to a route, and notifies zebra so that the control plane
1871 * can reflect that change.
1872 */
1873 static void rib_process_dplane_notify(struct zebra_dplane_ctx *ctx)
1874 {
1875 struct route_node *rn = NULL;
1876 struct route_entry *re = NULL;
1877 struct nexthop *nexthop;
1878 char dest_str[PREFIX_STRLEN] = "";
1879 const struct prefix *dest_pfx, *src_pfx;
1880 rib_dest_t *dest;
1881 bool fib_changed = false;
1882 bool debug_p = IS_ZEBRA_DEBUG_DPLANE | IS_ZEBRA_DEBUG_RIB;
1883 int start_count, end_count;
1884 dest_pfx = dplane_ctx_get_dest(ctx);
1885
1886 /* Note well: only capturing the prefix string if debug is enabled here;
1887 * unconditional log messages will have to generate the string.
1888 */
1889 if (debug_p)
1890 prefix2str(dest_pfx, dest_str, sizeof(dest_str));
1891
1892 /* Locate rn and re(s) from ctx */
1893 rn = rib_find_rn_from_ctx(ctx);
1894 if (rn == NULL) {
1895 if (debug_p) {
1896 zlog_debug("Failed to process dplane notification: no routes for %u:%s",
1897 dplane_ctx_get_vrf(ctx), dest_str);
1898 }
1899 goto done;
1900 }
1901
1902 dest = rib_dest_from_rnode(rn);
1903 srcdest_rnode_prefixes(rn, &dest_pfx, &src_pfx);
1904
1905 if (debug_p)
1906 zlog_debug("%u:%s Processing dplane notif ctx %p",
1907 dplane_ctx_get_vrf(ctx), dest_str, ctx);
1908
1909 /*
1910 * Take a pass through the routes, look for matches with the context
1911 * info.
1912 */
1913 RNODE_FOREACH_RE(rn, re) {
1914 if (rib_route_match_ctx(re, ctx, false /*!update*/))
1915 break;
1916 }
1917
1918 /* No match? Nothing we can do */
1919 if (re == NULL) {
1920 if (debug_p)
1921 zlog_debug("%u:%s Unable to process dplane notification: no entry for type %s",
1922 dplane_ctx_get_vrf(ctx), dest_str,
1923 zebra_route_string(
1924 dplane_ctx_get_type(ctx)));
1925
1926 goto done;
1927 }
1928
1929 /* Is this a notification that ... matters? We only really care about
1930 * the route that is currently selected for installation.
1931 */
1932 if (re != dest->selected_fib) {
1933 /* TODO -- don't skip processing entirely? We might like to
1934 * at least report on the event.
1935 */
1936 if (debug_p)
1937 zlog_debug("%u:%s dplane notif, but type %s not selected_fib",
1938 dplane_ctx_get_vrf(ctx), dest_str,
1939 zebra_route_string(
1940 dplane_ctx_get_type(ctx)));
1941 goto done;
1942 }
1943
1944 /* We'll want to determine whether the installation status of the
1945 * route has changed: we'll check the status before processing,
1946 * and then again if there's been a change.
1947 */
1948 start_count = 0;
1949 for (ALL_NEXTHOPS_PTR(rib_active_nhg(re), nexthop)) {
1950 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB))
1951 start_count++;
1952 }
1953
1954 /* Update zebra's nexthop FIB flags based on the context struct's
1955 * nexthops.
1956 */
1957 fib_changed = rib_update_re_from_ctx(re, rn, ctx);
1958
1959 if (!fib_changed) {
1960 if (debug_p)
1961 zlog_debug("%u:%s No change from dplane notification",
1962 dplane_ctx_get_vrf(ctx), dest_str);
1963
1964 goto done;
1965 }
1966
1967 /*
1968 * Perform follow-up work if the actual status of the prefix
1969 * changed.
1970 */
1971
1972 end_count = 0;
1973 for (ALL_NEXTHOPS_PTR(rib_active_nhg(re), nexthop)) {
1974 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB))
1975 end_count++;
1976 }
1977
1978 /* Various fib transitions: changed nexthops; from installed to
1979 * not-installed; or not-installed to installed.
1980 */
1981 if (start_count > 0 && end_count > 0) {
1982
1983 /* Changed nexthops - update kernel/others */
1984 dplane_route_notif_update(rn, re,
1985 DPLANE_OP_ROUTE_UPDATE, ctx);
1986
1987 } else if (start_count == 0 && end_count > 0) {
1988 if (debug_p)
1989 zlog_debug("%u:%s installed transition from dplane notification",
1990 dplane_ctx_get_vrf(ctx), dest_str);
1991
1992 /* We expect this to be the selected route, so we want
1993 * to tell others about this transistion.
1994 */
1995 SET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
1996
1997 /* Changed nexthops - update kernel/others */
1998 dplane_route_notif_update(rn, re, DPLANE_OP_ROUTE_INSTALL, ctx);
1999
2000 /* Redistribute, lsp, and nht update */
2001 redistribute_update(dest_pfx, src_pfx, re, NULL);
2002
2003 zebra_rib_evaluate_rn_nexthops(
2004 rn, zebra_router_get_next_sequence());
2005
2006 zebra_rib_evaluate_mpls(rn);
2007
2008 } else if (start_count > 0 && end_count == 0) {
2009 if (debug_p)
2010 zlog_debug("%u:%s un-installed transition from dplane notification",
2011 dplane_ctx_get_vrf(ctx), dest_str);
2012
2013 /* Transition from _something_ installed to _nothing_
2014 * installed.
2015 */
2016 /* We expect this to be the selected route, so we want
2017 * to tell others about this transistion.
2018 */
2019 UNSET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
2020
2021 /* Changed nexthops - update kernel/others */
2022 dplane_route_notif_update(rn, re, DPLANE_OP_ROUTE_DELETE, ctx);
2023
2024 /* Redistribute, lsp, and nht update */
2025 redistribute_delete(dest_pfx, src_pfx, re);
2026
2027 zebra_rib_evaluate_rn_nexthops(
2028 rn, zebra_router_get_next_sequence());
2029
2030 zebra_rib_evaluate_mpls(rn);
2031 }
2032
2033 done:
2034 if (rn)
2035 route_unlock_node(rn);
2036
2037 /* Return context to dataplane module */
2038 dplane_ctx_fini(&ctx);
2039 }
2040
2041 /* Take a list of route_node structs and return 1, if there was a record
2042 * picked from it and processed by rib_process(). Don't process more,
2043 * than one RN record; operate only in the specified sub-queue.
2044 */
2045 static unsigned int process_subq(struct list *subq, uint8_t qindex)
2046 {
2047 struct listnode *lnode = listhead(subq);
2048 struct route_node *rnode;
2049 rib_dest_t *dest;
2050 struct zebra_vrf *zvrf = NULL;
2051
2052 if (!lnode)
2053 return 0;
2054
2055 rnode = listgetdata(lnode);
2056 dest = rib_dest_from_rnode(rnode);
2057 if (dest)
2058 zvrf = rib_dest_vrf(dest);
2059
2060 rib_process(rnode);
2061
2062 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
2063 char buf[SRCDEST2STR_BUFFER];
2064
2065 srcdest_rnode2str(rnode, buf, sizeof(buf));
2066 zlog_debug("%u:%s: rn %p dequeued from sub-queue %u",
2067 zvrf ? zvrf_id(zvrf) : 0, buf, rnode, qindex);
2068 }
2069
2070 if (rnode->info)
2071 UNSET_FLAG(rib_dest_from_rnode(rnode)->flags,
2072 RIB_ROUTE_QUEUED(qindex));
2073
2074 #if 0
2075 else
2076 {
2077 zlog_debug ("%s: called for route_node (%p, %d) with no ribs",
2078 __func__, rnode, rnode->lock);
2079 zlog_backtrace(LOG_DEBUG);
2080 }
2081 #endif
2082 route_unlock_node(rnode);
2083 list_delete_node(subq, lnode);
2084 return 1;
2085 }
2086
2087
2088 /*
2089 * Perform next-hop tracking processing after RIB updates.
2090 */
2091 static void do_nht_processing(void)
2092 {
2093 }
2094
2095 /* Dispatch the meta queue by picking, processing and unlocking the next RN from
2096 * a non-empty sub-queue with lowest priority. wq is equal to zebra->ribq and
2097 * data
2098 * is pointed to the meta queue structure.
2099 */
2100 static wq_item_status meta_queue_process(struct work_queue *dummy, void *data)
2101 {
2102 struct meta_queue *mq = data;
2103 unsigned i;
2104 uint32_t queue_len, queue_limit;
2105
2106 /* Ensure there's room for more dataplane updates */
2107 queue_limit = dplane_get_in_queue_limit();
2108 queue_len = dplane_get_in_queue_len();
2109 if (queue_len > queue_limit) {
2110 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2111 zlog_debug("rib queue: dplane queue len %u, limit %u, retrying",
2112 queue_len, queue_limit);
2113
2114 /* Ensure that the meta-queue is actually enqueued */
2115 if (work_queue_empty(zrouter.ribq))
2116 work_queue_add(zrouter.ribq, zrouter.mq);
2117
2118 return WQ_QUEUE_BLOCKED;
2119 }
2120
2121 for (i = 0; i < MQ_SIZE; i++)
2122 if (process_subq(mq->subq[i], i)) {
2123 mq->size--;
2124 break;
2125 }
2126 return mq->size ? WQ_REQUEUE : WQ_SUCCESS;
2127 }
2128
2129
2130 /*
2131 * Look into the RN and queue it into the highest priority queue
2132 * at this point in time for processing.
2133 *
2134 * We will enqueue a route node only once per invocation.
2135 *
2136 * There are two possibilities here that should be kept in mind.
2137 * If the original invocation has not been pulled off for processing
2138 * yet, A subsuquent invocation can have a route entry with a better
2139 * meta queue index value and we can have a situation where
2140 * we might have the same node enqueued 2 times. Not necessarily
2141 * an optimal situation but it should be ok.
2142 *
2143 * The other possibility is that the original invocation has not
2144 * been pulled off for processing yet, A subsusquent invocation
2145 * doesn't have a route_entry with a better meta-queue and the
2146 * original metaqueue index value will win and we'll end up with
2147 * the route node enqueued once.
2148 */
2149 static void rib_meta_queue_add(struct meta_queue *mq, struct route_node *rn)
2150 {
2151 struct route_entry *re = NULL, *curr_re = NULL;
2152 uint8_t qindex = MQ_SIZE, curr_qindex = MQ_SIZE;
2153
2154 RNODE_FOREACH_RE (rn, curr_re) {
2155 curr_qindex = route_info[curr_re->type].meta_q_map;
2156
2157 if (curr_qindex <= qindex) {
2158 re = curr_re;
2159 qindex = curr_qindex;
2160 }
2161 }
2162
2163 if (!re)
2164 return;
2165
2166 /* Invariant: at this point we always have rn->info set. */
2167 if (CHECK_FLAG(rib_dest_from_rnode(rn)->flags,
2168 RIB_ROUTE_QUEUED(qindex))) {
2169 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2170 rnode_debug(rn, re->vrf_id,
2171 "rn %p is already queued in sub-queue %u",
2172 (void *)rn, qindex);
2173 return;
2174 }
2175
2176 SET_FLAG(rib_dest_from_rnode(rn)->flags, RIB_ROUTE_QUEUED(qindex));
2177 listnode_add(mq->subq[qindex], rn);
2178 route_lock_node(rn);
2179 mq->size++;
2180
2181 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2182 rnode_debug(rn, re->vrf_id, "queued rn %p into sub-queue %u",
2183 (void *)rn, qindex);
2184 }
2185
2186 /* Add route_node to work queue and schedule processing */
2187 void rib_queue_add(struct route_node *rn)
2188 {
2189 assert(rn);
2190
2191 /* Pointless to queue a route_node with no RIB entries to add or remove
2192 */
2193 if (!rnode_to_ribs(rn)) {
2194 zlog_debug("%s: called for route_node (%p, %d) with no ribs",
2195 __func__, (void *)rn, rn->lock);
2196 zlog_backtrace(LOG_DEBUG);
2197 return;
2198 }
2199
2200 if (zrouter.ribq == NULL) {
2201 flog_err(EC_ZEBRA_WQ_NONEXISTENT,
2202 "%s: work_queue does not exist!", __func__);
2203 return;
2204 }
2205
2206 /*
2207 * The RIB queue should normally be either empty or holding the only
2208 * work_queue_item element. In the latter case this element would
2209 * hold a pointer to the meta queue structure, which must be used to
2210 * actually queue the route nodes to process. So create the MQ
2211 * holder, if necessary, then push the work into it in any case.
2212 * This semantics was introduced after 0.99.9 release.
2213 */
2214 if (work_queue_empty(zrouter.ribq))
2215 work_queue_add(zrouter.ribq, zrouter.mq);
2216
2217 rib_meta_queue_add(zrouter.mq, rn);
2218
2219 return;
2220 }
2221
2222 /* Create new meta queue.
2223 A destructor function doesn't seem to be necessary here.
2224 */
2225 static struct meta_queue *meta_queue_new(void)
2226 {
2227 struct meta_queue *new;
2228 unsigned i;
2229
2230 new = XCALLOC(MTYPE_WORK_QUEUE, sizeof(struct meta_queue));
2231
2232 for (i = 0; i < MQ_SIZE; i++) {
2233 new->subq[i] = list_new();
2234 assert(new->subq[i]);
2235 }
2236
2237 return new;
2238 }
2239
2240 void meta_queue_free(struct meta_queue *mq)
2241 {
2242 unsigned i;
2243
2244 for (i = 0; i < MQ_SIZE; i++)
2245 list_delete(&mq->subq[i]);
2246
2247 XFREE(MTYPE_WORK_QUEUE, mq);
2248 }
2249
2250 /* initialise zebra rib work queue */
2251 static void rib_queue_init(void)
2252 {
2253 if (!(zrouter.ribq = work_queue_new(zrouter.master,
2254 "route_node processing"))) {
2255 flog_err(EC_ZEBRA_WQ_NONEXISTENT,
2256 "%s: could not initialise work queue!", __func__);
2257 return;
2258 }
2259
2260 /* fill in the work queue spec */
2261 zrouter.ribq->spec.workfunc = &meta_queue_process;
2262 zrouter.ribq->spec.errorfunc = NULL;
2263 zrouter.ribq->spec.completion_func = NULL;
2264 /* XXX: TODO: These should be runtime configurable via vty */
2265 zrouter.ribq->spec.max_retries = 3;
2266 zrouter.ribq->spec.hold = ZEBRA_RIB_PROCESS_HOLD_TIME;
2267 zrouter.ribq->spec.retry = ZEBRA_RIB_PROCESS_RETRY_TIME;
2268
2269 if (!(zrouter.mq = meta_queue_new())) {
2270 flog_err(EC_ZEBRA_WQ_NONEXISTENT,
2271 "%s: could not initialise meta queue!", __func__);
2272 return;
2273 }
2274 return;
2275 }
2276
2277 rib_dest_t *zebra_rib_create_dest(struct route_node *rn)
2278 {
2279 rib_dest_t *dest;
2280
2281 dest = XCALLOC(MTYPE_RIB_DEST, sizeof(rib_dest_t));
2282 rnh_list_init(&dest->nht);
2283 route_lock_node(rn); /* rn route table reference */
2284 rn->info = dest;
2285 dest->rnode = rn;
2286
2287 return dest;
2288 }
2289
2290 /* RIB updates are processed via a queue of pointers to route_nodes.
2291 *
2292 * The queue length is bounded by the maximal size of the routing table,
2293 * as a route_node will not be requeued, if already queued.
2294 *
2295 * REs are submitted via rib_addnode or rib_delnode which set minimal
2296 * state, or static_install_route (when an existing RE is updated)
2297 * and then submit route_node to queue for best-path selection later.
2298 * Order of add/delete state changes are preserved for any given RE.
2299 *
2300 * Deleted REs are reaped during best-path selection.
2301 *
2302 * rib_addnode
2303 * |-> rib_link or unset ROUTE_ENTRY_REMOVE |->Update kernel with
2304 * |-------->| | best RE, if required
2305 * | |
2306 * static_install->|->rib_addqueue...... -> rib_process
2307 * | |
2308 * |-------->| |-> rib_unlink
2309 * |-> set ROUTE_ENTRY_REMOVE |
2310 * rib_delnode (RE freed)
2311 *
2312 * The 'info' pointer of a route_node points to a rib_dest_t
2313 * ('dest'). Queueing state for a route_node is kept on the dest. The
2314 * dest is created on-demand by rib_link() and is kept around at least
2315 * as long as there are ribs hanging off it (@see rib_gc_dest()).
2316 *
2317 * Refcounting (aka "locking" throughout the GNU Zebra and Quagga code):
2318 *
2319 * - route_nodes: refcounted by:
2320 * - dest attached to route_node:
2321 * - managed by: rib_link/rib_gc_dest
2322 * - route_node processing queue
2323 * - managed by: rib_addqueue, rib_process.
2324 *
2325 */
2326
2327 /* Add RE to head of the route node. */
2328 static void rib_link(struct route_node *rn, struct route_entry *re, int process)
2329 {
2330 rib_dest_t *dest;
2331 afi_t afi;
2332 const char *rmap_name;
2333
2334 assert(re && rn);
2335
2336 dest = rib_dest_from_rnode(rn);
2337 if (!dest) {
2338 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2339 rnode_debug(rn, re->vrf_id, "rn %p adding dest", rn);
2340
2341 dest = zebra_rib_create_dest(rn);
2342 }
2343
2344 re_list_add_head(&dest->routes, re);
2345
2346 afi = (rn->p.family == AF_INET)
2347 ? AFI_IP
2348 : (rn->p.family == AF_INET6) ? AFI_IP6 : AFI_MAX;
2349 if (is_zebra_import_table_enabled(afi, re->table)) {
2350 rmap_name = zebra_get_import_table_route_map(afi, re->table);
2351 zebra_add_import_table_entry(rn, re, rmap_name);
2352 } else if (process)
2353 rib_queue_add(rn);
2354 }
2355
2356 static void rib_addnode(struct route_node *rn,
2357 struct route_entry *re, int process)
2358 {
2359 /* RE node has been un-removed before route-node is processed.
2360 * route_node must hence already be on the queue for processing..
2361 */
2362 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
2363 if (IS_ZEBRA_DEBUG_RIB)
2364 rnode_debug(rn, re->vrf_id, "rn %p, un-removed re %p",
2365 (void *)rn, (void *)re);
2366
2367 UNSET_FLAG(re->status, ROUTE_ENTRY_REMOVED);
2368 return;
2369 }
2370 rib_link(rn, re, process);
2371 }
2372
2373 /*
2374 * rib_unlink
2375 *
2376 * Detach a rib structure from a route_node.
2377 *
2378 * Note that a call to rib_unlink() should be followed by a call to
2379 * rib_gc_dest() at some point. This allows a rib_dest_t that is no
2380 * longer required to be deleted.
2381 */
2382 void rib_unlink(struct route_node *rn, struct route_entry *re)
2383 {
2384 rib_dest_t *dest;
2385
2386 assert(rn && re);
2387
2388 if (IS_ZEBRA_DEBUG_RIB)
2389 rnode_debug(rn, re->vrf_id, "rn %p, re %p", (void *)rn,
2390 (void *)re);
2391
2392 dest = rib_dest_from_rnode(rn);
2393
2394 re_list_del(&dest->routes, re);
2395
2396 if (dest->selected_fib == re)
2397 dest->selected_fib = NULL;
2398
2399 nexthops_free(re->ng.nexthop);
2400 nexthops_free(re->fib_ng.nexthop);
2401
2402 XFREE(MTYPE_RE, re);
2403 }
2404
2405 void rib_delnode(struct route_node *rn, struct route_entry *re)
2406 {
2407 afi_t afi;
2408
2409 if (IS_ZEBRA_DEBUG_RIB)
2410 rnode_debug(rn, re->vrf_id, "rn %p, re %p, removing",
2411 (void *)rn, (void *)re);
2412 SET_FLAG(re->status, ROUTE_ENTRY_REMOVED);
2413
2414 afi = (rn->p.family == AF_INET)
2415 ? AFI_IP
2416 : (rn->p.family == AF_INET6) ? AFI_IP6 : AFI_MAX;
2417 if (is_zebra_import_table_enabled(afi, re->table)) {
2418 zebra_del_import_table_entry(rn, re);
2419 /* Just clean up if non main table */
2420 if (IS_ZEBRA_DEBUG_RIB) {
2421 char buf[SRCDEST2STR_BUFFER];
2422 srcdest_rnode2str(rn, buf, sizeof(buf));
2423 zlog_debug("%u:%s: Freeing route rn %p, re %p (%s)",
2424 re->vrf_id, buf, rn, re,
2425 zebra_route_string(re->type));
2426 }
2427
2428 rib_unlink(rn, re);
2429 } else {
2430 rib_queue_add(rn);
2431 }
2432 }
2433
2434 /* This function dumps the contents of a given RE entry into
2435 * standard debug log. Calling function name and IP prefix in
2436 * question are passed as 1st and 2nd arguments.
2437 */
2438
2439 void _route_entry_dump(const char *func, union prefixconstptr pp,
2440 union prefixconstptr src_pp,
2441 const struct route_entry *re)
2442 {
2443 const struct prefix *src_p = src_pp.p;
2444 bool is_srcdst = src_p && src_p->prefixlen;
2445 char straddr[PREFIX_STRLEN];
2446 char srcaddr[PREFIX_STRLEN];
2447 struct nexthop *nexthop;
2448
2449 zlog_debug("%s: dumping RE entry %p for %s%s%s vrf %u", func,
2450 (const void *)re, prefix2str(pp, straddr, sizeof(straddr)),
2451 is_srcdst ? " from " : "",
2452 is_srcdst ? prefix2str(src_pp, srcaddr, sizeof(srcaddr))
2453 : "",
2454 re->vrf_id);
2455 zlog_debug("%s: uptime == %lu, type == %u, instance == %d, table == %d",
2456 func, (unsigned long)re->uptime, re->type, re->instance,
2457 re->table);
2458 zlog_debug(
2459 "%s: metric == %u, mtu == %u, distance == %u, flags == %u, status == %u",
2460 func, re->metric, re->mtu, re->distance, re->flags, re->status);
2461 zlog_debug("%s: nexthop_num == %u, nexthop_active_num == %u", func,
2462 re->nexthop_num, re->nexthop_active_num);
2463
2464 for (ALL_NEXTHOPS(re->ng, nexthop)) {
2465 struct interface *ifp;
2466 struct vrf *vrf = vrf_lookup_by_id(nexthop->vrf_id);
2467
2468 switch (nexthop->type) {
2469 case NEXTHOP_TYPE_BLACKHOLE:
2470 sprintf(straddr, "Blackhole");
2471 break;
2472 case NEXTHOP_TYPE_IFINDEX:
2473 ifp = if_lookup_by_index(nexthop->ifindex,
2474 nexthop->vrf_id);
2475 sprintf(straddr, "%s", ifp ? ifp->name : "Unknown");
2476 break;
2477 case NEXTHOP_TYPE_IPV4:
2478 /* fallthrough */
2479 case NEXTHOP_TYPE_IPV4_IFINDEX:
2480 inet_ntop(AF_INET, &nexthop->gate, straddr,
2481 INET6_ADDRSTRLEN);
2482 break;
2483 case NEXTHOP_TYPE_IPV6:
2484 case NEXTHOP_TYPE_IPV6_IFINDEX:
2485 inet_ntop(AF_INET6, &nexthop->gate, straddr,
2486 INET6_ADDRSTRLEN);
2487 break;
2488 }
2489 zlog_debug("%s: %s %s[%u] vrf %s(%u) with flags %s%s%s%s%s%s",
2490 func, (nexthop->rparent ? " NH" : "NH"), straddr,
2491 nexthop->ifindex, vrf ? vrf->name : "Unknown",
2492 nexthop->vrf_id,
2493 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE)
2494 ? "ACTIVE "
2495 : ""),
2496 (CHECK_FLAG(re->status, ROUTE_ENTRY_INSTALLED)
2497 ? "FIB "
2498 : ""),
2499 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE)
2500 ? "RECURSIVE "
2501 : ""),
2502 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK)
2503 ? "ONLINK "
2504 : ""),
2505 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_MATCHED)
2506 ? "MATCHED "
2507 : ""),
2508 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_DUPLICATE)
2509 ? "DUPLICATE "
2510 : ""));
2511 }
2512 zlog_debug("%s: dump complete", func);
2513 }
2514
2515 /* This is an exported helper to rtm_read() to dump the strange
2516 * RE entry found by rib_lookup_ipv4_route()
2517 */
2518
2519 void rib_lookup_and_dump(struct prefix_ipv4 *p, vrf_id_t vrf_id)
2520 {
2521 struct route_table *table;
2522 struct route_node *rn;
2523 struct route_entry *re;
2524 char prefix_buf[INET_ADDRSTRLEN];
2525
2526 /* Lookup table. */
2527 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
2528 if (!table) {
2529 flog_err(EC_ZEBRA_TABLE_LOOKUP_FAILED,
2530 "%s:%u zebra_vrf_table() returned NULL", __func__,
2531 vrf_id);
2532 return;
2533 }
2534
2535 /* Scan the RIB table for exactly matching RE entry. */
2536 rn = route_node_lookup(table, (struct prefix *)p);
2537
2538 /* No route for this prefix. */
2539 if (!rn) {
2540 zlog_debug("%s:%u lookup failed for %s", __func__, vrf_id,
2541 prefix2str((struct prefix *)p, prefix_buf,
2542 sizeof(prefix_buf)));
2543 return;
2544 }
2545
2546 /* Unlock node. */
2547 route_unlock_node(rn);
2548
2549 /* let's go */
2550 RNODE_FOREACH_RE (rn, re) {
2551 zlog_debug("%s:%u rn %p, re %p: %s, %s",
2552 __func__, vrf_id,
2553 (void *)rn, (void *)re,
2554 (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)
2555 ? "removed"
2556 : "NOT removed"),
2557 (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)
2558 ? "selected"
2559 : "NOT selected"));
2560 route_entry_dump(p, NULL, re);
2561 }
2562 }
2563
2564 /* Check if requested address assignment will fail due to another
2565 * route being installed by zebra in FIB already. Take necessary
2566 * actions, if needed: remove such a route from FIB and deSELECT
2567 * corresponding RE entry. Then put affected RN into RIBQ head.
2568 */
2569 void rib_lookup_and_pushup(struct prefix_ipv4 *p, vrf_id_t vrf_id)
2570 {
2571 struct route_table *table;
2572 struct route_node *rn;
2573 rib_dest_t *dest;
2574
2575 if (NULL == (table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id))) {
2576 flog_err(EC_ZEBRA_TABLE_LOOKUP_FAILED,
2577 "%s:%u zebra_vrf_table() returned NULL", __func__,
2578 vrf_id);
2579 return;
2580 }
2581
2582 /* No matches would be the simplest case. */
2583 if (NULL == (rn = route_node_lookup(table, (struct prefix *)p)))
2584 return;
2585
2586 /* Unlock node. */
2587 route_unlock_node(rn);
2588
2589 dest = rib_dest_from_rnode(rn);
2590 /* Check all RE entries. In case any changes have to be done, requeue
2591 * the RN into RIBQ head. If the routing message about the new connected
2592 * route (generated by the IP address we are going to assign very soon)
2593 * comes before the RIBQ is processed, the new RE entry will join
2594 * RIBQ record already on head. This is necessary for proper
2595 * revalidation
2596 * of the rest of the RE.
2597 */
2598 if (dest->selected_fib) {
2599 if (IS_ZEBRA_DEBUG_RIB) {
2600 char buf[PREFIX_STRLEN];
2601
2602 zlog_debug("%u:%s: freeing way for connected prefix",
2603 dest->selected_fib->vrf_id,
2604 prefix2str(&rn->p, buf, sizeof(buf)));
2605 route_entry_dump(&rn->p, NULL, dest->selected_fib);
2606 }
2607 rib_uninstall(rn, dest->selected_fib);
2608 rib_queue_add(rn);
2609 }
2610 }
2611
2612 int rib_add_multipath(afi_t afi, safi_t safi, struct prefix *p,
2613 struct prefix_ipv6 *src_p, struct route_entry *re)
2614 {
2615 struct route_table *table;
2616 struct route_node *rn;
2617 struct route_entry *same = NULL;
2618 int ret = 0;
2619
2620 if (!re)
2621 return 0;
2622
2623 assert(!src_p || !src_p->prefixlen || afi == AFI_IP6);
2624
2625 /* Lookup table. */
2626 table = zebra_vrf_table_with_table_id(afi, safi, re->vrf_id, re->table);
2627 if (!table) {
2628 XFREE(MTYPE_RE, re);
2629 return 0;
2630 }
2631
2632 /* Make it sure prefixlen is applied to the prefix. */
2633 apply_mask(p);
2634 if (src_p)
2635 apply_mask_ipv6(src_p);
2636
2637 /* Set default distance by route type. */
2638 if (re->distance == 0)
2639 re->distance = route_distance(re->type);
2640
2641 /* Lookup route node.*/
2642 rn = srcdest_rnode_get(table, p, src_p);
2643
2644 /*
2645 * If same type of route are installed, treat it as a implicit
2646 * withdraw.
2647 * If the user has specified the No route replace semantics
2648 * for the install don't do a route replace.
2649 */
2650 RNODE_FOREACH_RE (rn, same) {
2651 if (CHECK_FLAG(same->status, ROUTE_ENTRY_REMOVED))
2652 continue;
2653
2654 if (same->type != re->type)
2655 continue;
2656 if (same->instance != re->instance)
2657 continue;
2658 if (same->type == ZEBRA_ROUTE_KERNEL
2659 && same->metric != re->metric)
2660 continue;
2661
2662 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_RR_USE_DISTANCE) &&
2663 same->distance != re->distance)
2664 continue;
2665
2666 /*
2667 * We should allow duplicate connected routes
2668 * because of IPv6 link-local routes and unnumbered
2669 * interfaces on Linux.
2670 */
2671 if (same->type != ZEBRA_ROUTE_CONNECT)
2672 break;
2673 }
2674
2675 /* If this route is kernel/connected route, notify the dataplane. */
2676 if (RIB_SYSTEM_ROUTE(re)) {
2677 /* Notify dataplane */
2678 dplane_sys_route_add(rn, re);
2679 }
2680
2681 /* Link new re to node.*/
2682 if (IS_ZEBRA_DEBUG_RIB) {
2683 rnode_debug(rn, re->vrf_id,
2684 "Inserting route rn %p, re %p (%s) existing %p",
2685 rn, re, zebra_route_string(re->type), same);
2686
2687 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2688 route_entry_dump(p, src_p, re);
2689 }
2690
2691 SET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
2692 rib_addnode(rn, re, 1);
2693 ret = 1;
2694
2695 /* Free implicit route.*/
2696 if (same) {
2697 rib_delnode(rn, same);
2698 ret = -1;
2699 }
2700
2701 route_unlock_node(rn);
2702 return ret;
2703 }
2704
2705 void rib_delete(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type,
2706 unsigned short instance, int flags, struct prefix *p,
2707 struct prefix_ipv6 *src_p, const struct nexthop *nh,
2708 uint32_t table_id, uint32_t metric, uint8_t distance,
2709 bool fromkernel)
2710 {
2711 struct route_table *table;
2712 struct route_node *rn;
2713 struct route_entry *re;
2714 struct route_entry *fib = NULL;
2715 struct route_entry *same = NULL;
2716 struct nexthop *rtnh;
2717 char buf2[INET6_ADDRSTRLEN];
2718 rib_dest_t *dest;
2719
2720 assert(!src_p || !src_p->prefixlen || afi == AFI_IP6);
2721
2722 /* Lookup table. */
2723 table = zebra_vrf_table_with_table_id(afi, safi, vrf_id, table_id);
2724 if (!table)
2725 return;
2726
2727 /* Apply mask. */
2728 apply_mask(p);
2729 if (src_p)
2730 apply_mask_ipv6(src_p);
2731
2732 /* Lookup route node. */
2733 rn = srcdest_rnode_lookup(table, p, src_p);
2734 if (!rn) {
2735 char dst_buf[PREFIX_STRLEN], src_buf[PREFIX_STRLEN];
2736
2737 prefix2str(p, dst_buf, sizeof(dst_buf));
2738 if (src_p && src_p->prefixlen)
2739 prefix2str(src_p, src_buf, sizeof(src_buf));
2740 else
2741 src_buf[0] = '\0';
2742
2743 if (IS_ZEBRA_DEBUG_RIB)
2744 zlog_debug("%u:%s%s%s doesn't exist in rib", vrf_id,
2745 dst_buf,
2746 (src_buf[0] != '\0') ? " from " : "",
2747 src_buf);
2748 return;
2749 }
2750
2751 dest = rib_dest_from_rnode(rn);
2752 fib = dest->selected_fib;
2753
2754 /* Lookup same type route. */
2755 RNODE_FOREACH_RE (rn, re) {
2756 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
2757 continue;
2758
2759 if (re->type != type)
2760 continue;
2761 if (re->instance != instance)
2762 continue;
2763 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_RR_USE_DISTANCE) &&
2764 distance != re->distance)
2765 continue;
2766
2767 if (re->type == ZEBRA_ROUTE_KERNEL && re->metric != metric)
2768 continue;
2769 if (re->type == ZEBRA_ROUTE_CONNECT && (rtnh = re->ng.nexthop)
2770 && rtnh->type == NEXTHOP_TYPE_IFINDEX && nh) {
2771 if (rtnh->ifindex != nh->ifindex)
2772 continue;
2773 same = re;
2774 break;
2775 }
2776 /* Make sure that the route found has the same gateway. */
2777 else {
2778 if (nh == NULL) {
2779 same = re;
2780 break;
2781 }
2782 for (ALL_NEXTHOPS(re->ng, rtnh))
2783 /*
2784 * No guarantee all kernel send nh with labels
2785 * on delete.
2786 */
2787 if (nexthop_same_no_labels(rtnh, nh)) {
2788 same = re;
2789 break;
2790 }
2791 if (same)
2792 break;
2793 }
2794 }
2795 /* If same type of route can't be found and this message is from
2796 kernel. */
2797 if (!same) {
2798 /*
2799 * In the past(HA!) we could get here because
2800 * we were receiving a route delete from the
2801 * kernel and we're not marking the proto
2802 * as coming from it's appropriate originator.
2803 * Now that we are properly noticing the fact
2804 * that the kernel has deleted our route we
2805 * are not going to get called in this path
2806 * I am going to leave this here because
2807 * this might still work this way on non-linux
2808 * platforms as well as some weird state I have
2809 * not properly thought of yet.
2810 * If we can show that this code path is
2811 * dead then we can remove it.
2812 */
2813 if (fib && CHECK_FLAG(flags, ZEBRA_FLAG_SELFROUTE)) {
2814 if (IS_ZEBRA_DEBUG_RIB) {
2815 rnode_debug(rn, vrf_id,
2816 "rn %p, re %p (%s) was deleted from kernel, adding",
2817 rn, fib,
2818 zebra_route_string(fib->type));
2819 }
2820 if (allow_delete) {
2821 UNSET_FLAG(fib->status, ROUTE_ENTRY_INSTALLED);
2822 /* Unset flags. */
2823 for (rtnh = fib->ng.nexthop; rtnh;
2824 rtnh = rtnh->next)
2825 UNSET_FLAG(rtnh->flags,
2826 NEXTHOP_FLAG_FIB);
2827
2828 /*
2829 * This is a non FRR route
2830 * as such we should mark
2831 * it as deleted
2832 */
2833 dest->selected_fib = NULL;
2834 } else {
2835 /* This means someone else, other than Zebra,
2836 * has deleted
2837 * a Zebra router from the kernel. We will add
2838 * it back */
2839 rib_install_kernel(rn, fib, NULL);
2840 }
2841 } else {
2842 if (IS_ZEBRA_DEBUG_RIB) {
2843 if (nh)
2844 rnode_debug(
2845 rn, vrf_id,
2846 "via %s ifindex %d type %d "
2847 "doesn't exist in rib",
2848 inet_ntop(afi2family(afi),
2849 &nh->gate, buf2,
2850 sizeof(buf2)),
2851 nh->ifindex, type);
2852 else
2853 rnode_debug(
2854 rn, vrf_id,
2855 "type %d doesn't exist in rib",
2856 type);
2857 }
2858 route_unlock_node(rn);
2859 return;
2860 }
2861 }
2862
2863 if (same) {
2864 if (fromkernel && CHECK_FLAG(flags, ZEBRA_FLAG_SELFROUTE)
2865 && !allow_delete) {
2866 rib_install_kernel(rn, same, NULL);
2867 route_unlock_node(rn);
2868
2869 return;
2870 }
2871
2872 /* Special handling for IPv4 or IPv6 routes sourced from
2873 * EVPN - the nexthop (and associated MAC) need to be
2874 * uninstalled if no more refs.
2875 */
2876 if (CHECK_FLAG(flags, ZEBRA_FLAG_EVPN_ROUTE)) {
2877 struct nexthop *tmp_nh;
2878
2879 for (ALL_NEXTHOPS(re->ng, tmp_nh)) {
2880 struct ipaddr vtep_ip;
2881
2882 memset(&vtep_ip, 0, sizeof(struct ipaddr));
2883 if (afi == AFI_IP) {
2884 vtep_ip.ipa_type = IPADDR_V4;
2885 memcpy(&(vtep_ip.ipaddr_v4),
2886 &(tmp_nh->gate.ipv4),
2887 sizeof(struct in_addr));
2888 } else {
2889 vtep_ip.ipa_type = IPADDR_V6;
2890 memcpy(&(vtep_ip.ipaddr_v6),
2891 &(tmp_nh->gate.ipv6),
2892 sizeof(struct in6_addr));
2893 }
2894 zebra_vxlan_evpn_vrf_route_del(re->vrf_id,
2895 &vtep_ip, p);
2896 }
2897 }
2898
2899 /* Notify dplane if system route changes */
2900 if (RIB_SYSTEM_ROUTE(re))
2901 dplane_sys_route_del(rn, same);
2902
2903 rib_delnode(rn, same);
2904 }
2905
2906 route_unlock_node(rn);
2907 return;
2908 }
2909
2910
2911 int rib_add(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type,
2912 unsigned short instance, int flags, struct prefix *p,
2913 struct prefix_ipv6 *src_p, const struct nexthop *nh,
2914 uint32_t table_id, uint32_t metric, uint32_t mtu, uint8_t distance,
2915 route_tag_t tag)
2916 {
2917 struct route_entry *re;
2918 struct nexthop *nexthop;
2919
2920 /* Allocate new route_entry structure. */
2921 re = XCALLOC(MTYPE_RE, sizeof(struct route_entry));
2922 re->type = type;
2923 re->instance = instance;
2924 re->distance = distance;
2925 re->flags = flags;
2926 re->metric = metric;
2927 re->mtu = mtu;
2928 re->table = table_id;
2929 re->vrf_id = vrf_id;
2930 re->nexthop_num = 0;
2931 re->uptime = monotime(NULL);
2932 re->tag = tag;
2933
2934 /* Add nexthop. */
2935 nexthop = nexthop_new();
2936 *nexthop = *nh;
2937 route_entry_nexthop_add(re, nexthop);
2938
2939 return rib_add_multipath(afi, safi, p, src_p, re);
2940 }
2941
2942 /* Schedule routes of a particular table (address-family) based on event. */
2943 void rib_update_table(struct route_table *table, rib_update_event_t event)
2944 {
2945 struct route_node *rn;
2946 struct route_entry *re, *next;
2947
2948 /* Walk all routes and queue for processing, if appropriate for
2949 * the trigger event.
2950 */
2951 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
2952 /*
2953 * If we are looking at a route node and the node
2954 * has already been queued we don't
2955 * need to queue it up again
2956 */
2957 if (rn->info && CHECK_FLAG(rib_dest_from_rnode(rn)->flags,
2958 RIB_ROUTE_ANY_QUEUED))
2959 continue;
2960 switch (event) {
2961 case RIB_UPDATE_IF_CHANGE:
2962 /* Examine all routes that won't get processed by the
2963 * protocol or
2964 * triggered by nexthop evaluation (NHT). This would be
2965 * system,
2966 * kernel and certain static routes. Note that NHT will
2967 * get
2968 * triggered upon an interface event as connected routes
2969 * always
2970 * get queued for processing.
2971 */
2972 RNODE_FOREACH_RE_SAFE (rn, re, next) {
2973 struct nexthop *nh;
2974
2975 if (re->type != ZEBRA_ROUTE_SYSTEM
2976 && re->type != ZEBRA_ROUTE_KERNEL
2977 && re->type != ZEBRA_ROUTE_CONNECT
2978 && re->type != ZEBRA_ROUTE_STATIC)
2979 continue;
2980
2981 if (re->type != ZEBRA_ROUTE_STATIC) {
2982 SET_FLAG(re->status,
2983 ROUTE_ENTRY_CHANGED);
2984 rib_queue_add(rn);
2985 continue;
2986 }
2987
2988 for (nh = re->ng.nexthop; nh; nh = nh->next)
2989 if (!(nh->type == NEXTHOP_TYPE_IPV4
2990 || nh->type == NEXTHOP_TYPE_IPV6))
2991 break;
2992
2993 /* If we only have nexthops to a
2994 * gateway, NHT will
2995 * take care.
2996 */
2997 if (nh) {
2998 SET_FLAG(re->status,
2999 ROUTE_ENTRY_CHANGED);
3000 rib_queue_add(rn);
3001 }
3002 }
3003 break;
3004
3005 case RIB_UPDATE_RMAP_CHANGE:
3006 case RIB_UPDATE_OTHER:
3007 /* Right now, examine all routes. Can restrict to a
3008 * protocol in
3009 * some cases (TODO).
3010 */
3011 if (rnode_to_ribs(rn)) {
3012 RNODE_FOREACH_RE_SAFE (rn, re, next)
3013 SET_FLAG(re->status,
3014 ROUTE_ENTRY_CHANGED);
3015 rib_queue_add(rn);
3016 }
3017 break;
3018
3019 default:
3020 break;
3021 }
3022 }
3023 }
3024
3025 /* RIB update function. */
3026 void rib_update(vrf_id_t vrf_id, rib_update_event_t event)
3027 {
3028 struct route_table *table;
3029
3030 /* Process routes of interested address-families. */
3031 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
3032 if (table) {
3033 if (IS_ZEBRA_DEBUG_EVENT)
3034 zlog_debug("%s : AFI_IP event %d", __func__, event);
3035 rib_update_table(table, event);
3036 }
3037
3038 table = zebra_vrf_table(AFI_IP6, SAFI_UNICAST, vrf_id);
3039 if (table) {
3040 if (IS_ZEBRA_DEBUG_EVENT)
3041 zlog_debug("%s : AFI_IP6 event %d", __func__, event);
3042 rib_update_table(table, event);
3043 }
3044 }
3045
3046 /* Delete self installed routes after zebra is relaunched. */
3047 void rib_sweep_table(struct route_table *table)
3048 {
3049 struct route_node *rn;
3050 struct route_entry *re;
3051 struct route_entry *next;
3052 struct nexthop *nexthop;
3053
3054 if (!table)
3055 return;
3056
3057 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
3058 RNODE_FOREACH_RE_SAFE (rn, re, next) {
3059
3060 if (IS_ZEBRA_DEBUG_RIB)
3061 route_entry_dump(&rn->p, NULL, re);
3062
3063 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
3064 continue;
3065
3066 if (!CHECK_FLAG(re->flags, ZEBRA_FLAG_SELFROUTE))
3067 continue;
3068
3069 /*
3070 * If routes are older than startup_time then
3071 * we know we read them in from the kernel.
3072 * As such we can safely remove them.
3073 */
3074 if (zrouter.startup_time < re->uptime)
3075 continue;
3076
3077 /*
3078 * So we are starting up and have received
3079 * routes from the kernel that we have installed
3080 * from a previous run of zebra but not cleaned
3081 * up ( say a kill -9 )
3082 * But since we haven't actually installed
3083 * them yet( we received them from the kernel )
3084 * we don't think they are active.
3085 * So let's pretend they are active to actually
3086 * remove them.
3087 * In all honesty I'm not sure if we should
3088 * mark them as active when we receive them
3089 * This is startup only so probably ok.
3090 *
3091 * If we ever decide to move rib_sweep_table
3092 * to a different spot (ie startup )
3093 * this decision needs to be revisited
3094 */
3095 SET_FLAG(re->status, ROUTE_ENTRY_INSTALLED);
3096 for (ALL_NEXTHOPS(re->ng, nexthop))
3097 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
3098
3099 rib_uninstall_kernel(rn, re);
3100 rib_delnode(rn, re);
3101 }
3102 }
3103 }
3104
3105 /* Sweep all RIB tables. */
3106 int rib_sweep_route(struct thread *t)
3107 {
3108 struct vrf *vrf;
3109 struct zebra_vrf *zvrf;
3110
3111 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id) {
3112 if ((zvrf = vrf->info) == NULL)
3113 continue;
3114
3115 rib_sweep_table(zvrf->table[AFI_IP][SAFI_UNICAST]);
3116 rib_sweep_table(zvrf->table[AFI_IP6][SAFI_UNICAST]);
3117 }
3118
3119 zebra_router_sweep_route();
3120
3121 return 0;
3122 }
3123
3124 /* Remove specific by protocol routes from 'table'. */
3125 unsigned long rib_score_proto_table(uint8_t proto, unsigned short instance,
3126 struct route_table *table)
3127 {
3128 struct route_node *rn;
3129 struct route_entry *re;
3130 struct route_entry *next;
3131 unsigned long n = 0;
3132
3133 if (table)
3134 for (rn = route_top(table); rn; rn = srcdest_route_next(rn))
3135 RNODE_FOREACH_RE_SAFE (rn, re, next) {
3136 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
3137 continue;
3138 if (re->type == proto
3139 && re->instance == instance) {
3140 rib_delnode(rn, re);
3141 n++;
3142 }
3143 }
3144 return n;
3145 }
3146
3147 /* Remove specific by protocol routes. */
3148 unsigned long rib_score_proto(uint8_t proto, unsigned short instance)
3149 {
3150 struct vrf *vrf;
3151 struct zebra_vrf *zvrf;
3152 struct other_route_table *ort;
3153 unsigned long cnt = 0;
3154
3155 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id) {
3156 zvrf = vrf->info;
3157 if (!zvrf)
3158 continue;
3159
3160 cnt += rib_score_proto_table(proto, instance,
3161 zvrf->table[AFI_IP][SAFI_UNICAST])
3162 + rib_score_proto_table(
3163 proto, instance,
3164 zvrf->table[AFI_IP6][SAFI_UNICAST]);
3165
3166 frr_each(otable, &zvrf->other_tables, ort) cnt +=
3167 rib_score_proto_table(proto, instance, ort->table);
3168 }
3169
3170 return cnt;
3171 }
3172
3173 /* Close RIB and clean up kernel routes. */
3174 void rib_close_table(struct route_table *table)
3175 {
3176 struct route_node *rn;
3177 rib_table_info_t *info;
3178 rib_dest_t *dest;
3179
3180 if (!table)
3181 return;
3182
3183 info = route_table_get_info(table);
3184
3185 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
3186 dest = rib_dest_from_rnode(rn);
3187
3188 if (dest && dest->selected_fib) {
3189 if (info->safi == SAFI_UNICAST)
3190 hook_call(rib_update, rn, NULL);
3191
3192 rib_uninstall_kernel(rn, dest->selected_fib);
3193 dest->selected_fib = NULL;
3194 }
3195 }
3196 }
3197
3198 /*
3199 * Handler for async dataplane results after a pseudowire installation
3200 */
3201 static int handle_pw_result(struct zebra_dplane_ctx *ctx)
3202 {
3203 struct zebra_pw *pw;
3204 struct zebra_vrf *vrf;
3205
3206 /* The pseudowire code assumes success - we act on an error
3207 * result for installation attempts here.
3208 */
3209 if (dplane_ctx_get_op(ctx) != DPLANE_OP_PW_INSTALL)
3210 goto done;
3211
3212 if (dplane_ctx_get_status(ctx) != ZEBRA_DPLANE_REQUEST_SUCCESS) {
3213 vrf = zebra_vrf_lookup_by_id(dplane_ctx_get_vrf(ctx));
3214 pw = zebra_pw_find(vrf, dplane_ctx_get_pw_ifname(ctx));
3215 if (pw)
3216 zebra_pw_install_failure(pw);
3217 }
3218
3219 done:
3220
3221 return 0;
3222 }
3223
3224
3225 /*
3226 * Handle results from the dataplane system. Dequeue update context
3227 * structs, dispatch to appropriate internal handlers.
3228 */
3229 static int rib_process_dplane_results(struct thread *thread)
3230 {
3231 struct zebra_dplane_ctx *ctx;
3232 struct dplane_ctx_q ctxlist;
3233
3234 /* Dequeue a list of completed updates with one lock/unlock cycle */
3235
3236 do {
3237 TAILQ_INIT(&ctxlist);
3238
3239 /* Take lock controlling queue of results */
3240 pthread_mutex_lock(&dplane_mutex);
3241 {
3242 /* Dequeue list of context structs */
3243 dplane_ctx_list_append(&ctxlist, &rib_dplane_q);
3244 }
3245 pthread_mutex_unlock(&dplane_mutex);
3246
3247 /* Dequeue context block */
3248 ctx = dplane_ctx_dequeue(&ctxlist);
3249
3250 /* If we've emptied the results queue, we're done */
3251 if (ctx == NULL)
3252 break;
3253
3254 while (ctx) {
3255 switch (dplane_ctx_get_op(ctx)) {
3256 case DPLANE_OP_ROUTE_INSTALL:
3257 case DPLANE_OP_ROUTE_UPDATE:
3258 case DPLANE_OP_ROUTE_DELETE:
3259 {
3260 /* Bit of special case for route updates
3261 * that were generated by async notifications:
3262 * we don't want to continue processing these
3263 * in the rib.
3264 */
3265 if (dplane_ctx_get_notif_provider(ctx) == 0)
3266 rib_process_result(ctx);
3267 else
3268 dplane_ctx_fini(&ctx);
3269 }
3270 break;
3271
3272 case DPLANE_OP_ROUTE_NOTIFY:
3273 rib_process_dplane_notify(ctx);
3274 break;
3275
3276 case DPLANE_OP_LSP_INSTALL:
3277 case DPLANE_OP_LSP_UPDATE:
3278 case DPLANE_OP_LSP_DELETE:
3279 {
3280 /* Bit of special case for LSP updates
3281 * that were generated by async notifications:
3282 * we don't want to continue processing these.
3283 */
3284 if (dplane_ctx_get_notif_provider(ctx) == 0)
3285 zebra_mpls_lsp_dplane_result(ctx);
3286 else
3287 dplane_ctx_fini(&ctx);
3288 }
3289 break;
3290
3291 case DPLANE_OP_LSP_NOTIFY:
3292 zebra_mpls_process_dplane_notify(ctx);
3293 break;
3294
3295 case DPLANE_OP_PW_INSTALL:
3296 case DPLANE_OP_PW_UNINSTALL:
3297 handle_pw_result(ctx);
3298 break;
3299
3300 case DPLANE_OP_SYS_ROUTE_ADD:
3301 case DPLANE_OP_SYS_ROUTE_DELETE:
3302 /* No further processing in zebra for these. */
3303 dplane_ctx_fini(&ctx);
3304 break;
3305
3306 default:
3307 /* Don't expect this: just return the struct? */
3308 dplane_ctx_fini(&ctx);
3309 break;
3310 } /* Dispatch by op code */
3311
3312 ctx = dplane_ctx_dequeue(&ctxlist);
3313 }
3314
3315 } while (1);
3316
3317 /* Check for nexthop tracking processing after finishing with results */
3318 do_nht_processing();
3319
3320 return 0;
3321 }
3322
3323 /*
3324 * Results are returned from the dataplane subsystem, in the context of
3325 * the dataplane pthread. We enqueue the results here for processing by
3326 * the main thread later.
3327 */
3328 static int rib_dplane_results(struct dplane_ctx_q *ctxlist)
3329 {
3330 /* Take lock controlling queue of results */
3331 pthread_mutex_lock(&dplane_mutex);
3332 {
3333 /* Enqueue context blocks */
3334 dplane_ctx_list_append(&rib_dplane_q, ctxlist);
3335 }
3336 pthread_mutex_unlock(&dplane_mutex);
3337
3338 /* Ensure event is signalled to zebra main pthread */
3339 thread_add_event(zrouter.master, rib_process_dplane_results, NULL, 0,
3340 &t_dplane);
3341
3342 return 0;
3343 }
3344
3345 /*
3346 * Ensure there are no empty slots in the route_info array.
3347 * Every route type in zebra should be present there.
3348 */
3349 static void check_route_info(void)
3350 {
3351 int len = array_size(route_info);
3352
3353 /*
3354 * ZEBRA_ROUTE_SYSTEM is special cased since
3355 * its key is 0 anyway.
3356 *
3357 * ZEBRA_ROUTE_ALL is also ignored.
3358 */
3359 for (int i = 0; i < len; i++) {
3360 if (i == ZEBRA_ROUTE_SYSTEM || i == ZEBRA_ROUTE_ALL)
3361 continue;
3362 assert(route_info[i].key);
3363 assert(route_info[i].meta_q_map < MQ_SIZE);
3364 }
3365 }
3366
3367 /* Routing information base initialize. */
3368 void rib_init(void)
3369 {
3370 check_route_info();
3371
3372 rib_queue_init();
3373
3374 /* Init dataplane, and register for results */
3375 pthread_mutex_init(&dplane_mutex, NULL);
3376 TAILQ_INIT(&rib_dplane_q);
3377 zebra_dplane_init(rib_dplane_results);
3378 }
3379
3380 /*
3381 * vrf_id_get_next
3382 *
3383 * Get the first vrf id that is greater than the given vrf id if any.
3384 *
3385 * Returns TRUE if a vrf id was found, FALSE otherwise.
3386 */
3387 static inline int vrf_id_get_next(vrf_id_t vrf_id, vrf_id_t *next_id_p)
3388 {
3389 struct vrf *vrf;
3390
3391 vrf = vrf_lookup_by_id(vrf_id);
3392 if (vrf) {
3393 vrf = RB_NEXT(vrf_id_head, vrf);
3394 if (vrf) {
3395 *next_id_p = vrf->vrf_id;
3396 return 1;
3397 }
3398 }
3399
3400 return 0;
3401 }
3402
3403 /*
3404 * rib_tables_iter_next
3405 *
3406 * Returns the next table in the iteration.
3407 */
3408 struct route_table *rib_tables_iter_next(rib_tables_iter_t *iter)
3409 {
3410 struct route_table *table;
3411
3412 /*
3413 * Array that helps us go over all AFI/SAFI combinations via one
3414 * index.
3415 */
3416 static struct {
3417 afi_t afi;
3418 safi_t safi;
3419 } afi_safis[] = {
3420 {AFI_IP, SAFI_UNICAST}, {AFI_IP, SAFI_MULTICAST},
3421 {AFI_IP, SAFI_LABELED_UNICAST}, {AFI_IP6, SAFI_UNICAST},
3422 {AFI_IP6, SAFI_MULTICAST}, {AFI_IP6, SAFI_LABELED_UNICAST},
3423 };
3424
3425 table = NULL;
3426
3427 switch (iter->state) {
3428
3429 case RIB_TABLES_ITER_S_INIT:
3430 iter->vrf_id = VRF_DEFAULT;
3431 iter->afi_safi_ix = -1;
3432
3433 /* Fall through */
3434
3435 case RIB_TABLES_ITER_S_ITERATING:
3436 iter->afi_safi_ix++;
3437 while (1) {
3438
3439 while (iter->afi_safi_ix
3440 < (int)array_size(afi_safis)) {
3441 table = zebra_vrf_table(
3442 afi_safis[iter->afi_safi_ix].afi,
3443 afi_safis[iter->afi_safi_ix].safi,
3444 iter->vrf_id);
3445 if (table)
3446 break;
3447
3448 iter->afi_safi_ix++;
3449 }
3450
3451 /*
3452 * Found another table in this vrf.
3453 */
3454 if (table)
3455 break;
3456
3457 /*
3458 * Done with all tables in the current vrf, go to the
3459 * next
3460 * one.
3461 */
3462 if (!vrf_id_get_next(iter->vrf_id, &iter->vrf_id))
3463 break;
3464
3465 iter->afi_safi_ix = 0;
3466 }
3467
3468 break;
3469
3470 case RIB_TABLES_ITER_S_DONE:
3471 return NULL;
3472 }
3473
3474 if (table)
3475 iter->state = RIB_TABLES_ITER_S_ITERATING;
3476 else
3477 iter->state = RIB_TABLES_ITER_S_DONE;
3478
3479 return table;
3480 }