]> git.proxmox.com Git - mirror_frr.git/blob - zebra/zebra_rib.c
Merge pull request #3477 from donaldsharp/multipath_respect
[mirror_frr.git] / zebra / zebra_rib.c
1 /* Routing Information Base.
2 * Copyright (C) 1997, 98, 99, 2001 Kunihiro Ishiguro
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; see the file COPYING; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include <zebra.h>
22
23 #include "command.h"
24 #include "if.h"
25 #include "linklist.h"
26 #include "log.h"
27 #include "log_int.h"
28 #include "memory.h"
29 #include "mpls.h"
30 #include "nexthop.h"
31 #include "prefix.h"
32 #include "prefix.h"
33 #include "routemap.h"
34 #include "sockunion.h"
35 #include "srcdest_table.h"
36 #include "table.h"
37 #include "thread.h"
38 #include "vrf.h"
39 #include "workqueue.h"
40
41 #include "zebra/zebra_router.h"
42 #include "zebra/connected.h"
43 #include "zebra/debug.h"
44 #include "zebra/interface.h"
45 #include "zebra/redistribute.h"
46 #include "zebra/rib.h"
47 #include "zebra/rt.h"
48 #include "zebra/zapi_msg.h"
49 #include "zebra/zebra_errors.h"
50 #include "zebra/zebra_memory.h"
51 #include "zebra/zebra_ns.h"
52 #include "zebra/zebra_rnh.h"
53 #include "zebra/zebra_routemap.h"
54 #include "zebra/zebra_vrf.h"
55 #include "zebra/zebra_vxlan.h"
56 #include "zebra/zapi_msg.h"
57 #include "zebra/zebra_dplane.h"
58
59 /*
60 * Event, list, and mutex for delivery of dataplane results
61 */
62 static pthread_mutex_t dplane_mutex;
63 static struct thread *t_dplane;
64 static struct dplane_ctx_q rib_dplane_q;
65
66 DEFINE_HOOK(rib_update, (struct route_node * rn, const char *reason),
67 (rn, reason))
68
69 /* Should we allow non Quagga processes to delete our routes */
70 extern int allow_delete;
71
72 /* Each route type's string and default distance value. */
73 static const struct {
74 int key;
75 int distance;
76 } route_info[ZEBRA_ROUTE_MAX] = {
77 [ZEBRA_ROUTE_SYSTEM] = {ZEBRA_ROUTE_SYSTEM, 0},
78 [ZEBRA_ROUTE_KERNEL] = {ZEBRA_ROUTE_KERNEL, 0},
79 [ZEBRA_ROUTE_CONNECT] = {ZEBRA_ROUTE_CONNECT, 0},
80 [ZEBRA_ROUTE_STATIC] = {ZEBRA_ROUTE_STATIC, 1},
81 [ZEBRA_ROUTE_RIP] = {ZEBRA_ROUTE_RIP, 120},
82 [ZEBRA_ROUTE_RIPNG] = {ZEBRA_ROUTE_RIPNG, 120},
83 [ZEBRA_ROUTE_OSPF] = {ZEBRA_ROUTE_OSPF, 110},
84 [ZEBRA_ROUTE_OSPF6] = {ZEBRA_ROUTE_OSPF6, 110},
85 [ZEBRA_ROUTE_ISIS] = {ZEBRA_ROUTE_ISIS, 115},
86 [ZEBRA_ROUTE_BGP] = {ZEBRA_ROUTE_BGP, 20 /* IBGP is 200. */},
87 [ZEBRA_ROUTE_PIM] = {ZEBRA_ROUTE_PIM, 255},
88 [ZEBRA_ROUTE_EIGRP] = {ZEBRA_ROUTE_EIGRP, 90},
89 [ZEBRA_ROUTE_NHRP] = {ZEBRA_ROUTE_NHRP, 10},
90 [ZEBRA_ROUTE_HSLS] = {ZEBRA_ROUTE_HSLS, 255},
91 [ZEBRA_ROUTE_OLSR] = {ZEBRA_ROUTE_OLSR, 255},
92 [ZEBRA_ROUTE_TABLE] = {ZEBRA_ROUTE_TABLE, 150},
93 [ZEBRA_ROUTE_LDP] = {ZEBRA_ROUTE_LDP, 150},
94 [ZEBRA_ROUTE_VNC] = {ZEBRA_ROUTE_VNC, 20},
95 [ZEBRA_ROUTE_VNC_DIRECT] = {ZEBRA_ROUTE_VNC_DIRECT, 20},
96 [ZEBRA_ROUTE_VNC_DIRECT_RH] = {ZEBRA_ROUTE_VNC_DIRECT_RH, 20},
97 [ZEBRA_ROUTE_BGP_DIRECT] = {ZEBRA_ROUTE_BGP_DIRECT, 20},
98 [ZEBRA_ROUTE_BGP_DIRECT_EXT] = {ZEBRA_ROUTE_BGP_DIRECT_EXT, 20},
99 [ZEBRA_ROUTE_BABEL] = {ZEBRA_ROUTE_BABEL, 100},
100 [ZEBRA_ROUTE_SHARP] = {ZEBRA_ROUTE_SHARP, 150},
101
102 /* no entry/default: 150 */
103 };
104
105 /* RPF lookup behaviour */
106 static enum multicast_mode ipv4_multicast_mode = MCAST_NO_CONFIG;
107
108
109 static void __attribute__((format(printf, 5, 6)))
110 _rnode_zlog(const char *_func, vrf_id_t vrf_id, struct route_node *rn,
111 int priority, const char *msgfmt, ...)
112 {
113 char buf[SRCDEST2STR_BUFFER + sizeof(" (MRIB)")];
114 char msgbuf[512];
115 va_list ap;
116
117 va_start(ap, msgfmt);
118 vsnprintf(msgbuf, sizeof(msgbuf), msgfmt, ap);
119 va_end(ap);
120
121 if (rn) {
122 rib_table_info_t *info = srcdest_rnode_table_info(rn);
123 srcdest_rnode2str(rn, buf, sizeof(buf));
124
125 if (info->safi == SAFI_MULTICAST)
126 strcat(buf, " (MRIB)");
127 } else {
128 snprintf(buf, sizeof(buf), "{(route_node *) NULL}");
129 }
130
131 zlog(priority, "%s: %d:%s: %s", _func, vrf_id, buf, msgbuf);
132 }
133
134 #define rnode_debug(node, vrf_id, ...) \
135 _rnode_zlog(__func__, vrf_id, node, LOG_DEBUG, __VA_ARGS__)
136 #define rnode_info(node, ...) \
137 _rnode_zlog(__func__, vrf_id, node, LOG_INFO, __VA_ARGS__)
138
139 uint8_t route_distance(int type)
140 {
141 uint8_t distance;
142
143 if ((unsigned)type >= array_size(route_info))
144 distance = 150;
145 else
146 distance = route_info[type].distance;
147
148 return distance;
149 }
150
151 int is_zebra_valid_kernel_table(uint32_t table_id)
152 {
153 #ifdef linux
154 if ((table_id == RT_TABLE_UNSPEC) || (table_id == RT_TABLE_LOCAL)
155 || (table_id == RT_TABLE_COMPAT))
156 return 0;
157 #endif
158
159 return 1;
160 }
161
162 int is_zebra_main_routing_table(uint32_t table_id)
163 {
164 if ((table_id == RT_TABLE_MAIN)
165 || (table_id == zebrad.rtm_table_default))
166 return 1;
167 return 0;
168 }
169
170 int zebra_check_addr(const struct prefix *p)
171 {
172 if (p->family == AF_INET) {
173 uint32_t addr;
174
175 addr = p->u.prefix4.s_addr;
176 addr = ntohl(addr);
177
178 if (IPV4_NET127(addr) || IN_CLASSD(addr)
179 || IPV4_LINKLOCAL(addr))
180 return 0;
181 }
182 if (p->family == AF_INET6) {
183 if (IN6_IS_ADDR_LOOPBACK(&p->u.prefix6))
184 return 0;
185 if (IN6_IS_ADDR_LINKLOCAL(&p->u.prefix6))
186 return 0;
187 }
188 return 1;
189 }
190
191 /* Add nexthop to the end of a rib node's nexthop list */
192 void route_entry_nexthop_add(struct route_entry *re, struct nexthop *nexthop)
193 {
194 nexthop_add(&re->ng.nexthop, nexthop);
195 re->nexthop_num++;
196 }
197
198
199 /**
200 * copy_nexthop - copy a nexthop to the rib structure.
201 */
202 void route_entry_copy_nexthops(struct route_entry *re, struct nexthop *nh)
203 {
204 assert(!re->ng.nexthop);
205 copy_nexthops(&re->ng.nexthop, nh, NULL);
206 for (struct nexthop *nexthop = nh; nexthop; nexthop = nexthop->next)
207 re->nexthop_num++;
208 }
209
210 /* Delete specified nexthop from the list. */
211 void route_entry_nexthop_delete(struct route_entry *re, struct nexthop *nexthop)
212 {
213 if (nexthop->next)
214 nexthop->next->prev = nexthop->prev;
215 if (nexthop->prev)
216 nexthop->prev->next = nexthop->next;
217 else
218 re->ng.nexthop = nexthop->next;
219 re->nexthop_num--;
220 }
221
222
223 struct nexthop *route_entry_nexthop_ifindex_add(struct route_entry *re,
224 ifindex_t ifindex,
225 vrf_id_t nh_vrf_id)
226 {
227 struct nexthop *nexthop;
228
229 nexthop = nexthop_new();
230 nexthop->type = NEXTHOP_TYPE_IFINDEX;
231 nexthop->ifindex = ifindex;
232 nexthop->vrf_id = nh_vrf_id;
233
234 route_entry_nexthop_add(re, nexthop);
235
236 return nexthop;
237 }
238
239 struct nexthop *route_entry_nexthop_ipv4_add(struct route_entry *re,
240 struct in_addr *ipv4,
241 struct in_addr *src,
242 vrf_id_t nh_vrf_id)
243 {
244 struct nexthop *nexthop;
245
246 nexthop = nexthop_new();
247 nexthop->type = NEXTHOP_TYPE_IPV4;
248 nexthop->vrf_id = nh_vrf_id;
249 nexthop->gate.ipv4 = *ipv4;
250 if (src)
251 nexthop->src.ipv4 = *src;
252
253 route_entry_nexthop_add(re, nexthop);
254
255 return nexthop;
256 }
257
258 struct nexthop *route_entry_nexthop_ipv4_ifindex_add(struct route_entry *re,
259 struct in_addr *ipv4,
260 struct in_addr *src,
261 ifindex_t ifindex,
262 vrf_id_t nh_vrf_id)
263 {
264 struct nexthop *nexthop;
265 struct interface *ifp;
266
267 nexthop = nexthop_new();
268 nexthop->vrf_id = nh_vrf_id;
269 nexthop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
270 nexthop->gate.ipv4 = *ipv4;
271 if (src)
272 nexthop->src.ipv4 = *src;
273 nexthop->ifindex = ifindex;
274 ifp = if_lookup_by_index(nexthop->ifindex, nh_vrf_id);
275 /*Pending: need to think if null ifp here is ok during bootup?
276 There was a crash because ifp here was coming to be NULL */
277 if (ifp)
278 if (connected_is_unnumbered(ifp)
279 || CHECK_FLAG(re->flags, ZEBRA_FLAG_EVPN_ROUTE)
280 || CHECK_FLAG(re->flags, ZEBRA_FLAG_ONLINK)) {
281 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK);
282 }
283
284 route_entry_nexthop_add(re, nexthop);
285
286 return nexthop;
287 }
288
289 struct nexthop *route_entry_nexthop_ipv6_add(struct route_entry *re,
290 struct in6_addr *ipv6,
291 vrf_id_t nh_vrf_id)
292 {
293 struct nexthop *nexthop;
294
295 nexthop = nexthop_new();
296 nexthop->vrf_id = nh_vrf_id;
297 nexthop->type = NEXTHOP_TYPE_IPV6;
298 nexthop->gate.ipv6 = *ipv6;
299
300 route_entry_nexthop_add(re, nexthop);
301
302 return nexthop;
303 }
304
305 struct nexthop *route_entry_nexthop_ipv6_ifindex_add(struct route_entry *re,
306 struct in6_addr *ipv6,
307 ifindex_t ifindex,
308 vrf_id_t nh_vrf_id)
309 {
310 struct nexthop *nexthop;
311
312 nexthop = nexthop_new();
313 nexthop->vrf_id = nh_vrf_id;
314 nexthop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
315 nexthop->gate.ipv6 = *ipv6;
316 nexthop->ifindex = ifindex;
317 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_EVPN_ROUTE)
318 || CHECK_FLAG(re->flags, ZEBRA_FLAG_ONLINK)) {
319 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK);
320 }
321
322 route_entry_nexthop_add(re, nexthop);
323
324 return nexthop;
325 }
326
327 struct nexthop *route_entry_nexthop_blackhole_add(struct route_entry *re,
328 enum blackhole_type bh_type)
329 {
330 struct nexthop *nexthop;
331
332 nexthop = nexthop_new();
333 nexthop->vrf_id = VRF_DEFAULT;
334 nexthop->type = NEXTHOP_TYPE_BLACKHOLE;
335 nexthop->bh_type = bh_type;
336
337 route_entry_nexthop_add(re, nexthop);
338
339 return nexthop;
340 }
341
342 static void nexthop_set_resolved(afi_t afi, const struct nexthop *newhop,
343 struct nexthop *nexthop)
344 {
345 struct nexthop *resolved_hop;
346
347 resolved_hop = nexthop_new();
348 SET_FLAG(resolved_hop->flags, NEXTHOP_FLAG_ACTIVE);
349
350 resolved_hop->vrf_id = nexthop->vrf_id;
351 switch (newhop->type) {
352 case NEXTHOP_TYPE_IPV4:
353 case NEXTHOP_TYPE_IPV4_IFINDEX:
354 /* If the resolving route specifies a gateway, use it */
355 resolved_hop->type = newhop->type;
356 resolved_hop->gate.ipv4 = newhop->gate.ipv4;
357
358 if (newhop->ifindex) {
359 resolved_hop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
360 resolved_hop->ifindex = newhop->ifindex;
361 }
362 break;
363 case NEXTHOP_TYPE_IPV6:
364 case NEXTHOP_TYPE_IPV6_IFINDEX:
365 resolved_hop->type = newhop->type;
366 resolved_hop->gate.ipv6 = newhop->gate.ipv6;
367
368 if (newhop->ifindex) {
369 resolved_hop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
370 resolved_hop->ifindex = newhop->ifindex;
371 }
372 break;
373 case NEXTHOP_TYPE_IFINDEX:
374 /* If the resolving route is an interface route,
375 * it means the gateway we are looking up is connected
376 * to that interface. (The actual network is _not_ onlink).
377 * Therefore, the resolved route should have the original
378 * gateway as nexthop as it is directly connected.
379 *
380 * On Linux, we have to set the onlink netlink flag because
381 * otherwise, the kernel won't accept the route.
382 */
383 resolved_hop->flags |= NEXTHOP_FLAG_ONLINK;
384 if (afi == AFI_IP) {
385 resolved_hop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
386 resolved_hop->gate.ipv4 = nexthop->gate.ipv4;
387 } else if (afi == AFI_IP6) {
388 resolved_hop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
389 resolved_hop->gate.ipv6 = nexthop->gate.ipv6;
390 }
391 resolved_hop->ifindex = newhop->ifindex;
392 break;
393 case NEXTHOP_TYPE_BLACKHOLE:
394 resolved_hop->type = NEXTHOP_TYPE_BLACKHOLE;
395 resolved_hop->bh_type = nexthop->bh_type;
396 break;
397 }
398
399 if (newhop->flags & NEXTHOP_FLAG_ONLINK)
400 resolved_hop->flags |= NEXTHOP_FLAG_ONLINK;
401
402 /* Copy labels of the resolved route */
403 if (newhop->nh_label)
404 nexthop_add_labels(resolved_hop, newhop->nh_label_type,
405 newhop->nh_label->num_labels,
406 &newhop->nh_label->label[0]);
407
408 resolved_hop->rparent = nexthop;
409 nexthop_add(&nexthop->resolved, resolved_hop);
410 }
411
412 /* If force flag is not set, do not modify falgs at all for uninstall
413 the route from FIB. */
414 static int nexthop_active(afi_t afi, struct route_entry *re,
415 struct nexthop *nexthop, bool set,
416 struct route_node *top)
417 {
418 struct prefix p;
419 struct route_table *table;
420 struct route_node *rn;
421 struct route_entry *match = NULL;
422 int resolved;
423 struct nexthop *newhop;
424 struct interface *ifp;
425 rib_dest_t *dest;
426
427 if ((nexthop->type == NEXTHOP_TYPE_IPV4)
428 || nexthop->type == NEXTHOP_TYPE_IPV6)
429 nexthop->ifindex = 0;
430
431 if (set) {
432 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE);
433 nexthops_free(nexthop->resolved);
434 nexthop->resolved = NULL;
435 re->nexthop_mtu = 0;
436 }
437
438 /* Next hops (remote VTEPs) for EVPN routes are fully resolved. */
439 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_EVPN_RVTEP))
440 return 1;
441
442 /* Skip nexthops that have been filtered out due to route-map */
443 /* The nexthops are specific to this route and so the same */
444 /* nexthop for a different route may not have this flag set */
445 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FILTERED)) {
446 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
447 zlog_debug("\t%s: Nexthop Filtered",
448 __PRETTY_FUNCTION__);
449 return 0;
450 }
451
452 /*
453 * Check to see if we should trust the passed in information
454 * for UNNUMBERED interfaces as that we won't find the GW
455 * address in the routing table.
456 */
457 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ONLINK)) {
458 ifp = if_lookup_by_index(nexthop->ifindex, nexthop->vrf_id);
459 if ((ifp && connected_is_unnumbered(ifp))
460 || CHECK_FLAG(re->flags, ZEBRA_FLAG_ONLINK)) {
461 if (if_is_operative(ifp))
462 return 1;
463 else {
464 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
465 zlog_debug(
466 "\t%s: Onlink and interface %s is not operative",
467 __PRETTY_FUNCTION__, ifp->name);
468 return 0;
469 }
470 } else {
471 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
472 zlog_debug(
473 "\t%s: Interface %s is not unnumbered",
474 __PRETTY_FUNCTION__,
475 ifp ? ifp->name : "Unknown");
476 return 0;
477 }
478 }
479
480 /* Make lookup prefix. */
481 memset(&p, 0, sizeof(struct prefix));
482 switch (afi) {
483 case AFI_IP:
484 p.family = AF_INET;
485 p.prefixlen = IPV4_MAX_PREFIXLEN;
486 p.u.prefix4 = nexthop->gate.ipv4;
487 break;
488 case AFI_IP6:
489 p.family = AF_INET6;
490 p.prefixlen = IPV6_MAX_PREFIXLEN;
491 p.u.prefix6 = nexthop->gate.ipv6;
492 break;
493 default:
494 assert(afi != AFI_IP && afi != AFI_IP6);
495 break;
496 }
497 /* Lookup table. */
498 table = zebra_vrf_table(afi, SAFI_UNICAST, nexthop->vrf_id);
499 if (!table) {
500 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
501 zlog_debug("\t%s: Table not found",
502 __PRETTY_FUNCTION__);
503 return 0;
504 }
505
506 rn = route_node_match(table, (struct prefix *)&p);
507 while (rn) {
508 route_unlock_node(rn);
509
510 /* Lookup should halt if we've matched against ourselves ('top',
511 * if specified) - i.e., we cannot have a nexthop NH1 is
512 * resolved by a route NH1. The exception is if the route is a
513 * host route.
514 */
515 if (top && rn == top)
516 if (((afi == AFI_IP) && (rn->p.prefixlen != 32))
517 || ((afi == AFI_IP6) && (rn->p.prefixlen != 128))) {
518 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
519 zlog_debug(
520 "\t%s: Matched against ourself and prefix length is not max bit length",
521 __PRETTY_FUNCTION__);
522 return 0;
523 }
524
525 /* Pick up selected route. */
526 /* However, do not resolve over default route unless explicitly
527 * allowed. */
528 if (is_default_prefix(&rn->p)
529 && !rnh_resolve_via_default(p.family)) {
530 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
531 zlog_debug(
532 "\t:%s: Resolved against default route",
533 __PRETTY_FUNCTION__);
534 return 0;
535 }
536
537 dest = rib_dest_from_rnode(rn);
538 if (dest && dest->selected_fib
539 && !CHECK_FLAG(dest->selected_fib->status,
540 ROUTE_ENTRY_REMOVED)
541 && dest->selected_fib->type != ZEBRA_ROUTE_TABLE)
542 match = dest->selected_fib;
543
544 /* If there is no selected route or matched route is EGP, go up
545 tree. */
546 if (!match) {
547 do {
548 rn = rn->parent;
549 } while (rn && rn->info == NULL);
550 if (rn)
551 route_lock_node(rn);
552
553 continue;
554 }
555
556 if (match->type == ZEBRA_ROUTE_CONNECT) {
557 /* Directly point connected route. */
558 newhop = match->ng.nexthop;
559 if (newhop) {
560 if (nexthop->type == NEXTHOP_TYPE_IPV4
561 || nexthop->type == NEXTHOP_TYPE_IPV6)
562 nexthop->ifindex = newhop->ifindex;
563 }
564 return 1;
565 } else if (CHECK_FLAG(re->flags, ZEBRA_FLAG_ALLOW_RECURSION)) {
566 resolved = 0;
567 for (ALL_NEXTHOPS(match->ng, newhop)) {
568 if (!CHECK_FLAG(newhop->flags,
569 NEXTHOP_FLAG_FIB))
570 continue;
571 if (CHECK_FLAG(newhop->flags,
572 NEXTHOP_FLAG_RECURSIVE))
573 continue;
574
575 if (set) {
576 SET_FLAG(nexthop->flags,
577 NEXTHOP_FLAG_RECURSIVE);
578 SET_FLAG(re->status,
579 ROUTE_ENTRY_NEXTHOPS_CHANGED);
580 nexthop_set_resolved(afi, newhop,
581 nexthop);
582 }
583 resolved = 1;
584 }
585 if (resolved && set)
586 re->nexthop_mtu = match->mtu;
587 if (!resolved && IS_ZEBRA_DEBUG_RIB_DETAILED)
588 zlog_debug("\t%s: Recursion failed to find",
589 __PRETTY_FUNCTION__);
590 return resolved;
591 } else if (re->type == ZEBRA_ROUTE_STATIC) {
592 resolved = 0;
593 for (ALL_NEXTHOPS(match->ng, newhop)) {
594 if (!CHECK_FLAG(newhop->flags,
595 NEXTHOP_FLAG_FIB))
596 continue;
597
598 if (set) {
599 SET_FLAG(nexthop->flags,
600 NEXTHOP_FLAG_RECURSIVE);
601 nexthop_set_resolved(afi, newhop,
602 nexthop);
603 }
604 resolved = 1;
605 }
606 if (resolved && set)
607 re->nexthop_mtu = match->mtu;
608
609 if (!resolved && IS_ZEBRA_DEBUG_RIB_DETAILED)
610 zlog_debug(
611 "\t%s: Static route unable to resolve",
612 __PRETTY_FUNCTION__);
613 return resolved;
614 } else {
615 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
616 zlog_debug("\t%s: Route Type %s has not turned on recursion",
617 __PRETTY_FUNCTION__,
618 zebra_route_string(re->type));
619 if (re->type == ZEBRA_ROUTE_BGP &&
620 !CHECK_FLAG(re->flags, ZEBRA_FLAG_IBGP))
621 zlog_debug("\tEBGP: see \"disable-ebgp-connected-route-check\" or \"disable-connected-check\"");
622 }
623 return 0;
624 }
625 }
626 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
627 zlog_debug("\t%s: Nexthop did not lookup in table",
628 __PRETTY_FUNCTION__);
629 return 0;
630 }
631
632 struct route_entry *rib_match(afi_t afi, safi_t safi, vrf_id_t vrf_id,
633 union g_addr *addr, struct route_node **rn_out)
634 {
635 struct prefix p;
636 struct route_table *table;
637 struct route_node *rn;
638 struct route_entry *match = NULL;
639 struct nexthop *newhop;
640
641 /* Lookup table. */
642 table = zebra_vrf_table(afi, safi, vrf_id);
643 if (!table)
644 return 0;
645
646 memset(&p, 0, sizeof(struct prefix));
647 p.family = afi;
648 if (afi == AFI_IP) {
649 p.u.prefix4 = addr->ipv4;
650 p.prefixlen = IPV4_MAX_PREFIXLEN;
651 } else {
652 p.u.prefix6 = addr->ipv6;
653 p.prefixlen = IPV6_MAX_PREFIXLEN;
654 }
655
656 rn = route_node_match(table, (struct prefix *)&p);
657
658 while (rn) {
659 rib_dest_t *dest;
660
661 route_unlock_node(rn);
662
663 dest = rib_dest_from_rnode(rn);
664 if (dest && dest->selected_fib
665 && !CHECK_FLAG(dest->selected_fib->status,
666 ROUTE_ENTRY_REMOVED))
667 match = dest->selected_fib;
668
669 /* If there is no selected route or matched route is EGP, go up
670 tree. */
671 if (!match) {
672 do {
673 rn = rn->parent;
674 } while (rn && rn->info == NULL);
675 if (rn)
676 route_lock_node(rn);
677 } else {
678 if (match->type != ZEBRA_ROUTE_CONNECT) {
679 int found = 0;
680 for (ALL_NEXTHOPS(match->ng, newhop))
681 if (CHECK_FLAG(newhop->flags,
682 NEXTHOP_FLAG_FIB)) {
683 found = 1;
684 break;
685 }
686 if (!found)
687 return NULL;
688 }
689
690 if (rn_out)
691 *rn_out = rn;
692 return match;
693 }
694 }
695 return NULL;
696 }
697
698 struct route_entry *rib_match_ipv4_multicast(vrf_id_t vrf_id,
699 struct in_addr addr,
700 struct route_node **rn_out)
701 {
702 struct route_entry *re = NULL, *mre = NULL, *ure = NULL;
703 struct route_node *m_rn = NULL, *u_rn = NULL;
704 union g_addr gaddr = {.ipv4 = addr};
705
706 switch (ipv4_multicast_mode) {
707 case MCAST_MRIB_ONLY:
708 return rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr,
709 rn_out);
710 case MCAST_URIB_ONLY:
711 return rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, rn_out);
712 case MCAST_NO_CONFIG:
713 case MCAST_MIX_MRIB_FIRST:
714 re = mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr,
715 &m_rn);
716 if (!mre)
717 re = ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id,
718 &gaddr, &u_rn);
719 break;
720 case MCAST_MIX_DISTANCE:
721 mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr, &m_rn);
722 ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, &u_rn);
723 if (mre && ure)
724 re = ure->distance < mre->distance ? ure : mre;
725 else if (mre)
726 re = mre;
727 else if (ure)
728 re = ure;
729 break;
730 case MCAST_MIX_PFXLEN:
731 mre = rib_match(AFI_IP, SAFI_MULTICAST, vrf_id, &gaddr, &m_rn);
732 ure = rib_match(AFI_IP, SAFI_UNICAST, vrf_id, &gaddr, &u_rn);
733 if (mre && ure)
734 re = u_rn->p.prefixlen > m_rn->p.prefixlen ? ure : mre;
735 else if (mre)
736 re = mre;
737 else if (ure)
738 re = ure;
739 break;
740 }
741
742 if (rn_out)
743 *rn_out = (re == mre) ? m_rn : u_rn;
744
745 if (IS_ZEBRA_DEBUG_RIB) {
746 char buf[BUFSIZ];
747 inet_ntop(AF_INET, &addr, buf, BUFSIZ);
748
749 zlog_debug("%s: %s: vrf: %u found %s, using %s",
750 __func__, buf, vrf_id,
751 mre ? (ure ? "MRIB+URIB" : "MRIB")
752 : ure ? "URIB" : "nothing",
753 re == ure ? "URIB" : re == mre ? "MRIB" : "none");
754 }
755 return re;
756 }
757
758 void multicast_mode_ipv4_set(enum multicast_mode mode)
759 {
760 if (IS_ZEBRA_DEBUG_RIB)
761 zlog_debug("%s: multicast lookup mode set (%d)", __func__,
762 mode);
763 ipv4_multicast_mode = mode;
764 }
765
766 enum multicast_mode multicast_mode_ipv4_get(void)
767 {
768 return ipv4_multicast_mode;
769 }
770
771 struct route_entry *rib_lookup_ipv4(struct prefix_ipv4 *p, vrf_id_t vrf_id)
772 {
773 struct route_table *table;
774 struct route_node *rn;
775 struct route_entry *match = NULL;
776 struct nexthop *nexthop;
777 rib_dest_t *dest;
778
779 /* Lookup table. */
780 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
781 if (!table)
782 return 0;
783
784 rn = route_node_lookup(table, (struct prefix *)p);
785
786 /* No route for this prefix. */
787 if (!rn)
788 return NULL;
789
790 /* Unlock node. */
791 route_unlock_node(rn);
792 dest = rib_dest_from_rnode(rn);
793
794 if (dest && dest->selected_fib
795 && !CHECK_FLAG(dest->selected_fib->status, ROUTE_ENTRY_REMOVED))
796 match = dest->selected_fib;
797
798 if (!match)
799 return NULL;
800
801 if (match->type == ZEBRA_ROUTE_CONNECT)
802 return match;
803
804 for (ALL_NEXTHOPS(match->ng, nexthop))
805 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB))
806 return match;
807
808 return NULL;
809 }
810
811 #define RIB_SYSTEM_ROUTE(R) \
812 ((R)->type == ZEBRA_ROUTE_KERNEL || (R)->type == ZEBRA_ROUTE_CONNECT)
813
814 #define RIB_KERNEL_ROUTE(R) \
815 ((R)->type == ZEBRA_ROUTE_KERNEL)
816
817 /* This function verifies reachability of one given nexthop, which can be
818 * numbered or unnumbered, IPv4 or IPv6. The result is unconditionally stored
819 * in nexthop->flags field. If the 4th parameter, 'set', is non-zero,
820 * nexthop->ifindex will be updated appropriately as well.
821 * An existing route map can turn (otherwise active) nexthop into inactive, but
822 * not vice versa.
823 *
824 * The return value is the final value of 'ACTIVE' flag.
825 */
826
827 static unsigned nexthop_active_check(struct route_node *rn,
828 struct route_entry *re,
829 struct nexthop *nexthop, bool set)
830 {
831 struct interface *ifp;
832 route_map_result_t ret = RMAP_MATCH;
833 int family;
834 char buf[SRCDEST2STR_BUFFER];
835 const struct prefix *p, *src_p;
836 struct zebra_vrf *zvrf;
837
838 srcdest_rnode_prefixes(rn, &p, &src_p);
839
840 if (rn->p.family == AF_INET)
841 family = AFI_IP;
842 else if (rn->p.family == AF_INET6)
843 family = AFI_IP6;
844 else
845 family = 0;
846 switch (nexthop->type) {
847 case NEXTHOP_TYPE_IFINDEX:
848 ifp = if_lookup_by_index(nexthop->ifindex, nexthop->vrf_id);
849 if (ifp && if_is_operative(ifp))
850 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
851 else
852 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
853 break;
854 case NEXTHOP_TYPE_IPV4:
855 case NEXTHOP_TYPE_IPV4_IFINDEX:
856 family = AFI_IP;
857 if (nexthop_active(AFI_IP, re, nexthop, set, rn))
858 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
859 else
860 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
861 break;
862 case NEXTHOP_TYPE_IPV6:
863 family = AFI_IP6;
864 if (nexthop_active(AFI_IP6, re, nexthop, set, rn))
865 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
866 else
867 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
868 break;
869 case NEXTHOP_TYPE_IPV6_IFINDEX:
870 /* RFC 5549, v4 prefix with v6 NH */
871 if (rn->p.family != AF_INET)
872 family = AFI_IP6;
873 if (IN6_IS_ADDR_LINKLOCAL(&nexthop->gate.ipv6)) {
874 ifp = if_lookup_by_index(nexthop->ifindex,
875 nexthop->vrf_id);
876 if (ifp && if_is_operative(ifp))
877 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
878 else
879 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
880 } else {
881 if (nexthop_active(AFI_IP6, re, nexthop, set, rn))
882 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
883 else
884 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
885 }
886 break;
887 case NEXTHOP_TYPE_BLACKHOLE:
888 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
889 break;
890 default:
891 break;
892 }
893 if (!CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE)) {
894 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
895 zlog_debug("\t%s: Unable to find a active nexthop",
896 __PRETTY_FUNCTION__);
897 return 0;
898 }
899
900 /* XXX: What exactly do those checks do? Do we support
901 * e.g. IPv4 routes with IPv6 nexthops or vice versa?
902 */
903 if (RIB_SYSTEM_ROUTE(re) || (family == AFI_IP && p->family != AF_INET)
904 || (family == AFI_IP6 && p->family != AF_INET6))
905 return CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
906
907 /* The original code didn't determine the family correctly
908 * e.g. for NEXTHOP_TYPE_IFINDEX. Retrieve the correct afi
909 * from the rib_table_info in those cases.
910 * Possibly it may be better to use only the rib_table_info
911 * in every case.
912 */
913 if (!family) {
914 rib_table_info_t *info;
915
916 info = srcdest_rnode_table_info(rn);
917 family = info->afi;
918 }
919
920 memset(&nexthop->rmap_src.ipv6, 0, sizeof(union g_addr));
921
922 zvrf = zebra_vrf_lookup_by_id(nexthop->vrf_id);
923 if (!zvrf) {
924 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
925 zlog_debug("\t%s: zvrf is NULL", __PRETTY_FUNCTION__);
926 return CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
927 }
928
929 /* It'll get set if required inside */
930 ret = zebra_route_map_check(family, re->type, re->instance, p,
931 nexthop, zvrf, re->tag);
932 if (ret == RMAP_DENYMATCH) {
933 if (IS_ZEBRA_DEBUG_RIB) {
934 srcdest_rnode2str(rn, buf, sizeof(buf));
935 zlog_debug(
936 "%u:%s: Filtering out with NH out %s due to route map",
937 re->vrf_id, buf,
938 ifindex2ifname(nexthop->ifindex,
939 nexthop->vrf_id));
940 }
941 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
942 }
943 return CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
944 }
945
946 /* Iterate over all nexthops of the given RIB entry and refresh their
947 * ACTIVE flag. re->nexthop_active_num is updated accordingly. If any
948 * nexthop is found to toggle the ACTIVE flag, the whole re structure
949 * is flagged with ROUTE_ENTRY_CHANGED. The 4th 'set' argument is
950 * transparently passed to nexthop_active_check().
951 *
952 * Return value is the new number of active nexthops.
953 */
954
955 static int nexthop_active_update(struct route_node *rn, struct route_entry *re,
956 bool set)
957 {
958 struct nexthop *nexthop;
959 union g_addr prev_src;
960 unsigned int prev_active, new_active, old_num_nh;
961 ifindex_t prev_index;
962
963 old_num_nh = re->nexthop_active_num;
964
965 re->nexthop_active_num = 0;
966 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
967
968 for (nexthop = re->ng.nexthop; nexthop; nexthop = nexthop->next) {
969 /* No protocol daemon provides src and so we're skipping
970 * tracking it */
971 prev_src = nexthop->rmap_src;
972 prev_active = CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
973 prev_index = nexthop->ifindex;
974 /*
975 * We need to respect the multipath_num here
976 * as that what we should be able to install from
977 * a multipath perpsective should not be a data plane
978 * decision point.
979 */
980 new_active = nexthop_active_check(rn, re, nexthop, set);
981 if (new_active && re->nexthop_active_num >= multipath_num) {
982 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE);
983 new_active = 0;
984 }
985 if (new_active)
986 re->nexthop_active_num++;
987 /* Don't allow src setting on IPv6 addr for now */
988 if (prev_active != new_active || prev_index != nexthop->ifindex
989 || ((nexthop->type >= NEXTHOP_TYPE_IFINDEX
990 && nexthop->type < NEXTHOP_TYPE_IPV6)
991 && prev_src.ipv4.s_addr
992 != nexthop->rmap_src.ipv4.s_addr)
993 || ((nexthop->type >= NEXTHOP_TYPE_IPV6
994 && nexthop->type < NEXTHOP_TYPE_BLACKHOLE)
995 && !(IPV6_ADDR_SAME(&prev_src.ipv6,
996 &nexthop->rmap_src.ipv6)))) {
997 SET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
998 SET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
999 }
1000 }
1001
1002 if (old_num_nh != re->nexthop_active_num)
1003 SET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1004
1005 if (CHECK_FLAG(re->status, ROUTE_ENTRY_CHANGED)) {
1006 SET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
1007 }
1008
1009 return re->nexthop_active_num;
1010 }
1011
1012 /*
1013 * Is this RIB labeled-unicast? It must be of type BGP and all paths
1014 * (nexthops) must have a label.
1015 */
1016 int zebra_rib_labeled_unicast(struct route_entry *re)
1017 {
1018 struct nexthop *nexthop = NULL;
1019
1020 if (re->type != ZEBRA_ROUTE_BGP)
1021 return 0;
1022
1023 for (ALL_NEXTHOPS(re->ng, nexthop))
1024 if (!nexthop->nh_label || !nexthop->nh_label->num_labels)
1025 return 0;
1026
1027 return 1;
1028 }
1029
1030 /* Update flag indicates whether this is a "replace" or not. Currently, this
1031 * is only used for IPv4.
1032 */
1033 void rib_install_kernel(struct route_node *rn, struct route_entry *re,
1034 struct route_entry *old)
1035 {
1036 struct nexthop *nexthop;
1037 rib_table_info_t *info = srcdest_rnode_table_info(rn);
1038 struct zebra_vrf *zvrf = vrf_info_lookup(re->vrf_id);
1039 const struct prefix *p, *src_p;
1040 enum zebra_dplane_result ret;
1041
1042 rib_dest_t *dest = rib_dest_from_rnode(rn);
1043
1044 srcdest_rnode_prefixes(rn, &p, &src_p);
1045
1046 if (info->safi != SAFI_UNICAST) {
1047 for (ALL_NEXTHOPS(re->ng, nexthop))
1048 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1049 return;
1050 } else {
1051 struct nexthop *prev;
1052
1053 for (ALL_NEXTHOPS(re->ng, nexthop)) {
1054 UNSET_FLAG (nexthop->flags, NEXTHOP_FLAG_DUPLICATE);
1055 for (ALL_NEXTHOPS(re->ng, prev)) {
1056 if (prev == nexthop)
1057 break;
1058 if (nexthop_same_firsthop(nexthop, prev)) {
1059 SET_FLAG(nexthop->flags,
1060 NEXTHOP_FLAG_DUPLICATE);
1061 break;
1062 }
1063 }
1064 }
1065 }
1066
1067 /*
1068 * If this is a replace to a new RE let the originator of the RE
1069 * know that they've lost
1070 */
1071 if (old && (old != re) && (old->type != re->type))
1072 zsend_route_notify_owner(old, p, ZAPI_ROUTE_BETTER_ADMIN_WON);
1073
1074 /* Update fib selection */
1075 dest->selected_fib = re;
1076
1077 /*
1078 * Make sure we update the FPM any time we send new information to
1079 * the kernel.
1080 */
1081 hook_call(rib_update, rn, "installing in kernel");
1082
1083 /* Send add or update */
1084 if (old && (old != re))
1085 ret = dplane_route_update(rn, re, old);
1086 else
1087 ret = dplane_route_add(rn, re);
1088
1089 switch (ret) {
1090 case ZEBRA_DPLANE_REQUEST_QUEUED:
1091 if (zvrf)
1092 zvrf->installs_queued++;
1093 break;
1094 case ZEBRA_DPLANE_REQUEST_FAILURE:
1095 {
1096 char str[SRCDEST2STR_BUFFER];
1097
1098 srcdest_rnode2str(rn, str, sizeof(str));
1099 flog_err(EC_ZEBRA_DP_INSTALL_FAIL,
1100 "%u:%s: Failed to enqueue dataplane install",
1101 re->vrf_id, str);
1102 break;
1103 }
1104 case ZEBRA_DPLANE_REQUEST_SUCCESS:
1105 if (zvrf)
1106 zvrf->installs++;
1107 break;
1108 }
1109
1110 return;
1111 }
1112
1113 /* Uninstall the route from kernel. */
1114 void rib_uninstall_kernel(struct route_node *rn, struct route_entry *re)
1115 {
1116 struct nexthop *nexthop;
1117 rib_table_info_t *info = srcdest_rnode_table_info(rn);
1118 struct zebra_vrf *zvrf = vrf_info_lookup(re->vrf_id);
1119
1120 if (info->safi != SAFI_UNICAST) {
1121 for (ALL_NEXTHOPS(re->ng, nexthop))
1122 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1123 return;
1124 }
1125
1126 /*
1127 * Make sure we update the FPM any time we send new information to
1128 * the dataplane.
1129 */
1130 hook_call(rib_update, rn, "uninstalling from kernel");
1131
1132 switch (dplane_route_delete(rn, re)) {
1133 case ZEBRA_DPLANE_REQUEST_QUEUED:
1134 if (zvrf)
1135 zvrf->removals_queued++;
1136 break;
1137 case ZEBRA_DPLANE_REQUEST_FAILURE:
1138 {
1139 char str[SRCDEST2STR_BUFFER];
1140
1141 srcdest_rnode2str(rn, str, sizeof(str));
1142 flog_err(EC_ZEBRA_DP_INSTALL_FAIL,
1143 "%u:%s: Failed to enqueue dataplane uninstall",
1144 re->vrf_id, str);
1145 break;
1146 }
1147 case ZEBRA_DPLANE_REQUEST_SUCCESS:
1148 if (zvrf)
1149 zvrf->removals++;
1150 break;
1151 }
1152
1153 return;
1154 }
1155
1156 /* Uninstall the route from kernel. */
1157 static void rib_uninstall(struct route_node *rn, struct route_entry *re)
1158 {
1159 rib_table_info_t *info = srcdest_rnode_table_info(rn);
1160 rib_dest_t *dest = rib_dest_from_rnode(rn);
1161 struct nexthop *nexthop;
1162
1163 if (dest && dest->selected_fib == re) {
1164 if (info->safi == SAFI_UNICAST)
1165 hook_call(rib_update, rn, "rib_uninstall");
1166
1167 /* If labeled-unicast route, uninstall transit LSP. */
1168 if (zebra_rib_labeled_unicast(re))
1169 zebra_mpls_lsp_uninstall(info->zvrf, rn, re);
1170
1171 if (!RIB_SYSTEM_ROUTE(re))
1172 rib_uninstall_kernel(rn, re);
1173
1174 dest->selected_fib = NULL;
1175
1176 for (ALL_NEXTHOPS(re->ng, nexthop))
1177 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1178 }
1179
1180 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)) {
1181 const struct prefix *p, *src_p;
1182
1183 srcdest_rnode_prefixes(rn, &p, &src_p);
1184
1185 redistribute_delete(p, src_p, re);
1186 UNSET_FLAG(re->flags, ZEBRA_FLAG_SELECTED);
1187 }
1188 }
1189
1190 /*
1191 * rib_can_delete_dest
1192 *
1193 * Returns TRUE if the given dest can be deleted from the table.
1194 */
1195 static int rib_can_delete_dest(rib_dest_t *dest)
1196 {
1197 if (dest->routes) {
1198 return 0;
1199 }
1200
1201 /*
1202 * Don't delete the dest if we have to update the FPM about this
1203 * prefix.
1204 */
1205 if (CHECK_FLAG(dest->flags, RIB_DEST_UPDATE_FPM)
1206 || CHECK_FLAG(dest->flags, RIB_DEST_SENT_TO_FPM))
1207 return 0;
1208
1209 return 1;
1210 }
1211
1212 /*
1213 * rib_gc_dest
1214 *
1215 * Garbage collect the rib dest corresponding to the given route node
1216 * if appropriate.
1217 *
1218 * Returns TRUE if the dest was deleted, FALSE otherwise.
1219 */
1220 int rib_gc_dest(struct route_node *rn)
1221 {
1222 rib_dest_t *dest;
1223
1224 dest = rib_dest_from_rnode(rn);
1225 if (!dest)
1226 return 0;
1227
1228 if (!rib_can_delete_dest(dest))
1229 return 0;
1230
1231 if (IS_ZEBRA_DEBUG_RIB) {
1232 struct zebra_vrf *zvrf;
1233
1234 zvrf = rib_dest_vrf(dest);
1235 rnode_debug(rn, zvrf_id(zvrf), "removing dest from table");
1236 }
1237
1238 dest->rnode = NULL;
1239 XFREE(MTYPE_RIB_DEST, dest);
1240 rn->info = NULL;
1241
1242 /*
1243 * Release the one reference that we keep on the route node.
1244 */
1245 route_unlock_node(rn);
1246 return 1;
1247 }
1248
1249 static void rib_process_add_fib(struct zebra_vrf *zvrf, struct route_node *rn,
1250 struct route_entry *new)
1251 {
1252 rib_dest_t *dest = rib_dest_from_rnode(rn);
1253
1254 hook_call(rib_update, rn, "new route selected");
1255
1256 /* Update real nexthop. This may actually determine if nexthop is active
1257 * or not. */
1258 if (!nexthop_active_update(rn, new, true)) {
1259 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1260 return;
1261 }
1262
1263 if (IS_ZEBRA_DEBUG_RIB) {
1264 char buf[SRCDEST2STR_BUFFER];
1265 srcdest_rnode2str(rn, buf, sizeof(buf));
1266 zlog_debug("%u:%s: Adding route rn %p, re %p (type %d)",
1267 zvrf_id(zvrf), buf, rn, new, new->type);
1268 }
1269
1270 /* If labeled-unicast route, install transit LSP. */
1271 if (zebra_rib_labeled_unicast(new))
1272 zebra_mpls_lsp_install(zvrf, rn, new);
1273
1274 if (!RIB_SYSTEM_ROUTE(new))
1275 rib_install_kernel(rn, new, NULL);
1276 else
1277 dest->selected_fib = new;
1278
1279 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1280 }
1281
1282 static void rib_process_del_fib(struct zebra_vrf *zvrf, struct route_node *rn,
1283 struct route_entry *old)
1284 {
1285 rib_dest_t *dest = rib_dest_from_rnode(rn);
1286 hook_call(rib_update, rn, "removing existing route");
1287
1288 /* Uninstall from kernel. */
1289 if (IS_ZEBRA_DEBUG_RIB) {
1290 char buf[SRCDEST2STR_BUFFER];
1291 srcdest_rnode2str(rn, buf, sizeof(buf));
1292 zlog_debug("%u:%s: Deleting route rn %p, re %p (type %d)",
1293 zvrf_id(zvrf), buf, rn, old, old->type);
1294 }
1295
1296 /* If labeled-unicast route, uninstall transit LSP. */
1297 if (zebra_rib_labeled_unicast(old))
1298 zebra_mpls_lsp_uninstall(zvrf, rn, old);
1299
1300 if (!RIB_SYSTEM_ROUTE(old))
1301 rib_uninstall_kernel(rn, old);
1302 else {
1303 /*
1304 * We are setting this to NULL here
1305 * because that is what we traditionally
1306 * have been doing. I am not positive
1307 * that this is the right thing to do
1308 * but let's leave the code alone
1309 * for the RIB_SYSTEM_ROUTE case
1310 */
1311 dest->selected_fib = NULL;
1312 }
1313
1314 /* Update nexthop for route, reset changed flag. */
1315 /* Note: this code also handles the Linux case when an interface goes
1316 * down, causing the kernel to delete routes without sending DELROUTE
1317 * notifications
1318 */
1319 if (!nexthop_active_update(rn, old, true) &&
1320 (RIB_KERNEL_ROUTE(old)))
1321 SET_FLAG(old->status, ROUTE_ENTRY_REMOVED);
1322 else
1323 UNSET_FLAG(old->status, ROUTE_ENTRY_CHANGED);
1324 }
1325
1326 static void rib_process_update_fib(struct zebra_vrf *zvrf,
1327 struct route_node *rn,
1328 struct route_entry *old,
1329 struct route_entry *new)
1330 {
1331 struct nexthop *nexthop = NULL;
1332 int nh_active = 0;
1333 rib_dest_t *dest = rib_dest_from_rnode(rn);
1334
1335 /*
1336 * We have to install or update if a new route has been selected or
1337 * something has changed.
1338 */
1339 if (new != old || CHECK_FLAG(new->status, ROUTE_ENTRY_CHANGED)) {
1340 hook_call(rib_update, rn, "updating existing route");
1341
1342 /* Update the nexthop; we could determine here that nexthop is
1343 * inactive. */
1344 if (nexthop_active_update(rn, new, true))
1345 nh_active = 1;
1346
1347 /* If nexthop is active, install the selected route, if
1348 * appropriate. If
1349 * the install succeeds, cleanup flags for prior route, if
1350 * different from
1351 * newly selected.
1352 */
1353 if (nh_active) {
1354 if (IS_ZEBRA_DEBUG_RIB) {
1355 char buf[SRCDEST2STR_BUFFER];
1356 srcdest_rnode2str(rn, buf, sizeof(buf));
1357 if (new != old)
1358 zlog_debug(
1359 "%u:%s: Updating route rn %p, re %p (type %d) "
1360 "old %p (type %d)",
1361 zvrf_id(zvrf), buf, rn, new,
1362 new->type, old, old->type);
1363 else
1364 zlog_debug(
1365 "%u:%s: Updating route rn %p, re %p (type %d)",
1366 zvrf_id(zvrf), buf, rn, new,
1367 new->type);
1368 }
1369
1370 /* If labeled-unicast route, uninstall transit LSP. */
1371 if (zebra_rib_labeled_unicast(old))
1372 zebra_mpls_lsp_uninstall(zvrf, rn, old);
1373
1374 /* Non-system route should be installed. */
1375 if (!RIB_SYSTEM_ROUTE(new)) {
1376 /* If labeled-unicast route, install transit
1377 * LSP. */
1378 if (zebra_rib_labeled_unicast(new))
1379 zebra_mpls_lsp_install(zvrf, rn, new);
1380
1381 rib_install_kernel(rn, new, old);
1382 } else {
1383 /*
1384 * We do not need to install the
1385 * selected route because it
1386 * is already isntalled by
1387 * the system( ie not us )
1388 * so just mark it as winning
1389 * we do need to ensure that
1390 * if we uninstall a route
1391 * from ourselves we don't
1392 * over write this pointer
1393 */
1394 dest->selected_fib = NULL;
1395 }
1396 /* If install succeeded or system route, cleanup flags
1397 * for prior route. */
1398 if (new != old) {
1399 if (RIB_SYSTEM_ROUTE(new)) {
1400 if (!RIB_SYSTEM_ROUTE(old))
1401 rib_uninstall_kernel(rn, old);
1402 } else {
1403 for (nexthop = old->ng.nexthop; nexthop;
1404 nexthop = nexthop->next)
1405 UNSET_FLAG(nexthop->flags,
1406 NEXTHOP_FLAG_FIB);
1407 }
1408 }
1409 }
1410
1411 /*
1412 * If nexthop for selected route is not active or install
1413 * failed, we
1414 * may need to uninstall and delete for redistribution.
1415 */
1416 if (!nh_active) {
1417 if (IS_ZEBRA_DEBUG_RIB) {
1418 char buf[SRCDEST2STR_BUFFER];
1419 srcdest_rnode2str(rn, buf, sizeof(buf));
1420 if (new != old)
1421 zlog_debug(
1422 "%u:%s: Deleting route rn %p, re %p (type %d) "
1423 "old %p (type %d) - nexthop inactive",
1424 zvrf_id(zvrf), buf, rn, new,
1425 new->type, old, old->type);
1426 else
1427 zlog_debug(
1428 "%u:%s: Deleting route rn %p, re %p (type %d) - nexthop inactive",
1429 zvrf_id(zvrf), buf, rn, new,
1430 new->type);
1431 }
1432
1433 /* If labeled-unicast route, uninstall transit LSP. */
1434 if (zebra_rib_labeled_unicast(old))
1435 zebra_mpls_lsp_uninstall(zvrf, rn, old);
1436
1437 if (!RIB_SYSTEM_ROUTE(old))
1438 rib_uninstall_kernel(rn, old);
1439 else
1440 dest->selected_fib = NULL;
1441 }
1442 } else {
1443 /*
1444 * Same route selected; check if in the FIB and if not,
1445 * re-install. This
1446 * is housekeeping code to deal with race conditions in kernel
1447 * with linux
1448 * netlink reporting interface up before IPv4 or IPv6 protocol
1449 * is ready
1450 * to add routes.
1451 */
1452 if (!RIB_SYSTEM_ROUTE(new)) {
1453 bool in_fib = false;
1454
1455 for (ALL_NEXTHOPS(new->ng, nexthop))
1456 if (CHECK_FLAG(nexthop->flags,
1457 NEXTHOP_FLAG_FIB)) {
1458 in_fib = true;
1459 break;
1460 }
1461 if (!in_fib)
1462 rib_install_kernel(rn, new, NULL);
1463 }
1464 }
1465
1466 /* Update prior route. */
1467 if (new != old) {
1468 /* Set real nexthop. */
1469 nexthop_active_update(rn, old, true);
1470 UNSET_FLAG(old->status, ROUTE_ENTRY_CHANGED);
1471 }
1472
1473 /* Clear changed flag. */
1474 UNSET_FLAG(new->status, ROUTE_ENTRY_CHANGED);
1475 }
1476
1477 /* Check if 'alternate' RIB entry is better than 'current'. */
1478 static struct route_entry *rib_choose_best(struct route_entry *current,
1479 struct route_entry *alternate)
1480 {
1481 if (current == NULL)
1482 return alternate;
1483
1484 /* filter route selection in following order:
1485 * - connected beats other types
1486 * - if both connected, loopback or vrf wins
1487 * - lower distance beats higher
1488 * - lower metric beats higher for equal distance
1489 * - last, hence oldest, route wins tie break.
1490 */
1491
1492 /* Connected routes. Check to see if either are a vrf
1493 * or loopback interface. If not, pick the last connected
1494 * route of the set of lowest metric connected routes.
1495 */
1496 if (alternate->type == ZEBRA_ROUTE_CONNECT) {
1497 if (current->type != ZEBRA_ROUTE_CONNECT)
1498 return alternate;
1499
1500 /* both are connected. are either loop or vrf? */
1501 struct nexthop *nexthop = NULL;
1502
1503 for (ALL_NEXTHOPS(alternate->ng, nexthop)) {
1504 if (if_is_loopback_or_vrf(if_lookup_by_index(
1505 nexthop->ifindex, alternate->vrf_id)))
1506 return alternate;
1507 }
1508
1509 for (ALL_NEXTHOPS(current->ng, nexthop)) {
1510 if (if_is_loopback_or_vrf(if_lookup_by_index(
1511 nexthop->ifindex, current->vrf_id)))
1512 return current;
1513 }
1514
1515 /* Neither are loop or vrf so pick best metric */
1516 if (alternate->metric <= current->metric)
1517 return alternate;
1518
1519 return current;
1520 }
1521
1522 if (current->type == ZEBRA_ROUTE_CONNECT)
1523 return current;
1524
1525 /* higher distance loses */
1526 if (alternate->distance < current->distance)
1527 return alternate;
1528 if (current->distance < alternate->distance)
1529 return current;
1530
1531 /* metric tie-breaks equal distance */
1532 if (alternate->metric <= current->metric)
1533 return alternate;
1534
1535 return current;
1536 }
1537
1538 /* Core function for processing routing information base. */
1539 static void rib_process(struct route_node *rn)
1540 {
1541 struct route_entry *re;
1542 struct route_entry *next;
1543 struct route_entry *old_selected = NULL;
1544 struct route_entry *new_selected = NULL;
1545 struct route_entry *old_fib = NULL;
1546 struct route_entry *new_fib = NULL;
1547 struct route_entry *best = NULL;
1548 char buf[SRCDEST2STR_BUFFER];
1549 rib_dest_t *dest;
1550 struct zebra_vrf *zvrf = NULL;
1551 const struct prefix *p, *src_p;
1552
1553 srcdest_rnode_prefixes(rn, &p, &src_p);
1554 vrf_id_t vrf_id = VRF_UNKNOWN;
1555
1556 assert(rn);
1557
1558 dest = rib_dest_from_rnode(rn);
1559 if (dest) {
1560 zvrf = rib_dest_vrf(dest);
1561 vrf_id = zvrf_id(zvrf);
1562 }
1563
1564 if (IS_ZEBRA_DEBUG_RIB)
1565 srcdest_rnode2str(rn, buf, sizeof(buf));
1566
1567 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1568 zlog_debug("%u:%s: Processing rn %p", vrf_id, buf, rn);
1569
1570 /*
1571 * we can have rn's that have a NULL info pointer
1572 * (dest). As such let's not let the deref happen
1573 * additionally we know RNODE_FOREACH_RE_SAFE
1574 * will not iterate so we are ok.
1575 */
1576 if (dest)
1577 old_fib = dest->selected_fib;
1578
1579 RNODE_FOREACH_RE_SAFE (rn, re, next) {
1580 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
1581 zlog_debug(
1582 "%u:%s: Examine re %p (type %d) status %x flags %x "
1583 "dist %d metric %d",
1584 vrf_id, buf, re, re->type, re->status,
1585 re->flags, re->distance, re->metric);
1586
1587 UNSET_FLAG(re->status, ROUTE_ENTRY_NEXTHOPS_CHANGED);
1588
1589 /* Currently selected re. */
1590 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)) {
1591 assert(old_selected == NULL);
1592 old_selected = re;
1593 }
1594
1595 /* Skip deleted entries from selection */
1596 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
1597 continue;
1598
1599 /* Skip unreachable nexthop. */
1600 /* This first call to nexthop_active_update is merely to
1601 * determine if
1602 * there's any change to nexthops associated with this RIB
1603 * entry. Now,
1604 * rib_process() can be invoked due to an external event such as
1605 * link
1606 * down or due to next-hop-tracking evaluation. In the latter
1607 * case,
1608 * a decision has already been made that the NHs have changed.
1609 * So, no
1610 * need to invoke a potentially expensive call again. Further,
1611 * since
1612 * the change might be in a recursive NH which is not caught in
1613 * the nexthop_active_update() code. Thus, we might miss changes
1614 * to
1615 * recursive NHs.
1616 */
1617 if (!CHECK_FLAG(re->status, ROUTE_ENTRY_CHANGED)
1618 && !nexthop_active_update(rn, re, false)) {
1619 if (re->type == ZEBRA_ROUTE_TABLE) {
1620 /* XXX: HERE BE DRAGONS!!!!!
1621 * In all honesty, I have not yet figured out
1622 * what this part
1623 * does or why the ROUTE_ENTRY_CHANGED test
1624 * above is correct
1625 * or why we need to delete a route here, and
1626 * also not whether
1627 * this concerns both selected and fib route, or
1628 * only selected
1629 * or only fib */
1630 /* This entry was denied by the 'ip protocol
1631 * table' route-map, we
1632 * need to delete it */
1633 if (re != old_selected) {
1634 if (IS_ZEBRA_DEBUG_RIB)
1635 zlog_debug(
1636 "%s: %u:%s: imported via import-table but denied "
1637 "by the ip protocol table route-map",
1638 __func__, vrf_id, buf);
1639 rib_unlink(rn, re);
1640 } else
1641 SET_FLAG(re->status,
1642 ROUTE_ENTRY_REMOVED);
1643 }
1644
1645 continue;
1646 }
1647
1648 /* Infinite distance. */
1649 if (re->distance == DISTANCE_INFINITY) {
1650 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1651 continue;
1652 }
1653
1654 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_FIB_OVERRIDE)) {
1655 best = rib_choose_best(new_fib, re);
1656 if (new_fib && best != new_fib)
1657 UNSET_FLAG(new_fib->status,
1658 ROUTE_ENTRY_CHANGED);
1659 new_fib = best;
1660 } else {
1661 best = rib_choose_best(new_selected, re);
1662 if (new_selected && best != new_selected)
1663 UNSET_FLAG(new_selected->status,
1664 ROUTE_ENTRY_CHANGED);
1665 new_selected = best;
1666 }
1667 if (best != re)
1668 UNSET_FLAG(re->status, ROUTE_ENTRY_CHANGED);
1669 } /* RNODE_FOREACH_RE */
1670
1671 /* If no FIB override route, use the selected route also for FIB */
1672 if (new_fib == NULL)
1673 new_fib = new_selected;
1674
1675 /* After the cycle is finished, the following pointers will be set:
1676 * old_selected --- RE entry currently having SELECTED
1677 * new_selected --- RE entry that is newly SELECTED
1678 * old_fib --- RE entry currently in kernel FIB
1679 * new_fib --- RE entry that is newly to be in kernel FIB
1680 *
1681 * new_selected will get SELECTED flag, and is going to be redistributed
1682 * the zclients. new_fib (which can be new_selected) will be installed
1683 * in kernel.
1684 */
1685
1686 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
1687 zlog_debug(
1688 "%u:%s: After processing: old_selected %p new_selected %p old_fib %p new_fib %p",
1689 vrf_id, buf, (void *)old_selected, (void *)new_selected,
1690 (void *)old_fib, (void *)new_fib);
1691 }
1692
1693 /* Buffer ROUTE_ENTRY_CHANGED here, because it will get cleared if
1694 * fib == selected */
1695 bool selected_changed = new_selected && CHECK_FLAG(new_selected->status,
1696 ROUTE_ENTRY_CHANGED);
1697
1698 /* Update fib according to selection results */
1699 if (new_fib && old_fib)
1700 rib_process_update_fib(zvrf, rn, old_fib, new_fib);
1701 else if (new_fib)
1702 rib_process_add_fib(zvrf, rn, new_fib);
1703 else if (old_fib)
1704 rib_process_del_fib(zvrf, rn, old_fib);
1705
1706 /* Update SELECTED entry */
1707 if (old_selected != new_selected || selected_changed) {
1708
1709 if (new_selected && new_selected != new_fib) {
1710 nexthop_active_update(rn, new_selected, true);
1711 UNSET_FLAG(new_selected->status, ROUTE_ENTRY_CHANGED);
1712 }
1713
1714 if (new_selected) {
1715 SET_FLAG(new_selected->flags, ZEBRA_FLAG_SELECTED);
1716
1717 /* Special case: new route is system route, so
1718 * dataplane update will not be done - ensure we
1719 * redistribute the route.
1720 */
1721 if (RIB_SYSTEM_ROUTE(new_selected))
1722 redistribute_update(p, src_p, new_selected,
1723 old_selected);
1724 }
1725
1726 if (old_selected) {
1727 if (!new_selected)
1728 redistribute_delete(p, src_p, old_selected);
1729 if (old_selected != new_selected)
1730 UNSET_FLAG(old_selected->flags,
1731 ZEBRA_FLAG_SELECTED);
1732 }
1733 }
1734
1735 /* Remove all RE entries queued for removal */
1736 RNODE_FOREACH_RE_SAFE (rn, re, next) {
1737 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
1738 if (IS_ZEBRA_DEBUG_RIB) {
1739 rnode_debug(rn, vrf_id, "rn %p, removing re %p",
1740 (void *)rn, (void *)re);
1741 }
1742 rib_unlink(rn, re);
1743 }
1744 }
1745
1746 /*
1747 * Check if the dest can be deleted now.
1748 */
1749 rib_gc_dest(rn);
1750 }
1751
1752 /*
1753 * Utility to match route with dplane context data
1754 */
1755 static bool rib_route_match_ctx(const struct route_entry *re,
1756 const struct zebra_dplane_ctx *ctx,
1757 bool is_update)
1758 {
1759 bool result = false;
1760
1761 if (is_update) {
1762 /*
1763 * In 'update' case, we test info about the 'previous' or
1764 * 'old' route
1765 */
1766 if ((re->type == dplane_ctx_get_old_type(ctx)) &&
1767 (re->instance == dplane_ctx_get_old_instance(ctx))) {
1768 result = true;
1769
1770 /* TODO -- we're using this extra test, but it's not
1771 * exactly clear why.
1772 */
1773 if (re->type == ZEBRA_ROUTE_STATIC &&
1774 (re->distance != dplane_ctx_get_old_distance(ctx) ||
1775 re->tag != dplane_ctx_get_old_tag(ctx))) {
1776 result = false;
1777 }
1778 }
1779
1780 } else {
1781 /*
1782 * Ordinary, single-route case using primary context info
1783 */
1784 if ((dplane_ctx_get_op(ctx) != DPLANE_OP_ROUTE_DELETE) &&
1785 CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
1786 /* Skip route that's been deleted */
1787 goto done;
1788 }
1789
1790 if ((re->type == dplane_ctx_get_type(ctx)) &&
1791 (re->instance == dplane_ctx_get_instance(ctx))) {
1792 result = true;
1793
1794 /* TODO -- we're using this extra test, but it's not
1795 * exactly clear why.
1796 */
1797 if (re->type == ZEBRA_ROUTE_STATIC &&
1798 (re->distance != dplane_ctx_get_distance(ctx) ||
1799 re->tag != dplane_ctx_get_tag(ctx))) {
1800 result = false;
1801 }
1802 }
1803 }
1804
1805 done:
1806
1807 return (result);
1808 }
1809
1810 /*
1811 * Route-update results processing after async dataplane update.
1812 */
1813 static void rib_process_after(struct zebra_dplane_ctx *ctx)
1814 {
1815 struct route_table *table = NULL;
1816 struct zebra_vrf *zvrf = NULL;
1817 struct route_node *rn = NULL;
1818 struct route_entry *re = NULL, *old_re = NULL, *rib;
1819 bool is_update = false;
1820 struct nexthop *nexthop, *ctx_nexthop;
1821 char dest_str[PREFIX_STRLEN] = "";
1822 enum dplane_op_e op;
1823 enum zebra_dplane_result status;
1824 const struct prefix *dest_pfx, *src_pfx;
1825
1826 /* Locate rn and re(s) from ctx */
1827
1828 table = zebra_vrf_table_with_table_id(dplane_ctx_get_afi(ctx),
1829 dplane_ctx_get_safi(ctx),
1830 dplane_ctx_get_vrf(ctx),
1831 dplane_ctx_get_table(ctx));
1832 if (table == NULL) {
1833 if (IS_ZEBRA_DEBUG_DPLANE) {
1834 zlog_debug("Failed to process dplane results: no table for afi %d, safi %d, vrf %u",
1835 dplane_ctx_get_afi(ctx),
1836 dplane_ctx_get_safi(ctx),
1837 dplane_ctx_get_vrf(ctx));
1838 }
1839 goto done;
1840 }
1841
1842 zvrf = vrf_info_lookup(dplane_ctx_get_vrf(ctx));
1843
1844 dest_pfx = dplane_ctx_get_dest(ctx);
1845
1846 /* Note well: only capturing the prefix string if debug is enabled here;
1847 * unconditional log messages will have to generate the string.
1848 */
1849 if (IS_ZEBRA_DEBUG_DPLANE)
1850 prefix2str(dest_pfx, dest_str, sizeof(dest_str));
1851
1852 src_pfx = dplane_ctx_get_src(ctx);
1853 rn = srcdest_rnode_get(table, dplane_ctx_get_dest(ctx),
1854 src_pfx ? (struct prefix_ipv6 *)src_pfx : NULL);
1855 if (rn == NULL) {
1856 if (IS_ZEBRA_DEBUG_DPLANE) {
1857 zlog_debug("Failed to process dplane results: no route for %u:%s",
1858 dplane_ctx_get_vrf(ctx), dest_str);
1859 }
1860 goto done;
1861 }
1862
1863 srcdest_rnode_prefixes(rn, &dest_pfx, &src_pfx);
1864
1865 op = dplane_ctx_get_op(ctx);
1866 status = dplane_ctx_get_status(ctx);
1867
1868 if (IS_ZEBRA_DEBUG_DPLANE_DETAIL)
1869 zlog_debug("%u:%s Processing dplane ctx %p, op %s result %s",
1870 dplane_ctx_get_vrf(ctx), dest_str, ctx,
1871 dplane_op2str(op), dplane_res2str(status));
1872
1873 if (op == DPLANE_OP_ROUTE_DELETE) {
1874 /*
1875 * In the delete case, the zebra core datastructs were
1876 * updated (or removed) at the time the delete was issued,
1877 * so we're just notifying the route owner.
1878 */
1879 if (status == ZEBRA_DPLANE_REQUEST_SUCCESS) {
1880 zsend_route_notify_owner_ctx(ctx, ZAPI_ROUTE_REMOVED);
1881
1882 if (zvrf)
1883 zvrf->removals++;
1884 } else {
1885 zsend_route_notify_owner_ctx(ctx,
1886 ZAPI_ROUTE_FAIL_INSTALL);
1887
1888 zlog_warn("%u:%s: Route Deletion failure",
1889 dplane_ctx_get_vrf(ctx),
1890 prefix2str(dest_pfx,
1891 dest_str, sizeof(dest_str)));
1892 }
1893
1894 /* Nothing more to do in delete case */
1895 goto done;
1896 }
1897
1898 /*
1899 * Update is a bit of a special case, where we may have both old and new
1900 * routes to post-process.
1901 */
1902 is_update = dplane_ctx_is_update(ctx);
1903
1904 /*
1905 * Take a pass through the routes, look for matches with the context
1906 * info.
1907 */
1908 RNODE_FOREACH_RE(rn, rib) {
1909
1910 if (re == NULL) {
1911 if (rib_route_match_ctx(rib, ctx, false))
1912 re = rib;
1913 }
1914
1915 /* Check for old route match */
1916 if (is_update && (old_re == NULL)) {
1917 if (rib_route_match_ctx(rib, ctx, true /*is_update*/))
1918 old_re = rib;
1919 }
1920
1921 /* Have we found the routes we need to work on? */
1922 if (re && ((!is_update || old_re)))
1923 break;
1924 }
1925
1926 /*
1927 * Check sequence number(s) to detect stale results before continuing
1928 */
1929 if (re && (re->dplane_sequence != dplane_ctx_get_seq(ctx))) {
1930 if (IS_ZEBRA_DEBUG_DPLANE_DETAIL) {
1931 zlog_debug("%u:%s Stale dplane result for re %p",
1932 dplane_ctx_get_vrf(ctx), dest_str, re);
1933 }
1934 re = NULL;
1935 }
1936
1937 if (old_re &&
1938 (old_re->dplane_sequence != dplane_ctx_get_old_seq(ctx))) {
1939 if (IS_ZEBRA_DEBUG_DPLANE_DETAIL) {
1940 zlog_debug("%u:%s Stale dplane result for old_re %p",
1941 dplane_ctx_get_vrf(ctx), dest_str, old_re);
1942 }
1943 old_re = NULL;
1944 }
1945
1946 /*
1947 * Here's sort of a tough one: the route update result is stale.
1948 * Is it better to use the context block info to generate
1949 * redist and owner notification, or is it better to wait
1950 * for the up-to-date result to arrive?
1951 */
1952 if (re == NULL) {
1953 /* TODO -- for now, only expose up-to-date results */
1954 goto done;
1955 }
1956
1957 if (status == ZEBRA_DPLANE_REQUEST_SUCCESS) {
1958 /* Update zebra nexthop FIB flag for each
1959 * nexthop that was installed.
1960 */
1961 for (ALL_NEXTHOPS_PTR(dplane_ctx_get_ng(ctx), ctx_nexthop)) {
1962
1963 for (ALL_NEXTHOPS(re->ng, nexthop)) {
1964 if (nexthop_same(ctx_nexthop, nexthop))
1965 break;
1966 }
1967
1968 if (nexthop == NULL)
1969 continue;
1970
1971 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE))
1972 continue;
1973
1974 if (CHECK_FLAG(ctx_nexthop->flags,
1975 NEXTHOP_FLAG_FIB))
1976 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1977 else
1978 UNSET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
1979 }
1980
1981 if (zvrf) {
1982 zvrf->installs++;
1983 /* Set flag for nexthop tracking processing */
1984 zvrf->flags |= ZEBRA_VRF_RIB_SCHEDULED;
1985 }
1986
1987 /* Redistribute */
1988 /* TODO -- still calling the redist api using the route_entries,
1989 * and there's a corner-case here: if there's no client
1990 * for the 'new' route, a redist deleting the 'old' route
1991 * will be sent. But if the 'old' context info was stale,
1992 * 'old_re' will be NULL here and that delete will not be sent.
1993 */
1994 redistribute_update(dest_pfx, src_pfx, re, old_re);
1995
1996 /* Notify route owner */
1997 zsend_route_notify_owner(re,
1998 dest_pfx, ZAPI_ROUTE_INSTALLED);
1999
2000 } else {
2001 zsend_route_notify_owner(re, dest_pfx,
2002 ZAPI_ROUTE_FAIL_INSTALL);
2003
2004 zlog_warn("%u:%s: Route install failed",
2005 dplane_ctx_get_vrf(ctx),
2006 prefix2str(dest_pfx,
2007 dest_str, sizeof(dest_str)));
2008 }
2009
2010 done:
2011
2012 /* Return context to dataplane module */
2013 dplane_ctx_fini(&ctx);
2014 }
2015
2016 /* Take a list of route_node structs and return 1, if there was a record
2017 * picked from it and processed by rib_process(). Don't process more,
2018 * than one RN record; operate only in the specified sub-queue.
2019 */
2020 static unsigned int process_subq(struct list *subq, uint8_t qindex)
2021 {
2022 struct listnode *lnode = listhead(subq);
2023 struct route_node *rnode;
2024 rib_dest_t *dest;
2025 struct zebra_vrf *zvrf = NULL;
2026
2027 if (!lnode)
2028 return 0;
2029
2030 rnode = listgetdata(lnode);
2031 dest = rib_dest_from_rnode(rnode);
2032 if (dest)
2033 zvrf = rib_dest_vrf(dest);
2034
2035 rib_process(rnode);
2036
2037 if (IS_ZEBRA_DEBUG_RIB_DETAILED) {
2038 char buf[SRCDEST2STR_BUFFER];
2039 srcdest_rnode2str(rnode, buf, sizeof(buf));
2040 zlog_debug("%u:%s: rn %p dequeued from sub-queue %u",
2041 zvrf ? zvrf_id(zvrf) : 0, buf, rnode, qindex);
2042 }
2043
2044 if (rnode->info)
2045 UNSET_FLAG(rib_dest_from_rnode(rnode)->flags,
2046 RIB_ROUTE_QUEUED(qindex));
2047
2048 #if 0
2049 else
2050 {
2051 zlog_debug ("%s: called for route_node (%p, %d) with no ribs",
2052 __func__, rnode, rnode->lock);
2053 zlog_backtrace(LOG_DEBUG);
2054 }
2055 #endif
2056 route_unlock_node(rnode);
2057 list_delete_node(subq, lnode);
2058 return 1;
2059 }
2060
2061 /*
2062 * Perform next-hop tracking processing after RIB updates.
2063 */
2064 static void do_nht_processing(void)
2065 {
2066 struct vrf *vrf;
2067 struct zebra_vrf *zvrf;
2068
2069 /* Evaluate nexthops for those VRFs which underwent route processing.
2070 * This
2071 * should limit the evaluation to the necessary VRFs in most common
2072 * situations.
2073 */
2074 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id) {
2075 zvrf = vrf->info;
2076 if (zvrf == NULL || !(zvrf->flags & ZEBRA_VRF_RIB_SCHEDULED))
2077 continue;
2078
2079 if (IS_ZEBRA_DEBUG_RIB_DETAILED || IS_ZEBRA_DEBUG_NHT)
2080 zlog_debug("NHT processing check for zvrf %s",
2081 zvrf_name(zvrf));
2082
2083 zvrf->flags &= ~ZEBRA_VRF_RIB_SCHEDULED;
2084 zebra_evaluate_rnh(zvrf, AF_INET, 0, RNH_NEXTHOP_TYPE, NULL);
2085 zebra_evaluate_rnh(zvrf, AF_INET, 0, RNH_IMPORT_CHECK_TYPE,
2086 NULL);
2087 zebra_evaluate_rnh(zvrf, AF_INET6, 0, RNH_NEXTHOP_TYPE, NULL);
2088 zebra_evaluate_rnh(zvrf, AF_INET6, 0, RNH_IMPORT_CHECK_TYPE,
2089 NULL);
2090 }
2091
2092 /* Schedule LSPs for processing, if needed. */
2093 zvrf = vrf_info_lookup(VRF_DEFAULT);
2094 if (mpls_should_lsps_be_processed(zvrf)) {
2095 if (IS_ZEBRA_DEBUG_MPLS)
2096 zlog_debug(
2097 "%u: Scheduling all LSPs upon RIB completion",
2098 zvrf_id(zvrf));
2099 zebra_mpls_lsp_schedule(zvrf);
2100 mpls_unmark_lsps_for_processing(zvrf);
2101 }
2102 }
2103
2104 /*
2105 * All meta queues have been processed. Trigger next-hop evaluation.
2106 */
2107 static void meta_queue_process_complete(struct work_queue *dummy)
2108 {
2109 do_nht_processing();
2110 }
2111
2112 /* Dispatch the meta queue by picking, processing and unlocking the next RN from
2113 * a non-empty sub-queue with lowest priority. wq is equal to zebra->ribq and
2114 * data
2115 * is pointed to the meta queue structure.
2116 */
2117 static wq_item_status meta_queue_process(struct work_queue *dummy, void *data)
2118 {
2119 struct meta_queue *mq = data;
2120 unsigned i;
2121 uint32_t queue_len, queue_limit;
2122
2123 /* Ensure there's room for more dataplane updates */
2124 queue_limit = dplane_get_in_queue_limit();
2125 queue_len = dplane_get_in_queue_len();
2126 if (queue_len > queue_limit) {
2127 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2128 zlog_debug("rib queue: dplane queue len %u, limit %u, retrying",
2129 queue_len, queue_limit);
2130
2131 /* Ensure that the meta-queue is actually enqueued */
2132 if (work_queue_empty(zebrad.ribq))
2133 work_queue_add(zebrad.ribq, zebrad.mq);
2134
2135 return WQ_QUEUE_BLOCKED;
2136 }
2137
2138 for (i = 0; i < MQ_SIZE; i++)
2139 if (process_subq(mq->subq[i], i)) {
2140 mq->size--;
2141 break;
2142 }
2143 return mq->size ? WQ_REQUEUE : WQ_SUCCESS;
2144 }
2145
2146 /*
2147 * Map from rib types to queue type (priority) in meta queue
2148 */
2149 static const uint8_t meta_queue_map[ZEBRA_ROUTE_MAX] = {
2150 [ZEBRA_ROUTE_SYSTEM] = 4,
2151 [ZEBRA_ROUTE_KERNEL] = 0,
2152 [ZEBRA_ROUTE_CONNECT] = 0,
2153 [ZEBRA_ROUTE_STATIC] = 1,
2154 [ZEBRA_ROUTE_RIP] = 2,
2155 [ZEBRA_ROUTE_RIPNG] = 2,
2156 [ZEBRA_ROUTE_OSPF] = 2,
2157 [ZEBRA_ROUTE_OSPF6] = 2,
2158 [ZEBRA_ROUTE_ISIS] = 2,
2159 [ZEBRA_ROUTE_BGP] = 3,
2160 [ZEBRA_ROUTE_PIM] = 4, // Shouldn't happen but for safety
2161 [ZEBRA_ROUTE_EIGRP] = 2,
2162 [ZEBRA_ROUTE_NHRP] = 2,
2163 [ZEBRA_ROUTE_HSLS] = 4,
2164 [ZEBRA_ROUTE_OLSR] = 4,
2165 [ZEBRA_ROUTE_TABLE] = 1,
2166 [ZEBRA_ROUTE_LDP] = 4,
2167 [ZEBRA_ROUTE_VNC] = 3,
2168 [ZEBRA_ROUTE_VNC_DIRECT] = 3,
2169 [ZEBRA_ROUTE_VNC_DIRECT_RH] = 3,
2170 [ZEBRA_ROUTE_BGP_DIRECT] = 3,
2171 [ZEBRA_ROUTE_BGP_DIRECT_EXT] = 3,
2172 [ZEBRA_ROUTE_BABEL] = 2,
2173 [ZEBRA_ROUTE_ALL] = 4, // Shouldn't happen but for safety
2174 };
2175
2176 /* Look into the RN and queue it into one or more priority queues,
2177 * increasing the size for each data push done.
2178 */
2179 static void rib_meta_queue_add(struct meta_queue *mq, struct route_node *rn)
2180 {
2181 struct route_entry *re;
2182
2183 RNODE_FOREACH_RE (rn, re) {
2184 uint8_t qindex = meta_queue_map[re->type];
2185 struct zebra_vrf *zvrf;
2186
2187 /* Invariant: at this point we always have rn->info set. */
2188 if (CHECK_FLAG(rib_dest_from_rnode(rn)->flags,
2189 RIB_ROUTE_QUEUED(qindex))) {
2190 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2191 rnode_debug(
2192 rn, re->vrf_id,
2193 "rn %p is already queued in sub-queue %u",
2194 (void *)rn, qindex);
2195 continue;
2196 }
2197
2198 SET_FLAG(rib_dest_from_rnode(rn)->flags,
2199 RIB_ROUTE_QUEUED(qindex));
2200 listnode_add(mq->subq[qindex], rn);
2201 route_lock_node(rn);
2202 mq->size++;
2203
2204 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2205 rnode_debug(rn, re->vrf_id,
2206 "queued rn %p into sub-queue %u",
2207 (void *)rn, qindex);
2208
2209 zvrf = zebra_vrf_lookup_by_id(re->vrf_id);
2210 if (zvrf)
2211 zvrf->flags |= ZEBRA_VRF_RIB_SCHEDULED;
2212 }
2213 }
2214
2215 /* Add route_node to work queue and schedule processing */
2216 void rib_queue_add(struct route_node *rn)
2217 {
2218 assert(rn);
2219
2220 /* Pointless to queue a route_node with no RIB entries to add or remove
2221 */
2222 if (!rnode_to_ribs(rn)) {
2223 zlog_debug("%s: called for route_node (%p, %d) with no ribs",
2224 __func__, (void *)rn, rn->lock);
2225 zlog_backtrace(LOG_DEBUG);
2226 return;
2227 }
2228
2229 if (zebrad.ribq == NULL) {
2230 flog_err(EC_ZEBRA_WQ_NONEXISTENT,
2231 "%s: work_queue does not exist!", __func__);
2232 return;
2233 }
2234
2235 /*
2236 * The RIB queue should normally be either empty or holding the only
2237 * work_queue_item element. In the latter case this element would
2238 * hold a pointer to the meta queue structure, which must be used to
2239 * actually queue the route nodes to process. So create the MQ
2240 * holder, if necessary, then push the work into it in any case.
2241 * This semantics was introduced after 0.99.9 release.
2242 */
2243 if (work_queue_empty(zebrad.ribq))
2244 work_queue_add(zebrad.ribq, zebrad.mq);
2245
2246 rib_meta_queue_add(zebrad.mq, rn);
2247
2248 return;
2249 }
2250
2251 /* Create new meta queue.
2252 A destructor function doesn't seem to be necessary here.
2253 */
2254 static struct meta_queue *meta_queue_new(void)
2255 {
2256 struct meta_queue *new;
2257 unsigned i;
2258
2259 new = XCALLOC(MTYPE_WORK_QUEUE, sizeof(struct meta_queue));
2260
2261 for (i = 0; i < MQ_SIZE; i++) {
2262 new->subq[i] = list_new();
2263 assert(new->subq[i]);
2264 }
2265
2266 return new;
2267 }
2268
2269 void meta_queue_free(struct meta_queue *mq)
2270 {
2271 unsigned i;
2272
2273 for (i = 0; i < MQ_SIZE; i++)
2274 list_delete(&mq->subq[i]);
2275
2276 XFREE(MTYPE_WORK_QUEUE, mq);
2277 }
2278
2279 /* initialise zebra rib work queue */
2280 static void rib_queue_init(struct zebra_t *zebra)
2281 {
2282 assert(zebra);
2283
2284 if (!(zebra->ribq =
2285 work_queue_new(zebra->master, "route_node processing"))) {
2286 flog_err(EC_ZEBRA_WQ_NONEXISTENT,
2287 "%s: could not initialise work queue!", __func__);
2288 return;
2289 }
2290
2291 /* fill in the work queue spec */
2292 zebra->ribq->spec.workfunc = &meta_queue_process;
2293 zebra->ribq->spec.errorfunc = NULL;
2294 zebra->ribq->spec.completion_func = &meta_queue_process_complete;
2295 /* XXX: TODO: These should be runtime configurable via vty */
2296 zebra->ribq->spec.max_retries = 3;
2297 zebra->ribq->spec.hold = ZEBRA_RIB_PROCESS_HOLD_TIME;
2298
2299 if (!(zebra->mq = meta_queue_new())) {
2300 flog_err(EC_ZEBRA_WQ_NONEXISTENT,
2301 "%s: could not initialise meta queue!", __func__);
2302 return;
2303 }
2304 return;
2305 }
2306
2307 /* RIB updates are processed via a queue of pointers to route_nodes.
2308 *
2309 * The queue length is bounded by the maximal size of the routing table,
2310 * as a route_node will not be requeued, if already queued.
2311 *
2312 * REs are submitted via rib_addnode or rib_delnode which set minimal
2313 * state, or static_install_route (when an existing RE is updated)
2314 * and then submit route_node to queue for best-path selection later.
2315 * Order of add/delete state changes are preserved for any given RE.
2316 *
2317 * Deleted REs are reaped during best-path selection.
2318 *
2319 * rib_addnode
2320 * |-> rib_link or unset ROUTE_ENTRY_REMOVE |->Update kernel with
2321 * |-------->| | best RE, if required
2322 * | |
2323 * static_install->|->rib_addqueue...... -> rib_process
2324 * | |
2325 * |-------->| |-> rib_unlink
2326 * |-> set ROUTE_ENTRY_REMOVE |
2327 * rib_delnode (RE freed)
2328 *
2329 * The 'info' pointer of a route_node points to a rib_dest_t
2330 * ('dest'). Queueing state for a route_node is kept on the dest. The
2331 * dest is created on-demand by rib_link() and is kept around at least
2332 * as long as there are ribs hanging off it (@see rib_gc_dest()).
2333 *
2334 * Refcounting (aka "locking" throughout the GNU Zebra and Quagga code):
2335 *
2336 * - route_nodes: refcounted by:
2337 * - dest attached to route_node:
2338 * - managed by: rib_link/rib_gc_dest
2339 * - route_node processing queue
2340 * - managed by: rib_addqueue, rib_process.
2341 *
2342 */
2343
2344 /* Add RE to head of the route node. */
2345 static void rib_link(struct route_node *rn, struct route_entry *re, int process)
2346 {
2347 struct route_entry *head;
2348 rib_dest_t *dest;
2349 afi_t afi;
2350 const char *rmap_name;
2351
2352 assert(re && rn);
2353
2354 dest = rib_dest_from_rnode(rn);
2355 if (!dest) {
2356 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2357 rnode_debug(rn, re->vrf_id, "rn %p adding dest", rn);
2358
2359 dest = XCALLOC(MTYPE_RIB_DEST, sizeof(rib_dest_t));
2360 route_lock_node(rn); /* rn route table reference */
2361 rn->info = dest;
2362 dest->rnode = rn;
2363 }
2364
2365 head = dest->routes;
2366 if (head) {
2367 head->prev = re;
2368 }
2369 re->next = head;
2370 dest->routes = re;
2371
2372 afi = (rn->p.family == AF_INET)
2373 ? AFI_IP
2374 : (rn->p.family == AF_INET6) ? AFI_IP6 : AFI_MAX;
2375 if (is_zebra_import_table_enabled(afi, re->table)) {
2376 rmap_name = zebra_get_import_table_route_map(afi, re->table);
2377 zebra_add_import_table_entry(rn, re, rmap_name);
2378 } else if (process)
2379 rib_queue_add(rn);
2380 }
2381
2382 static void rib_addnode(struct route_node *rn,
2383 struct route_entry *re, int process)
2384 {
2385 /* RE node has been un-removed before route-node is processed.
2386 * route_node must hence already be on the queue for processing..
2387 */
2388 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)) {
2389 if (IS_ZEBRA_DEBUG_RIB)
2390 rnode_debug(rn, re->vrf_id, "rn %p, un-removed re %p",
2391 (void *)rn, (void *)re);
2392
2393 UNSET_FLAG(re->status, ROUTE_ENTRY_REMOVED);
2394 return;
2395 }
2396 rib_link(rn, re, process);
2397 }
2398
2399 /*
2400 * rib_unlink
2401 *
2402 * Detach a rib structure from a route_node.
2403 *
2404 * Note that a call to rib_unlink() should be followed by a call to
2405 * rib_gc_dest() at some point. This allows a rib_dest_t that is no
2406 * longer required to be deleted.
2407 */
2408 void rib_unlink(struct route_node *rn, struct route_entry *re)
2409 {
2410 rib_dest_t *dest;
2411
2412 assert(rn && re);
2413
2414 if (IS_ZEBRA_DEBUG_RIB)
2415 rnode_debug(rn, re->vrf_id, "rn %p, re %p", (void *)rn,
2416 (void *)re);
2417
2418 dest = rib_dest_from_rnode(rn);
2419
2420 if (re->next)
2421 re->next->prev = re->prev;
2422
2423 if (re->prev)
2424 re->prev->next = re->next;
2425 else {
2426 dest->routes = re->next;
2427 }
2428
2429 if (dest->selected_fib == re)
2430 dest->selected_fib = NULL;
2431
2432 nexthops_free(re->ng.nexthop);
2433 XFREE(MTYPE_RE, re);
2434 }
2435
2436 void rib_delnode(struct route_node *rn, struct route_entry *re)
2437 {
2438 afi_t afi;
2439
2440 if (IS_ZEBRA_DEBUG_RIB)
2441 rnode_debug(rn, re->vrf_id, "rn %p, re %p, removing",
2442 (void *)rn, (void *)re);
2443 SET_FLAG(re->status, ROUTE_ENTRY_REMOVED);
2444
2445 afi = (rn->p.family == AF_INET)
2446 ? AFI_IP
2447 : (rn->p.family == AF_INET6) ? AFI_IP6 : AFI_MAX;
2448 if (is_zebra_import_table_enabled(afi, re->table)) {
2449 zebra_del_import_table_entry(rn, re);
2450 /* Just clean up if non main table */
2451 if (IS_ZEBRA_DEBUG_RIB) {
2452 char buf[SRCDEST2STR_BUFFER];
2453 srcdest_rnode2str(rn, buf, sizeof(buf));
2454 zlog_debug(
2455 "%u:%s: Freeing route rn %p, re %p (type %d)",
2456 re->vrf_id, buf, rn, re, re->type);
2457 }
2458
2459 rib_unlink(rn, re);
2460 } else {
2461 rib_queue_add(rn);
2462 }
2463 }
2464
2465 /* This function dumps the contents of a given RE entry into
2466 * standard debug log. Calling function name and IP prefix in
2467 * question are passed as 1st and 2nd arguments.
2468 */
2469
2470 void _route_entry_dump(const char *func, union prefixconstptr pp,
2471 union prefixconstptr src_pp,
2472 const struct route_entry *re)
2473 {
2474 const struct prefix *src_p = src_pp.p;
2475 bool is_srcdst = src_p && src_p->prefixlen;
2476 char straddr[PREFIX_STRLEN];
2477 char srcaddr[PREFIX_STRLEN];
2478 struct nexthop *nexthop;
2479
2480 zlog_debug("%s: dumping RE entry %p for %s%s%s vrf %u", func,
2481 (const void *)re, prefix2str(pp, straddr, sizeof(straddr)),
2482 is_srcdst ? " from " : "",
2483 is_srcdst ? prefix2str(src_pp, srcaddr, sizeof(srcaddr))
2484 : "",
2485 re->vrf_id);
2486 zlog_debug("%s: uptime == %lu, type == %u, instance == %d, table == %d",
2487 func, (unsigned long)re->uptime, re->type, re->instance,
2488 re->table);
2489 zlog_debug(
2490 "%s: metric == %u, mtu == %u, distance == %u, flags == %u, status == %u",
2491 func, re->metric, re->mtu, re->distance, re->flags, re->status);
2492 zlog_debug("%s: nexthop_num == %u, nexthop_active_num == %u", func,
2493 re->nexthop_num, re->nexthop_active_num);
2494
2495 for (ALL_NEXTHOPS(re->ng, nexthop)) {
2496 struct interface *ifp;
2497 struct vrf *vrf = vrf_lookup_by_id(nexthop->vrf_id);
2498
2499 switch (nexthop->type) {
2500 case NEXTHOP_TYPE_BLACKHOLE:
2501 sprintf(straddr, "Blackhole");
2502 break;
2503 case NEXTHOP_TYPE_IFINDEX:
2504 ifp = if_lookup_by_index(nexthop->ifindex,
2505 nexthop->vrf_id);
2506 sprintf(straddr, "%s", ifp ? ifp->name : "Unknown");
2507 break;
2508 case NEXTHOP_TYPE_IPV4:
2509 /* fallthrough */
2510 case NEXTHOP_TYPE_IPV4_IFINDEX:
2511 inet_ntop(AF_INET, &nexthop->gate, straddr,
2512 INET6_ADDRSTRLEN);
2513 break;
2514 case NEXTHOP_TYPE_IPV6:
2515 case NEXTHOP_TYPE_IPV6_IFINDEX:
2516 inet_ntop(AF_INET6, &nexthop->gate, straddr,
2517 INET6_ADDRSTRLEN);
2518 break;
2519 }
2520 zlog_debug("%s: %s %s[%u] vrf %s(%u) with flags %s%s%s", func,
2521 (nexthop->rparent ? " NH" : "NH"), straddr,
2522 nexthop->ifindex, vrf ? vrf->name : "Unknown",
2523 nexthop->vrf_id,
2524 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE)
2525 ? "ACTIVE "
2526 : ""),
2527 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB)
2528 ? "FIB "
2529 : ""),
2530 (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_RECURSIVE)
2531 ? "RECURSIVE"
2532 : ""));
2533 }
2534 zlog_debug("%s: dump complete", func);
2535 }
2536
2537 /* This is an exported helper to rtm_read() to dump the strange
2538 * RE entry found by rib_lookup_ipv4_route()
2539 */
2540
2541 void rib_lookup_and_dump(struct prefix_ipv4 *p, vrf_id_t vrf_id)
2542 {
2543 struct route_table *table;
2544 struct route_node *rn;
2545 struct route_entry *re;
2546 char prefix_buf[INET_ADDRSTRLEN];
2547
2548 /* Lookup table. */
2549 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
2550 if (!table) {
2551 flog_err(EC_ZEBRA_TABLE_LOOKUP_FAILED,
2552 "%s:%u zebra_vrf_table() returned NULL", __func__,
2553 vrf_id);
2554 return;
2555 }
2556
2557 /* Scan the RIB table for exactly matching RE entry. */
2558 rn = route_node_lookup(table, (struct prefix *)p);
2559
2560 /* No route for this prefix. */
2561 if (!rn) {
2562 zlog_debug("%s:%u lookup failed for %s", __func__, vrf_id,
2563 prefix2str((struct prefix *)p, prefix_buf,
2564 sizeof(prefix_buf)));
2565 return;
2566 }
2567
2568 /* Unlock node. */
2569 route_unlock_node(rn);
2570
2571 /* let's go */
2572 RNODE_FOREACH_RE (rn, re) {
2573 zlog_debug("%s:%u rn %p, re %p: %s, %s",
2574 __func__, vrf_id,
2575 (void *)rn, (void *)re,
2576 (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED)
2577 ? "removed"
2578 : "NOT removed"),
2579 (CHECK_FLAG(re->flags, ZEBRA_FLAG_SELECTED)
2580 ? "selected"
2581 : "NOT selected"));
2582 route_entry_dump(p, NULL, re);
2583 }
2584 }
2585
2586 /* Check if requested address assignment will fail due to another
2587 * route being installed by zebra in FIB already. Take necessary
2588 * actions, if needed: remove such a route from FIB and deSELECT
2589 * corresponding RE entry. Then put affected RN into RIBQ head.
2590 */
2591 void rib_lookup_and_pushup(struct prefix_ipv4 *p, vrf_id_t vrf_id)
2592 {
2593 struct route_table *table;
2594 struct route_node *rn;
2595 unsigned changed = 0;
2596 rib_dest_t *dest;
2597
2598 if (NULL == (table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id))) {
2599 flog_err(EC_ZEBRA_TABLE_LOOKUP_FAILED,
2600 "%s:%u zebra_vrf_table() returned NULL", __func__,
2601 vrf_id);
2602 return;
2603 }
2604
2605 /* No matches would be the simplest case. */
2606 if (NULL == (rn = route_node_lookup(table, (struct prefix *)p)))
2607 return;
2608
2609 /* Unlock node. */
2610 route_unlock_node(rn);
2611
2612 dest = rib_dest_from_rnode(rn);
2613 /* Check all RE entries. In case any changes have to be done, requeue
2614 * the RN into RIBQ head. If the routing message about the new connected
2615 * route (generated by the IP address we are going to assign very soon)
2616 * comes before the RIBQ is processed, the new RE entry will join
2617 * RIBQ record already on head. This is necessary for proper
2618 * revalidation
2619 * of the rest of the RE.
2620 */
2621 if (dest->selected_fib && !RIB_SYSTEM_ROUTE(dest->selected_fib)) {
2622 changed = 1;
2623 if (IS_ZEBRA_DEBUG_RIB) {
2624 char buf[PREFIX_STRLEN];
2625
2626 zlog_debug("%u:%s: freeing way for connected prefix",
2627 dest->selected_fib->vrf_id,
2628 prefix2str(&rn->p, buf, sizeof(buf)));
2629 route_entry_dump(&rn->p, NULL, dest->selected_fib);
2630 }
2631 rib_uninstall(rn, dest->selected_fib);
2632 }
2633 if (changed)
2634 rib_queue_add(rn);
2635 }
2636
2637 int rib_add_multipath(afi_t afi, safi_t safi, struct prefix *p,
2638 struct prefix_ipv6 *src_p, struct route_entry *re)
2639 {
2640 struct route_table *table;
2641 struct route_node *rn;
2642 struct route_entry *same = NULL;
2643 struct nexthop *nexthop;
2644 int ret = 0;
2645
2646 if (!re)
2647 return 0;
2648
2649 assert(!src_p || !src_p->prefixlen || afi == AFI_IP6);
2650
2651 /* Lookup table. */
2652 table = zebra_vrf_table_with_table_id(afi, safi, re->vrf_id, re->table);
2653 if (!table) {
2654 XFREE(MTYPE_RE, re);
2655 return 0;
2656 }
2657
2658 /* Make it sure prefixlen is applied to the prefix. */
2659 apply_mask(p);
2660 if (src_p)
2661 apply_mask_ipv6(src_p);
2662
2663 /* Set default distance by route type. */
2664 if (re->distance == 0) {
2665 re->distance = route_distance(re->type);
2666
2667 /* iBGP distance is 200. */
2668 if (re->type == ZEBRA_ROUTE_BGP
2669 && CHECK_FLAG(re->flags, ZEBRA_FLAG_IBGP))
2670 re->distance = 200;
2671 }
2672
2673 /* Lookup route node.*/
2674 rn = srcdest_rnode_get(table, p, src_p);
2675
2676 /*
2677 * If same type of route are installed, treat it as a implicit
2678 * withdraw.
2679 * If the user has specified the No route replace semantics
2680 * for the install don't do a route replace.
2681 */
2682 RNODE_FOREACH_RE (rn, same) {
2683 if (CHECK_FLAG(same->status, ROUTE_ENTRY_REMOVED))
2684 continue;
2685
2686 if (same->type != re->type)
2687 continue;
2688 if (same->instance != re->instance)
2689 continue;
2690 if (same->type == ZEBRA_ROUTE_KERNEL
2691 && same->metric != re->metric)
2692 continue;
2693
2694 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_RR_USE_DISTANCE) &&
2695 same->distance != re->distance)
2696 continue;
2697
2698 /*
2699 * We should allow duplicate connected routes
2700 * because of IPv6 link-local routes and unnumbered
2701 * interfaces on Linux.
2702 */
2703 if (same->type != ZEBRA_ROUTE_CONNECT)
2704 break;
2705 }
2706
2707 /* If this route is kernel route, set FIB flag to the route. */
2708 if (RIB_SYSTEM_ROUTE(re))
2709 for (nexthop = re->ng.nexthop; nexthop; nexthop = nexthop->next)
2710 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
2711
2712 /* Link new re to node.*/
2713 if (IS_ZEBRA_DEBUG_RIB) {
2714 rnode_debug(
2715 rn, re->vrf_id,
2716 "Inserting route rn %p, re %p (type %d) existing %p",
2717 (void *)rn, (void *)re, re->type, (void *)same);
2718
2719 if (IS_ZEBRA_DEBUG_RIB_DETAILED)
2720 route_entry_dump(p, src_p, re);
2721 }
2722 rib_addnode(rn, re, 1);
2723 ret = 1;
2724
2725 /* Free implicit route.*/
2726 if (same) {
2727 rib_delnode(rn, same);
2728 ret = -1;
2729 }
2730
2731 route_unlock_node(rn);
2732 return ret;
2733 }
2734
2735 void rib_delete(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type,
2736 unsigned short instance, int flags, struct prefix *p,
2737 struct prefix_ipv6 *src_p, const struct nexthop *nh,
2738 uint32_t table_id, uint32_t metric, uint8_t distance,
2739 bool fromkernel)
2740 {
2741 struct route_table *table;
2742 struct route_node *rn;
2743 struct route_entry *re;
2744 struct route_entry *fib = NULL;
2745 struct route_entry *same = NULL;
2746 struct nexthop *rtnh;
2747 char buf2[INET6_ADDRSTRLEN];
2748 rib_dest_t *dest;
2749
2750 assert(!src_p || !src_p->prefixlen || afi == AFI_IP6);
2751
2752 /* Lookup table. */
2753 table = zebra_vrf_table_with_table_id(afi, safi, vrf_id, table_id);
2754 if (!table)
2755 return;
2756
2757 /* Apply mask. */
2758 apply_mask(p);
2759 if (src_p)
2760 apply_mask_ipv6(src_p);
2761
2762 /* Lookup route node. */
2763 rn = srcdest_rnode_lookup(table, p, src_p);
2764 if (!rn) {
2765 char dst_buf[PREFIX_STRLEN], src_buf[PREFIX_STRLEN];
2766
2767 prefix2str(p, dst_buf, sizeof(dst_buf));
2768 if (src_p && src_p->prefixlen)
2769 prefix2str(src_p, src_buf, sizeof(src_buf));
2770 else
2771 src_buf[0] = '\0';
2772
2773 if (IS_ZEBRA_DEBUG_RIB)
2774 zlog_debug("%u:%s%s%s doesn't exist in rib", vrf_id,
2775 dst_buf,
2776 (src_buf[0] != '\0') ? " from " : "",
2777 src_buf);
2778 return;
2779 }
2780
2781 dest = rib_dest_from_rnode(rn);
2782 fib = dest->selected_fib;
2783
2784 /* Lookup same type route. */
2785 RNODE_FOREACH_RE (rn, re) {
2786 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
2787 continue;
2788
2789 if (re->type != type)
2790 continue;
2791 if (re->instance != instance)
2792 continue;
2793 if (CHECK_FLAG(re->flags, ZEBRA_FLAG_RR_USE_DISTANCE) &&
2794 distance != re->distance)
2795 continue;
2796
2797 if (re->type == ZEBRA_ROUTE_KERNEL && re->metric != metric)
2798 continue;
2799 if (re->type == ZEBRA_ROUTE_CONNECT && (rtnh = re->ng.nexthop)
2800 && rtnh->type == NEXTHOP_TYPE_IFINDEX && nh) {
2801 if (rtnh->ifindex != nh->ifindex)
2802 continue;
2803 same = re;
2804 break;
2805 }
2806 /* Make sure that the route found has the same gateway. */
2807 else {
2808 if (nh == NULL) {
2809 same = re;
2810 break;
2811 }
2812 for (ALL_NEXTHOPS(re->ng, rtnh))
2813 if (nexthop_same_no_recurse(rtnh, nh)) {
2814 same = re;
2815 break;
2816 }
2817 if (same)
2818 break;
2819 }
2820 }
2821 /* If same type of route can't be found and this message is from
2822 kernel. */
2823 if (!same) {
2824 /*
2825 * In the past(HA!) we could get here because
2826 * we were receiving a route delete from the
2827 * kernel and we're not marking the proto
2828 * as coming from it's appropriate originator.
2829 * Now that we are properly noticing the fact
2830 * that the kernel has deleted our route we
2831 * are not going to get called in this path
2832 * I am going to leave this here because
2833 * this might still work this way on non-linux
2834 * platforms as well as some weird state I have
2835 * not properly thought of yet.
2836 * If we can show that this code path is
2837 * dead then we can remove it.
2838 */
2839 if (fib && CHECK_FLAG(flags, ZEBRA_FLAG_SELFROUTE)) {
2840 if (IS_ZEBRA_DEBUG_RIB) {
2841 rnode_debug(
2842 rn, vrf_id,
2843 "rn %p, re %p (type %d) was deleted from kernel, adding",
2844 rn, fib, fib->type);
2845 }
2846 if (allow_delete) {
2847 /* Unset flags. */
2848 for (rtnh = fib->ng.nexthop; rtnh;
2849 rtnh = rtnh->next)
2850 UNSET_FLAG(rtnh->flags,
2851 NEXTHOP_FLAG_FIB);
2852
2853 /*
2854 * This is a non FRR route
2855 * as such we should mark
2856 * it as deleted
2857 */
2858 dest->selected_fib = NULL;
2859 } else {
2860 /* This means someone else, other than Zebra,
2861 * has deleted
2862 * a Zebra router from the kernel. We will add
2863 * it back */
2864 rib_install_kernel(rn, fib, NULL);
2865 }
2866 } else {
2867 if (IS_ZEBRA_DEBUG_RIB) {
2868 if (nh)
2869 rnode_debug(
2870 rn, vrf_id,
2871 "via %s ifindex %d type %d "
2872 "doesn't exist in rib",
2873 inet_ntop(afi2family(afi),
2874 &nh->gate, buf2,
2875 sizeof(buf2)),
2876 nh->ifindex, type);
2877 else
2878 rnode_debug(
2879 rn, vrf_id,
2880 "type %d doesn't exist in rib",
2881 type);
2882 }
2883 route_unlock_node(rn);
2884 return;
2885 }
2886 }
2887
2888 if (same) {
2889 if (fromkernel && CHECK_FLAG(flags, ZEBRA_FLAG_SELFROUTE)
2890 && !allow_delete) {
2891 rib_install_kernel(rn, same, NULL);
2892 route_unlock_node(rn);
2893
2894 return;
2895 }
2896
2897 if (CHECK_FLAG(flags, ZEBRA_FLAG_EVPN_ROUTE)) {
2898 struct nexthop *tmp_nh;
2899
2900 for (ALL_NEXTHOPS(re->ng, tmp_nh)) {
2901 struct ipaddr vtep_ip;
2902
2903 memset(&vtep_ip, 0, sizeof(struct ipaddr));
2904 if (afi == AFI_IP) {
2905 vtep_ip.ipa_type = IPADDR_V4;
2906 memcpy(&(vtep_ip.ipaddr_v4),
2907 &(tmp_nh->gate.ipv4),
2908 sizeof(struct in_addr));
2909 } else {
2910 vtep_ip.ipa_type = IPADDR_V6;
2911 memcpy(&(vtep_ip.ipaddr_v6),
2912 &(tmp_nh->gate.ipv6),
2913 sizeof(struct in6_addr));
2914 }
2915 zebra_vxlan_evpn_vrf_route_del(re->vrf_id,
2916 &vtep_ip, p);
2917 }
2918 }
2919 rib_delnode(rn, same);
2920 }
2921
2922 route_unlock_node(rn);
2923 return;
2924 }
2925
2926
2927 int rib_add(afi_t afi, safi_t safi, vrf_id_t vrf_id, int type,
2928 unsigned short instance, int flags, struct prefix *p,
2929 struct prefix_ipv6 *src_p, const struct nexthop *nh,
2930 uint32_t table_id, uint32_t metric, uint32_t mtu, uint8_t distance,
2931 route_tag_t tag)
2932 {
2933 struct route_entry *re;
2934 struct nexthop *nexthop;
2935
2936 /* Allocate new route_entry structure. */
2937 re = XCALLOC(MTYPE_RE, sizeof(struct route_entry));
2938 re->type = type;
2939 re->instance = instance;
2940 re->distance = distance;
2941 re->flags = flags;
2942 re->metric = metric;
2943 re->mtu = mtu;
2944 re->table = table_id;
2945 re->vrf_id = vrf_id;
2946 re->nexthop_num = 0;
2947 re->uptime = time(NULL);
2948 re->tag = tag;
2949
2950 /* Add nexthop. */
2951 nexthop = nexthop_new();
2952 *nexthop = *nh;
2953 route_entry_nexthop_add(re, nexthop);
2954
2955 return rib_add_multipath(afi, safi, p, src_p, re);
2956 }
2957
2958 /* Schedule routes of a particular table (address-family) based on event. */
2959 void rib_update_table(struct route_table *table, rib_update_event_t event)
2960 {
2961 struct route_node *rn;
2962 struct route_entry *re, *next;
2963
2964 /* Walk all routes and queue for processing, if appropriate for
2965 * the trigger event.
2966 */
2967 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
2968 /*
2969 * If we are looking at a route node and the node
2970 * has already been queued we don't
2971 * need to queue it up again
2972 */
2973 if (rn->info && CHECK_FLAG(rib_dest_from_rnode(rn)->flags,
2974 RIB_ROUTE_ANY_QUEUED))
2975 continue;
2976 switch (event) {
2977 case RIB_UPDATE_IF_CHANGE:
2978 /* Examine all routes that won't get processed by the
2979 * protocol or
2980 * triggered by nexthop evaluation (NHT). This would be
2981 * system,
2982 * kernel and certain static routes. Note that NHT will
2983 * get
2984 * triggered upon an interface event as connected routes
2985 * always
2986 * get queued for processing.
2987 */
2988 RNODE_FOREACH_RE_SAFE (rn, re, next) {
2989 struct nexthop *nh;
2990
2991 if (re->type != ZEBRA_ROUTE_SYSTEM
2992 && re->type != ZEBRA_ROUTE_KERNEL
2993 && re->type != ZEBRA_ROUTE_CONNECT
2994 && re->type != ZEBRA_ROUTE_STATIC)
2995 continue;
2996
2997 if (re->type != ZEBRA_ROUTE_STATIC) {
2998 rib_queue_add(rn);
2999 continue;
3000 }
3001
3002 for (nh = re->ng.nexthop; nh; nh = nh->next)
3003 if (!(nh->type == NEXTHOP_TYPE_IPV4
3004 || nh->type == NEXTHOP_TYPE_IPV6))
3005 break;
3006
3007 /* If we only have nexthops to a
3008 * gateway, NHT will
3009 * take care.
3010 */
3011 if (nh)
3012 rib_queue_add(rn);
3013 }
3014 break;
3015
3016 case RIB_UPDATE_RMAP_CHANGE:
3017 case RIB_UPDATE_OTHER:
3018 /* Right now, examine all routes. Can restrict to a
3019 * protocol in
3020 * some cases (TODO).
3021 */
3022 if (rnode_to_ribs(rn))
3023 rib_queue_add(rn);
3024 break;
3025
3026 default:
3027 break;
3028 }
3029 }
3030 }
3031
3032 /* RIB update function. */
3033 void rib_update(vrf_id_t vrf_id, rib_update_event_t event)
3034 {
3035 struct route_table *table;
3036
3037 /* Process routes of interested address-families. */
3038 table = zebra_vrf_table(AFI_IP, SAFI_UNICAST, vrf_id);
3039 if (table) {
3040 if (IS_ZEBRA_DEBUG_EVENT)
3041 zlog_debug("%s : AFI_IP event %d", __func__, event);
3042 rib_update_table(table, event);
3043 }
3044
3045 table = zebra_vrf_table(AFI_IP6, SAFI_UNICAST, vrf_id);
3046 if (table) {
3047 if (IS_ZEBRA_DEBUG_EVENT)
3048 zlog_debug("%s : AFI_IP6 event %d", __func__, event);
3049 rib_update_table(table, event);
3050 }
3051 }
3052
3053 /* Delete self installed routes after zebra is relaunched. */
3054 void rib_sweep_table(struct route_table *table)
3055 {
3056 struct route_node *rn;
3057 struct route_entry *re;
3058 struct route_entry *next;
3059 struct nexthop *nexthop;
3060
3061 if (!table)
3062 return;
3063
3064 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
3065 RNODE_FOREACH_RE_SAFE (rn, re, next) {
3066 if (IS_ZEBRA_DEBUG_RIB)
3067 route_entry_dump(&rn->p, NULL, re);
3068
3069 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
3070 continue;
3071
3072 if (!CHECK_FLAG(re->flags, ZEBRA_FLAG_SELFROUTE))
3073 continue;
3074
3075 /*
3076 * So we are starting up and have received
3077 * routes from the kernel that we have installed
3078 * from a previous run of zebra but not cleaned
3079 * up ( say a kill -9 )
3080 * But since we haven't actually installed
3081 * them yet( we received them from the kernel )
3082 * we don't think they are active.
3083 * So let's pretend they are active to actually
3084 * remove them.
3085 * In all honesty I'm not sure if we should
3086 * mark them as active when we receive them
3087 * This is startup only so probably ok.
3088 *
3089 * If we ever decide to move rib_sweep_table
3090 * to a different spot (ie startup )
3091 * this decision needs to be revisited
3092 */
3093 for (ALL_NEXTHOPS(re->ng, nexthop))
3094 SET_FLAG(nexthop->flags, NEXTHOP_FLAG_FIB);
3095
3096 rib_uninstall_kernel(rn, re);
3097 rib_delnode(rn, re);
3098 }
3099 }
3100 }
3101
3102 /* Sweep all RIB tables. */
3103 void rib_sweep_route(void)
3104 {
3105 struct vrf *vrf;
3106 struct zebra_vrf *zvrf;
3107
3108 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id) {
3109 if ((zvrf = vrf->info) == NULL)
3110 continue;
3111
3112 rib_sweep_table(zvrf->table[AFI_IP][SAFI_UNICAST]);
3113 rib_sweep_table(zvrf->table[AFI_IP6][SAFI_UNICAST]);
3114 }
3115
3116 zebra_router_sweep_route();
3117 }
3118
3119 /* Remove specific by protocol routes from 'table'. */
3120 unsigned long rib_score_proto_table(uint8_t proto, unsigned short instance,
3121 struct route_table *table)
3122 {
3123 struct route_node *rn;
3124 struct route_entry *re;
3125 struct route_entry *next;
3126 unsigned long n = 0;
3127
3128 if (table)
3129 for (rn = route_top(table); rn; rn = srcdest_route_next(rn))
3130 RNODE_FOREACH_RE_SAFE (rn, re, next) {
3131 if (CHECK_FLAG(re->status, ROUTE_ENTRY_REMOVED))
3132 continue;
3133 if (re->type == proto
3134 && re->instance == instance) {
3135 rib_delnode(rn, re);
3136 n++;
3137 }
3138 }
3139 return n;
3140 }
3141
3142 /* Remove specific by protocol routes. */
3143 unsigned long rib_score_proto(uint8_t proto, unsigned short instance)
3144 {
3145 struct vrf *vrf;
3146 struct zebra_vrf *zvrf;
3147 unsigned long cnt = 0;
3148
3149 RB_FOREACH (vrf, vrf_id_head, &vrfs_by_id)
3150 if ((zvrf = vrf->info) != NULL)
3151 cnt += rib_score_proto_table(
3152 proto, instance,
3153 zvrf->table[AFI_IP][SAFI_UNICAST])
3154 + rib_score_proto_table(
3155 proto, instance,
3156 zvrf->table[AFI_IP6][SAFI_UNICAST]);
3157
3158 cnt += zebra_router_score_proto(proto, instance);
3159
3160 return cnt;
3161 }
3162
3163 /* Close RIB and clean up kernel routes. */
3164 void rib_close_table(struct route_table *table)
3165 {
3166 struct route_node *rn;
3167 rib_table_info_t *info;
3168 rib_dest_t *dest;
3169
3170 if (!table)
3171 return;
3172
3173 info = route_table_get_info(table);
3174
3175 for (rn = route_top(table); rn; rn = srcdest_route_next(rn)) {
3176 dest = rib_dest_from_rnode(rn);
3177
3178 if (dest && dest->selected_fib) {
3179 if (info->safi == SAFI_UNICAST)
3180 hook_call(rib_update, rn, NULL);
3181
3182 if (!RIB_SYSTEM_ROUTE(dest->selected_fib)) {
3183 rib_uninstall_kernel(rn, dest->selected_fib);
3184 dest->selected_fib = NULL;
3185 }
3186 }
3187 }
3188 }
3189
3190 /*
3191 *
3192 */
3193 static int rib_process_dplane_results(struct thread *thread)
3194 {
3195 struct zebra_dplane_ctx *ctx;
3196
3197 do {
3198 /* Take lock controlling queue of results */
3199 pthread_mutex_lock(&dplane_mutex);
3200 {
3201 /* Dequeue context block */
3202 ctx = dplane_ctx_dequeue(&rib_dplane_q);
3203 }
3204 pthread_mutex_unlock(&dplane_mutex);
3205
3206 if (ctx)
3207 rib_process_after(ctx);
3208 else
3209 break;
3210
3211 } while (1);
3212
3213 /* Check for nexthop tracking processing after finishing with results */
3214 do_nht_processing();
3215
3216 return 0;
3217 }
3218
3219 /*
3220 * Results are returned from the dataplane subsystem, in the context of
3221 * the dataplane pthread. We enqueue the results here for processing by
3222 * the main thread later.
3223 */
3224 static int rib_dplane_results(struct zebra_dplane_ctx *ctx)
3225 {
3226 /* Take lock controlling queue of results */
3227 pthread_mutex_lock(&dplane_mutex);
3228 {
3229 /* Enqueue context block */
3230 dplane_ctx_enqueue_tail(&rib_dplane_q, ctx);
3231 }
3232 pthread_mutex_unlock(&dplane_mutex);
3233
3234 /* Ensure event is signalled to zebra main thread */
3235 thread_add_event(zebrad.master, rib_process_dplane_results, NULL, 0,
3236 &t_dplane);
3237
3238 return 0;
3239 }
3240
3241 /* Routing information base initialize. */
3242 void rib_init(void)
3243 {
3244 rib_queue_init(&zebrad);
3245
3246 /* Init dataplane, and register for results */
3247 pthread_mutex_init(&dplane_mutex, NULL);
3248 TAILQ_INIT(&rib_dplane_q);
3249 zebra_dplane_init();
3250 dplane_results_register(rib_dplane_results);
3251 }
3252
3253 /*
3254 * vrf_id_get_next
3255 *
3256 * Get the first vrf id that is greater than the given vrf id if any.
3257 *
3258 * Returns TRUE if a vrf id was found, FALSE otherwise.
3259 */
3260 static inline int vrf_id_get_next(vrf_id_t vrf_id, vrf_id_t *next_id_p)
3261 {
3262 struct vrf *vrf;
3263
3264 vrf = vrf_lookup_by_id(vrf_id);
3265 if (vrf) {
3266 vrf = RB_NEXT(vrf_id_head, vrf);
3267 if (vrf) {
3268 *next_id_p = vrf->vrf_id;
3269 return 1;
3270 }
3271 }
3272
3273 return 0;
3274 }
3275
3276 /*
3277 * rib_tables_iter_next
3278 *
3279 * Returns the next table in the iteration.
3280 */
3281 struct route_table *rib_tables_iter_next(rib_tables_iter_t *iter)
3282 {
3283 struct route_table *table;
3284
3285 /*
3286 * Array that helps us go over all AFI/SAFI combinations via one
3287 * index.
3288 */
3289 static struct {
3290 afi_t afi;
3291 safi_t safi;
3292 } afi_safis[] = {
3293 {AFI_IP, SAFI_UNICAST}, {AFI_IP, SAFI_MULTICAST},
3294 {AFI_IP, SAFI_LABELED_UNICAST}, {AFI_IP6, SAFI_UNICAST},
3295 {AFI_IP6, SAFI_MULTICAST}, {AFI_IP6, SAFI_LABELED_UNICAST},
3296 };
3297
3298 table = NULL;
3299
3300 switch (iter->state) {
3301
3302 case RIB_TABLES_ITER_S_INIT:
3303 iter->vrf_id = VRF_DEFAULT;
3304 iter->afi_safi_ix = -1;
3305
3306 /* Fall through */
3307
3308 case RIB_TABLES_ITER_S_ITERATING:
3309 iter->afi_safi_ix++;
3310 while (1) {
3311
3312 while (iter->afi_safi_ix
3313 < (int)ZEBRA_NUM_OF(afi_safis)) {
3314 table = zebra_vrf_table(
3315 afi_safis[iter->afi_safi_ix].afi,
3316 afi_safis[iter->afi_safi_ix].safi,
3317 iter->vrf_id);
3318 if (table)
3319 break;
3320
3321 iter->afi_safi_ix++;
3322 }
3323
3324 /*
3325 * Found another table in this vrf.
3326 */
3327 if (table)
3328 break;
3329
3330 /*
3331 * Done with all tables in the current vrf, go to the
3332 * next
3333 * one.
3334 */
3335 if (!vrf_id_get_next(iter->vrf_id, &iter->vrf_id))
3336 break;
3337
3338 iter->afi_safi_ix = 0;
3339 }
3340
3341 break;
3342
3343 case RIB_TABLES_ITER_S_DONE:
3344 return NULL;
3345 }
3346
3347 if (table)
3348 iter->state = RIB_TABLES_ITER_S_ITERATING;
3349 else
3350 iter->state = RIB_TABLES_ITER_S_DONE;
3351
3352 return table;
3353 }