]> git.proxmox.com Git - mirror_frr.git/blob - zebra/zebra_snmp.c
8adb8873dc9be28506f366534f096970e2294fe0
[mirror_frr.git] / zebra / zebra_snmp.c
1 /* FIB SNMP.
2 * Copyright (C) 1999 Kunihiro Ishiguro
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with GNU Zebra; see the file COPYING. If not, write to the Free
18 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19 * 02111-1307, USA.
20 */
21
22 /*
23 * Currently SNMP is only running properly for MIBs in the default VRF.
24 */
25
26 #include <zebra.h>
27
28 #include <net-snmp/net-snmp-config.h>
29 #include <net-snmp/net-snmp-includes.h>
30
31 #include "if.h"
32 #include "log.h"
33 #include "prefix.h"
34 #include "command.h"
35 #include "smux.h"
36 #include "table.h"
37 #include "vrf.h"
38 #include "hook.h"
39 #include "libfrr.h"
40 #include "version.h"
41
42 #include "zebra/rib.h"
43 #include "zebra/zserv.h"
44 #include "zebra/zebra_vrf.h"
45
46 #define IPFWMIB 1,3,6,1,2,1,4,24
47
48 /* ipForwardTable */
49 #define IPFORWARDDEST 1
50 #define IPFORWARDMASK 2
51 #define IPFORWARDPOLICY 3
52 #define IPFORWARDNEXTHOP 4
53 #define IPFORWARDIFINDEX 5
54 #define IPFORWARDTYPE 6
55 #define IPFORWARDPROTO 7
56 #define IPFORWARDAGE 8
57 #define IPFORWARDINFO 9
58 #define IPFORWARDNEXTHOPAS 10
59 #define IPFORWARDMETRIC1 11
60 #define IPFORWARDMETRIC2 12
61 #define IPFORWARDMETRIC3 13
62 #define IPFORWARDMETRIC4 14
63 #define IPFORWARDMETRIC5 15
64
65 /* ipCidrRouteTable */
66 #define IPCIDRROUTEDEST 1
67 #define IPCIDRROUTEMASK 2
68 #define IPCIDRROUTETOS 3
69 #define IPCIDRROUTENEXTHOP 4
70 #define IPCIDRROUTEIFINDEX 5
71 #define IPCIDRROUTETYPE 6
72 #define IPCIDRROUTEPROTO 7
73 #define IPCIDRROUTEAGE 8
74 #define IPCIDRROUTEINFO 9
75 #define IPCIDRROUTENEXTHOPAS 10
76 #define IPCIDRROUTEMETRIC1 11
77 #define IPCIDRROUTEMETRIC2 12
78 #define IPCIDRROUTEMETRIC3 13
79 #define IPCIDRROUTEMETRIC4 14
80 #define IPCIDRROUTEMETRIC5 15
81 #define IPCIDRROUTESTATUS 16
82
83 #define INTEGER32 ASN_INTEGER
84 #define GAUGE32 ASN_GAUGE
85 #define ENUMERATION ASN_INTEGER
86 #define ROWSTATUS ASN_INTEGER
87 #define IPADDRESS ASN_IPADDRESS
88 #define OBJECTIDENTIFIER ASN_OBJECT_ID
89
90 static oid ipfw_oid [] = { IPFWMIB };
91
92 /* Hook functions. */
93 static u_char * ipFwNumber (struct variable *, oid [], size_t *,
94 int, size_t *, WriteMethod **);
95 static u_char * ipFwTable (struct variable *, oid [], size_t *,
96 int, size_t *, WriteMethod **);
97 static u_char * ipCidrNumber (struct variable *, oid [], size_t *,
98 int, size_t *, WriteMethod **);
99 static u_char * ipCidrTable (struct variable *, oid [], size_t *,
100 int, size_t *, WriteMethod **);
101
102 static struct variable zebra_variables[] =
103 {
104 {0, GAUGE32, RONLY, ipFwNumber, 1, {1}},
105 {IPFORWARDDEST, IPADDRESS, RONLY, ipFwTable, 3, {2, 1, 1}},
106 {IPFORWARDMASK, IPADDRESS, RONLY, ipFwTable, 3, {2, 1, 2}},
107 {IPFORWARDPOLICY, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 3}},
108 {IPFORWARDNEXTHOP, IPADDRESS, RONLY, ipFwTable, 3, {2, 1, 4}},
109 {IPFORWARDIFINDEX, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 5}},
110 {IPFORWARDTYPE, ENUMERATION, RONLY, ipFwTable, 3, {2, 1, 6}},
111 {IPFORWARDPROTO, ENUMERATION, RONLY, ipFwTable, 3, {2, 1, 7}},
112 {IPFORWARDAGE, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 8}},
113 {IPFORWARDINFO, OBJECTIDENTIFIER, RONLY, ipFwTable, 3, {2, 1, 9}},
114 {IPFORWARDNEXTHOPAS, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 10}},
115 {IPFORWARDMETRIC1, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 11}},
116 {IPFORWARDMETRIC2, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 12}},
117 {IPFORWARDMETRIC3, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 13}},
118 {IPFORWARDMETRIC4, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 14}},
119 {IPFORWARDMETRIC5, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 15}},
120 {0, GAUGE32, RONLY, ipCidrNumber, 1, {3}},
121 {IPCIDRROUTEDEST, IPADDRESS, RONLY, ipCidrTable, 3, {4, 1, 1}},
122 {IPCIDRROUTEMASK, IPADDRESS, RONLY, ipCidrTable, 3, {4, 1, 2}},
123 {IPCIDRROUTETOS, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 3}},
124 {IPCIDRROUTENEXTHOP, IPADDRESS, RONLY, ipCidrTable, 3, {4, 1, 4}},
125 {IPCIDRROUTEIFINDEX, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 5}},
126 {IPCIDRROUTETYPE, ENUMERATION, RONLY, ipCidrTable, 3, {4, 1, 6}},
127 {IPCIDRROUTEPROTO, ENUMERATION, RONLY, ipCidrTable, 3, {4, 1, 7}},
128 {IPCIDRROUTEAGE, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 8}},
129 {IPCIDRROUTEINFO, OBJECTIDENTIFIER, RONLY, ipCidrTable, 3, {4, 1, 9}},
130 {IPCIDRROUTENEXTHOPAS, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 10}},
131 {IPCIDRROUTEMETRIC1, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 11}},
132 {IPCIDRROUTEMETRIC2, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 12}},
133 {IPCIDRROUTEMETRIC3, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 13}},
134 {IPCIDRROUTEMETRIC4, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 14}},
135 {IPCIDRROUTEMETRIC5, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 15}},
136 {IPCIDRROUTESTATUS, ROWSTATUS, RONLY, ipCidrTable, 3, {4, 1, 16}}
137 };
138
139
140 static u_char *
141 ipFwNumber (struct variable *v, oid objid[], size_t *objid_len,
142 int exact, size_t *val_len, WriteMethod **write_method)
143 {
144 static int result;
145 struct route_table *table;
146 struct route_node *rn;
147 struct rib *rib;
148
149 if (smux_header_generic(v, objid, objid_len, exact, val_len, write_method) == MATCH_FAILED)
150 return NULL;
151
152 table = zebra_vrf_table (AFI_IP, SAFI_UNICAST, VRF_DEFAULT);
153 if (! table)
154 return NULL;
155
156 /* Return number of routing entries. */
157 result = 0;
158 for (rn = route_top (table); rn; rn = route_next (rn))
159 RNODE_FOREACH_RIB (rn, rib)
160 result++;
161
162 return (u_char *)&result;
163 }
164
165 static u_char *
166 ipCidrNumber (struct variable *v, oid objid[], size_t *objid_len,
167 int exact, size_t *val_len, WriteMethod **write_method)
168 {
169 static int result;
170 struct route_table *table;
171 struct route_node *rn;
172 struct rib *rib;
173
174 if (smux_header_generic(v, objid, objid_len, exact, val_len, write_method) == MATCH_FAILED)
175 return NULL;
176
177 table = zebra_vrf_table (AFI_IP, SAFI_UNICAST, VRF_DEFAULT);
178 if (! table)
179 return 0;
180
181 /* Return number of routing entries. */
182 result = 0;
183 for (rn = route_top (table); rn; rn = route_next (rn))
184 RNODE_FOREACH_RIB (rn, rib)
185 result++;
186
187 return (u_char *)&result;
188 }
189
190 static int
191 in_addr_cmp(u_char *p1, u_char *p2)
192 {
193 int i;
194
195 for (i=0; i<4; i++)
196 {
197 if (*p1 < *p2)
198 return -1;
199 if (*p1 > *p2)
200 return 1;
201 p1++; p2++;
202 }
203 return 0;
204 }
205
206 static int
207 in_addr_add(u_char *p, int num)
208 {
209 int i, ip0;
210
211 ip0 = *p;
212 p += 4;
213 for (i = 3; 0 <= i; i--) {
214 p--;
215 if (*p + num > 255) {
216 *p += num;
217 num = 1;
218 } else {
219 *p += num;
220 return 1;
221 }
222 }
223 if (ip0 > *p) {
224 /* ip + num > 0xffffffff */
225 return 0;
226 }
227
228 return 1;
229 }
230
231 static int
232 proto_trans(int type)
233 {
234 switch (type)
235 {
236 case ZEBRA_ROUTE_SYSTEM:
237 return 1; /* other */
238 case ZEBRA_ROUTE_KERNEL:
239 return 1; /* other */
240 case ZEBRA_ROUTE_CONNECT:
241 return 2; /* local interface */
242 case ZEBRA_ROUTE_STATIC:
243 return 3; /* static route */
244 case ZEBRA_ROUTE_RIP:
245 return 8; /* rip */
246 case ZEBRA_ROUTE_RIPNG:
247 return 1; /* shouldn't happen */
248 case ZEBRA_ROUTE_OSPF:
249 return 13; /* ospf */
250 case ZEBRA_ROUTE_OSPF6:
251 return 1; /* shouldn't happen */
252 case ZEBRA_ROUTE_BGP:
253 return 14; /* bgp */
254 default:
255 return 1; /* other */
256 }
257 }
258
259 static void
260 check_replace(struct route_node *np2, struct rib *rib2,
261 struct route_node **np, struct rib **rib)
262 {
263 int proto, proto2;
264
265 if (!*np)
266 {
267 *np = np2;
268 *rib = rib2;
269 return;
270 }
271
272 if (in_addr_cmp(&(*np)->p.u.prefix, &np2->p.u.prefix) < 0)
273 return;
274 if (in_addr_cmp(&(*np)->p.u.prefix, &np2->p.u.prefix) > 0)
275 {
276 *np = np2;
277 *rib = rib2;
278 return;
279 }
280
281 proto = proto_trans((*rib)->type);
282 proto2 = proto_trans(rib2->type);
283
284 if (proto2 > proto)
285 return;
286 if (proto2 < proto)
287 {
288 *np = np2;
289 *rib = rib2;
290 return;
291 }
292
293 if (in_addr_cmp((u_char *)&(*rib)->nexthop->gate.ipv4,
294 (u_char *)&rib2->nexthop->gate.ipv4) <= 0)
295 return;
296
297 *np = np2;
298 *rib = rib2;
299 return;
300 }
301
302 static void
303 get_fwtable_route_node(struct variable *v, oid objid[], size_t *objid_len,
304 int exact, struct route_node **np, struct rib **rib)
305 {
306 struct in_addr dest;
307 struct route_table *table;
308 struct route_node *np2;
309 struct rib *rib2;
310 int proto;
311 int policy;
312 struct in_addr nexthop;
313 u_char *pnt;
314 int i;
315
316 /* Init index variables */
317
318 pnt = (u_char *) &dest;
319 for (i = 0; i < 4; i++)
320 *pnt++ = 0;
321
322 pnt = (u_char *) &nexthop;
323 for (i = 0; i < 4; i++)
324 *pnt++ = 0;
325
326 proto = 0;
327 policy = 0;
328
329 /* Init return variables */
330
331 *np = NULL;
332 *rib = NULL;
333
334 /* Short circuit exact matches of wrong length */
335
336 if (exact && (*objid_len != (unsigned) v->namelen + 10))
337 return;
338
339 table = zebra_vrf_table (AFI_IP, SAFI_UNICAST, VRF_DEFAULT);
340 if (! table)
341 return;
342
343 /* Get INDEX information out of OID.
344 * ipForwardDest, ipForwardProto, ipForwardPolicy, ipForwardNextHop
345 */
346
347 if (*objid_len > (unsigned) v->namelen)
348 oid2in_addr (objid + v->namelen, MIN(4U, *objid_len - v->namelen), &dest);
349
350 if (*objid_len > (unsigned) v->namelen + 4)
351 proto = objid[v->namelen + 4];
352
353 if (*objid_len > (unsigned) v->namelen + 5)
354 policy = objid[v->namelen + 5];
355
356 if (*objid_len > (unsigned) v->namelen + 6)
357 oid2in_addr (objid + v->namelen + 6, MIN(4U, *objid_len - v->namelen - 6),
358 &nexthop);
359
360 /* Apply GETNEXT on not exact search */
361
362 if (!exact && (*objid_len >= (unsigned) v->namelen + 10))
363 {
364 if (! in_addr_add((u_char *) &nexthop, 1))
365 return;
366 }
367
368 /* For exact: search matching entry in rib table. */
369
370 if (exact)
371 {
372 if (policy) /* Not supported (yet?) */
373 return;
374 for (*np = route_top (table); *np; *np = route_next (*np))
375 {
376 if (!in_addr_cmp(&(*np)->p.u.prefix, (u_char *)&dest))
377 {
378 RNODE_FOREACH_RIB (*np, *rib)
379 {
380 if (!in_addr_cmp((u_char *)&(*rib)->nexthop->gate.ipv4,
381 (u_char *)&nexthop))
382 if (proto == proto_trans((*rib)->type))
383 return;
384 }
385 }
386 }
387 return;
388 }
389
390 /* Search next best entry */
391
392 for (np2 = route_top (table); np2; np2 = route_next (np2))
393 {
394
395 /* Check destination first */
396 if (in_addr_cmp(&np2->p.u.prefix, (u_char *)&dest) > 0)
397 RNODE_FOREACH_RIB (np2, rib2)
398 check_replace(np2, rib2, np, rib);
399
400 if (in_addr_cmp(&np2->p.u.prefix, (u_char *)&dest) == 0)
401 { /* have to look at each rib individually */
402 RNODE_FOREACH_RIB (np2, rib2)
403 {
404 int proto2, policy2;
405
406 proto2 = proto_trans(rib2->type);
407 policy2 = 0;
408
409 if ((policy < policy2)
410 || ((policy == policy2) && (proto < proto2))
411 || ((policy == policy2) && (proto == proto2)
412 && (in_addr_cmp((u_char *)&rib2->nexthop->gate.ipv4,
413 (u_char *) &nexthop) >= 0)
414 ))
415 check_replace(np2, rib2, np, rib);
416 }
417 }
418 }
419
420 if (!*rib)
421 return;
422
423 policy = 0;
424 proto = proto_trans((*rib)->type);
425
426 *objid_len = v->namelen + 10;
427 pnt = (u_char *) &(*np)->p.u.prefix;
428 for (i = 0; i < 4; i++)
429 objid[v->namelen + i] = *pnt++;
430
431 objid[v->namelen + 4] = proto;
432 objid[v->namelen + 5] = policy;
433
434 {
435 struct nexthop *nexthop;
436
437 nexthop = (*rib)->nexthop;
438 if (nexthop)
439 {
440 pnt = (u_char *) &nexthop->gate.ipv4;
441 for (i = 0; i < 4; i++)
442 objid[i + v->namelen + 6] = *pnt++;
443 }
444 }
445
446 return;
447 }
448
449 static u_char *
450 ipFwTable (struct variable *v, oid objid[], size_t *objid_len,
451 int exact, size_t *val_len, WriteMethod **write_method)
452 {
453 struct route_node *np;
454 struct rib *rib;
455 static int result;
456 static int resarr[2];
457 static struct in_addr netmask;
458 struct nexthop *nexthop;
459
460 if (smux_header_table(v, objid, objid_len, exact, val_len, write_method)
461 == MATCH_FAILED)
462 return NULL;
463
464 get_fwtable_route_node(v, objid, objid_len, exact, &np, &rib);
465 if (!np)
466 return NULL;
467
468 nexthop = rib->nexthop;
469 if (! nexthop)
470 return NULL;
471
472 switch (v->magic)
473 {
474 case IPFORWARDDEST:
475 *val_len = 4;
476 return &np->p.u.prefix;
477 break;
478 case IPFORWARDMASK:
479 masklen2ip(np->p.prefixlen, &netmask);
480 *val_len = 4;
481 return (u_char *)&netmask;
482 break;
483 case IPFORWARDPOLICY:
484 result = 0;
485 *val_len = sizeof(int);
486 return (u_char *)&result;
487 break;
488 case IPFORWARDNEXTHOP:
489 *val_len = 4;
490 return (u_char *)&nexthop->gate.ipv4;
491 break;
492 case IPFORWARDIFINDEX:
493 *val_len = sizeof(int);
494 return (u_char *)&nexthop->ifindex;
495 break;
496 case IPFORWARDTYPE:
497 if (nexthop->type == NEXTHOP_TYPE_IFINDEX)
498 result = 3;
499 else
500 result = 4;
501 *val_len = sizeof(int);
502 return (u_char *)&result;
503 break;
504 case IPFORWARDPROTO:
505 result = proto_trans(rib->type);
506 *val_len = sizeof(int);
507 return (u_char *)&result;
508 break;
509 case IPFORWARDAGE:
510 result = 0;
511 *val_len = sizeof(int);
512 return (u_char *)&result;
513 break;
514 case IPFORWARDINFO:
515 resarr[0] = 0;
516 resarr[1] = 0;
517 *val_len = 2 * sizeof(int);
518 return (u_char *)resarr;
519 break;
520 case IPFORWARDNEXTHOPAS:
521 result = -1;
522 *val_len = sizeof(int);
523 return (u_char *)&result;
524 break;
525 case IPFORWARDMETRIC1:
526 result = 0;
527 *val_len = sizeof(int);
528 return (u_char *)&result;
529 break;
530 case IPFORWARDMETRIC2:
531 result = 0;
532 *val_len = sizeof(int);
533 return (u_char *)&result;
534 break;
535 case IPFORWARDMETRIC3:
536 result = 0;
537 *val_len = sizeof(int);
538 return (u_char *)&result;
539 break;
540 case IPFORWARDMETRIC4:
541 result = 0;
542 *val_len = sizeof(int);
543 return (u_char *)&result;
544 break;
545 case IPFORWARDMETRIC5:
546 result = 0;
547 *val_len = sizeof(int);
548 return (u_char *)&result;
549 break;
550 default:
551 return NULL;
552 break;
553 }
554 return NULL;
555 }
556
557 static u_char *
558 ipCidrTable (struct variable *v, oid objid[], size_t *objid_len,
559 int exact, size_t *val_len, WriteMethod **write_method)
560 {
561 if (smux_header_table(v, objid, objid_len, exact, val_len, write_method)
562 == MATCH_FAILED)
563 return NULL;
564
565 switch (v->magic)
566 {
567 case IPCIDRROUTEDEST:
568 break;
569 default:
570 return NULL;
571 break;
572 }
573 return NULL;
574 }
575
576 static int
577 zebra_snmp_init (struct thread_master *tm)
578 {
579 smux_init (tm);
580 REGISTER_MIB("mibII/ipforward", zebra_variables, variable, ipfw_oid);
581 return 0;
582 }
583
584 static int
585 zebra_snmp_module_init (void)
586 {
587 hook_register(frr_late_init, zebra_snmp_init);
588 return 0;
589 }
590
591 FRR_MODULE_SETUP(
592 .name = "zebra_snmp",
593 .version = FRR_VERSION,
594 .description = "zebra AgentX SNMP module",
595 .init = zebra_snmp_module_init,
596 )