]> git.proxmox.com Git - mirror_frr.git/blob - zebra/zebra_snmp.c
Merge pull request #664 from opensourcerouting/ldpd-fixes
[mirror_frr.git] / zebra / zebra_snmp.c
1 /* FIB SNMP.
2 * Copyright (C) 1999 Kunihiro Ishiguro
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; see the file COPYING; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 /*
22 * Currently SNMP is only running properly for MIBs in the default VRF.
23 */
24
25 #include <zebra.h>
26
27 #include <net-snmp/net-snmp-config.h>
28 #include <net-snmp/net-snmp-includes.h>
29
30 #include "if.h"
31 #include "log.h"
32 #include "prefix.h"
33 #include "command.h"
34 #include "smux.h"
35 #include "table.h"
36 #include "vrf.h"
37 #include "hook.h"
38 #include "libfrr.h"
39 #include "version.h"
40
41 #include "zebra/rib.h"
42 #include "zebra/zserv.h"
43 #include "zebra/zebra_vrf.h"
44
45 #define IPFWMIB 1,3,6,1,2,1,4,24
46
47 /* ipForwardTable */
48 #define IPFORWARDDEST 1
49 #define IPFORWARDMASK 2
50 #define IPFORWARDPOLICY 3
51 #define IPFORWARDNEXTHOP 4
52 #define IPFORWARDIFINDEX 5
53 #define IPFORWARDTYPE 6
54 #define IPFORWARDPROTO 7
55 #define IPFORWARDAGE 8
56 #define IPFORWARDINFO 9
57 #define IPFORWARDNEXTHOPAS 10
58 #define IPFORWARDMETRIC1 11
59 #define IPFORWARDMETRIC2 12
60 #define IPFORWARDMETRIC3 13
61 #define IPFORWARDMETRIC4 14
62 #define IPFORWARDMETRIC5 15
63
64 /* ipCidrRouteTable */
65 #define IPCIDRROUTEDEST 1
66 #define IPCIDRROUTEMASK 2
67 #define IPCIDRROUTETOS 3
68 #define IPCIDRROUTENEXTHOP 4
69 #define IPCIDRROUTEIFINDEX 5
70 #define IPCIDRROUTETYPE 6
71 #define IPCIDRROUTEPROTO 7
72 #define IPCIDRROUTEAGE 8
73 #define IPCIDRROUTEINFO 9
74 #define IPCIDRROUTENEXTHOPAS 10
75 #define IPCIDRROUTEMETRIC1 11
76 #define IPCIDRROUTEMETRIC2 12
77 #define IPCIDRROUTEMETRIC3 13
78 #define IPCIDRROUTEMETRIC4 14
79 #define IPCIDRROUTEMETRIC5 15
80 #define IPCIDRROUTESTATUS 16
81
82 #define INTEGER32 ASN_INTEGER
83 #define GAUGE32 ASN_GAUGE
84 #define ENUMERATION ASN_INTEGER
85 #define ROWSTATUS ASN_INTEGER
86 #define IPADDRESS ASN_IPADDRESS
87 #define OBJECTIDENTIFIER ASN_OBJECT_ID
88
89 static oid ipfw_oid [] = { IPFWMIB };
90
91 /* Hook functions. */
92 static u_char * ipFwNumber (struct variable *, oid [], size_t *,
93 int, size_t *, WriteMethod **);
94 static u_char * ipFwTable (struct variable *, oid [], size_t *,
95 int, size_t *, WriteMethod **);
96 static u_char * ipCidrNumber (struct variable *, oid [], size_t *,
97 int, size_t *, WriteMethod **);
98 static u_char * ipCidrTable (struct variable *, oid [], size_t *,
99 int, size_t *, WriteMethod **);
100
101 static struct variable zebra_variables[] =
102 {
103 {0, GAUGE32, RONLY, ipFwNumber, 1, {1}},
104 {IPFORWARDDEST, IPADDRESS, RONLY, ipFwTable, 3, {2, 1, 1}},
105 {IPFORWARDMASK, IPADDRESS, RONLY, ipFwTable, 3, {2, 1, 2}},
106 {IPFORWARDPOLICY, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 3}},
107 {IPFORWARDNEXTHOP, IPADDRESS, RONLY, ipFwTable, 3, {2, 1, 4}},
108 {IPFORWARDIFINDEX, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 5}},
109 {IPFORWARDTYPE, ENUMERATION, RONLY, ipFwTable, 3, {2, 1, 6}},
110 {IPFORWARDPROTO, ENUMERATION, RONLY, ipFwTable, 3, {2, 1, 7}},
111 {IPFORWARDAGE, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 8}},
112 {IPFORWARDINFO, OBJECTIDENTIFIER, RONLY, ipFwTable, 3, {2, 1, 9}},
113 {IPFORWARDNEXTHOPAS, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 10}},
114 {IPFORWARDMETRIC1, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 11}},
115 {IPFORWARDMETRIC2, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 12}},
116 {IPFORWARDMETRIC3, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 13}},
117 {IPFORWARDMETRIC4, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 14}},
118 {IPFORWARDMETRIC5, INTEGER32, RONLY, ipFwTable, 3, {2, 1, 15}},
119 {0, GAUGE32, RONLY, ipCidrNumber, 1, {3}},
120 {IPCIDRROUTEDEST, IPADDRESS, RONLY, ipCidrTable, 3, {4, 1, 1}},
121 {IPCIDRROUTEMASK, IPADDRESS, RONLY, ipCidrTable, 3, {4, 1, 2}},
122 {IPCIDRROUTETOS, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 3}},
123 {IPCIDRROUTENEXTHOP, IPADDRESS, RONLY, ipCidrTable, 3, {4, 1, 4}},
124 {IPCIDRROUTEIFINDEX, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 5}},
125 {IPCIDRROUTETYPE, ENUMERATION, RONLY, ipCidrTable, 3, {4, 1, 6}},
126 {IPCIDRROUTEPROTO, ENUMERATION, RONLY, ipCidrTable, 3, {4, 1, 7}},
127 {IPCIDRROUTEAGE, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 8}},
128 {IPCIDRROUTEINFO, OBJECTIDENTIFIER, RONLY, ipCidrTable, 3, {4, 1, 9}},
129 {IPCIDRROUTENEXTHOPAS, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 10}},
130 {IPCIDRROUTEMETRIC1, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 11}},
131 {IPCIDRROUTEMETRIC2, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 12}},
132 {IPCIDRROUTEMETRIC3, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 13}},
133 {IPCIDRROUTEMETRIC4, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 14}},
134 {IPCIDRROUTEMETRIC5, INTEGER32, RONLY, ipCidrTable, 3, {4, 1, 15}},
135 {IPCIDRROUTESTATUS, ROWSTATUS, RONLY, ipCidrTable, 3, {4, 1, 16}}
136 };
137
138
139 static u_char *
140 ipFwNumber (struct variable *v, oid objid[], size_t *objid_len,
141 int exact, size_t *val_len, WriteMethod **write_method)
142 {
143 static int result;
144 struct route_table *table;
145 struct route_node *rn;
146 struct route_entry *re;
147
148 if (smux_header_generic(v, objid, objid_len, exact, val_len, write_method) == MATCH_FAILED)
149 return NULL;
150
151 table = zebra_vrf_table (AFI_IP, SAFI_UNICAST, VRF_DEFAULT);
152 if (! table)
153 return NULL;
154
155 /* Return number of routing entries. */
156 result = 0;
157 for (rn = route_top (table); rn; rn = route_next (rn))
158 RNODE_FOREACH_RE (rn, re)
159 result++;
160
161 return (u_char *)&result;
162 }
163
164 static u_char *
165 ipCidrNumber (struct variable *v, oid objid[], size_t *objid_len,
166 int exact, size_t *val_len, WriteMethod **write_method)
167 {
168 static int result;
169 struct route_table *table;
170 struct route_node *rn;
171 struct route_entry *re;
172
173 if (smux_header_generic(v, objid, objid_len, exact, val_len, write_method) == MATCH_FAILED)
174 return NULL;
175
176 table = zebra_vrf_table (AFI_IP, SAFI_UNICAST, VRF_DEFAULT);
177 if (! table)
178 return 0;
179
180 /* Return number of routing entries. */
181 result = 0;
182 for (rn = route_top (table); rn; rn = route_next (rn))
183 RNODE_FOREACH_RE (rn, re)
184 result++;
185
186 return (u_char *)&result;
187 }
188
189 static int
190 in_addr_cmp(u_char *p1, u_char *p2)
191 {
192 int i;
193
194 for (i=0; i<4; i++)
195 {
196 if (*p1 < *p2)
197 return -1;
198 if (*p1 > *p2)
199 return 1;
200 p1++; p2++;
201 }
202 return 0;
203 }
204
205 static int
206 in_addr_add(u_char *p, int num)
207 {
208 int i, ip0;
209
210 ip0 = *p;
211 p += 4;
212 for (i = 3; 0 <= i; i--) {
213 p--;
214 if (*p + num > 255) {
215 *p += num;
216 num = 1;
217 } else {
218 *p += num;
219 return 1;
220 }
221 }
222 if (ip0 > *p) {
223 /* ip + num > 0xffffffff */
224 return 0;
225 }
226
227 return 1;
228 }
229
230 static int
231 proto_trans(int type)
232 {
233 switch (type)
234 {
235 case ZEBRA_ROUTE_SYSTEM:
236 return 1; /* other */
237 case ZEBRA_ROUTE_KERNEL:
238 return 1; /* other */
239 case ZEBRA_ROUTE_CONNECT:
240 return 2; /* local interface */
241 case ZEBRA_ROUTE_STATIC:
242 return 3; /* static route */
243 case ZEBRA_ROUTE_RIP:
244 return 8; /* rip */
245 case ZEBRA_ROUTE_RIPNG:
246 return 1; /* shouldn't happen */
247 case ZEBRA_ROUTE_OSPF:
248 return 13; /* ospf */
249 case ZEBRA_ROUTE_OSPF6:
250 return 1; /* shouldn't happen */
251 case ZEBRA_ROUTE_BGP:
252 return 14; /* bgp */
253 default:
254 return 1; /* other */
255 }
256 }
257
258 static void
259 check_replace(struct route_node *np2, struct route_entry *re2,
260 struct route_node **np, struct route_entry **re)
261 {
262 int proto, proto2;
263
264 if (!*np)
265 {
266 *np = np2;
267 *re = re2;
268 return;
269 }
270
271 if (in_addr_cmp(&(*np)->p.u.prefix, &np2->p.u.prefix) < 0)
272 return;
273 if (in_addr_cmp(&(*np)->p.u.prefix, &np2->p.u.prefix) > 0)
274 {
275 *np = np2;
276 *re = re2;
277 return;
278 }
279
280 proto = proto_trans((*re)->type);
281 proto2 = proto_trans(re2->type);
282
283 if (proto2 > proto)
284 return;
285 if (proto2 < proto)
286 {
287 *np = np2;
288 *re = re2;
289 return;
290 }
291
292 if (in_addr_cmp((u_char *)&(*re)->nexthop->gate.ipv4,
293 (u_char *)&re2->nexthop->gate.ipv4) <= 0)
294 return;
295
296 *np = np2;
297 *re = re2;
298 return;
299 }
300
301 static void
302 get_fwtable_route_node(struct variable *v, oid objid[], size_t *objid_len,
303 int exact, struct route_node **np, struct route_entry **re)
304 {
305 struct in_addr dest;
306 struct route_table *table;
307 struct route_node *np2;
308 struct route_entry *re2;
309 int proto;
310 int policy;
311 struct in_addr nexthop;
312 u_char *pnt;
313 int i;
314
315 /* Init index variables */
316
317 pnt = (u_char *) &dest;
318 for (i = 0; i < 4; i++)
319 *pnt++ = 0;
320
321 pnt = (u_char *) &nexthop;
322 for (i = 0; i < 4; i++)
323 *pnt++ = 0;
324
325 proto = 0;
326 policy = 0;
327
328 /* Init return variables */
329
330 *np = NULL;
331 *re = NULL;
332
333 /* Short circuit exact matches of wrong length */
334
335 if (exact && (*objid_len != (unsigned) v->namelen + 10))
336 return;
337
338 table = zebra_vrf_table (AFI_IP, SAFI_UNICAST, VRF_DEFAULT);
339 if (! table)
340 return;
341
342 /* Get INDEX information out of OID.
343 * ipForwardDest, ipForwardProto, ipForwardPolicy, ipForwardNextHop
344 */
345
346 if (*objid_len > (unsigned) v->namelen)
347 oid2in_addr (objid + v->namelen, MIN(4U, *objid_len - v->namelen), &dest);
348
349 if (*objid_len > (unsigned) v->namelen + 4)
350 proto = objid[v->namelen + 4];
351
352 if (*objid_len > (unsigned) v->namelen + 5)
353 policy = objid[v->namelen + 5];
354
355 if (*objid_len > (unsigned) v->namelen + 6)
356 oid2in_addr (objid + v->namelen + 6, MIN(4U, *objid_len - v->namelen - 6),
357 &nexthop);
358
359 /* Apply GETNEXT on not exact search */
360
361 if (!exact && (*objid_len >= (unsigned) v->namelen + 10))
362 {
363 if (! in_addr_add((u_char *) &nexthop, 1))
364 return;
365 }
366
367 /* For exact: search matching entry in rib table. */
368
369 if (exact)
370 {
371 if (policy) /* Not supported (yet?) */
372 return;
373 for (*np = route_top (table); *np; *np = route_next (*np))
374 {
375 if (!in_addr_cmp(&(*np)->p.u.prefix, (u_char *)&dest))
376 {
377 RNODE_FOREACH_RE (*np, *re)
378 {
379 if (!in_addr_cmp((u_char *)&(*re)->nexthop->gate.ipv4,
380 (u_char *)&nexthop))
381 if (proto == proto_trans((*re)->type))
382 return;
383 }
384 }
385 }
386 return;
387 }
388
389 /* Search next best entry */
390
391 for (np2 = route_top (table); np2; np2 = route_next (np2))
392 {
393
394 /* Check destination first */
395 if (in_addr_cmp(&np2->p.u.prefix, (u_char *)&dest) > 0)
396 RNODE_FOREACH_RE (np2, re2)
397 check_replace(np2, re2, np, re);
398
399 if (in_addr_cmp(&np2->p.u.prefix, (u_char *)&dest) == 0)
400 { /* have to look at each re individually */
401 RNODE_FOREACH_RE (np2, re2)
402 {
403 int proto2, policy2;
404
405 proto2 = proto_trans(re2->type);
406 policy2 = 0;
407
408 if ((policy < policy2)
409 || ((policy == policy2) && (proto < proto2))
410 || ((policy == policy2) && (proto == proto2)
411 && (in_addr_cmp((u_char *)&re2->nexthop->gate.ipv4,
412 (u_char *) &nexthop) >= 0)
413 ))
414 check_replace(np2, re2, np, re);
415 }
416 }
417 }
418
419 if (!*re)
420 return;
421
422 policy = 0;
423 proto = proto_trans((*re)->type);
424
425 *objid_len = v->namelen + 10;
426 pnt = (u_char *) &(*np)->p.u.prefix;
427 for (i = 0; i < 4; i++)
428 objid[v->namelen + i] = *pnt++;
429
430 objid[v->namelen + 4] = proto;
431 objid[v->namelen + 5] = policy;
432
433 {
434 struct nexthop *nexthop;
435
436 nexthop = (*re)->nexthop;
437 if (nexthop)
438 {
439 pnt = (u_char *) &nexthop->gate.ipv4;
440 for (i = 0; i < 4; i++)
441 objid[i + v->namelen + 6] = *pnt++;
442 }
443 }
444
445 return;
446 }
447
448 static u_char *
449 ipFwTable (struct variable *v, oid objid[], size_t *objid_len,
450 int exact, size_t *val_len, WriteMethod **write_method)
451 {
452 struct route_node *np;
453 struct route_entry *re;
454 static int result;
455 static int resarr[2];
456 static struct in_addr netmask;
457 struct nexthop *nexthop;
458
459 if (smux_header_table(v, objid, objid_len, exact, val_len, write_method)
460 == MATCH_FAILED)
461 return NULL;
462
463 get_fwtable_route_node(v, objid, objid_len, exact, &np, &re);
464 if (!np)
465 return NULL;
466
467 nexthop = re->nexthop;
468 if (! nexthop)
469 return NULL;
470
471 switch (v->magic)
472 {
473 case IPFORWARDDEST:
474 *val_len = 4;
475 return &np->p.u.prefix;
476 break;
477 case IPFORWARDMASK:
478 masklen2ip(np->p.prefixlen, &netmask);
479 *val_len = 4;
480 return (u_char *)&netmask;
481 break;
482 case IPFORWARDPOLICY:
483 result = 0;
484 *val_len = sizeof(int);
485 return (u_char *)&result;
486 break;
487 case IPFORWARDNEXTHOP:
488 *val_len = 4;
489 return (u_char *)&nexthop->gate.ipv4;
490 break;
491 case IPFORWARDIFINDEX:
492 *val_len = sizeof(int);
493 return (u_char *)&nexthop->ifindex;
494 break;
495 case IPFORWARDTYPE:
496 if (nexthop->type == NEXTHOP_TYPE_IFINDEX)
497 result = 3;
498 else
499 result = 4;
500 *val_len = sizeof(int);
501 return (u_char *)&result;
502 break;
503 case IPFORWARDPROTO:
504 result = proto_trans(re->type);
505 *val_len = sizeof(int);
506 return (u_char *)&result;
507 break;
508 case IPFORWARDAGE:
509 result = 0;
510 *val_len = sizeof(int);
511 return (u_char *)&result;
512 break;
513 case IPFORWARDINFO:
514 resarr[0] = 0;
515 resarr[1] = 0;
516 *val_len = 2 * sizeof(int);
517 return (u_char *)resarr;
518 break;
519 case IPFORWARDNEXTHOPAS:
520 result = -1;
521 *val_len = sizeof(int);
522 return (u_char *)&result;
523 break;
524 case IPFORWARDMETRIC1:
525 result = 0;
526 *val_len = sizeof(int);
527 return (u_char *)&result;
528 break;
529 case IPFORWARDMETRIC2:
530 result = 0;
531 *val_len = sizeof(int);
532 return (u_char *)&result;
533 break;
534 case IPFORWARDMETRIC3:
535 result = 0;
536 *val_len = sizeof(int);
537 return (u_char *)&result;
538 break;
539 case IPFORWARDMETRIC4:
540 result = 0;
541 *val_len = sizeof(int);
542 return (u_char *)&result;
543 break;
544 case IPFORWARDMETRIC5:
545 result = 0;
546 *val_len = sizeof(int);
547 return (u_char *)&result;
548 break;
549 default:
550 return NULL;
551 break;
552 }
553 return NULL;
554 }
555
556 static u_char *
557 ipCidrTable (struct variable *v, oid objid[], size_t *objid_len,
558 int exact, size_t *val_len, WriteMethod **write_method)
559 {
560 if (smux_header_table(v, objid, objid_len, exact, val_len, write_method)
561 == MATCH_FAILED)
562 return NULL;
563
564 switch (v->magic)
565 {
566 case IPCIDRROUTEDEST:
567 break;
568 default:
569 return NULL;
570 break;
571 }
572 return NULL;
573 }
574
575 static int
576 zebra_snmp_init (struct thread_master *tm)
577 {
578 smux_init (tm);
579 REGISTER_MIB("mibII/ipforward", zebra_variables, variable, ipfw_oid);
580 return 0;
581 }
582
583 static int
584 zebra_snmp_module_init (void)
585 {
586 hook_register(frr_late_init, zebra_snmp_init);
587 return 0;
588 }
589
590 FRR_MODULE_SETUP(
591 .name = "zebra_snmp",
592 .version = FRR_VERSION,
593 .description = "zebra AgentX SNMP module",
594 .init = zebra_snmp_module_init,
595 )