]> git.proxmox.com Git - mirror_frr.git/blob - zebra/zserv.c
Merge pull request #828 from tigranmartirosyan/master
[mirror_frr.git] / zebra / zserv.c
1 /* Zebra daemon server routine.
2 * Copyright (C) 1997, 98, 99 Kunihiro Ishiguro
3 *
4 * This file is part of GNU Zebra.
5 *
6 * GNU Zebra is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2, or (at your option) any
9 * later version.
10 *
11 * GNU Zebra is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; see the file COPYING; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include <zebra.h>
22
23 #include "prefix.h"
24 #include "command.h"
25 #include "if.h"
26 #include "thread.h"
27 #include "stream.h"
28 #include "memory.h"
29 #include "zebra_memory.h"
30 #include "table.h"
31 #include "rib.h"
32 #include "network.h"
33 #include "sockunion.h"
34 #include "log.h"
35 #include "zclient.h"
36 #include "privs.h"
37 #include "network.h"
38 #include "buffer.h"
39 #include "nexthop.h"
40 #include "vrf.h"
41
42 #include "zebra/zserv.h"
43 #include "zebra/zebra_ns.h"
44 #include "zebra/zebra_vrf.h"
45 #include "zebra/router-id.h"
46 #include "zebra/redistribute.h"
47 #include "zebra/debug.h"
48 #include "zebra/ipforward.h"
49 #include "zebra/zebra_rnh.h"
50 #include "zebra/rt_netlink.h"
51 #include "zebra/interface.h"
52 #include "zebra/zebra_ptm.h"
53 #include "zebra/rtadv.h"
54 #include "zebra/zebra_mpls.h"
55 #include "zebra/zebra_mroute.h"
56 #include "zebra/label_manager.h"
57 #include "zebra/zebra_vxlan.h"
58
59 /* Event list of zebra. */
60 enum event { ZEBRA_SERV, ZEBRA_READ, ZEBRA_WRITE };
61
62 static void zebra_event(enum event event, int sock, struct zserv *client);
63
64 extern struct zebra_privs_t zserv_privs;
65
66 static void zebra_client_close(struct zserv *client);
67
68 static int zserv_delayed_close(struct thread *thread)
69 {
70 struct zserv *client = THREAD_ARG(thread);
71
72 client->t_suicide = NULL;
73 zebra_client_close(client);
74 return 0;
75 }
76
77 static int zserv_flush_data(struct thread *thread)
78 {
79 struct zserv *client = THREAD_ARG(thread);
80
81 client->t_write = NULL;
82 if (client->t_suicide) {
83 zebra_client_close(client);
84 return -1;
85 }
86 switch (buffer_flush_available(client->wb, client->sock)) {
87 case BUFFER_ERROR:
88 zlog_warn(
89 "%s: buffer_flush_available failed on zserv client fd %d, "
90 "closing",
91 __func__, client->sock);
92 zebra_client_close(client);
93 client = NULL;
94 break;
95 case BUFFER_PENDING:
96 client->t_write = NULL;
97 thread_add_write(zebrad.master, zserv_flush_data, client,
98 client->sock, &client->t_write);
99 break;
100 case BUFFER_EMPTY:
101 break;
102 }
103
104 if (client)
105 client->last_write_time = monotime(NULL);
106 return 0;
107 }
108
109 int zebra_server_send_message(struct zserv *client)
110 {
111 if (client->t_suicide)
112 return -1;
113
114 if (client->is_synchronous)
115 return 0;
116
117 stream_set_getp(client->obuf, 0);
118 client->last_write_cmd = stream_getw_from(client->obuf, 6);
119 switch (buffer_write(client->wb, client->sock,
120 STREAM_DATA(client->obuf),
121 stream_get_endp(client->obuf))) {
122 case BUFFER_ERROR:
123 zlog_warn(
124 "%s: buffer_write failed to zserv client fd %d, closing",
125 __func__, client->sock);
126 /* Schedule a delayed close since many of the functions that
127 call this
128 one do not check the return code. They do not allow for the
129 possibility that an I/O error may have caused the client to
130 be
131 deleted. */
132 client->t_suicide = NULL;
133 thread_add_event(zebrad.master, zserv_delayed_close, client, 0,
134 &client->t_suicide);
135 return -1;
136 case BUFFER_EMPTY:
137 THREAD_OFF(client->t_write);
138 break;
139 case BUFFER_PENDING:
140 thread_add_write(zebrad.master, zserv_flush_data, client,
141 client->sock, &client->t_write);
142 break;
143 }
144
145 client->last_write_time = monotime(NULL);
146 return 0;
147 }
148
149 void zserv_create_header(struct stream *s, uint16_t cmd, vrf_id_t vrf_id)
150 {
151 /* length placeholder, caller can update */
152 stream_putw(s, ZEBRA_HEADER_SIZE);
153 stream_putc(s, ZEBRA_HEADER_MARKER);
154 stream_putc(s, ZSERV_VERSION);
155 stream_putw(s, vrf_id);
156 stream_putw(s, cmd);
157 }
158
159 static void zserv_encode_interface(struct stream *s, struct interface *ifp)
160 {
161 /* Interface information. */
162 stream_put(s, ifp->name, INTERFACE_NAMSIZ);
163 stream_putl(s, ifp->ifindex);
164 stream_putc(s, ifp->status);
165 stream_putq(s, ifp->flags);
166 stream_putc(s, ifp->ptm_enable);
167 stream_putc(s, ifp->ptm_status);
168 stream_putl(s, ifp->metric);
169 stream_putl(s, ifp->speed);
170 stream_putl(s, ifp->mtu);
171 stream_putl(s, ifp->mtu6);
172 stream_putl(s, ifp->bandwidth);
173 stream_putl(s, ifp->ll_type);
174 stream_putl(s, ifp->hw_addr_len);
175 if (ifp->hw_addr_len)
176 stream_put(s, ifp->hw_addr, ifp->hw_addr_len);
177
178 /* Then, Traffic Engineering parameters if any */
179 if (HAS_LINK_PARAMS(ifp) && IS_LINK_PARAMS_SET(ifp->link_params)) {
180 stream_putc(s, 1);
181 zebra_interface_link_params_write(s, ifp);
182 } else
183 stream_putc(s, 0);
184
185 /* Write packet size. */
186 stream_putw_at(s, 0, stream_get_endp(s));
187 }
188
189 static void zserv_encode_vrf(struct stream *s, struct zebra_vrf *zvrf)
190 {
191 struct vrf_data data;
192
193 data.l.table_id = zvrf->table_id;
194 /* Pass the tableid */
195 stream_put(s, &data, sizeof(struct vrf_data));
196 /* Interface information. */
197 stream_put(s, zvrf_name(zvrf), VRF_NAMSIZ);
198
199 /* Write packet size. */
200 stream_putw_at(s, 0, stream_get_endp(s));
201 }
202
203 /* Interface is added. Send ZEBRA_INTERFACE_ADD to client. */
204 /*
205 * This function is called in the following situations:
206 * - in response to a 3-byte ZEBRA_INTERFACE_ADD request
207 * from the client.
208 * - at startup, when zebra figures out the available interfaces
209 * - when an interface is added (where support for
210 * RTM_IFANNOUNCE or AF_NETLINK sockets is available), or when
211 * an interface is marked IFF_UP (i.e., an RTM_IFINFO message is
212 * received)
213 */
214 int zsend_interface_add(struct zserv *client, struct interface *ifp)
215 {
216 struct stream *s;
217
218 s = client->obuf;
219 stream_reset(s);
220
221 zserv_create_header(s, ZEBRA_INTERFACE_ADD, ifp->vrf_id);
222 zserv_encode_interface(s, ifp);
223
224 client->ifadd_cnt++;
225 return zebra_server_send_message(client);
226 }
227
228 /* Interface deletion from zebra daemon. */
229 int zsend_interface_delete(struct zserv *client, struct interface *ifp)
230 {
231 struct stream *s;
232
233 s = client->obuf;
234 stream_reset(s);
235
236 zserv_create_header(s, ZEBRA_INTERFACE_DELETE, ifp->vrf_id);
237 zserv_encode_interface(s, ifp);
238
239 client->ifdel_cnt++;
240 return zebra_server_send_message(client);
241 }
242
243 int zsend_vrf_add(struct zserv *client, struct zebra_vrf *zvrf)
244 {
245 struct stream *s;
246
247 s = client->obuf;
248 stream_reset(s);
249
250 zserv_create_header(s, ZEBRA_VRF_ADD, zvrf_id(zvrf));
251 zserv_encode_vrf(s, zvrf);
252
253 client->vrfadd_cnt++;
254 return zebra_server_send_message(client);
255 }
256
257 /* VRF deletion from zebra daemon. */
258 int zsend_vrf_delete(struct zserv *client, struct zebra_vrf *zvrf)
259 {
260 struct stream *s;
261
262 s = client->obuf;
263 stream_reset(s);
264
265 zserv_create_header(s, ZEBRA_VRF_DELETE, zvrf_id(zvrf));
266 zserv_encode_vrf(s, zvrf);
267
268 client->vrfdel_cnt++;
269 return zebra_server_send_message(client);
270 }
271
272 int zsend_interface_link_params(struct zserv *client, struct interface *ifp)
273 {
274 struct stream *s;
275
276 /* Check this client need interface information. */
277 if (!client->ifinfo)
278 return 0;
279
280 if (!ifp->link_params)
281 return 0;
282 s = client->obuf;
283 stream_reset(s);
284
285 zserv_create_header(s, ZEBRA_INTERFACE_LINK_PARAMS, ifp->vrf_id);
286
287 /* Add Interface Index */
288 stream_putl(s, ifp->ifindex);
289
290 /* Then TE Link Parameters */
291 if (zebra_interface_link_params_write(s, ifp) == 0)
292 return 0;
293
294 /* Write packet size. */
295 stream_putw_at(s, 0, stream_get_endp(s));
296
297 return zebra_server_send_message(client);
298 }
299
300 /* Interface address is added/deleted. Send ZEBRA_INTERFACE_ADDRESS_ADD or
301 * ZEBRA_INTERFACE_ADDRESS_DELETE to the client.
302 *
303 * A ZEBRA_INTERFACE_ADDRESS_ADD is sent in the following situations:
304 * - in response to a 3-byte ZEBRA_INTERFACE_ADD request
305 * from the client, after the ZEBRA_INTERFACE_ADD has been
306 * sent from zebra to the client
307 * - redistribute new address info to all clients in the following situations
308 * - at startup, when zebra figures out the available interfaces
309 * - when an interface is added (where support for
310 * RTM_IFANNOUNCE or AF_NETLINK sockets is available), or when
311 * an interface is marked IFF_UP (i.e., an RTM_IFINFO message is
312 * received)
313 * - for the vty commands "ip address A.B.C.D/M [<secondary>|<label LINE>]"
314 * and "no bandwidth <1-10000000>", "ipv6 address X:X::X:X/M"
315 * - when an RTM_NEWADDR message is received from the kernel,
316 *
317 * The call tree that triggers ZEBRA_INTERFACE_ADDRESS_DELETE:
318 *
319 * zsend_interface_address(DELETE)
320 * ^
321 * |
322 * zebra_interface_address_delete_update
323 * ^ ^ ^
324 * | | if_delete_update
325 * | |
326 * ip_address_uninstall connected_delete_ipv4
327 * [ipv6_addresss_uninstall] [connected_delete_ipv6]
328 * ^ ^
329 * | |
330 * | RTM_NEWADDR on routing/netlink socket
331 * |
332 * vty commands:
333 * "no ip address A.B.C.D/M [label LINE]"
334 * "no ip address A.B.C.D/M secondary"
335 * ["no ipv6 address X:X::X:X/M"]
336 *
337 */
338 int zsend_interface_address(int cmd, struct zserv *client,
339 struct interface *ifp, struct connected *ifc)
340 {
341 int blen;
342 struct stream *s;
343 struct prefix *p;
344
345 s = client->obuf;
346 stream_reset(s);
347
348 zserv_create_header(s, cmd, ifp->vrf_id);
349 stream_putl(s, ifp->ifindex);
350
351 /* Interface address flag. */
352 stream_putc(s, ifc->flags);
353
354 /* Prefix information. */
355 p = ifc->address;
356 stream_putc(s, p->family);
357 blen = prefix_blen(p);
358 stream_put(s, &p->u.prefix, blen);
359
360 /*
361 * XXX gnu version does not send prefixlen for
362 * ZEBRA_INTERFACE_ADDRESS_DELETE
363 * but zebra_interface_address_delete_read() in the gnu version
364 * expects to find it
365 */
366 stream_putc(s, p->prefixlen);
367
368 /* Destination. */
369 p = ifc->destination;
370 if (p)
371 stream_put(s, &p->u.prefix, blen);
372 else
373 stream_put(s, NULL, blen);
374
375 /* Write packet size. */
376 stream_putw_at(s, 0, stream_get_endp(s));
377
378 client->connected_rt_add_cnt++;
379 return zebra_server_send_message(client);
380 }
381
382 static int zsend_interface_nbr_address(int cmd, struct zserv *client,
383 struct interface *ifp,
384 struct nbr_connected *ifc)
385 {
386 int blen;
387 struct stream *s;
388 struct prefix *p;
389
390 s = client->obuf;
391 stream_reset(s);
392
393 zserv_create_header(s, cmd, ifp->vrf_id);
394 stream_putl(s, ifp->ifindex);
395
396 /* Prefix information. */
397 p = ifc->address;
398 stream_putc(s, p->family);
399 blen = prefix_blen(p);
400 stream_put(s, &p->u.prefix, blen);
401
402 /*
403 * XXX gnu version does not send prefixlen for
404 * ZEBRA_INTERFACE_ADDRESS_DELETE
405 * but zebra_interface_address_delete_read() in the gnu version
406 * expects to find it
407 */
408 stream_putc(s, p->prefixlen);
409
410 /* Write packet size. */
411 stream_putw_at(s, 0, stream_get_endp(s));
412
413 return zebra_server_send_message(client);
414 }
415
416 /* Interface address addition. */
417 static void zebra_interface_nbr_address_add_update(struct interface *ifp,
418 struct nbr_connected *ifc)
419 {
420 struct listnode *node, *nnode;
421 struct zserv *client;
422 struct prefix *p;
423
424 if (IS_ZEBRA_DEBUG_EVENT) {
425 char buf[INET6_ADDRSTRLEN];
426
427 p = ifc->address;
428 zlog_debug(
429 "MESSAGE: ZEBRA_INTERFACE_NBR_ADDRESS_ADD %s/%d on %s",
430 inet_ntop(p->family, &p->u.prefix, buf,
431 INET6_ADDRSTRLEN),
432 p->prefixlen, ifc->ifp->name);
433 }
434
435 for (ALL_LIST_ELEMENTS(zebrad.client_list, node, nnode, client))
436 zsend_interface_nbr_address(ZEBRA_INTERFACE_NBR_ADDRESS_ADD,
437 client, ifp, ifc);
438 }
439
440 /* Interface address deletion. */
441 static void zebra_interface_nbr_address_delete_update(struct interface *ifp,
442 struct nbr_connected *ifc)
443 {
444 struct listnode *node, *nnode;
445 struct zserv *client;
446 struct prefix *p;
447
448 if (IS_ZEBRA_DEBUG_EVENT) {
449 char buf[INET6_ADDRSTRLEN];
450
451 p = ifc->address;
452 zlog_debug(
453 "MESSAGE: ZEBRA_INTERFACE_NBR_ADDRESS_DELETE %s/%d on %s",
454 inet_ntop(p->family, &p->u.prefix, buf,
455 INET6_ADDRSTRLEN),
456 p->prefixlen, ifc->ifp->name);
457 }
458
459 for (ALL_LIST_ELEMENTS(zebrad.client_list, node, nnode, client))
460 zsend_interface_nbr_address(ZEBRA_INTERFACE_NBR_ADDRESS_DELETE,
461 client, ifp, ifc);
462 }
463
464 /* Send addresses on interface to client */
465 int zsend_interface_addresses(struct zserv *client, struct interface *ifp)
466 {
467 struct listnode *cnode, *cnnode;
468 struct connected *c;
469 struct nbr_connected *nc;
470
471 /* Send interface addresses. */
472 for (ALL_LIST_ELEMENTS(ifp->connected, cnode, cnnode, c)) {
473 if (!CHECK_FLAG(c->conf, ZEBRA_IFC_REAL))
474 continue;
475
476 if (zsend_interface_address(ZEBRA_INTERFACE_ADDRESS_ADD, client,
477 ifp, c)
478 < 0)
479 return -1;
480 }
481
482 /* Send interface neighbors. */
483 for (ALL_LIST_ELEMENTS(ifp->nbr_connected, cnode, cnnode, nc)) {
484 if (zsend_interface_nbr_address(ZEBRA_INTERFACE_NBR_ADDRESS_ADD,
485 client, ifp, nc)
486 < 0)
487 return -1;
488 }
489
490 return 0;
491 }
492
493 /* Notify client about interface moving from one VRF to another.
494 * Whether client is interested in old and new VRF is checked by caller.
495 */
496 int zsend_interface_vrf_update(struct zserv *client, struct interface *ifp,
497 vrf_id_t vrf_id)
498 {
499 struct stream *s;
500
501 s = client->obuf;
502 stream_reset(s);
503
504 zserv_create_header(s, ZEBRA_INTERFACE_VRF_UPDATE, ifp->vrf_id);
505
506 /* Fill in the ifIndex of the interface and its new VRF (id) */
507 stream_putl(s, ifp->ifindex);
508 stream_putw(s, vrf_id);
509
510 /* Write packet size. */
511 stream_putw_at(s, 0, stream_get_endp(s));
512
513 client->if_vrfchg_cnt++;
514 return zebra_server_send_message(client);
515 }
516
517 /* Add new nbr connected IPv6 address */
518 void nbr_connected_add_ipv6(struct interface *ifp, struct in6_addr *address)
519 {
520 struct nbr_connected *ifc;
521 struct prefix p;
522
523 p.family = AF_INET6;
524 IPV6_ADDR_COPY(&p.u.prefix, address);
525 p.prefixlen = IPV6_MAX_PREFIXLEN;
526
527 if (!(ifc = listnode_head(ifp->nbr_connected))) {
528 /* new addition */
529 ifc = nbr_connected_new();
530 ifc->address = prefix_new();
531 ifc->ifp = ifp;
532 listnode_add(ifp->nbr_connected, ifc);
533 }
534
535 prefix_copy(ifc->address, &p);
536
537 zebra_interface_nbr_address_add_update(ifp, ifc);
538
539 if_nbr_ipv6ll_to_ipv4ll_neigh_update(ifp, address, 1);
540 }
541
542 void nbr_connected_delete_ipv6(struct interface *ifp, struct in6_addr *address)
543 {
544 struct nbr_connected *ifc;
545 struct prefix p;
546
547 p.family = AF_INET6;
548 IPV6_ADDR_COPY(&p.u.prefix, address);
549 p.prefixlen = IPV6_MAX_PREFIXLEN;
550
551 ifc = nbr_connected_check(ifp, &p);
552 if (!ifc)
553 return;
554
555 listnode_delete(ifp->nbr_connected, ifc);
556
557 zebra_interface_nbr_address_delete_update(ifp, ifc);
558
559 if_nbr_ipv6ll_to_ipv4ll_neigh_update(ifp, address, 0);
560
561 nbr_connected_free(ifc);
562 }
563
564 /*
565 * The cmd passed to zsend_interface_update may be ZEBRA_INTERFACE_UP or
566 * ZEBRA_INTERFACE_DOWN.
567 *
568 * The ZEBRA_INTERFACE_UP message is sent from the zebra server to
569 * the clients in one of 2 situations:
570 * - an if_up is detected e.g., as a result of an RTM_IFINFO message
571 * - a vty command modifying the bandwidth of an interface is received.
572 * The ZEBRA_INTERFACE_DOWN message is sent when an if_down is detected.
573 */
574 int zsend_interface_update(int cmd, struct zserv *client, struct interface *ifp)
575 {
576 struct stream *s;
577
578 s = client->obuf;
579 stream_reset(s);
580
581 zserv_create_header(s, cmd, ifp->vrf_id);
582 zserv_encode_interface(s, ifp);
583
584 if (cmd == ZEBRA_INTERFACE_UP)
585 client->ifup_cnt++;
586 else
587 client->ifdown_cnt++;
588
589 return zebra_server_send_message(client);
590 }
591
592 /*
593 * This is the new function to announce and withdraw redistributed routes, used
594 * by Zebra. This is the old zsend_route_multipath() function. That function
595 * was duplicating code to send a lot of information that was essentially thrown
596 * away or ignored by the receiver. This is the leaner function that is not a
597 * duplicate of the zapi_ipv4_route_add/del.
598 *
599 * The primary difference is that this function merely sends a single NH instead
600 * of
601 * all the nexthops.
602 */
603 int zsend_redistribute_route(int add, struct zserv *client, struct prefix *p,
604 struct prefix *src_p, struct route_entry *re)
605 {
606 afi_t afi;
607 int cmd;
608 int psize;
609 struct stream *s;
610 struct nexthop *nexthop;
611 unsigned long nhnummark = 0, messmark = 0;
612 int nhnum = 0;
613 u_char zapi_flags = 0;
614 struct nexthop dummy_nh;
615
616 afi = family2afi(p->family);
617 if (add) {
618 switch (afi) {
619 case AFI_IP:
620 cmd = ZEBRA_REDISTRIBUTE_IPV4_ADD;
621 client->redist_v4_add_cnt++;
622 break;
623 case AFI_IP6:
624 cmd = ZEBRA_REDISTRIBUTE_IPV6_ADD;
625 client->redist_v6_add_cnt++;
626 break;
627 default:
628 return -1;
629 }
630 } else {
631 switch (afi) {
632 case AFI_IP:
633 cmd = ZEBRA_REDISTRIBUTE_IPV4_DEL;
634 client->redist_v4_del_cnt++;
635 break;
636 case AFI_IP6:
637 cmd = ZEBRA_REDISTRIBUTE_IPV6_DEL;
638 client->redist_v6_del_cnt++;
639 break;
640 default:
641 return -1;
642 }
643 }
644
645 s = client->obuf;
646 stream_reset(s);
647 memset(&dummy_nh, 0, sizeof(struct nexthop));
648
649 zserv_create_header(s, cmd, re->vrf_id);
650
651 /* Put type and nexthop. */
652 stream_putc(s, re->type);
653 stream_putw(s, re->instance);
654 stream_putl(s, re->flags);
655
656 /* marker for message flags field */
657 messmark = stream_get_endp(s);
658 stream_putc(s, 0);
659
660 /* Prefix. */
661 psize = PSIZE(p->prefixlen);
662 stream_putc(s, p->prefixlen);
663 stream_write(s, (u_char *)&p->u.prefix, psize);
664
665 if (src_p) {
666 SET_FLAG(zapi_flags, ZAPI_MESSAGE_SRCPFX);
667 psize = PSIZE(src_p->prefixlen);
668 stream_putc(s, src_p->prefixlen);
669 stream_write(s, (u_char *)&src_p->u.prefix, psize);
670 }
671
672 for (nexthop = re->nexthop; nexthop; nexthop = nexthop->next) {
673 /* We don't send any nexthops when there's a multipath */
674 if (re->nexthop_active_num > 1
675 && client->proto != ZEBRA_ROUTE_LDP) {
676 SET_FLAG(zapi_flags, ZAPI_MESSAGE_NEXTHOP);
677 SET_FLAG(zapi_flags, ZAPI_MESSAGE_IFINDEX);
678
679 stream_putc(s, 1);
680 if (p->family == AF_INET) {
681 stream_put_in_addr(s, &dummy_nh.gate.ipv4);
682 } else if (p->family == AF_INET6) {
683 stream_write(s, (u_char *)&dummy_nh.gate.ipv6,
684 16);
685 } else {
686 /* We don't handle anything else now, abort */
687 zlog_err(
688 "%s: Unable to redistribute route of unknown family, %d\n",
689 __func__, p->family);
690 return -1;
691 }
692 stream_putc(s, 1);
693 stream_putl(s, 0); /* dummy ifindex */
694 break;
695 }
696
697 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE)) {
698 SET_FLAG(zapi_flags, ZAPI_MESSAGE_NEXTHOP);
699 SET_FLAG(zapi_flags, ZAPI_MESSAGE_IFINDEX);
700 if (nhnummark == 0) {
701 nhnummark = stream_get_endp(s);
702 stream_putc(s, 1); /* placeholder */
703 }
704 nhnum++;
705
706 switch (nexthop->type) {
707 case NEXTHOP_TYPE_IPV4:
708 case NEXTHOP_TYPE_IPV4_IFINDEX:
709 stream_put_in_addr(s, &nexthop->gate.ipv4);
710 break;
711 case NEXTHOP_TYPE_IPV6:
712 case NEXTHOP_TYPE_IPV6_IFINDEX:
713 /* Only BGP supports IPv4 prefix with IPv6 NH,
714 * so kill this */
715 if (p->family == AF_INET)
716 stream_put_in_addr(s,
717 &dummy_nh.gate.ipv4);
718 else
719 stream_write(
720 s,
721 (u_char *)&nexthop->gate.ipv6,
722 16);
723 break;
724 default:
725 if (cmd == ZEBRA_REDISTRIBUTE_IPV4_ADD
726 || cmd == ZEBRA_REDISTRIBUTE_IPV4_DEL) {
727 struct in_addr empty;
728 memset(&empty, 0,
729 sizeof(struct in_addr));
730 stream_write(s, (u_char *)&empty,
731 IPV4_MAX_BYTELEN);
732 } else {
733 struct in6_addr empty;
734 memset(&empty, 0,
735 sizeof(struct in6_addr));
736 stream_write(s, (u_char *)&empty,
737 IPV6_MAX_BYTELEN);
738 }
739 }
740
741 /* Interface index. */
742 stream_putc(s, 1);
743 stream_putl(s, nexthop->ifindex);
744
745 /* ldpd needs all nexthops */
746 if (client->proto != ZEBRA_ROUTE_LDP)
747 break;
748 }
749 }
750
751 /* Distance */
752 SET_FLAG(zapi_flags, ZAPI_MESSAGE_DISTANCE);
753 stream_putc(s, re->distance);
754
755 /* Metric */
756 SET_FLAG(zapi_flags, ZAPI_MESSAGE_METRIC);
757 stream_putl(s, re->metric);
758
759 /* Tag */
760 if (re->tag) {
761 SET_FLAG(zapi_flags, ZAPI_MESSAGE_TAG);
762 stream_putl(s, re->tag);
763 }
764
765 /* MTU */
766 SET_FLAG(zapi_flags, ZAPI_MESSAGE_MTU);
767 stream_putl(s, re->mtu);
768
769 /* write real message flags value */
770 stream_putc_at(s, messmark, zapi_flags);
771
772 /* Write next-hop number */
773 if (nhnummark)
774 stream_putc_at(s, nhnummark, nhnum);
775
776 /* Write packet size. */
777 stream_putw_at(s, 0, stream_get_endp(s));
778
779 return zebra_server_send_message(client);
780 }
781
782 static int zsend_write_nexthop(struct stream *s, struct nexthop *nexthop)
783 {
784 stream_putc(s, nexthop->type);
785 switch (nexthop->type) {
786 case NEXTHOP_TYPE_IPV4:
787 case NEXTHOP_TYPE_IPV4_IFINDEX:
788 stream_put_in_addr(s, &nexthop->gate.ipv4);
789 stream_putl(s, nexthop->ifindex);
790 break;
791 case NEXTHOP_TYPE_IPV6:
792 stream_put(s, &nexthop->gate.ipv6, 16);
793 break;
794 case NEXTHOP_TYPE_IPV6_IFINDEX:
795 stream_put(s, &nexthop->gate.ipv6, 16);
796 stream_putl(s, nexthop->ifindex);
797 break;
798 case NEXTHOP_TYPE_IFINDEX:
799 stream_putl(s, nexthop->ifindex);
800 break;
801 default:
802 /* do nothing */
803 break;
804 }
805 return 1;
806 }
807
808 /* Nexthop register */
809 static int zserv_rnh_register(struct zserv *client, int sock, u_short length,
810 rnh_type_t type, struct zebra_vrf *zvrf)
811 {
812 struct rnh *rnh;
813 struct stream *s;
814 struct prefix p;
815 u_short l = 0;
816 u_char flags = 0;
817
818 if (IS_ZEBRA_DEBUG_NHT)
819 zlog_debug(
820 "rnh_register msg from client %s: length=%d, type=%s\n",
821 zebra_route_string(client->proto), length,
822 (type == RNH_NEXTHOP_TYPE) ? "nexthop" : "route");
823
824 s = client->ibuf;
825
826 client->nh_reg_time = monotime(NULL);
827
828 while (l < length) {
829 flags = stream_getc(s);
830 p.family = stream_getw(s);
831 p.prefixlen = stream_getc(s);
832 l += 4;
833 if (p.family == AF_INET) {
834 p.u.prefix4.s_addr = stream_get_ipv4(s);
835 l += IPV4_MAX_BYTELEN;
836 } else if (p.family == AF_INET6) {
837 stream_get(&p.u.prefix6, s, IPV6_MAX_BYTELEN);
838 l += IPV6_MAX_BYTELEN;
839 } else {
840 zlog_err(
841 "rnh_register: Received unknown family type %d\n",
842 p.family);
843 return -1;
844 }
845 rnh = zebra_add_rnh(&p, zvrf_id(zvrf), type);
846 if (type == RNH_NEXTHOP_TYPE) {
847 if (flags
848 && !CHECK_FLAG(rnh->flags, ZEBRA_NHT_CONNECTED))
849 SET_FLAG(rnh->flags, ZEBRA_NHT_CONNECTED);
850 else if (!flags
851 && CHECK_FLAG(rnh->flags, ZEBRA_NHT_CONNECTED))
852 UNSET_FLAG(rnh->flags, ZEBRA_NHT_CONNECTED);
853 } else if (type == RNH_IMPORT_CHECK_TYPE) {
854 if (flags
855 && !CHECK_FLAG(rnh->flags, ZEBRA_NHT_EXACT_MATCH))
856 SET_FLAG(rnh->flags, ZEBRA_NHT_EXACT_MATCH);
857 else if (!flags
858 && CHECK_FLAG(rnh->flags,
859 ZEBRA_NHT_EXACT_MATCH))
860 UNSET_FLAG(rnh->flags, ZEBRA_NHT_EXACT_MATCH);
861 }
862
863 zebra_add_rnh_client(rnh, client, type, zvrf_id(zvrf));
864 /* Anything not AF_INET/INET6 has been filtered out above */
865 zebra_evaluate_rnh(zvrf_id(zvrf), p.family, 1, type, &p);
866 }
867 return 0;
868 }
869
870 /* Nexthop register */
871 static int zserv_rnh_unregister(struct zserv *client, int sock, u_short length,
872 rnh_type_t type, struct zebra_vrf *zvrf)
873 {
874 struct rnh *rnh;
875 struct stream *s;
876 struct prefix p;
877 u_short l = 0;
878
879 if (IS_ZEBRA_DEBUG_NHT)
880 zlog_debug("rnh_unregister msg from client %s: length=%d\n",
881 zebra_route_string(client->proto), length);
882
883 s = client->ibuf;
884
885 while (l < length) {
886 (void)stream_getc(
887 s); // Connected or not. Not used in this function
888 p.family = stream_getw(s);
889 p.prefixlen = stream_getc(s);
890 l += 4;
891 if (p.family == AF_INET) {
892 p.u.prefix4.s_addr = stream_get_ipv4(s);
893 l += IPV4_MAX_BYTELEN;
894 } else if (p.family == AF_INET6) {
895 stream_get(&p.u.prefix6, s, IPV6_MAX_BYTELEN);
896 l += IPV6_MAX_BYTELEN;
897 } else {
898 zlog_err(
899 "rnh_register: Received unknown family type %d\n",
900 p.family);
901 return -1;
902 }
903 rnh = zebra_lookup_rnh(&p, zvrf_id(zvrf), type);
904 if (rnh) {
905 client->nh_dereg_time = monotime(NULL);
906 zebra_remove_rnh_client(rnh, client, type);
907 }
908 }
909 return 0;
910 }
911
912 #define ZEBRA_MIN_FEC_LENGTH 5
913
914 /* FEC register */
915 static int zserv_fec_register(struct zserv *client, int sock, u_short length)
916 {
917 struct stream *s;
918 struct zebra_vrf *zvrf;
919 u_short l = 0;
920 struct prefix p;
921 u_int16_t flags;
922 u_int32_t label_index = MPLS_INVALID_LABEL_INDEX;
923
924 s = client->ibuf;
925 zvrf = vrf_info_lookup(VRF_DEFAULT);
926 if (!zvrf)
927 return 0; // unexpected
928
929 /*
930 * The minimum amount of data that can be sent for one fec
931 * registration
932 */
933 if (length < ZEBRA_MIN_FEC_LENGTH) {
934 zlog_err(
935 "fec_register: Received a fec register of length %d, it is of insufficient size to properly decode",
936 length);
937 return -1;
938 }
939
940 while (l < length) {
941 flags = stream_getw(s);
942 p.family = stream_getw(s);
943 if (p.family != AF_INET && p.family != AF_INET6) {
944 zlog_err(
945 "fec_register: Received unknown family type %d\n",
946 p.family);
947 return -1;
948 }
949 p.prefixlen = stream_getc(s);
950 l += 5;
951 stream_get(&p.u.prefix, s, PSIZE(p.prefixlen));
952 l += PSIZE(p.prefixlen);
953 if (flags & ZEBRA_FEC_REGISTER_LABEL_INDEX) {
954 label_index = stream_getl(s);
955 l += 4;
956 } else
957 label_index = MPLS_INVALID_LABEL_INDEX;
958 zebra_mpls_fec_register(zvrf, &p, label_index, client);
959 }
960
961 return 0;
962 }
963
964 /* FEC unregister */
965 static int zserv_fec_unregister(struct zserv *client, int sock, u_short length)
966 {
967 struct stream *s;
968 struct zebra_vrf *zvrf;
969 u_short l = 0;
970 struct prefix p;
971 // u_int16_t flags;
972
973 s = client->ibuf;
974 zvrf = vrf_info_lookup(VRF_DEFAULT);
975 if (!zvrf)
976 return 0; // unexpected
977
978 /*
979 * The minimum amount of data that can be sent for one
980 * fec unregistration
981 */
982 if (length < ZEBRA_MIN_FEC_LENGTH) {
983 zlog_err(
984 "fec_unregister: Received a fec unregister of length %d, it is of insufficient size to properly decode",
985 length);
986 return -1;
987 }
988
989 while (l < length) {
990 // flags = stream_getw(s);
991 (void)stream_getw(s);
992 p.family = stream_getw(s);
993 if (p.family != AF_INET && p.family != AF_INET6) {
994 zlog_err(
995 "fec_unregister: Received unknown family type %d\n",
996 p.family);
997 return -1;
998 }
999 p.prefixlen = stream_getc(s);
1000 l += 5;
1001 stream_get(&p.u.prefix, s, PSIZE(p.prefixlen));
1002 l += PSIZE(p.prefixlen);
1003 zebra_mpls_fec_unregister(zvrf, &p, client);
1004 }
1005
1006 return 0;
1007 }
1008
1009 /*
1010 Modified version of zsend_ipv4_nexthop_lookup():
1011 Query unicast rib if nexthop is not found on mrib.
1012 Returns both route metric and protocol distance.
1013 */
1014 static int zsend_ipv4_nexthop_lookup_mrib(struct zserv *client,
1015 struct in_addr addr,
1016 struct route_entry *re,
1017 struct zebra_vrf *zvrf)
1018 {
1019 struct stream *s;
1020 unsigned long nump;
1021 u_char num;
1022 struct nexthop *nexthop;
1023
1024 /* Get output stream. */
1025 s = client->obuf;
1026 stream_reset(s);
1027
1028 /* Fill in result. */
1029 zserv_create_header(s, ZEBRA_IPV4_NEXTHOP_LOOKUP_MRIB, zvrf_id(zvrf));
1030 stream_put_in_addr(s, &addr);
1031
1032 if (re) {
1033 stream_putc(s, re->distance);
1034 stream_putl(s, re->metric);
1035 num = 0;
1036 nump = stream_get_endp(
1037 s); /* remember position for nexthop_num */
1038 stream_putc(s, 0); /* reserve room for nexthop_num */
1039 /* Only non-recursive routes are elegible to resolve the nexthop
1040 * we
1041 * are looking up. Therefore, we will just iterate over the top
1042 * chain of nexthops. */
1043 for (nexthop = re->nexthop; nexthop; nexthop = nexthop->next)
1044 if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE))
1045 num += zsend_write_nexthop(s, nexthop);
1046
1047 stream_putc_at(s, nump, num); /* store nexthop_num */
1048 } else {
1049 stream_putc(s, 0); /* distance */
1050 stream_putl(s, 0); /* metric */
1051 stream_putc(s, 0); /* nexthop_num */
1052 }
1053
1054 stream_putw_at(s, 0, stream_get_endp(s));
1055
1056 return zebra_server_send_message(client);
1057 }
1058
1059 /* Router-id is updated. Send ZEBRA_ROUTER_ID_ADD to client. */
1060 int zsend_router_id_update(struct zserv *client, struct prefix *p,
1061 vrf_id_t vrf_id)
1062 {
1063 struct stream *s;
1064 int blen;
1065
1066 /* Check this client need interface information. */
1067 if (!vrf_bitmap_check(client->ridinfo, vrf_id))
1068 return 0;
1069
1070 s = client->obuf;
1071 stream_reset(s);
1072
1073 /* Message type. */
1074 zserv_create_header(s, ZEBRA_ROUTER_ID_UPDATE, vrf_id);
1075
1076 /* Prefix information. */
1077 stream_putc(s, p->family);
1078 blen = prefix_blen(p);
1079 stream_put(s, &p->u.prefix, blen);
1080 stream_putc(s, p->prefixlen);
1081
1082 /* Write packet size. */
1083 stream_putw_at(s, 0, stream_get_endp(s));
1084
1085 return zebra_server_send_message(client);
1086 }
1087
1088 /* Register zebra server interface information. Send current all
1089 interface and address information. */
1090 static int zread_interface_add(struct zserv *client, u_short length,
1091 struct zebra_vrf *zvrf)
1092 {
1093 struct vrf *vrf;
1094 struct listnode *ifnode, *ifnnode;
1095 struct interface *ifp;
1096
1097 /* Interface information is needed. */
1098 vrf_bitmap_set(client->ifinfo, zvrf_id(zvrf));
1099
1100 RB_FOREACH(vrf, vrf_id_head, &vrfs_by_id)
1101 {
1102 for (ALL_LIST_ELEMENTS(vrf->iflist, ifnode, ifnnode, ifp)) {
1103 /* Skip pseudo interface. */
1104 if (!CHECK_FLAG(ifp->status, ZEBRA_INTERFACE_ACTIVE))
1105 continue;
1106
1107 if (zsend_interface_add(client, ifp) < 0)
1108 return -1;
1109
1110 if (zsend_interface_addresses(client, ifp) < 0)
1111 return -1;
1112 }
1113 }
1114 return 0;
1115 }
1116
1117 /* Unregister zebra server interface information. */
1118 static int zread_interface_delete(struct zserv *client, u_short length,
1119 struct zebra_vrf *zvrf)
1120 {
1121 vrf_bitmap_unset(client->ifinfo, zvrf_id(zvrf));
1122 return 0;
1123 }
1124
1125 void zserv_nexthop_num_warn(const char *caller, const struct prefix *p,
1126 const unsigned int nexthop_num)
1127 {
1128 if (nexthop_num > multipath_num) {
1129 char buff[PREFIX2STR_BUFFER];
1130 prefix2str(p, buff, sizeof(buff));
1131 zlog_warn(
1132 "%s: Prefix %s has %d nexthops, but we can only use the first %d",
1133 caller, buff, nexthop_num, multipath_num);
1134 }
1135 }
1136
1137 /* This function support multiple nexthop. */
1138 /*
1139 * Parse the ZEBRA_IPV4_ROUTE_ADD sent from client. Update re and
1140 * add kernel route.
1141 */
1142 static int zread_ipv4_add(struct zserv *client, u_short length,
1143 struct zebra_vrf *zvrf)
1144 {
1145 int i;
1146 struct route_entry *re;
1147 struct prefix p;
1148 u_char message;
1149 struct in_addr nhop_addr;
1150 u_char nexthop_num;
1151 u_char nexthop_type;
1152 struct stream *s;
1153 ifindex_t ifindex;
1154 safi_t safi;
1155 int ret;
1156 mpls_label_t label;
1157 struct nexthop *nexthop;
1158
1159 /* Get input stream. */
1160 s = client->ibuf;
1161
1162 /* Allocate new re. */
1163 re = XCALLOC(MTYPE_RE, sizeof(struct route_entry));
1164
1165 /* Type, flags, message. */
1166 re->type = stream_getc(s);
1167 re->instance = stream_getw(s);
1168 re->flags = stream_getl(s);
1169 message = stream_getc(s);
1170 safi = stream_getw(s);
1171 re->uptime = time(NULL);
1172
1173 /* IPv4 prefix. */
1174 memset(&p, 0, sizeof(struct prefix_ipv4));
1175 p.family = AF_INET;
1176 p.prefixlen = stream_getc(s);
1177 stream_get(&p.u.prefix4, s, PSIZE(p.prefixlen));
1178
1179 /* VRF ID */
1180 re->vrf_id = zvrf_id(zvrf);
1181
1182 /* Nexthop parse. */
1183 if (CHECK_FLAG(message, ZAPI_MESSAGE_NEXTHOP)) {
1184 nexthop_num = stream_getc(s);
1185 zserv_nexthop_num_warn(__func__, (const struct prefix *)&p,
1186 nexthop_num);
1187
1188 for (i = 0; i < nexthop_num; i++) {
1189 nexthop_type = stream_getc(s);
1190
1191 switch (nexthop_type) {
1192 case NEXTHOP_TYPE_IFINDEX:
1193 ifindex = stream_getl(s);
1194 route_entry_nexthop_ifindex_add(re, ifindex);
1195 break;
1196 case NEXTHOP_TYPE_IPV4:
1197 nhop_addr.s_addr = stream_get_ipv4(s);
1198 nexthop = route_entry_nexthop_ipv4_add(
1199 re, &nhop_addr, NULL);
1200 /* For labeled-unicast, each nexthop is followed
1201 * by label. */
1202 if (CHECK_FLAG(message, ZAPI_MESSAGE_LABEL)) {
1203 label = (mpls_label_t)stream_getl(s);
1204 nexthop_add_labels(
1205 nexthop, nexthop->nh_label_type,
1206 1, &label);
1207 }
1208 break;
1209 case NEXTHOP_TYPE_IPV4_IFINDEX:
1210 nhop_addr.s_addr = stream_get_ipv4(s);
1211 ifindex = stream_getl(s);
1212 route_entry_nexthop_ipv4_ifindex_add(
1213 re, &nhop_addr, NULL, ifindex);
1214 break;
1215 case NEXTHOP_TYPE_IPV6:
1216 stream_forward_getp(s, IPV6_MAX_BYTELEN);
1217 break;
1218 case NEXTHOP_TYPE_BLACKHOLE:
1219 route_entry_nexthop_blackhole_add(re);
1220 break;
1221 }
1222 }
1223 }
1224
1225 /* Distance. */
1226 if (CHECK_FLAG(message, ZAPI_MESSAGE_DISTANCE))
1227 re->distance = stream_getc(s);
1228
1229 /* Metric. */
1230 if (CHECK_FLAG(message, ZAPI_MESSAGE_METRIC))
1231 re->metric = stream_getl(s);
1232
1233 /* Tag */
1234 if (CHECK_FLAG(message, ZAPI_MESSAGE_TAG))
1235 re->tag = stream_getl(s);
1236 else
1237 re->tag = 0;
1238
1239 if (CHECK_FLAG(message, ZAPI_MESSAGE_MTU))
1240 re->mtu = stream_getl(s);
1241 else
1242 re->mtu = 0;
1243
1244 /* Table */
1245 re->table = zvrf->table_id;
1246
1247 ret = rib_add_multipath(AFI_IP, safi, &p, NULL, re);
1248
1249 /* Stats */
1250 if (ret > 0)
1251 client->v4_route_add_cnt++;
1252 else if (ret < 0)
1253 client->v4_route_upd8_cnt++;
1254 return 0;
1255 }
1256
1257 /* Zebra server IPv4 prefix delete function. */
1258 static int zread_ipv4_delete(struct zserv *client, u_short length,
1259 struct zebra_vrf *zvrf)
1260 {
1261 int i;
1262 struct stream *s;
1263 struct zapi_ipv4 api;
1264 struct in_addr nexthop;
1265 union g_addr *nexthop_p;
1266 unsigned long ifindex;
1267 struct prefix p;
1268 u_char nexthop_num;
1269 u_char nexthop_type;
1270 u_int32_t table_id;
1271
1272 s = client->ibuf;
1273 ifindex = 0;
1274 nexthop.s_addr = 0;
1275 nexthop_p = NULL;
1276
1277 /* Type, flags, message. */
1278 api.type = stream_getc(s);
1279 api.instance = stream_getw(s);
1280 api.flags = stream_getl(s);
1281 api.message = stream_getc(s);
1282 api.safi = stream_getw(s);
1283
1284 /* IPv4 prefix. */
1285 memset(&p, 0, sizeof(struct prefix));
1286 p.family = AF_INET;
1287 p.prefixlen = stream_getc(s);
1288 stream_get(&p.u.prefix4, s, PSIZE(p.prefixlen));
1289
1290 /* Nexthop, ifindex, distance, metric. */
1291 if (CHECK_FLAG(api.message, ZAPI_MESSAGE_NEXTHOP)) {
1292 nexthop_num = stream_getc(s);
1293
1294 for (i = 0; i < nexthop_num; i++) {
1295 nexthop_type = stream_getc(s);
1296
1297 switch (nexthop_type) {
1298 case NEXTHOP_TYPE_IFINDEX:
1299 ifindex = stream_getl(s);
1300 break;
1301 case NEXTHOP_TYPE_IPV4:
1302 nexthop.s_addr = stream_get_ipv4(s);
1303 /* For labeled-unicast, each nexthop is followed
1304 * by label, but
1305 * we don't care for delete.
1306 */
1307 if (CHECK_FLAG(api.message, ZAPI_MESSAGE_LABEL))
1308 stream_forward_getp(s,
1309 sizeof(u_int32_t));
1310 nexthop_p = (union g_addr *)&nexthop;
1311 break;
1312 case NEXTHOP_TYPE_IPV4_IFINDEX:
1313 nexthop.s_addr = stream_get_ipv4(s);
1314 nexthop_p = (union g_addr *)&nexthop;
1315 ifindex = stream_getl(s);
1316 break;
1317 case NEXTHOP_TYPE_IPV6:
1318 stream_forward_getp(s, IPV6_MAX_BYTELEN);
1319 break;
1320 }
1321 }
1322 }
1323
1324 /* Distance. */
1325 if (CHECK_FLAG(api.message, ZAPI_MESSAGE_DISTANCE))
1326 api.distance = stream_getc(s);
1327 else
1328 api.distance = 0;
1329
1330 /* Metric. */
1331 if (CHECK_FLAG(api.message, ZAPI_MESSAGE_METRIC))
1332 api.metric = stream_getl(s);
1333 else
1334 api.metric = 0;
1335
1336 /* tag */
1337 if (CHECK_FLAG(api.message, ZAPI_MESSAGE_TAG))
1338 api.tag = stream_getl(s);
1339 else
1340 api.tag = 0;
1341
1342 table_id = zvrf->table_id;
1343
1344 rib_delete(AFI_IP, api.safi, zvrf_id(zvrf), api.type, api.instance,
1345 api.flags, &p, NULL, nexthop_p, ifindex, table_id);
1346 client->v4_route_del_cnt++;
1347 return 0;
1348 }
1349
1350 /* MRIB Nexthop lookup for IPv4. */
1351 static int zread_ipv4_nexthop_lookup_mrib(struct zserv *client, u_short length,
1352 struct zebra_vrf *zvrf)
1353 {
1354 struct in_addr addr;
1355 struct route_entry *re;
1356
1357 addr.s_addr = stream_get_ipv4(client->ibuf);
1358 re = rib_match_ipv4_multicast(zvrf_id(zvrf), addr, NULL);
1359 return zsend_ipv4_nexthop_lookup_mrib(client, addr, re, zvrf);
1360 }
1361
1362 /* Zebra server IPv6 prefix add function. */
1363 static int zread_ipv4_route_ipv6_nexthop_add(struct zserv *client,
1364 u_short length,
1365 struct zebra_vrf *zvrf)
1366 {
1367 unsigned int i;
1368 struct stream *s;
1369 struct in6_addr nhop_addr;
1370 struct route_entry *re;
1371 u_char message;
1372 u_char nexthop_num;
1373 u_char nexthop_type;
1374 struct prefix p;
1375 safi_t safi;
1376 static struct in6_addr nexthops[MULTIPATH_NUM];
1377 static unsigned int ifindices[MULTIPATH_NUM];
1378 int ret;
1379 static mpls_label_t labels[MULTIPATH_NUM];
1380 mpls_label_t label;
1381 struct nexthop *nexthop;
1382
1383 /* Get input stream. */
1384 s = client->ibuf;
1385
1386 memset(&nhop_addr, 0, sizeof(struct in6_addr));
1387
1388 /* Allocate new re. */
1389 re = XCALLOC(MTYPE_RE, sizeof(struct route_entry));
1390
1391 /* Type, flags, message. */
1392 re->type = stream_getc(s);
1393 re->instance = stream_getw(s);
1394 re->flags = stream_getl(s);
1395 message = stream_getc(s);
1396 safi = stream_getw(s);
1397 re->uptime = time(NULL);
1398
1399 /* IPv4 prefix. */
1400 memset(&p, 0, sizeof(struct prefix_ipv4));
1401 p.family = AF_INET;
1402 p.prefixlen = stream_getc(s);
1403 stream_get(&p.u.prefix4, s, PSIZE(p.prefixlen));
1404
1405 /* VRF ID */
1406 re->vrf_id = zvrf_id(zvrf);
1407
1408 /* We need to give nh-addr, nh-ifindex with the same next-hop object
1409 * to the re to ensure that IPv6 multipathing works; need to coalesce
1410 * these. Clients should send the same number of paired set of
1411 * next-hop-addr/next-hop-ifindices. */
1412 if (CHECK_FLAG(message, ZAPI_MESSAGE_NEXTHOP)) {
1413 unsigned int nh_count = 0;
1414 unsigned int if_count = 0;
1415 unsigned int max_nh_if = 0;
1416
1417 nexthop_num = stream_getc(s);
1418 zserv_nexthop_num_warn(__func__, (const struct prefix *)&p,
1419 nexthop_num);
1420 for (i = 0; i < nexthop_num; i++) {
1421 nexthop_type = stream_getc(s);
1422
1423 switch (nexthop_type) {
1424 case NEXTHOP_TYPE_IPV6:
1425 stream_get(&nhop_addr, s, 16);
1426 if (nh_count < MULTIPATH_NUM) {
1427 /* For labeled-unicast, each nexthop is
1428 * followed by label. */
1429 if (CHECK_FLAG(message,
1430 ZAPI_MESSAGE_LABEL)) {
1431 label = (mpls_label_t)
1432 stream_getl(s);
1433 labels[nh_count] = label;
1434 }
1435 nexthops[nh_count] = nhop_addr;
1436 nh_count++;
1437 }
1438 break;
1439 case NEXTHOP_TYPE_IFINDEX:
1440 if (if_count < multipath_num) {
1441 ifindices[if_count++] = stream_getl(s);
1442 }
1443 break;
1444 case NEXTHOP_TYPE_BLACKHOLE:
1445 route_entry_nexthop_blackhole_add(re);
1446 break;
1447 }
1448 }
1449
1450 max_nh_if = (nh_count > if_count) ? nh_count : if_count;
1451 for (i = 0; i < max_nh_if; i++) {
1452 if ((i < nh_count)
1453 && !IN6_IS_ADDR_UNSPECIFIED(&nexthops[i])) {
1454 if ((i < if_count) && ifindices[i])
1455 nexthop =
1456 route_entry_nexthop_ipv6_ifindex_add(
1457 re, &nexthops[i],
1458 ifindices[i]);
1459 else
1460 nexthop = route_entry_nexthop_ipv6_add(
1461 re, &nexthops[i]);
1462
1463 if (CHECK_FLAG(message, ZAPI_MESSAGE_LABEL))
1464 nexthop_add_labels(
1465 nexthop, nexthop->nh_label_type,
1466 1, &labels[i]);
1467 } else {
1468 if ((i < if_count) && ifindices[i])
1469 route_entry_nexthop_ifindex_add(
1470 re, ifindices[i]);
1471 }
1472 }
1473 }
1474
1475 /* Distance. */
1476 if (CHECK_FLAG(message, ZAPI_MESSAGE_DISTANCE))
1477 re->distance = stream_getc(s);
1478
1479 /* Metric. */
1480 if (CHECK_FLAG(message, ZAPI_MESSAGE_METRIC))
1481 re->metric = stream_getl(s);
1482
1483 /* Tag */
1484 if (CHECK_FLAG(message, ZAPI_MESSAGE_TAG))
1485 re->tag = stream_getl(s);
1486 else
1487 re->tag = 0;
1488
1489 if (CHECK_FLAG(message, ZAPI_MESSAGE_MTU))
1490 re->mtu = stream_getl(s);
1491 else
1492 re->mtu = 0;
1493
1494 /* Table */
1495 re->table = zvrf->table_id;
1496
1497 ret = rib_add_multipath(AFI_IP6, safi, &p, NULL, re);
1498 /* Stats */
1499 if (ret > 0)
1500 client->v4_route_add_cnt++;
1501 else if (ret < 0)
1502 client->v4_route_upd8_cnt++;
1503
1504 return 0;
1505 }
1506
1507 static int zread_ipv6_add(struct zserv *client, u_short length,
1508 struct zebra_vrf *zvrf)
1509 {
1510 unsigned int i;
1511 struct stream *s;
1512 struct in6_addr nhop_addr;
1513 struct route_entry *re;
1514 u_char message;
1515 u_char nexthop_num;
1516 u_char nexthop_type;
1517 struct prefix p;
1518 struct prefix_ipv6 src_p, *src_pp;
1519 safi_t safi;
1520 static struct in6_addr nexthops[MULTIPATH_NUM];
1521 static unsigned int ifindices[MULTIPATH_NUM];
1522 int ret;
1523 static mpls_label_t labels[MULTIPATH_NUM];
1524 mpls_label_t label;
1525 struct nexthop *nexthop;
1526
1527 /* Get input stream. */
1528 s = client->ibuf;
1529
1530 memset(&nhop_addr, 0, sizeof(struct in6_addr));
1531
1532 /* Allocate new re. */
1533 re = XCALLOC(MTYPE_RE, sizeof(struct route_entry));
1534
1535 /* Type, flags, message. */
1536 re->type = stream_getc(s);
1537 re->instance = stream_getw(s);
1538 re->flags = stream_getl(s);
1539 message = stream_getc(s);
1540 safi = stream_getw(s);
1541 re->uptime = time(NULL);
1542
1543 /* IPv6 prefix. */
1544 memset(&p, 0, sizeof(struct prefix_ipv6));
1545 p.family = AF_INET6;
1546 p.prefixlen = stream_getc(s);
1547 stream_get(&p.u.prefix6, s, PSIZE(p.prefixlen));
1548
1549 if (CHECK_FLAG(message, ZAPI_MESSAGE_SRCPFX)) {
1550 memset(&src_p, 0, sizeof(struct prefix_ipv6));
1551 src_p.family = AF_INET6;
1552 src_p.prefixlen = stream_getc(s);
1553 stream_get(&src_p.prefix, s, PSIZE(src_p.prefixlen));
1554 src_pp = &src_p;
1555 } else
1556 src_pp = NULL;
1557
1558 /* We need to give nh-addr, nh-ifindex with the same next-hop object
1559 * to the re to ensure that IPv6 multipathing works; need to coalesce
1560 * these. Clients should send the same number of paired set of
1561 * next-hop-addr/next-hop-ifindices. */
1562 if (CHECK_FLAG(message, ZAPI_MESSAGE_NEXTHOP)) {
1563 unsigned int nh_count = 0;
1564 unsigned int if_count = 0;
1565 unsigned int max_nh_if = 0;
1566
1567 nexthop_num = stream_getc(s);
1568 zserv_nexthop_num_warn(__func__, (const struct prefix *)&p,
1569 nexthop_num);
1570 for (i = 0; i < nexthop_num; i++) {
1571 nexthop_type = stream_getc(s);
1572
1573 switch (nexthop_type) {
1574 case NEXTHOP_TYPE_IPV6:
1575 stream_get(&nhop_addr, s, 16);
1576 if (nh_count < MULTIPATH_NUM) {
1577 /* For labeled-unicast, each nexthop is
1578 * followed by label. */
1579 if (CHECK_FLAG(message,
1580 ZAPI_MESSAGE_LABEL)) {
1581 label = (mpls_label_t)
1582 stream_getl(s);
1583 labels[nh_count] = label;
1584 }
1585 nexthops[nh_count++] = nhop_addr;
1586 }
1587 break;
1588 case NEXTHOP_TYPE_IFINDEX:
1589 if (if_count < multipath_num) {
1590 ifindices[if_count++] = stream_getl(s);
1591 }
1592 break;
1593 case NEXTHOP_TYPE_BLACKHOLE:
1594 route_entry_nexthop_blackhole_add(re);
1595 break;
1596 }
1597 }
1598
1599 max_nh_if = (nh_count > if_count) ? nh_count : if_count;
1600 for (i = 0; i < max_nh_if; i++) {
1601 if ((i < nh_count)
1602 && !IN6_IS_ADDR_UNSPECIFIED(&nexthops[i])) {
1603 if ((i < if_count) && ifindices[i])
1604 nexthop =
1605 route_entry_nexthop_ipv6_ifindex_add(
1606 re, &nexthops[i],
1607 ifindices[i]);
1608 else
1609 nexthop = route_entry_nexthop_ipv6_add(
1610 re, &nexthops[i]);
1611 if (CHECK_FLAG(message, ZAPI_MESSAGE_LABEL))
1612 nexthop_add_labels(
1613 nexthop, nexthop->nh_label_type,
1614 1, &labels[i]);
1615 } else {
1616 if ((i < if_count) && ifindices[i])
1617 route_entry_nexthop_ifindex_add(
1618 re, ifindices[i]);
1619 }
1620 }
1621 }
1622
1623 /* Distance. */
1624 if (CHECK_FLAG(message, ZAPI_MESSAGE_DISTANCE))
1625 re->distance = stream_getc(s);
1626
1627 /* Metric. */
1628 if (CHECK_FLAG(message, ZAPI_MESSAGE_METRIC))
1629 re->metric = stream_getl(s);
1630
1631 /* Tag */
1632 if (CHECK_FLAG(message, ZAPI_MESSAGE_TAG))
1633 re->tag = stream_getl(s);
1634 else
1635 re->tag = 0;
1636
1637 if (CHECK_FLAG(message, ZAPI_MESSAGE_MTU))
1638 re->mtu = stream_getl(s);
1639 else
1640 re->mtu = 0;
1641
1642 /* VRF ID */
1643 re->vrf_id = zvrf_id(zvrf);
1644 re->table = zvrf->table_id;
1645
1646 ret = rib_add_multipath(AFI_IP6, safi, &p, src_pp, re);
1647 /* Stats */
1648 if (ret > 0)
1649 client->v6_route_add_cnt++;
1650 else if (ret < 0)
1651 client->v6_route_upd8_cnt++;
1652
1653 return 0;
1654 }
1655
1656 /* Zebra server IPv6 prefix delete function. */
1657 static int zread_ipv6_delete(struct zserv *client, u_short length,
1658 struct zebra_vrf *zvrf)
1659 {
1660 int i;
1661 struct stream *s;
1662 struct zapi_ipv6 api;
1663 struct in6_addr nexthop;
1664 union g_addr *pnexthop = NULL;
1665 unsigned long ifindex;
1666 struct prefix p;
1667 struct prefix_ipv6 src_p, *src_pp;
1668
1669 s = client->ibuf;
1670 ifindex = 0;
1671 memset(&nexthop, 0, sizeof(struct in6_addr));
1672
1673 /* Type, flags, message. */
1674 api.type = stream_getc(s);
1675 api.instance = stream_getw(s);
1676 api.flags = stream_getl(s);
1677 api.message = stream_getc(s);
1678 api.safi = stream_getw(s);
1679
1680 /* IPv4 prefix. */
1681 memset(&p, 0, sizeof(struct prefix_ipv6));
1682 p.family = AF_INET6;
1683 p.prefixlen = stream_getc(s);
1684 stream_get(&p.u.prefix6, s, PSIZE(p.prefixlen));
1685
1686 if (CHECK_FLAG(api.message, ZAPI_MESSAGE_SRCPFX)) {
1687 memset(&src_p, 0, sizeof(struct prefix_ipv6));
1688 src_p.family = AF_INET6;
1689 src_p.prefixlen = stream_getc(s);
1690 stream_get(&src_p.prefix, s, PSIZE(src_p.prefixlen));
1691 src_pp = &src_p;
1692 } else
1693 src_pp = NULL;
1694
1695 /* Nexthop, ifindex, distance, metric. */
1696 if (CHECK_FLAG(api.message, ZAPI_MESSAGE_NEXTHOP)) {
1697 u_char nexthop_type;
1698
1699 api.nexthop_num = stream_getc(s);
1700 for (i = 0; i < api.nexthop_num; i++) {
1701 nexthop_type = stream_getc(s);
1702
1703 switch (nexthop_type) {
1704 case NEXTHOP_TYPE_IPV6:
1705 stream_get(&nexthop, s, 16);
1706 /* For labeled-unicast, each nexthop is followed
1707 * by label, but
1708 * we don't care for delete.
1709 */
1710 if (CHECK_FLAG(api.message, ZAPI_MESSAGE_LABEL))
1711 stream_forward_getp(s,
1712 sizeof(u_int32_t));
1713 pnexthop = (union g_addr *)&nexthop;
1714 break;
1715 case NEXTHOP_TYPE_IFINDEX:
1716 ifindex = stream_getl(s);
1717 break;
1718 }
1719 }
1720 }
1721
1722 /* Distance. */
1723 if (CHECK_FLAG(api.message, ZAPI_MESSAGE_DISTANCE))
1724 api.distance = stream_getc(s);
1725 else
1726 api.distance = 0;
1727
1728 /* Metric. */
1729 if (CHECK_FLAG(api.message, ZAPI_MESSAGE_METRIC))
1730 api.metric = stream_getl(s);
1731 else
1732 api.metric = 0;
1733
1734 /* tag */
1735 if (CHECK_FLAG(api.message, ZAPI_MESSAGE_TAG))
1736 api.tag = stream_getl(s);
1737 else
1738 api.tag = 0;
1739
1740 if (IN6_IS_ADDR_UNSPECIFIED(&nexthop))
1741 rib_delete(AFI_IP6, api.safi, zvrf_id(zvrf), api.type,
1742 api.instance, api.flags, &p, src_pp, NULL, ifindex,
1743 client->rtm_table);
1744 else
1745 rib_delete(AFI_IP6, api.safi, zvrf_id(zvrf), api.type,
1746 api.instance, api.flags, &p, src_pp, pnexthop,
1747 ifindex, client->rtm_table);
1748
1749 client->v6_route_del_cnt++;
1750 return 0;
1751 }
1752
1753 /* Register zebra server router-id information. Send current router-id */
1754 static int zread_router_id_add(struct zserv *client, u_short length,
1755 struct zebra_vrf *zvrf)
1756 {
1757 struct prefix p;
1758
1759 /* Router-id information is needed. */
1760 vrf_bitmap_set(client->ridinfo, zvrf_id(zvrf));
1761
1762 router_id_get(&p, zvrf_id(zvrf));
1763
1764 return zsend_router_id_update(client, &p, zvrf_id(zvrf));
1765 }
1766
1767 /* Unregister zebra server router-id information. */
1768 static int zread_router_id_delete(struct zserv *client, u_short length,
1769 struct zebra_vrf *zvrf)
1770 {
1771 vrf_bitmap_unset(client->ridinfo, zvrf_id(zvrf));
1772 return 0;
1773 }
1774
1775 /* Tie up route-type and client->sock */
1776 static void zread_hello(struct zserv *client)
1777 {
1778 /* type of protocol (lib/zebra.h) */
1779 u_char proto;
1780 u_short instance;
1781
1782 proto = stream_getc(client->ibuf);
1783 instance = stream_getw(client->ibuf);
1784
1785 /* accept only dynamic routing protocols */
1786 if ((proto < ZEBRA_ROUTE_MAX) && (proto > ZEBRA_ROUTE_STATIC)) {
1787 zlog_notice(
1788 "client %d says hello and bids fair to announce only %s routes",
1789 client->sock, zebra_route_string(proto));
1790 if (instance)
1791 zlog_notice("client protocol instance %d", instance);
1792
1793 client->proto = proto;
1794 client->instance = instance;
1795 }
1796 }
1797
1798 /* Unregister all information in a VRF. */
1799 static int zread_vrf_unregister(struct zserv *client, u_short length,
1800 struct zebra_vrf *zvrf)
1801 {
1802 int i;
1803 afi_t afi;
1804
1805 for (afi = AFI_IP; afi < AFI_MAX; afi++)
1806 for (i = 0; i < ZEBRA_ROUTE_MAX; i++)
1807 vrf_bitmap_unset(client->redist[afi][i], zvrf_id(zvrf));
1808 vrf_bitmap_unset(client->redist_default, zvrf_id(zvrf));
1809 vrf_bitmap_unset(client->ifinfo, zvrf_id(zvrf));
1810 vrf_bitmap_unset(client->ridinfo, zvrf_id(zvrf));
1811
1812 return 0;
1813 }
1814
1815 static void zread_mpls_labels(int command, struct zserv *client, u_short length,
1816 vrf_id_t vrf_id)
1817 {
1818 struct stream *s;
1819 enum lsp_types_t type;
1820 struct prefix prefix;
1821 enum nexthop_types_t gtype;
1822 union g_addr gate;
1823 ifindex_t ifindex;
1824 mpls_label_t in_label, out_label;
1825 u_int8_t distance;
1826 struct zebra_vrf *zvrf;
1827
1828 zvrf = vrf_info_lookup(vrf_id);
1829 if (!zvrf)
1830 return;
1831
1832 /* Get input stream. */
1833 s = client->ibuf;
1834
1835 /* Get data. */
1836 type = stream_getc(s);
1837 prefix.family = stream_getl(s);
1838 switch (prefix.family) {
1839 case AF_INET:
1840 prefix.u.prefix4.s_addr = stream_get_ipv4(s);
1841 prefix.prefixlen = stream_getc(s);
1842 gate.ipv4.s_addr = stream_get_ipv4(s);
1843 break;
1844 case AF_INET6:
1845 stream_get(&prefix.u.prefix6, s, 16);
1846 prefix.prefixlen = stream_getc(s);
1847 stream_get(&gate.ipv6, s, 16);
1848 break;
1849 default:
1850 return;
1851 }
1852 ifindex = stream_getl(s);
1853 distance = stream_getc(s);
1854 in_label = stream_getl(s);
1855 out_label = stream_getl(s);
1856
1857 switch (prefix.family) {
1858 case AF_INET:
1859 if (ifindex)
1860 gtype = NEXTHOP_TYPE_IPV4_IFINDEX;
1861 else
1862 gtype = NEXTHOP_TYPE_IPV4;
1863 break;
1864 case AF_INET6:
1865 if (ifindex)
1866 gtype = NEXTHOP_TYPE_IPV6_IFINDEX;
1867 else
1868 gtype = NEXTHOP_TYPE_IPV6;
1869 break;
1870 default:
1871 return;
1872 }
1873
1874 if (!mpls_enabled)
1875 return;
1876
1877 if (command == ZEBRA_MPLS_LABELS_ADD) {
1878 mpls_lsp_install(zvrf, type, in_label, out_label, gtype, &gate,
1879 ifindex);
1880 if (out_label != MPLS_IMP_NULL_LABEL)
1881 mpls_ftn_update(1, zvrf, type, &prefix, gtype, &gate,
1882 ifindex, distance, out_label);
1883 } else if (command == ZEBRA_MPLS_LABELS_DELETE) {
1884 mpls_lsp_uninstall(zvrf, type, in_label, gtype, &gate, ifindex);
1885 if (out_label != MPLS_IMP_NULL_LABEL)
1886 mpls_ftn_update(0, zvrf, type, &prefix, gtype, &gate,
1887 ifindex, distance, out_label);
1888 }
1889 }
1890 /* Send response to a label manager connect request to client */
1891 static int zsend_label_manager_connect_response(struct zserv *client,
1892 vrf_id_t vrf_id, u_short result)
1893 {
1894 struct stream *s;
1895
1896 s = client->obuf;
1897 stream_reset(s);
1898
1899 zserv_create_header(s, ZEBRA_LABEL_MANAGER_CONNECT, vrf_id);
1900
1901 /* result */
1902 stream_putc(s, result);
1903
1904 /* Write packet size. */
1905 stream_putw_at(s, 0, stream_get_endp(s));
1906
1907 return writen(client->sock, s->data, stream_get_endp(s));
1908 }
1909
1910 static void zread_label_manager_connect(struct zserv *client, vrf_id_t vrf_id)
1911 {
1912 struct stream *s;
1913 /* type of protocol (lib/zebra.h) */
1914 u_char proto;
1915 u_short instance;
1916
1917 /* Get input stream. */
1918 s = client->ibuf;
1919
1920 /* Get data. */
1921 proto = stream_getc(s);
1922 instance = stream_getw(s);
1923
1924 /* accept only dynamic routing protocols */
1925 if ((proto >= ZEBRA_ROUTE_MAX) || (proto <= ZEBRA_ROUTE_STATIC)) {
1926 zlog_err("client %d has wrong protocol %s", client->sock,
1927 zebra_route_string(proto));
1928 zsend_label_manager_connect_response(client, vrf_id, 1);
1929 return;
1930 }
1931 zlog_notice("client %d with instance %u connected as %s", client->sock,
1932 instance, zebra_route_string(proto));
1933 client->proto = proto;
1934 client->instance = instance;
1935
1936 /*
1937 Release previous labels of same protocol and instance.
1938 This is done in case it restarted from an unexpected shutdown.
1939 */
1940 release_daemon_chunks(proto, instance);
1941
1942 zlog_debug(
1943 " Label Manager client connected: sock %d, proto %s, instance %u",
1944 client->sock, zebra_route_string(proto), instance);
1945 /* send response back */
1946 zsend_label_manager_connect_response(client, vrf_id, 0);
1947 }
1948 /* Send response to a get label chunk request to client */
1949 static int zsend_assign_label_chunk_response(struct zserv *client,
1950 vrf_id_t vrf_id,
1951 struct label_manager_chunk *lmc)
1952 {
1953 struct stream *s;
1954
1955 s = client->obuf;
1956 stream_reset(s);
1957
1958 zserv_create_header(s, ZEBRA_GET_LABEL_CHUNK, vrf_id);
1959
1960 if (lmc) {
1961 /* keep */
1962 stream_putc(s, lmc->keep);
1963 /* start and end labels */
1964 stream_putl(s, lmc->start);
1965 stream_putl(s, lmc->end);
1966 }
1967
1968 /* Write packet size. */
1969 stream_putw_at(s, 0, stream_get_endp(s));
1970
1971 return writen(client->sock, s->data, stream_get_endp(s));
1972 }
1973
1974 static void zread_get_label_chunk(struct zserv *client, vrf_id_t vrf_id)
1975 {
1976 struct stream *s;
1977 u_char keep;
1978 uint32_t size;
1979 struct label_manager_chunk *lmc;
1980
1981 /* Get input stream. */
1982 s = client->ibuf;
1983
1984 /* Get data. */
1985 keep = stream_getc(s);
1986 size = stream_getl(s);
1987
1988 lmc = assign_label_chunk(client->proto, client->instance, keep, size);
1989 if (!lmc)
1990 zlog_err("%s: Unable to assign Label Chunk of size %u",
1991 __func__, size);
1992 else
1993 zlog_debug("Assigned Label Chunk %u - %u to %u", lmc->start,
1994 lmc->end, keep);
1995 /* send response back */
1996 zsend_assign_label_chunk_response(client, vrf_id, lmc);
1997 }
1998
1999 static void zread_release_label_chunk(struct zserv *client)
2000 {
2001 struct stream *s;
2002 uint32_t start, end;
2003
2004 /* Get input stream. */
2005 s = client->ibuf;
2006
2007 /* Get data. */
2008 start = stream_getl(s);
2009 end = stream_getl(s);
2010
2011 release_label_chunk(client->proto, client->instance, start, end);
2012 }
2013 static void zread_label_manager_request(int cmd, struct zserv *client,
2014 vrf_id_t vrf_id)
2015 {
2016 /* to avoid sending other messages like ZERBA_INTERFACE_UP */
2017 if (cmd == ZEBRA_LABEL_MANAGER_CONNECT)
2018 client->is_synchronous = 1;
2019
2020 /* external label manager */
2021 if (lm_is_external)
2022 zread_relay_label_manager_request(cmd, client, vrf_id);
2023 /* this is a label manager */
2024 else {
2025 if (cmd == ZEBRA_LABEL_MANAGER_CONNECT)
2026 zread_label_manager_connect(client, vrf_id);
2027 else {
2028 /* Sanity: don't allow 'unidentified' requests */
2029 if (!client->proto) {
2030 zlog_err(
2031 "Got label request from an unidentified client");
2032 return;
2033 }
2034 if (cmd == ZEBRA_GET_LABEL_CHUNK)
2035 zread_get_label_chunk(client, vrf_id);
2036 else if (cmd == ZEBRA_RELEASE_LABEL_CHUNK)
2037 zread_release_label_chunk(client);
2038 }
2039 }
2040 }
2041
2042 /* Cleanup registered nexthops (across VRFs) upon client disconnect. */
2043 static void zebra_client_close_cleanup_rnh(struct zserv *client)
2044 {
2045 struct vrf *vrf;
2046 struct zebra_vrf *zvrf;
2047
2048 RB_FOREACH(vrf, vrf_id_head, &vrfs_by_id)
2049 {
2050 if ((zvrf = vrf->info) != NULL) {
2051 zebra_cleanup_rnh_client(zvrf_id(zvrf), AF_INET, client,
2052 RNH_NEXTHOP_TYPE);
2053 zebra_cleanup_rnh_client(zvrf_id(zvrf), AF_INET6,
2054 client, RNH_NEXTHOP_TYPE);
2055 zebra_cleanup_rnh_client(zvrf_id(zvrf), AF_INET, client,
2056 RNH_IMPORT_CHECK_TYPE);
2057 zebra_cleanup_rnh_client(zvrf_id(zvrf), AF_INET6,
2058 client, RNH_IMPORT_CHECK_TYPE);
2059 if (client->proto == ZEBRA_ROUTE_LDP) {
2060 hash_iterate(zvrf->lsp_table,
2061 mpls_ldp_lsp_uninstall_all,
2062 zvrf->lsp_table);
2063 mpls_ldp_ftn_uninstall_all(zvrf, AFI_IP);
2064 mpls_ldp_ftn_uninstall_all(zvrf, AFI_IP6);
2065 }
2066 }
2067 }
2068 }
2069
2070 /* Close zebra client. */
2071 static void zebra_client_close(struct zserv *client)
2072 {
2073 /* Send client de-registration to BFD */
2074 zebra_ptm_bfd_client_deregister(client->proto);
2075
2076 /* Cleanup any registered nexthops - across all VRFs. */
2077 zebra_client_close_cleanup_rnh(client);
2078
2079 /* Release Label Manager chunks */
2080 release_daemon_chunks(client->proto, client->instance);
2081
2082 /* Cleanup any FECs registered by this client. */
2083 zebra_mpls_cleanup_fecs_for_client(vrf_info_lookup(VRF_DEFAULT),
2084 client);
2085
2086 /* Close file descriptor. */
2087 if (client->sock) {
2088 unsigned long nroutes;
2089
2090 close(client->sock);
2091 nroutes = rib_score_proto(client->proto, client->instance);
2092 zlog_notice(
2093 "client %d disconnected. %lu %s routes removed from the rib",
2094 client->sock, nroutes,
2095 zebra_route_string(client->proto));
2096 client->sock = -1;
2097 }
2098
2099 /* Free stream buffers. */
2100 if (client->ibuf)
2101 stream_free(client->ibuf);
2102 if (client->obuf)
2103 stream_free(client->obuf);
2104 if (client->wb)
2105 buffer_free(client->wb);
2106
2107 /* Release threads. */
2108 if (client->t_read)
2109 thread_cancel(client->t_read);
2110 if (client->t_write)
2111 thread_cancel(client->t_write);
2112 if (client->t_suicide)
2113 thread_cancel(client->t_suicide);
2114
2115 /* Free bitmaps. */
2116 for (afi_t afi = AFI_IP; afi < AFI_MAX; afi++)
2117 for (int i = 0; i < ZEBRA_ROUTE_MAX; i++)
2118 vrf_bitmap_free(client->redist[afi][i]);
2119
2120 vrf_bitmap_free(client->redist_default);
2121 vrf_bitmap_free(client->ifinfo);
2122 vrf_bitmap_free(client->ridinfo);
2123
2124 /* Free client structure. */
2125 listnode_delete(zebrad.client_list, client);
2126 XFREE(MTYPE_TMP, client);
2127 }
2128
2129 /* Make new client. */
2130 static void zebra_client_create(int sock)
2131 {
2132 struct zserv *client;
2133 int i;
2134 afi_t afi;
2135
2136 client = XCALLOC(MTYPE_TMP, sizeof(struct zserv));
2137
2138 /* Make client input/output buffer. */
2139 client->sock = sock;
2140 client->ibuf = stream_new(ZEBRA_MAX_PACKET_SIZ);
2141 client->obuf = stream_new(ZEBRA_MAX_PACKET_SIZ);
2142 client->wb = buffer_new(0);
2143
2144 /* Set table number. */
2145 client->rtm_table = zebrad.rtm_table_default;
2146
2147 client->connect_time = monotime(NULL);
2148 /* Initialize flags */
2149 for (afi = AFI_IP; afi < AFI_MAX; afi++)
2150 for (i = 0; i < ZEBRA_ROUTE_MAX; i++)
2151 client->redist[afi][i] = vrf_bitmap_init();
2152 client->redist_default = vrf_bitmap_init();
2153 client->ifinfo = vrf_bitmap_init();
2154 client->ridinfo = vrf_bitmap_init();
2155
2156 /* by default, it's not a synchronous client */
2157 client->is_synchronous = 0;
2158
2159 /* Add this client to linked list. */
2160 listnode_add(zebrad.client_list, client);
2161
2162 /* Make new read thread. */
2163 zebra_event(ZEBRA_READ, sock, client);
2164
2165 zebra_vrf_update_all(client);
2166 }
2167
2168 /* Handler of zebra service request. */
2169 static int zebra_client_read(struct thread *thread)
2170 {
2171 int sock;
2172 struct zserv *client;
2173 size_t already;
2174 uint16_t length, command;
2175 uint8_t marker, version;
2176 vrf_id_t vrf_id;
2177 struct zebra_vrf *zvrf;
2178
2179 /* Get thread data. Reset reading thread because I'm running. */
2180 sock = THREAD_FD(thread);
2181 client = THREAD_ARG(thread);
2182 client->t_read = NULL;
2183
2184 if (client->t_suicide) {
2185 zebra_client_close(client);
2186 return -1;
2187 }
2188
2189 /* Read length and command (if we don't have it already). */
2190 if ((already = stream_get_endp(client->ibuf)) < ZEBRA_HEADER_SIZE) {
2191 ssize_t nbyte;
2192 if (((nbyte = stream_read_try(client->ibuf, sock,
2193 ZEBRA_HEADER_SIZE - already))
2194 == 0)
2195 || (nbyte == -1)) {
2196 if (IS_ZEBRA_DEBUG_EVENT)
2197 zlog_debug("connection closed socket [%d]",
2198 sock);
2199 zebra_client_close(client);
2200 return -1;
2201 }
2202 if (nbyte != (ssize_t)(ZEBRA_HEADER_SIZE - already)) {
2203 /* Try again later. */
2204 zebra_event(ZEBRA_READ, sock, client);
2205 return 0;
2206 }
2207 already = ZEBRA_HEADER_SIZE;
2208 }
2209
2210 /* Reset to read from the beginning of the incoming packet. */
2211 stream_set_getp(client->ibuf, 0);
2212
2213 /* Fetch header values */
2214 length = stream_getw(client->ibuf);
2215 marker = stream_getc(client->ibuf);
2216 version = stream_getc(client->ibuf);
2217 vrf_id = stream_getw(client->ibuf);
2218 command = stream_getw(client->ibuf);
2219
2220 if (marker != ZEBRA_HEADER_MARKER || version != ZSERV_VERSION) {
2221 zlog_err(
2222 "%s: socket %d version mismatch, marker %d, version %d",
2223 __func__, sock, marker, version);
2224 zebra_client_close(client);
2225 return -1;
2226 }
2227 if (length < ZEBRA_HEADER_SIZE) {
2228 zlog_warn(
2229 "%s: socket %d message length %u is less than header size %d",
2230 __func__, sock, length, ZEBRA_HEADER_SIZE);
2231 zebra_client_close(client);
2232 return -1;
2233 }
2234 if (length > STREAM_SIZE(client->ibuf)) {
2235 zlog_warn(
2236 "%s: socket %d message length %u exceeds buffer size %lu",
2237 __func__, sock, length,
2238 (u_long)STREAM_SIZE(client->ibuf));
2239 zebra_client_close(client);
2240 return -1;
2241 }
2242
2243 /* Read rest of data. */
2244 if (already < length) {
2245 ssize_t nbyte;
2246 if (((nbyte = stream_read_try(client->ibuf, sock,
2247 length - already))
2248 == 0)
2249 || (nbyte == -1)) {
2250 if (IS_ZEBRA_DEBUG_EVENT)
2251 zlog_debug(
2252 "connection closed [%d] when reading zebra data",
2253 sock);
2254 zebra_client_close(client);
2255 return -1;
2256 }
2257 if (nbyte != (ssize_t)(length - already)) {
2258 /* Try again later. */
2259 zebra_event(ZEBRA_READ, sock, client);
2260 return 0;
2261 }
2262 }
2263
2264 length -= ZEBRA_HEADER_SIZE;
2265
2266 /* Debug packet information. */
2267 if (IS_ZEBRA_DEBUG_EVENT)
2268 zlog_debug("zebra message comes from socket [%d]", sock);
2269
2270 if (IS_ZEBRA_DEBUG_PACKET && IS_ZEBRA_DEBUG_RECV)
2271 zlog_debug("zebra message received [%s] %d in VRF %u",
2272 zserv_command_string(command), length, vrf_id);
2273
2274 client->last_read_time = monotime(NULL);
2275 client->last_read_cmd = command;
2276
2277 zvrf = zebra_vrf_lookup_by_id(vrf_id);
2278 if (!zvrf) {
2279 if (IS_ZEBRA_DEBUG_PACKET && IS_ZEBRA_DEBUG_RECV)
2280 zlog_debug("zebra received unknown VRF[%u]", vrf_id);
2281 goto zclient_read_out;
2282 }
2283
2284 switch (command) {
2285 case ZEBRA_ROUTER_ID_ADD:
2286 zread_router_id_add(client, length, zvrf);
2287 break;
2288 case ZEBRA_ROUTER_ID_DELETE:
2289 zread_router_id_delete(client, length, zvrf);
2290 break;
2291 case ZEBRA_INTERFACE_ADD:
2292 zread_interface_add(client, length, zvrf);
2293 break;
2294 case ZEBRA_INTERFACE_DELETE:
2295 zread_interface_delete(client, length, zvrf);
2296 break;
2297 case ZEBRA_IPV4_ROUTE_ADD:
2298 zread_ipv4_add(client, length, zvrf);
2299 break;
2300 case ZEBRA_IPV4_ROUTE_DELETE:
2301 zread_ipv4_delete(client, length, zvrf);
2302 break;
2303 case ZEBRA_IPV4_ROUTE_IPV6_NEXTHOP_ADD:
2304 zread_ipv4_route_ipv6_nexthop_add(client, length, zvrf);
2305 break;
2306 case ZEBRA_IPV4_NEXTHOP_ADD:
2307 zread_ipv4_add(client, length,
2308 zvrf); /* LB: r1.0 merge - id was 1 */
2309 break;
2310 case ZEBRA_IPV4_NEXTHOP_DELETE:
2311 zread_ipv4_delete(client, length,
2312 zvrf); /* LB: r1.0 merge - id was 1 */
2313 break;
2314 case ZEBRA_IPV6_ROUTE_ADD:
2315 zread_ipv6_add(client, length, zvrf);
2316 break;
2317 case ZEBRA_IPV6_ROUTE_DELETE:
2318 zread_ipv6_delete(client, length, zvrf);
2319 break;
2320 case ZEBRA_REDISTRIBUTE_ADD:
2321 zebra_redistribute_add(command, client, length, zvrf);
2322 break;
2323 case ZEBRA_REDISTRIBUTE_DELETE:
2324 zebra_redistribute_delete(command, client, length, zvrf);
2325 break;
2326 case ZEBRA_REDISTRIBUTE_DEFAULT_ADD:
2327 zebra_redistribute_default_add(command, client, length, zvrf);
2328 break;
2329 case ZEBRA_REDISTRIBUTE_DEFAULT_DELETE:
2330 zebra_redistribute_default_delete(command, client, length,
2331 zvrf);
2332 break;
2333 case ZEBRA_IPV4_NEXTHOP_LOOKUP_MRIB:
2334 zread_ipv4_nexthop_lookup_mrib(client, length, zvrf);
2335 break;
2336 case ZEBRA_HELLO:
2337 zread_hello(client);
2338 break;
2339 case ZEBRA_NEXTHOP_REGISTER:
2340 zserv_rnh_register(client, sock, length, RNH_NEXTHOP_TYPE,
2341 zvrf);
2342 break;
2343 case ZEBRA_NEXTHOP_UNREGISTER:
2344 zserv_rnh_unregister(client, sock, length, RNH_NEXTHOP_TYPE,
2345 zvrf);
2346 break;
2347 case ZEBRA_IMPORT_ROUTE_REGISTER:
2348 zserv_rnh_register(client, sock, length, RNH_IMPORT_CHECK_TYPE,
2349 zvrf);
2350 break;
2351 case ZEBRA_IMPORT_ROUTE_UNREGISTER:
2352 zserv_rnh_unregister(client, sock, length,
2353 RNH_IMPORT_CHECK_TYPE, zvrf);
2354 break;
2355 case ZEBRA_BFD_DEST_UPDATE:
2356 case ZEBRA_BFD_DEST_REGISTER:
2357 zebra_ptm_bfd_dst_register(client, sock, length, command, zvrf);
2358 break;
2359 case ZEBRA_BFD_DEST_DEREGISTER:
2360 zebra_ptm_bfd_dst_deregister(client, sock, length, zvrf);
2361 break;
2362 case ZEBRA_VRF_UNREGISTER:
2363 zread_vrf_unregister(client, length, zvrf);
2364 break;
2365 case ZEBRA_BFD_CLIENT_REGISTER:
2366 zebra_ptm_bfd_client_register(client, sock, length);
2367 break;
2368 case ZEBRA_INTERFACE_ENABLE_RADV:
2369 #if defined(HAVE_RTADV)
2370 zebra_interface_radv_set(client, sock, length, zvrf, 1);
2371 #endif
2372 break;
2373 case ZEBRA_INTERFACE_DISABLE_RADV:
2374 #if defined(HAVE_RTADV)
2375 zebra_interface_radv_set(client, sock, length, zvrf, 0);
2376 #endif
2377 break;
2378 case ZEBRA_MPLS_LABELS_ADD:
2379 case ZEBRA_MPLS_LABELS_DELETE:
2380 zread_mpls_labels(command, client, length, vrf_id);
2381 break;
2382 case ZEBRA_IPMR_ROUTE_STATS:
2383 zebra_ipmr_route_stats(client, sock, length, zvrf);
2384 break;
2385 case ZEBRA_LABEL_MANAGER_CONNECT:
2386 case ZEBRA_GET_LABEL_CHUNK:
2387 case ZEBRA_RELEASE_LABEL_CHUNK:
2388 zread_label_manager_request(command, client, vrf_id);
2389 break;
2390 case ZEBRA_FEC_REGISTER:
2391 zserv_fec_register(client, sock, length);
2392 break;
2393 case ZEBRA_FEC_UNREGISTER:
2394 zserv_fec_unregister(client, sock, length);
2395 break;
2396 case ZEBRA_ADVERTISE_ALL_VNI:
2397 zebra_vxlan_advertise_all_vni(client, sock, length, zvrf);
2398 break;
2399 case ZEBRA_REMOTE_VTEP_ADD:
2400 zebra_vxlan_remote_vtep_add(client, sock, length, zvrf);
2401 break;
2402 case ZEBRA_REMOTE_VTEP_DEL:
2403 zebra_vxlan_remote_vtep_del(client, sock, length, zvrf);
2404 break;
2405 case ZEBRA_REMOTE_MACIP_ADD:
2406 zebra_vxlan_remote_macip_add(client, sock, length, zvrf);
2407 break;
2408 case ZEBRA_REMOTE_MACIP_DEL:
2409 zebra_vxlan_remote_macip_del(client, sock, length, zvrf);
2410 break;
2411 default:
2412 zlog_info("Zebra received unknown command %d", command);
2413 break;
2414 }
2415
2416 if (client->t_suicide) {
2417 /* No need to wait for thread callback, just kill immediately.
2418 */
2419 zebra_client_close(client);
2420 return -1;
2421 }
2422
2423 zclient_read_out:
2424 stream_reset(client->ibuf);
2425 zebra_event(ZEBRA_READ, sock, client);
2426 return 0;
2427 }
2428
2429
2430 /* Accept code of zebra server socket. */
2431 static int zebra_accept(struct thread *thread)
2432 {
2433 int accept_sock;
2434 int client_sock;
2435 struct sockaddr_in client;
2436 socklen_t len;
2437
2438 accept_sock = THREAD_FD(thread);
2439
2440 /* Reregister myself. */
2441 zebra_event(ZEBRA_SERV, accept_sock, NULL);
2442
2443 len = sizeof(struct sockaddr_in);
2444 client_sock = accept(accept_sock, (struct sockaddr *)&client, &len);
2445
2446 if (client_sock < 0) {
2447 zlog_warn("Can't accept zebra socket: %s",
2448 safe_strerror(errno));
2449 return -1;
2450 }
2451
2452 /* Make client socket non-blocking. */
2453 set_nonblocking(client_sock);
2454
2455 /* Create new zebra client. */
2456 zebra_client_create(client_sock);
2457
2458 return 0;
2459 }
2460
2461 #ifdef HAVE_TCP_ZEBRA
2462 /* Make zebra's server socket. */
2463 static void zebra_serv()
2464 {
2465 int ret;
2466 int accept_sock;
2467 struct sockaddr_in addr;
2468
2469 accept_sock = socket(AF_INET, SOCK_STREAM, 0);
2470
2471 if (accept_sock < 0) {
2472 zlog_warn("Can't create zserv stream socket: %s",
2473 safe_strerror(errno));
2474 zlog_warn(
2475 "zebra can't provice full functionality due to above error");
2476 return;
2477 }
2478
2479 memset(&addr, 0, sizeof(struct sockaddr_in));
2480 addr.sin_family = AF_INET;
2481 addr.sin_port = htons(ZEBRA_PORT);
2482 #ifdef HAVE_STRUCT_SOCKADDR_IN_SIN_LEN
2483 addr.sin_len = sizeof(struct sockaddr_in);
2484 #endif /* HAVE_STRUCT_SOCKADDR_IN_SIN_LEN */
2485 addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
2486
2487 sockopt_reuseaddr(accept_sock);
2488 sockopt_reuseport(accept_sock);
2489
2490 if (zserv_privs.change(ZPRIVS_RAISE))
2491 zlog_err("Can't raise privileges");
2492
2493 ret = bind(accept_sock, (struct sockaddr *)&addr,
2494 sizeof(struct sockaddr_in));
2495 if (ret < 0) {
2496 zlog_warn("Can't bind to stream socket: %s",
2497 safe_strerror(errno));
2498 zlog_warn(
2499 "zebra can't provice full functionality due to above error");
2500 close(accept_sock); /* Avoid sd leak. */
2501 return;
2502 }
2503
2504 if (zserv_privs.change(ZPRIVS_LOWER))
2505 zlog_err("Can't lower privileges");
2506
2507 ret = listen(accept_sock, 1);
2508 if (ret < 0) {
2509 zlog_warn("Can't listen to stream socket: %s",
2510 safe_strerror(errno));
2511 zlog_warn(
2512 "zebra can't provice full functionality due to above error");
2513 close(accept_sock); /* Avoid sd leak. */
2514 return;
2515 }
2516
2517 zebra_event(ZEBRA_SERV, accept_sock, NULL);
2518 }
2519 #else /* HAVE_TCP_ZEBRA */
2520
2521 /* For sockaddr_un. */
2522 #include <sys/un.h>
2523
2524 /* zebra server UNIX domain socket. */
2525 static void zebra_serv_un(const char *path)
2526 {
2527 int ret;
2528 int sock, len;
2529 struct sockaddr_un serv;
2530 mode_t old_mask;
2531
2532 /* First of all, unlink existing socket */
2533 unlink(path);
2534
2535 /* Set umask */
2536 old_mask = umask(0077);
2537
2538 /* Make UNIX domain socket. */
2539 sock = socket(AF_UNIX, SOCK_STREAM, 0);
2540 if (sock < 0) {
2541 zlog_warn("Can't create zserv unix socket: %s",
2542 safe_strerror(errno));
2543 zlog_warn(
2544 "zebra can't provide full functionality due to above error");
2545 return;
2546 }
2547
2548 /* Make server socket. */
2549 memset(&serv, 0, sizeof(struct sockaddr_un));
2550 serv.sun_family = AF_UNIX;
2551 strncpy(serv.sun_path, path, strlen(path));
2552 #ifdef HAVE_STRUCT_SOCKADDR_UN_SUN_LEN
2553 len = serv.sun_len = SUN_LEN(&serv);
2554 #else
2555 len = sizeof(serv.sun_family) + strlen(serv.sun_path);
2556 #endif /* HAVE_STRUCT_SOCKADDR_UN_SUN_LEN */
2557
2558 ret = bind(sock, (struct sockaddr *)&serv, len);
2559 if (ret < 0) {
2560 zlog_warn("Can't bind to unix socket %s: %s", path,
2561 safe_strerror(errno));
2562 zlog_warn(
2563 "zebra can't provide full functionality due to above error");
2564 close(sock);
2565 return;
2566 }
2567
2568 ret = listen(sock, 5);
2569 if (ret < 0) {
2570 zlog_warn("Can't listen to unix socket %s: %s", path,
2571 safe_strerror(errno));
2572 zlog_warn(
2573 "zebra can't provide full functionality due to above error");
2574 close(sock);
2575 return;
2576 }
2577
2578 umask(old_mask);
2579
2580 zebra_event(ZEBRA_SERV, sock, NULL);
2581 }
2582 #endif /* HAVE_TCP_ZEBRA */
2583
2584
2585 static void zebra_event(enum event event, int sock, struct zserv *client)
2586 {
2587 switch (event) {
2588 case ZEBRA_SERV:
2589 thread_add_read(zebrad.master, zebra_accept, client, sock,
2590 NULL);
2591 break;
2592 case ZEBRA_READ:
2593 client->t_read = NULL;
2594 thread_add_read(zebrad.master, zebra_client_read, client, sock,
2595 &client->t_read);
2596 break;
2597 case ZEBRA_WRITE:
2598 /**/
2599 break;
2600 }
2601 }
2602
2603 #define ZEBRA_TIME_BUF 32
2604 static char *zserv_time_buf(time_t *time1, char *buf, int buflen)
2605 {
2606 struct tm *tm;
2607 time_t now;
2608
2609 assert(buf != NULL);
2610 assert(buflen >= ZEBRA_TIME_BUF);
2611 assert(time1 != NULL);
2612
2613 if (!*time1) {
2614 snprintf(buf, buflen, "never ");
2615 return (buf);
2616 }
2617
2618 now = monotime(NULL);
2619 now -= *time1;
2620 tm = gmtime(&now);
2621
2622 /* Making formatted timer strings. */
2623 #define ONE_DAY_SECOND 60*60*24
2624 #define ONE_WEEK_SECOND 60*60*24*7
2625
2626 if (now < ONE_DAY_SECOND)
2627 snprintf(buf, buflen, "%02d:%02d:%02d", tm->tm_hour, tm->tm_min,
2628 tm->tm_sec);
2629 else if (now < ONE_WEEK_SECOND)
2630 snprintf(buf, buflen, "%dd%02dh%02dm", tm->tm_yday, tm->tm_hour,
2631 tm->tm_min);
2632 else
2633 snprintf(buf, buflen, "%02dw%dd%02dh", tm->tm_yday / 7,
2634 tm->tm_yday - ((tm->tm_yday / 7) * 7), tm->tm_hour);
2635 return buf;
2636 }
2637
2638 static void zebra_show_client_detail(struct vty *vty, struct zserv *client)
2639 {
2640 char cbuf[ZEBRA_TIME_BUF], rbuf[ZEBRA_TIME_BUF];
2641 char wbuf[ZEBRA_TIME_BUF], nhbuf[ZEBRA_TIME_BUF], mbuf[ZEBRA_TIME_BUF];
2642
2643 vty_out(vty, "Client: %s", zebra_route_string(client->proto));
2644 if (client->instance)
2645 vty_out(vty, " Instance: %d", client->instance);
2646 vty_out(vty, "\n");
2647
2648 vty_out(vty, "------------------------ \n");
2649 vty_out(vty, "FD: %d \n", client->sock);
2650 vty_out(vty, "Route Table ID: %d \n", client->rtm_table);
2651
2652 vty_out(vty, "Connect Time: %s \n",
2653 zserv_time_buf(&client->connect_time, cbuf, ZEBRA_TIME_BUF));
2654 if (client->nh_reg_time) {
2655 vty_out(vty, "Nexthop Registry Time: %s \n",
2656 zserv_time_buf(&client->nh_reg_time, nhbuf,
2657 ZEBRA_TIME_BUF));
2658 if (client->nh_last_upd_time)
2659 vty_out(vty, "Nexthop Last Update Time: %s \n",
2660 zserv_time_buf(&client->nh_last_upd_time, mbuf,
2661 ZEBRA_TIME_BUF));
2662 else
2663 vty_out(vty, "No Nexthop Update sent\n");
2664 } else
2665 vty_out(vty, "Not registered for Nexthop Updates\n");
2666
2667 vty_out(vty, "Last Msg Rx Time: %s \n",
2668 zserv_time_buf(&client->last_read_time, rbuf, ZEBRA_TIME_BUF));
2669 vty_out(vty, "Last Msg Tx Time: %s \n",
2670 zserv_time_buf(&client->last_write_time, wbuf, ZEBRA_TIME_BUF));
2671 if (client->last_read_time)
2672 vty_out(vty, "Last Rcvd Cmd: %s \n",
2673 zserv_command_string(client->last_read_cmd));
2674 if (client->last_write_time)
2675 vty_out(vty, "Last Sent Cmd: %s \n",
2676 zserv_command_string(client->last_write_cmd));
2677 vty_out(vty, "\n");
2678
2679 vty_out(vty, "Type Add Update Del \n");
2680 vty_out(vty, "================================================== \n");
2681 vty_out(vty, "IPv4 %-12d%-12d%-12d\n", client->v4_route_add_cnt,
2682 client->v4_route_upd8_cnt, client->v4_route_del_cnt);
2683 vty_out(vty, "IPv6 %-12d%-12d%-12d\n", client->v6_route_add_cnt,
2684 client->v6_route_upd8_cnt, client->v6_route_del_cnt);
2685 vty_out(vty, "Redist:v4 %-12d%-12d%-12d\n", client->redist_v4_add_cnt,
2686 0, client->redist_v4_del_cnt);
2687 vty_out(vty, "Redist:v6 %-12d%-12d%-12d\n", client->redist_v6_add_cnt,
2688 0, client->redist_v6_del_cnt);
2689 vty_out(vty, "Connected %-12d%-12d%-12d\n", client->ifadd_cnt, 0,
2690 client->ifdel_cnt);
2691 vty_out(vty, "BFD peer %-12d%-12d%-12d\n", client->bfd_peer_add_cnt,
2692 client->bfd_peer_upd8_cnt, client->bfd_peer_del_cnt);
2693 vty_out(vty, "Interface Up Notifications: %d\n", client->ifup_cnt);
2694 vty_out(vty, "Interface Down Notifications: %d\n", client->ifdown_cnt);
2695 vty_out(vty, "VNI add notifications: %d\n", client->vniadd_cnt);
2696 vty_out(vty, "VNI delete notifications: %d\n", client->vnidel_cnt);
2697 vty_out(vty, "MAC-IP add notifications: %d\n", client->macipadd_cnt);
2698 vty_out(vty, "MAC-IP delete notifications: %d\n", client->macipdel_cnt);
2699
2700 vty_out(vty, "\n");
2701 return;
2702 }
2703
2704 static void zebra_show_client_brief(struct vty *vty, struct zserv *client)
2705 {
2706 char cbuf[ZEBRA_TIME_BUF], rbuf[ZEBRA_TIME_BUF];
2707 char wbuf[ZEBRA_TIME_BUF];
2708
2709 vty_out(vty, "%-8s%12s %12s%12s%8d/%-8d%8d/%-8d\n",
2710 zebra_route_string(client->proto),
2711 zserv_time_buf(&client->connect_time, cbuf, ZEBRA_TIME_BUF),
2712 zserv_time_buf(&client->last_read_time, rbuf, ZEBRA_TIME_BUF),
2713 zserv_time_buf(&client->last_write_time, wbuf, ZEBRA_TIME_BUF),
2714 client->v4_route_add_cnt + client->v4_route_upd8_cnt,
2715 client->v4_route_del_cnt,
2716 client->v6_route_add_cnt + client->v6_route_upd8_cnt,
2717 client->v6_route_del_cnt);
2718 }
2719
2720 struct zserv *zebra_find_client(u_char proto)
2721 {
2722 struct listnode *node, *nnode;
2723 struct zserv *client;
2724
2725 for (ALL_LIST_ELEMENTS(zebrad.client_list, node, nnode, client)) {
2726 if (client->proto == proto)
2727 return client;
2728 }
2729
2730 return NULL;
2731 }
2732
2733 #ifdef HAVE_NETLINK
2734 /* Display default rtm_table for all clients. */
2735 DEFUN (show_table,
2736 show_table_cmd,
2737 "show table",
2738 SHOW_STR
2739 "default routing table to use for all clients\n")
2740 {
2741 vty_out(vty, "table %d\n", zebrad.rtm_table_default);
2742 return CMD_SUCCESS;
2743 }
2744
2745 DEFUN (config_table,
2746 config_table_cmd,
2747 "table TABLENO",
2748 "Configure target kernel routing table\n"
2749 "TABLE integer\n")
2750 {
2751 zebrad.rtm_table_default = strtol(argv[1]->arg, (char **)0, 10);
2752 return CMD_SUCCESS;
2753 }
2754
2755 DEFUN (no_config_table,
2756 no_config_table_cmd,
2757 "no table [TABLENO]",
2758 NO_STR
2759 "Configure target kernel routing table\n"
2760 "TABLE integer\n")
2761 {
2762 zebrad.rtm_table_default = 0;
2763 return CMD_SUCCESS;
2764 }
2765 #endif
2766
2767 DEFUN (ip_forwarding,
2768 ip_forwarding_cmd,
2769 "ip forwarding",
2770 IP_STR
2771 "Turn on IP forwarding")
2772 {
2773 int ret;
2774
2775 ret = ipforward();
2776 if (ret == 0)
2777 ret = ipforward_on();
2778
2779 if (ret == 0) {
2780 vty_out(vty, "Can't turn on IP forwarding\n");
2781 return CMD_WARNING_CONFIG_FAILED;
2782 }
2783
2784 return CMD_SUCCESS;
2785 }
2786
2787 DEFUN (no_ip_forwarding,
2788 no_ip_forwarding_cmd,
2789 "no ip forwarding",
2790 NO_STR
2791 IP_STR
2792 "Turn off IP forwarding")
2793 {
2794 int ret;
2795
2796 ret = ipforward();
2797 if (ret != 0)
2798 ret = ipforward_off();
2799
2800 if (ret != 0) {
2801 vty_out(vty, "Can't turn off IP forwarding\n");
2802 return CMD_WARNING_CONFIG_FAILED;
2803 }
2804
2805 return CMD_SUCCESS;
2806 }
2807
2808 DEFUN (show_zebra,
2809 show_zebra_cmd,
2810 "show zebra",
2811 SHOW_STR
2812 "Zebra information\n")
2813 {
2814 struct vrf *vrf;
2815
2816 vty_out(vty,
2817 " Route Route Neighbor LSP LSP\n");
2818 vty_out(vty,
2819 "VRF Installs Removals Updates Installs Removals\n");
2820 RB_FOREACH(vrf, vrf_name_head, &vrfs_by_name)
2821 {
2822 struct zebra_vrf *zvrf = vrf->info;
2823 vty_out(vty,
2824 "%-25s %10" PRIu64 " %10" PRIu64 " %10" PRIu64
2825 " %10" PRIu64 " %10" PRIu64 "\n",
2826 vrf->name, zvrf->installs, zvrf->removals,
2827 zvrf->neigh_updates, zvrf->lsp_installs,
2828 zvrf->lsp_removals);
2829 }
2830
2831 return CMD_SUCCESS;
2832 }
2833
2834 /* This command is for debugging purpose. */
2835 DEFUN (show_zebra_client,
2836 show_zebra_client_cmd,
2837 "show zebra client",
2838 SHOW_STR
2839 "Zebra information\n"
2840 "Client information\n")
2841 {
2842 struct listnode *node;
2843 struct zserv *client;
2844
2845 for (ALL_LIST_ELEMENTS_RO(zebrad.client_list, node, client))
2846 zebra_show_client_detail(vty, client);
2847
2848 return CMD_SUCCESS;
2849 }
2850
2851 /* This command is for debugging purpose. */
2852 DEFUN (show_zebra_client_summary,
2853 show_zebra_client_summary_cmd,
2854 "show zebra client summary",
2855 SHOW_STR
2856 "Zebra information brief\n"
2857 "Client information brief\n"
2858 "Brief Summary\n")
2859 {
2860 struct listnode *node;
2861 struct zserv *client;
2862
2863 vty_out(vty,
2864 "Name Connect Time Last Read Last Write IPv4 Routes IPv6 Routes \n");
2865 vty_out(vty,
2866 "--------------------------------------------------------------------------------\n");
2867
2868 for (ALL_LIST_ELEMENTS_RO(zebrad.client_list, node, client))
2869 zebra_show_client_brief(vty, client);
2870
2871 vty_out(vty, "Routes column shows (added+updated)/deleted\n");
2872 return CMD_SUCCESS;
2873 }
2874
2875 /* Table configuration write function. */
2876 static int config_write_table(struct vty *vty)
2877 {
2878 if (zebrad.rtm_table_default)
2879 vty_out(vty, "table %d\n", zebrad.rtm_table_default);
2880 return 0;
2881 }
2882
2883 /* table node for routing tables. */
2884 static struct cmd_node table_node = {TABLE_NODE,
2885 "", /* This node has no interface. */
2886 1};
2887
2888 /* Only display ip forwarding is enabled or not. */
2889 DEFUN (show_ip_forwarding,
2890 show_ip_forwarding_cmd,
2891 "show ip forwarding",
2892 SHOW_STR
2893 IP_STR
2894 "IP forwarding status\n")
2895 {
2896 int ret;
2897
2898 ret = ipforward();
2899
2900 if (ret == 0)
2901 vty_out(vty, "IP forwarding is off\n");
2902 else
2903 vty_out(vty, "IP forwarding is on\n");
2904 return CMD_SUCCESS;
2905 }
2906
2907 /* Only display ipv6 forwarding is enabled or not. */
2908 DEFUN (show_ipv6_forwarding,
2909 show_ipv6_forwarding_cmd,
2910 "show ipv6 forwarding",
2911 SHOW_STR
2912 "IPv6 information\n"
2913 "Forwarding status\n")
2914 {
2915 int ret;
2916
2917 ret = ipforward_ipv6();
2918
2919 switch (ret) {
2920 case -1:
2921 vty_out(vty, "ipv6 forwarding is unknown\n");
2922 break;
2923 case 0:
2924 vty_out(vty, "ipv6 forwarding is %s\n", "off");
2925 break;
2926 case 1:
2927 vty_out(vty, "ipv6 forwarding is %s\n", "on");
2928 break;
2929 default:
2930 vty_out(vty, "ipv6 forwarding is %s\n", "off");
2931 break;
2932 }
2933 return CMD_SUCCESS;
2934 }
2935
2936 DEFUN (ipv6_forwarding,
2937 ipv6_forwarding_cmd,
2938 "ipv6 forwarding",
2939 IPV6_STR
2940 "Turn on IPv6 forwarding")
2941 {
2942 int ret;
2943
2944 ret = ipforward_ipv6();
2945 if (ret == 0)
2946 ret = ipforward_ipv6_on();
2947
2948 if (ret == 0) {
2949 vty_out(vty, "Can't turn on IPv6 forwarding\n");
2950 return CMD_WARNING_CONFIG_FAILED;
2951 }
2952
2953 return CMD_SUCCESS;
2954 }
2955
2956 DEFUN (no_ipv6_forwarding,
2957 no_ipv6_forwarding_cmd,
2958 "no ipv6 forwarding",
2959 NO_STR
2960 IPV6_STR
2961 "Turn off IPv6 forwarding")
2962 {
2963 int ret;
2964
2965 ret = ipforward_ipv6();
2966 if (ret != 0)
2967 ret = ipforward_ipv6_off();
2968
2969 if (ret != 0) {
2970 vty_out(vty, "Can't turn off IPv6 forwarding\n");
2971 return CMD_WARNING_CONFIG_FAILED;
2972 }
2973
2974 return CMD_SUCCESS;
2975 }
2976
2977 /* IPForwarding configuration write function. */
2978 static int config_write_forwarding(struct vty *vty)
2979 {
2980 /* FIXME: Find better place for that. */
2981 router_id_write(vty);
2982
2983 if (!ipforward())
2984 vty_out(vty, "no ip forwarding\n");
2985 if (!ipforward_ipv6())
2986 vty_out(vty, "no ipv6 forwarding\n");
2987 vty_out(vty, "!\n");
2988 return 0;
2989 }
2990
2991 /* table node for routing tables. */
2992 static struct cmd_node forwarding_node = {FORWARDING_NODE,
2993 "", /* This node has no interface. */
2994 1};
2995
2996 /* Initialisation of zebra and installation of commands. */
2997 void zebra_init(void)
2998 {
2999 /* Client list init. */
3000 zebrad.client_list = list_new();
3001
3002 /* Install configuration write function. */
3003 install_node(&table_node, config_write_table);
3004 install_node(&forwarding_node, config_write_forwarding);
3005
3006 install_element(VIEW_NODE, &show_ip_forwarding_cmd);
3007 install_element(CONFIG_NODE, &ip_forwarding_cmd);
3008 install_element(CONFIG_NODE, &no_ip_forwarding_cmd);
3009 install_element(ENABLE_NODE, &show_zebra_cmd);
3010 install_element(ENABLE_NODE, &show_zebra_client_cmd);
3011 install_element(ENABLE_NODE, &show_zebra_client_summary_cmd);
3012
3013 #ifdef HAVE_NETLINK
3014 install_element(VIEW_NODE, &show_table_cmd);
3015 install_element(CONFIG_NODE, &config_table_cmd);
3016 install_element(CONFIG_NODE, &no_config_table_cmd);
3017 #endif /* HAVE_NETLINK */
3018
3019 install_element(VIEW_NODE, &show_ipv6_forwarding_cmd);
3020 install_element(CONFIG_NODE, &ipv6_forwarding_cmd);
3021 install_element(CONFIG_NODE, &no_ipv6_forwarding_cmd);
3022
3023 /* Route-map */
3024 zebra_route_map_init();
3025 }
3026
3027 /* Make zebra server socket, wiping any existing one (see bug #403). */
3028 void zebra_zserv_socket_init(char *path)
3029 {
3030 #ifdef HAVE_TCP_ZEBRA
3031 zebra_serv();
3032 #else
3033 zebra_serv_un(path ? path : ZEBRA_SERV_PATH);
3034 #endif /* HAVE_TCP_ZEBRA */
3035 }