]> git.proxmox.com Git - mirror_zfs-debian.git/blob - zfs/lib/libzpool/spa_misc.c
36046e6df1c04e640d887e7b45acb0552966708c
[mirror_zfs-debian.git] / zfs / lib / libzpool / spa_misc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #include <sys/zfs_context.h>
27 #include <sys/spa_impl.h>
28 #include <sys/zio.h>
29 #include <sys/zio_checksum.h>
30 #include <sys/zio_compress.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/zap.h>
34 #include <sys/zil.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/txg.h>
39 #include <sys/avl.h>
40 #include <sys/unique.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/sunddi.h>
47 #include <sys/arc.h>
48 #include "zfs_prop.h"
49
50 /*
51 * SPA locking
52 *
53 * There are four basic locks for managing spa_t structures:
54 *
55 * spa_namespace_lock (global mutex)
56 *
57 * This lock must be acquired to do any of the following:
58 *
59 * - Lookup a spa_t by name
60 * - Add or remove a spa_t from the namespace
61 * - Increase spa_refcount from non-zero
62 * - Check if spa_refcount is zero
63 * - Rename a spa_t
64 * - add/remove/attach/detach devices
65 * - Held for the duration of create/destroy/import/export
66 *
67 * It does not need to handle recursion. A create or destroy may
68 * reference objects (files or zvols) in other pools, but by
69 * definition they must have an existing reference, and will never need
70 * to lookup a spa_t by name.
71 *
72 * spa_refcount (per-spa refcount_t protected by mutex)
73 *
74 * This reference count keep track of any active users of the spa_t. The
75 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
76 * the refcount is never really 'zero' - opening a pool implicitly keeps
77 * some references in the DMU. Internally we check against spa_minref, but
78 * present the image of a zero/non-zero value to consumers.
79 *
80 * spa_config_lock[] (per-spa array of rwlocks)
81 *
82 * This protects the spa_t from config changes, and must be held in
83 * the following circumstances:
84 *
85 * - RW_READER to perform I/O to the spa
86 * - RW_WRITER to change the vdev config
87 *
88 * The locking order is fairly straightforward:
89 *
90 * spa_namespace_lock -> spa_refcount
91 *
92 * The namespace lock must be acquired to increase the refcount from 0
93 * or to check if it is zero.
94 *
95 * spa_refcount -> spa_config_lock[]
96 *
97 * There must be at least one valid reference on the spa_t to acquire
98 * the config lock.
99 *
100 * spa_namespace_lock -> spa_config_lock[]
101 *
102 * The namespace lock must always be taken before the config lock.
103 *
104 *
105 * The spa_namespace_lock can be acquired directly and is globally visible.
106 *
107 * The namespace is manipulated using the following functions, all of which
108 * require the spa_namespace_lock to be held.
109 *
110 * spa_lookup() Lookup a spa_t by name.
111 *
112 * spa_add() Create a new spa_t in the namespace.
113 *
114 * spa_remove() Remove a spa_t from the namespace. This also
115 * frees up any memory associated with the spa_t.
116 *
117 * spa_next() Returns the next spa_t in the system, or the
118 * first if NULL is passed.
119 *
120 * spa_evict_all() Shutdown and remove all spa_t structures in
121 * the system.
122 *
123 * spa_guid_exists() Determine whether a pool/device guid exists.
124 *
125 * The spa_refcount is manipulated using the following functions:
126 *
127 * spa_open_ref() Adds a reference to the given spa_t. Must be
128 * called with spa_namespace_lock held if the
129 * refcount is currently zero.
130 *
131 * spa_close() Remove a reference from the spa_t. This will
132 * not free the spa_t or remove it from the
133 * namespace. No locking is required.
134 *
135 * spa_refcount_zero() Returns true if the refcount is currently
136 * zero. Must be called with spa_namespace_lock
137 * held.
138 *
139 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
140 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
141 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
142 *
143 * To read the configuration, it suffices to hold one of these locks as reader.
144 * To modify the configuration, you must hold all locks as writer. To modify
145 * vdev state without altering the vdev tree's topology (e.g. online/offline),
146 * you must hold SCL_STATE and SCL_ZIO as writer.
147 *
148 * We use these distinct config locks to avoid recursive lock entry.
149 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
150 * block allocations (SCL_ALLOC), which may require reading space maps
151 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
152 *
153 * The spa config locks cannot be normal rwlocks because we need the
154 * ability to hand off ownership. For example, SCL_ZIO is acquired
155 * by the issuing thread and later released by an interrupt thread.
156 * They do, however, obey the usual write-wanted semantics to prevent
157 * writer (i.e. system administrator) starvation.
158 *
159 * The lock acquisition rules are as follows:
160 *
161 * SCL_CONFIG
162 * Protects changes to the vdev tree topology, such as vdev
163 * add/remove/attach/detach. Protects the dirty config list
164 * (spa_config_dirty_list) and the set of spares and l2arc devices.
165 *
166 * SCL_STATE
167 * Protects changes to pool state and vdev state, such as vdev
168 * online/offline/fault/degrade/clear. Protects the dirty state list
169 * (spa_state_dirty_list) and global pool state (spa_state).
170 *
171 * SCL_ALLOC
172 * Protects changes to metaslab groups and classes.
173 * Held as reader by metaslab_alloc() and metaslab_claim().
174 *
175 * SCL_ZIO
176 * Held by bp-level zios (those which have no io_vd upon entry)
177 * to prevent changes to the vdev tree. The bp-level zio implicitly
178 * protects all of its vdev child zios, which do not hold SCL_ZIO.
179 *
180 * SCL_FREE
181 * Protects changes to metaslab groups and classes.
182 * Held as reader by metaslab_free(). SCL_FREE is distinct from
183 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
184 * blocks in zio_done() while another i/o that holds either
185 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
186 *
187 * SCL_VDEV
188 * Held as reader to prevent changes to the vdev tree during trivial
189 * inquiries such as bp_get_dasize(). SCL_VDEV is distinct from the
190 * other locks, and lower than all of them, to ensure that it's safe
191 * to acquire regardless of caller context.
192 *
193 * In addition, the following rules apply:
194 *
195 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
196 * The lock ordering is SCL_CONFIG > spa_props_lock.
197 *
198 * (b) I/O operations on leaf vdevs. For any zio operation that takes
199 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
200 * or zio_write_phys() -- the caller must ensure that the config cannot
201 * cannot change in the interim, and that the vdev cannot be reopened.
202 * SCL_STATE as reader suffices for both.
203 *
204 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
205 *
206 * spa_vdev_enter() Acquire the namespace lock and the config lock
207 * for writing.
208 *
209 * spa_vdev_exit() Release the config lock, wait for all I/O
210 * to complete, sync the updated configs to the
211 * cache, and release the namespace lock.
212 *
213 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
214 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
215 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
216 *
217 * spa_rename() is also implemented within this file since is requires
218 * manipulation of the namespace.
219 */
220
221 static avl_tree_t spa_namespace_avl;
222 kmutex_t spa_namespace_lock;
223 static kcondvar_t spa_namespace_cv;
224 static int spa_active_count;
225 int spa_max_replication_override = SPA_DVAS_PER_BP;
226
227 static kmutex_t spa_spare_lock;
228 static avl_tree_t spa_spare_avl;
229 static kmutex_t spa_l2cache_lock;
230 static avl_tree_t spa_l2cache_avl;
231
232 kmem_cache_t *spa_buffer_pool;
233 int spa_mode;
234
235 #ifdef ZFS_DEBUG
236 /* Everything except dprintf is on by default in debug builds */
237 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
238 #else
239 int zfs_flags = 0;
240 #endif
241
242 /*
243 * zfs_recover can be set to nonzero to attempt to recover from
244 * otherwise-fatal errors, typically caused by on-disk corruption. When
245 * set, calls to zfs_panic_recover() will turn into warning messages.
246 */
247 int zfs_recover = 0;
248
249
250 /*
251 * ==========================================================================
252 * SPA config locking
253 * ==========================================================================
254 */
255 static void
256 spa_config_lock_init(spa_t *spa)
257 {
258 for (int i = 0; i < SCL_LOCKS; i++) {
259 spa_config_lock_t *scl = &spa->spa_config_lock[i];
260 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
261 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
262 refcount_create(&scl->scl_count);
263 scl->scl_writer = NULL;
264 scl->scl_write_wanted = 0;
265 }
266 }
267
268 static void
269 spa_config_lock_destroy(spa_t *spa)
270 {
271 for (int i = 0; i < SCL_LOCKS; i++) {
272 spa_config_lock_t *scl = &spa->spa_config_lock[i];
273 mutex_destroy(&scl->scl_lock);
274 cv_destroy(&scl->scl_cv);
275 refcount_destroy(&scl->scl_count);
276 ASSERT(scl->scl_writer == NULL);
277 ASSERT(scl->scl_write_wanted == 0);
278 }
279 }
280
281 int
282 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
283 {
284 for (int i = 0; i < SCL_LOCKS; i++) {
285 spa_config_lock_t *scl = &spa->spa_config_lock[i];
286 if (!(locks & (1 << i)))
287 continue;
288 mutex_enter(&scl->scl_lock);
289 if (rw == RW_READER) {
290 if (scl->scl_writer || scl->scl_write_wanted) {
291 mutex_exit(&scl->scl_lock);
292 spa_config_exit(spa, locks ^ (1 << i), tag);
293 return (0);
294 }
295 } else {
296 ASSERT(scl->scl_writer != curthread);
297 if (!refcount_is_zero(&scl->scl_count)) {
298 mutex_exit(&scl->scl_lock);
299 spa_config_exit(spa, locks ^ (1 << i), tag);
300 return (0);
301 }
302 scl->scl_writer = curthread;
303 }
304 (void) refcount_add(&scl->scl_count, tag);
305 mutex_exit(&scl->scl_lock);
306 }
307 return (1);
308 }
309
310 void
311 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
312 {
313 for (int i = 0; i < SCL_LOCKS; i++) {
314 spa_config_lock_t *scl = &spa->spa_config_lock[i];
315 if (!(locks & (1 << i)))
316 continue;
317 mutex_enter(&scl->scl_lock);
318 if (rw == RW_READER) {
319 while (scl->scl_writer || scl->scl_write_wanted) {
320 cv_wait(&scl->scl_cv, &scl->scl_lock);
321 }
322 } else {
323 ASSERT(scl->scl_writer != curthread);
324 while (!refcount_is_zero(&scl->scl_count)) {
325 scl->scl_write_wanted++;
326 cv_wait(&scl->scl_cv, &scl->scl_lock);
327 scl->scl_write_wanted--;
328 }
329 scl->scl_writer = curthread;
330 }
331 (void) refcount_add(&scl->scl_count, tag);
332 mutex_exit(&scl->scl_lock);
333 }
334 }
335
336 void
337 spa_config_exit(spa_t *spa, int locks, void *tag)
338 {
339 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
340 spa_config_lock_t *scl = &spa->spa_config_lock[i];
341 if (!(locks & (1 << i)))
342 continue;
343 mutex_enter(&scl->scl_lock);
344 ASSERT(!refcount_is_zero(&scl->scl_count));
345 if (refcount_remove(&scl->scl_count, tag) == 0) {
346 ASSERT(scl->scl_writer == NULL ||
347 scl->scl_writer == curthread);
348 scl->scl_writer = NULL; /* OK in either case */
349 cv_broadcast(&scl->scl_cv);
350 }
351 mutex_exit(&scl->scl_lock);
352 }
353 }
354
355 int
356 spa_config_held(spa_t *spa, int locks, krw_t rw)
357 {
358 int locks_held = 0;
359
360 for (int i = 0; i < SCL_LOCKS; i++) {
361 spa_config_lock_t *scl = &spa->spa_config_lock[i];
362 if (!(locks & (1 << i)))
363 continue;
364 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
365 (rw == RW_WRITER && scl->scl_writer == curthread))
366 locks_held |= 1 << i;
367 }
368
369 return (locks_held);
370 }
371
372 /*
373 * ==========================================================================
374 * SPA namespace functions
375 * ==========================================================================
376 */
377
378 /*
379 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
380 * Returns NULL if no matching spa_t is found.
381 */
382 spa_t *
383 spa_lookup(const char *name)
384 {
385 static spa_t search; /* spa_t is large; don't allocate on stack */
386 spa_t *spa;
387 avl_index_t where;
388 char c;
389 char *cp;
390
391 ASSERT(MUTEX_HELD(&spa_namespace_lock));
392
393 /*
394 * If it's a full dataset name, figure out the pool name and
395 * just use that.
396 */
397 cp = strpbrk(name, "/@");
398 if (cp) {
399 c = *cp;
400 *cp = '\0';
401 }
402
403 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
404 spa = avl_find(&spa_namespace_avl, &search, &where);
405
406 if (cp)
407 *cp = c;
408
409 return (spa);
410 }
411
412 /*
413 * Create an uninitialized spa_t with the given name. Requires
414 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
415 * exist by calling spa_lookup() first.
416 */
417 spa_t *
418 spa_add(const char *name, const char *altroot)
419 {
420 spa_t *spa;
421 spa_config_dirent_t *dp;
422
423 ASSERT(MUTEX_HELD(&spa_namespace_lock));
424
425 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
426
427 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
428 mutex_init(&spa->spa_async_root_lock, NULL, MUTEX_DEFAULT, NULL);
429 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
430 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
431 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
432 mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
433 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
434 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
435
436 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
437 cv_init(&spa->spa_async_root_cv, NULL, CV_DEFAULT, NULL);
438 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
439 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
440
441 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
442 spa->spa_state = POOL_STATE_UNINITIALIZED;
443 spa->spa_freeze_txg = UINT64_MAX;
444 spa->spa_final_txg = UINT64_MAX;
445
446 refcount_create(&spa->spa_refcount);
447 spa_config_lock_init(spa);
448
449 avl_add(&spa_namespace_avl, spa);
450
451 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
452
453 /*
454 * Set the alternate root, if there is one.
455 */
456 if (altroot) {
457 spa->spa_root = spa_strdup(altroot);
458 spa_active_count++;
459 }
460
461 /*
462 * Every pool starts with the default cachefile
463 */
464 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
465 offsetof(spa_config_dirent_t, scd_link));
466
467 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
468 dp->scd_path = spa_strdup(spa_config_path);
469 list_insert_head(&spa->spa_config_list, dp);
470
471 return (spa);
472 }
473
474 /*
475 * Removes a spa_t from the namespace, freeing up any memory used. Requires
476 * spa_namespace_lock. This is called only after the spa_t has been closed and
477 * deactivated.
478 */
479 void
480 spa_remove(spa_t *spa)
481 {
482 spa_config_dirent_t *dp;
483
484 ASSERT(MUTEX_HELD(&spa_namespace_lock));
485 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
486
487 avl_remove(&spa_namespace_avl, spa);
488 cv_broadcast(&spa_namespace_cv);
489
490 if (spa->spa_root) {
491 spa_strfree(spa->spa_root);
492 spa_active_count--;
493 }
494
495 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
496 list_remove(&spa->spa_config_list, dp);
497 if (dp->scd_path != NULL)
498 spa_strfree(dp->scd_path);
499 kmem_free(dp, sizeof (spa_config_dirent_t));
500 }
501
502 list_destroy(&spa->spa_config_list);
503
504 spa_config_set(spa, NULL);
505
506 refcount_destroy(&spa->spa_refcount);
507
508 spa_config_lock_destroy(spa);
509
510 cv_destroy(&spa->spa_async_cv);
511 cv_destroy(&spa->spa_async_root_cv);
512 cv_destroy(&spa->spa_scrub_io_cv);
513 cv_destroy(&spa->spa_suspend_cv);
514
515 mutex_destroy(&spa->spa_async_lock);
516 mutex_destroy(&spa->spa_async_root_lock);
517 mutex_destroy(&spa->spa_scrub_lock);
518 mutex_destroy(&spa->spa_errlog_lock);
519 mutex_destroy(&spa->spa_errlist_lock);
520 mutex_destroy(&spa->spa_sync_bplist.bpl_lock);
521 mutex_destroy(&spa->spa_history_lock);
522 mutex_destroy(&spa->spa_props_lock);
523 mutex_destroy(&spa->spa_suspend_lock);
524
525 kmem_free(spa, sizeof (spa_t));
526 }
527
528 /*
529 * Given a pool, return the next pool in the namespace, or NULL if there is
530 * none. If 'prev' is NULL, return the first pool.
531 */
532 spa_t *
533 spa_next(spa_t *prev)
534 {
535 ASSERT(MUTEX_HELD(&spa_namespace_lock));
536
537 if (prev)
538 return (AVL_NEXT(&spa_namespace_avl, prev));
539 else
540 return (avl_first(&spa_namespace_avl));
541 }
542
543 /*
544 * ==========================================================================
545 * SPA refcount functions
546 * ==========================================================================
547 */
548
549 /*
550 * Add a reference to the given spa_t. Must have at least one reference, or
551 * have the namespace lock held.
552 */
553 void
554 spa_open_ref(spa_t *spa, void *tag)
555 {
556 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
557 MUTEX_HELD(&spa_namespace_lock));
558 (void) refcount_add(&spa->spa_refcount, tag);
559 }
560
561 /*
562 * Remove a reference to the given spa_t. Must have at least one reference, or
563 * have the namespace lock held.
564 */
565 void
566 spa_close(spa_t *spa, void *tag)
567 {
568 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
569 MUTEX_HELD(&spa_namespace_lock));
570 (void) refcount_remove(&spa->spa_refcount, tag);
571 }
572
573 /*
574 * Check to see if the spa refcount is zero. Must be called with
575 * spa_namespace_lock held. We really compare against spa_minref, which is the
576 * number of references acquired when opening a pool
577 */
578 boolean_t
579 spa_refcount_zero(spa_t *spa)
580 {
581 ASSERT(MUTEX_HELD(&spa_namespace_lock));
582
583 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
584 }
585
586 /*
587 * ==========================================================================
588 * SPA spare and l2cache tracking
589 * ==========================================================================
590 */
591
592 /*
593 * Hot spares and cache devices are tracked using the same code below,
594 * for 'auxiliary' devices.
595 */
596
597 typedef struct spa_aux {
598 uint64_t aux_guid;
599 uint64_t aux_pool;
600 avl_node_t aux_avl;
601 int aux_count;
602 } spa_aux_t;
603
604 static int
605 spa_aux_compare(const void *a, const void *b)
606 {
607 const spa_aux_t *sa = a;
608 const spa_aux_t *sb = b;
609
610 if (sa->aux_guid < sb->aux_guid)
611 return (-1);
612 else if (sa->aux_guid > sb->aux_guid)
613 return (1);
614 else
615 return (0);
616 }
617
618 void
619 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
620 {
621 avl_index_t where;
622 spa_aux_t search;
623 spa_aux_t *aux;
624
625 search.aux_guid = vd->vdev_guid;
626 if ((aux = avl_find(avl, &search, &where)) != NULL) {
627 aux->aux_count++;
628 } else {
629 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
630 aux->aux_guid = vd->vdev_guid;
631 aux->aux_count = 1;
632 avl_insert(avl, aux, where);
633 }
634 }
635
636 void
637 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
638 {
639 spa_aux_t search;
640 spa_aux_t *aux;
641 avl_index_t where;
642
643 search.aux_guid = vd->vdev_guid;
644 aux = avl_find(avl, &search, &where);
645
646 ASSERT(aux != NULL);
647
648 if (--aux->aux_count == 0) {
649 avl_remove(avl, aux);
650 kmem_free(aux, sizeof (spa_aux_t));
651 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
652 aux->aux_pool = 0ULL;
653 }
654 }
655
656 boolean_t
657 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
658 {
659 spa_aux_t search, *found;
660
661 search.aux_guid = guid;
662 found = avl_find(avl, &search, NULL);
663
664 if (pool) {
665 if (found)
666 *pool = found->aux_pool;
667 else
668 *pool = 0ULL;
669 }
670
671 if (refcnt) {
672 if (found)
673 *refcnt = found->aux_count;
674 else
675 *refcnt = 0;
676 }
677
678 return (found != NULL);
679 }
680
681 void
682 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
683 {
684 spa_aux_t search, *found;
685 avl_index_t where;
686
687 search.aux_guid = vd->vdev_guid;
688 found = avl_find(avl, &search, &where);
689 ASSERT(found != NULL);
690 ASSERT(found->aux_pool == 0ULL);
691
692 found->aux_pool = spa_guid(vd->vdev_spa);
693 }
694
695 /*
696 * Spares are tracked globally due to the following constraints:
697 *
698 * - A spare may be part of multiple pools.
699 * - A spare may be added to a pool even if it's actively in use within
700 * another pool.
701 * - A spare in use in any pool can only be the source of a replacement if
702 * the target is a spare in the same pool.
703 *
704 * We keep track of all spares on the system through the use of a reference
705 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
706 * spare, then we bump the reference count in the AVL tree. In addition, we set
707 * the 'vdev_isspare' member to indicate that the device is a spare (active or
708 * inactive). When a spare is made active (used to replace a device in the
709 * pool), we also keep track of which pool its been made a part of.
710 *
711 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
712 * called under the spa_namespace lock as part of vdev reconfiguration. The
713 * separate spare lock exists for the status query path, which does not need to
714 * be completely consistent with respect to other vdev configuration changes.
715 */
716
717 static int
718 spa_spare_compare(const void *a, const void *b)
719 {
720 return (spa_aux_compare(a, b));
721 }
722
723 void
724 spa_spare_add(vdev_t *vd)
725 {
726 mutex_enter(&spa_spare_lock);
727 ASSERT(!vd->vdev_isspare);
728 spa_aux_add(vd, &spa_spare_avl);
729 vd->vdev_isspare = B_TRUE;
730 mutex_exit(&spa_spare_lock);
731 }
732
733 void
734 spa_spare_remove(vdev_t *vd)
735 {
736 mutex_enter(&spa_spare_lock);
737 ASSERT(vd->vdev_isspare);
738 spa_aux_remove(vd, &spa_spare_avl);
739 vd->vdev_isspare = B_FALSE;
740 mutex_exit(&spa_spare_lock);
741 }
742
743 boolean_t
744 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
745 {
746 boolean_t found;
747
748 mutex_enter(&spa_spare_lock);
749 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
750 mutex_exit(&spa_spare_lock);
751
752 return (found);
753 }
754
755 void
756 spa_spare_activate(vdev_t *vd)
757 {
758 mutex_enter(&spa_spare_lock);
759 ASSERT(vd->vdev_isspare);
760 spa_aux_activate(vd, &spa_spare_avl);
761 mutex_exit(&spa_spare_lock);
762 }
763
764 /*
765 * Level 2 ARC devices are tracked globally for the same reasons as spares.
766 * Cache devices currently only support one pool per cache device, and so
767 * for these devices the aux reference count is currently unused beyond 1.
768 */
769
770 static int
771 spa_l2cache_compare(const void *a, const void *b)
772 {
773 return (spa_aux_compare(a, b));
774 }
775
776 void
777 spa_l2cache_add(vdev_t *vd)
778 {
779 mutex_enter(&spa_l2cache_lock);
780 ASSERT(!vd->vdev_isl2cache);
781 spa_aux_add(vd, &spa_l2cache_avl);
782 vd->vdev_isl2cache = B_TRUE;
783 mutex_exit(&spa_l2cache_lock);
784 }
785
786 void
787 spa_l2cache_remove(vdev_t *vd)
788 {
789 mutex_enter(&spa_l2cache_lock);
790 ASSERT(vd->vdev_isl2cache);
791 spa_aux_remove(vd, &spa_l2cache_avl);
792 vd->vdev_isl2cache = B_FALSE;
793 mutex_exit(&spa_l2cache_lock);
794 }
795
796 boolean_t
797 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
798 {
799 boolean_t found;
800
801 mutex_enter(&spa_l2cache_lock);
802 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
803 mutex_exit(&spa_l2cache_lock);
804
805 return (found);
806 }
807
808 void
809 spa_l2cache_activate(vdev_t *vd)
810 {
811 mutex_enter(&spa_l2cache_lock);
812 ASSERT(vd->vdev_isl2cache);
813 spa_aux_activate(vd, &spa_l2cache_avl);
814 mutex_exit(&spa_l2cache_lock);
815 }
816
817 void
818 spa_l2cache_space_update(vdev_t *vd, int64_t space, int64_t alloc)
819 {
820 vdev_space_update(vd, space, alloc, B_FALSE);
821 }
822
823 /*
824 * ==========================================================================
825 * SPA vdev locking
826 * ==========================================================================
827 */
828
829 /*
830 * Lock the given spa_t for the purpose of adding or removing a vdev.
831 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
832 * It returns the next transaction group for the spa_t.
833 */
834 uint64_t
835 spa_vdev_enter(spa_t *spa)
836 {
837 mutex_enter(&spa_namespace_lock);
838
839 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
840
841 return (spa_last_synced_txg(spa) + 1);
842 }
843
844 /*
845 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
846 * locking of spa_vdev_enter(), we also want make sure the transactions have
847 * synced to disk, and then update the global configuration cache with the new
848 * information.
849 */
850 int
851 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
852 {
853 int config_changed = B_FALSE;
854
855 ASSERT(txg > spa_last_synced_txg(spa));
856
857 spa->spa_pending_vdev = NULL;
858
859 /*
860 * Reassess the DTLs.
861 */
862 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
863
864 /*
865 * If the config changed, notify the scrub thread that it must restart.
866 */
867 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
868 dsl_pool_scrub_restart(spa->spa_dsl_pool);
869 config_changed = B_TRUE;
870 }
871
872 spa_config_exit(spa, SCL_ALL, spa);
873
874 /*
875 * Note: this txg_wait_synced() is important because it ensures
876 * that there won't be more than one config change per txg.
877 * This allows us to use the txg as the generation number.
878 */
879 if (error == 0)
880 txg_wait_synced(spa->spa_dsl_pool, txg);
881
882 if (vd != NULL) {
883 ASSERT(!vd->vdev_detached || vd->vdev_dtl.smo_object == 0);
884 vdev_free(vd);
885 }
886
887 /*
888 * If the config changed, update the config cache.
889 */
890 if (config_changed)
891 spa_config_sync(spa, B_FALSE, B_TRUE);
892
893 mutex_exit(&spa_namespace_lock);
894
895 return (error);
896 }
897
898 /*
899 * Lock the given spa_t for the purpose of changing vdev state.
900 */
901 void
902 spa_vdev_state_enter(spa_t *spa)
903 {
904 spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
905 }
906
907 int
908 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
909 {
910 if (vd != NULL)
911 vdev_state_dirty(vd->vdev_top);
912
913 spa_config_exit(spa, SCL_STATE_ALL, spa);
914
915 return (error);
916 }
917
918 /*
919 * ==========================================================================
920 * Miscellaneous functions
921 * ==========================================================================
922 */
923
924 /*
925 * Rename a spa_t.
926 */
927 int
928 spa_rename(const char *name, const char *newname)
929 {
930 spa_t *spa;
931 int err;
932
933 /*
934 * Lookup the spa_t and grab the config lock for writing. We need to
935 * actually open the pool so that we can sync out the necessary labels.
936 * It's OK to call spa_open() with the namespace lock held because we
937 * allow recursive calls for other reasons.
938 */
939 mutex_enter(&spa_namespace_lock);
940 if ((err = spa_open(name, &spa, FTAG)) != 0) {
941 mutex_exit(&spa_namespace_lock);
942 return (err);
943 }
944
945 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
946
947 avl_remove(&spa_namespace_avl, spa);
948 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
949 avl_add(&spa_namespace_avl, spa);
950
951 /*
952 * Sync all labels to disk with the new names by marking the root vdev
953 * dirty and waiting for it to sync. It will pick up the new pool name
954 * during the sync.
955 */
956 vdev_config_dirty(spa->spa_root_vdev);
957
958 spa_config_exit(spa, SCL_ALL, FTAG);
959
960 txg_wait_synced(spa->spa_dsl_pool, 0);
961
962 /*
963 * Sync the updated config cache.
964 */
965 spa_config_sync(spa, B_FALSE, B_TRUE);
966
967 spa_close(spa, FTAG);
968
969 mutex_exit(&spa_namespace_lock);
970
971 return (0);
972 }
973
974
975 /*
976 * Determine whether a pool with given pool_guid exists. If device_guid is
977 * non-zero, determine whether the pool exists *and* contains a device with the
978 * specified device_guid.
979 */
980 boolean_t
981 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
982 {
983 spa_t *spa;
984 avl_tree_t *t = &spa_namespace_avl;
985
986 ASSERT(MUTEX_HELD(&spa_namespace_lock));
987
988 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
989 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
990 continue;
991 if (spa->spa_root_vdev == NULL)
992 continue;
993 if (spa_guid(spa) == pool_guid) {
994 if (device_guid == 0)
995 break;
996
997 if (vdev_lookup_by_guid(spa->spa_root_vdev,
998 device_guid) != NULL)
999 break;
1000
1001 /*
1002 * Check any devices we may be in the process of adding.
1003 */
1004 if (spa->spa_pending_vdev) {
1005 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1006 device_guid) != NULL)
1007 break;
1008 }
1009 }
1010 }
1011
1012 return (spa != NULL);
1013 }
1014
1015 char *
1016 spa_strdup(const char *s)
1017 {
1018 size_t len;
1019 char *new;
1020
1021 len = strlen(s);
1022 new = kmem_alloc(len + 1, KM_SLEEP);
1023 bcopy(s, new, len);
1024 new[len] = '\0';
1025
1026 return (new);
1027 }
1028
1029 void
1030 spa_strfree(char *s)
1031 {
1032 kmem_free(s, strlen(s) + 1);
1033 }
1034
1035 uint64_t
1036 spa_get_random(uint64_t range)
1037 {
1038 uint64_t r;
1039
1040 ASSERT(range != 0);
1041
1042 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1043
1044 return (r % range);
1045 }
1046
1047 void
1048 sprintf_blkptr(char *buf, int len, const blkptr_t *bp)
1049 {
1050 int d;
1051
1052 if (bp == NULL) {
1053 (void) snprintf(buf, len, "<NULL>");
1054 return;
1055 }
1056
1057 if (BP_IS_HOLE(bp)) {
1058 (void) snprintf(buf, len, "<hole>");
1059 return;
1060 }
1061
1062 (void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ",
1063 (u_longlong_t)BP_GET_LEVEL(bp),
1064 dmu_ot[BP_GET_TYPE(bp)].ot_name,
1065 (u_longlong_t)BP_GET_LSIZE(bp),
1066 (u_longlong_t)BP_GET_PSIZE(bp));
1067
1068 for (d = 0; d < BP_GET_NDVAS(bp); d++) {
1069 const dva_t *dva = &bp->blk_dva[d];
1070 (void) snprintf(buf + strlen(buf), len - strlen(buf),
1071 "DVA[%d]=<%llu:%llx:%llx> ", d,
1072 (u_longlong_t)DVA_GET_VDEV(dva),
1073 (u_longlong_t)DVA_GET_OFFSET(dva),
1074 (u_longlong_t)DVA_GET_ASIZE(dva));
1075 }
1076
1077 (void) snprintf(buf + strlen(buf), len - strlen(buf),
1078 "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx",
1079 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name,
1080 zio_compress_table[BP_GET_COMPRESS(bp)].ci_name,
1081 BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE",
1082 BP_IS_GANG(bp) ? "gang" : "contiguous",
1083 (u_longlong_t)bp->blk_birth,
1084 (u_longlong_t)bp->blk_fill,
1085 (u_longlong_t)bp->blk_cksum.zc_word[0],
1086 (u_longlong_t)bp->blk_cksum.zc_word[1],
1087 (u_longlong_t)bp->blk_cksum.zc_word[2],
1088 (u_longlong_t)bp->blk_cksum.zc_word[3]);
1089 }
1090
1091 void
1092 spa_freeze(spa_t *spa)
1093 {
1094 uint64_t freeze_txg = 0;
1095
1096 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1097 if (spa->spa_freeze_txg == UINT64_MAX) {
1098 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1099 spa->spa_freeze_txg = freeze_txg;
1100 }
1101 spa_config_exit(spa, SCL_ALL, FTAG);
1102 if (freeze_txg != 0)
1103 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1104 }
1105
1106 void
1107 zfs_panic_recover(const char *fmt, ...)
1108 {
1109 va_list adx;
1110
1111 va_start(adx, fmt);
1112 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1113 va_end(adx);
1114 }
1115
1116 /*
1117 * ==========================================================================
1118 * Accessor functions
1119 * ==========================================================================
1120 */
1121
1122 boolean_t
1123 spa_shutting_down(spa_t *spa)
1124 {
1125 return (spa->spa_async_suspended);
1126 }
1127
1128 dsl_pool_t *
1129 spa_get_dsl(spa_t *spa)
1130 {
1131 return (spa->spa_dsl_pool);
1132 }
1133
1134 blkptr_t *
1135 spa_get_rootblkptr(spa_t *spa)
1136 {
1137 return (&spa->spa_ubsync.ub_rootbp);
1138 }
1139
1140 void
1141 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1142 {
1143 spa->spa_uberblock.ub_rootbp = *bp;
1144 }
1145
1146 void
1147 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1148 {
1149 if (spa->spa_root == NULL)
1150 buf[0] = '\0';
1151 else
1152 (void) strncpy(buf, spa->spa_root, buflen);
1153 }
1154
1155 int
1156 spa_sync_pass(spa_t *spa)
1157 {
1158 return (spa->spa_sync_pass);
1159 }
1160
1161 char *
1162 spa_name(spa_t *spa)
1163 {
1164 return (spa->spa_name);
1165 }
1166
1167 uint64_t
1168 spa_guid(spa_t *spa)
1169 {
1170 /*
1171 * If we fail to parse the config during spa_load(), we can go through
1172 * the error path (which posts an ereport) and end up here with no root
1173 * vdev. We stash the original pool guid in 'spa_load_guid' to handle
1174 * this case.
1175 */
1176 if (spa->spa_root_vdev != NULL)
1177 return (spa->spa_root_vdev->vdev_guid);
1178 else
1179 return (spa->spa_load_guid);
1180 }
1181
1182 uint64_t
1183 spa_last_synced_txg(spa_t *spa)
1184 {
1185 return (spa->spa_ubsync.ub_txg);
1186 }
1187
1188 uint64_t
1189 spa_first_txg(spa_t *spa)
1190 {
1191 return (spa->spa_first_txg);
1192 }
1193
1194 pool_state_t
1195 spa_state(spa_t *spa)
1196 {
1197 return (spa->spa_state);
1198 }
1199
1200 uint64_t
1201 spa_freeze_txg(spa_t *spa)
1202 {
1203 return (spa->spa_freeze_txg);
1204 }
1205
1206 /*
1207 * Return how much space is allocated in the pool (ie. sum of all asize)
1208 */
1209 uint64_t
1210 spa_get_alloc(spa_t *spa)
1211 {
1212 return (spa->spa_root_vdev->vdev_stat.vs_alloc);
1213 }
1214
1215 /*
1216 * Return how much (raid-z inflated) space there is in the pool.
1217 */
1218 uint64_t
1219 spa_get_space(spa_t *spa)
1220 {
1221 return (spa->spa_root_vdev->vdev_stat.vs_space);
1222 }
1223
1224 /*
1225 * Return the amount of raid-z-deflated space in the pool.
1226 */
1227 uint64_t
1228 spa_get_dspace(spa_t *spa)
1229 {
1230 if (spa->spa_deflate)
1231 return (spa->spa_root_vdev->vdev_stat.vs_dspace);
1232 else
1233 return (spa->spa_root_vdev->vdev_stat.vs_space);
1234 }
1235
1236 /* ARGSUSED */
1237 uint64_t
1238 spa_get_asize(spa_t *spa, uint64_t lsize)
1239 {
1240 /*
1241 * For now, the worst case is 512-byte RAID-Z blocks, in which
1242 * case the space requirement is exactly 2x; so just assume that.
1243 * Add to this the fact that we can have up to 3 DVAs per bp, and
1244 * we have to multiply by a total of 6x.
1245 */
1246 return (lsize * 6);
1247 }
1248
1249 /*
1250 * Return the failure mode that has been set to this pool. The default
1251 * behavior will be to block all I/Os when a complete failure occurs.
1252 */
1253 uint8_t
1254 spa_get_failmode(spa_t *spa)
1255 {
1256 return (spa->spa_failmode);
1257 }
1258
1259 boolean_t
1260 spa_suspended(spa_t *spa)
1261 {
1262 return (spa->spa_suspended);
1263 }
1264
1265 uint64_t
1266 spa_version(spa_t *spa)
1267 {
1268 return (spa->spa_ubsync.ub_version);
1269 }
1270
1271 int
1272 spa_max_replication(spa_t *spa)
1273 {
1274 /*
1275 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1276 * handle BPs with more than one DVA allocated. Set our max
1277 * replication level accordingly.
1278 */
1279 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1280 return (1);
1281 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1282 }
1283
1284 uint64_t
1285 bp_get_dasize(spa_t *spa, const blkptr_t *bp)
1286 {
1287 int sz = 0, i;
1288
1289 if (!spa->spa_deflate)
1290 return (BP_GET_ASIZE(bp));
1291
1292 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1293 for (i = 0; i < SPA_DVAS_PER_BP; i++) {
1294 vdev_t *vd =
1295 vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i]));
1296 if (vd)
1297 sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >>
1298 SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1299 }
1300 spa_config_exit(spa, SCL_VDEV, FTAG);
1301 return (sz);
1302 }
1303
1304 /*
1305 * ==========================================================================
1306 * Initialization and Termination
1307 * ==========================================================================
1308 */
1309
1310 static int
1311 spa_name_compare(const void *a1, const void *a2)
1312 {
1313 const spa_t *s1 = a1;
1314 const spa_t *s2 = a2;
1315 int s;
1316
1317 s = strcmp(s1->spa_name, s2->spa_name);
1318 if (s > 0)
1319 return (1);
1320 if (s < 0)
1321 return (-1);
1322 return (0);
1323 }
1324
1325 int
1326 spa_busy(void)
1327 {
1328 return (spa_active_count);
1329 }
1330
1331 void
1332 spa_boot_init()
1333 {
1334 spa_config_load();
1335 }
1336
1337 void
1338 spa_init(int mode)
1339 {
1340 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1341 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1342 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1343 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1344
1345 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1346 offsetof(spa_t, spa_avl));
1347
1348 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1349 offsetof(spa_aux_t, aux_avl));
1350
1351 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1352 offsetof(spa_aux_t, aux_avl));
1353
1354 spa_mode = mode;
1355
1356 refcount_init();
1357 unique_init();
1358 zio_init();
1359 dmu_init();
1360 zil_init();
1361 vdev_cache_stat_init();
1362 zfs_prop_init();
1363 zpool_prop_init();
1364 spa_config_load();
1365 l2arc_start();
1366 }
1367
1368 void
1369 spa_fini(void)
1370 {
1371 l2arc_stop();
1372
1373 spa_evict_all();
1374
1375 vdev_cache_stat_fini();
1376 zil_fini();
1377 dmu_fini();
1378 zio_fini();
1379 unique_fini();
1380 refcount_fini();
1381
1382 avl_destroy(&spa_namespace_avl);
1383 avl_destroy(&spa_spare_avl);
1384 avl_destroy(&spa_l2cache_avl);
1385
1386 cv_destroy(&spa_namespace_cv);
1387 mutex_destroy(&spa_namespace_lock);
1388 mutex_destroy(&spa_spare_lock);
1389 mutex_destroy(&spa_l2cache_lock);
1390 }
1391
1392 /*
1393 * Return whether this pool has slogs. No locking needed.
1394 * It's not a problem if the wrong answer is returned as it's only for
1395 * performance and not correctness
1396 */
1397 boolean_t
1398 spa_has_slogs(spa_t *spa)
1399 {
1400 return (spa->spa_log_class->mc_rotor != NULL);
1401 }
1402
1403 /*
1404 * Return whether this pool is the root pool.
1405 */
1406 boolean_t
1407 spa_is_root(spa_t *spa)
1408 {
1409 return (spa->spa_is_root);
1410 }