]> git.proxmox.com Git - mirror_zfs-debian.git/blob - zfs/lib/libzpool/zfs_fm.c
236d69e7e6f07ee231a407ad76562f013af3d4b8
[mirror_zfs-debian.git] / zfs / lib / libzpool / zfs_fm.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #include <sys/spa.h>
27 #include <sys/spa_impl.h>
28 #include <sys/vdev.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/zio.h>
31
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/fm/protocol.h>
34 #include <sys/fm/util.h>
35 #include <sys/sysevent.h>
36
37 /*
38 * This general routine is responsible for generating all the different ZFS
39 * ereports. The payload is dependent on the class, and which arguments are
40 * supplied to the function:
41 *
42 * EREPORT POOL VDEV IO
43 * block X X X
44 * data X X
45 * device X X
46 * pool X
47 *
48 * If we are in a loading state, all errors are chained together by the same
49 * SPA-wide ENA (Error Numeric Association).
50 *
51 * For isolated I/O requests, we get the ENA from the zio_t. The propagation
52 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want
53 * to chain together all ereports associated with a logical piece of data. For
54 * read I/Os, there are basically three 'types' of I/O, which form a roughly
55 * layered diagram:
56 *
57 * +---------------+
58 * | Aggregate I/O | No associated logical data or device
59 * +---------------+
60 * |
61 * V
62 * +---------------+ Reads associated with a piece of logical data.
63 * | Read I/O | This includes reads on behalf of RAID-Z,
64 * +---------------+ mirrors, gang blocks, retries, etc.
65 * |
66 * V
67 * +---------------+ Reads associated with a particular device, but
68 * | Physical I/O | no logical data. Issued as part of vdev caching
69 * +---------------+ and I/O aggregation.
70 *
71 * Note that 'physical I/O' here is not the same terminology as used in the rest
72 * of ZIO. Typically, 'physical I/O' simply means that there is no attached
73 * blockpointer. But I/O with no associated block pointer can still be related
74 * to a logical piece of data (i.e. RAID-Z requests).
75 *
76 * Purely physical I/O always have unique ENAs. They are not related to a
77 * particular piece of logical data, and therefore cannot be chained together.
78 * We still generate an ereport, but the DE doesn't correlate it with any
79 * logical piece of data. When such an I/O fails, the delegated I/O requests
80 * will issue a retry, which will trigger the 'real' ereport with the correct
81 * ENA.
82 *
83 * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
84 * When a new logical I/O is issued, we set this to point to itself. Child I/Os
85 * then inherit this pointer, so that when it is first set subsequent failures
86 * will use the same ENA. For vdev cache fill and queue aggregation I/O,
87 * this pointer is set to NULL, and no ereport will be generated (since it
88 * doesn't actually correspond to any particular device or piece of data,
89 * and the caller will always retry without caching or queueing anyway).
90 */
91 void
92 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio,
93 uint64_t stateoroffset, uint64_t size)
94 {
95 #ifdef _KERNEL
96 nvlist_t *ereport, *detector;
97 uint64_t ena;
98 char class[64];
99 int state;
100
101 /*
102 * If we are doing a spa_tryimport(), ignore errors.
103 */
104 if (spa->spa_load_state == SPA_LOAD_TRYIMPORT)
105 return;
106
107 /*
108 * If we are in the middle of opening a pool, and the previous attempt
109 * failed, don't bother logging any new ereports - we're just going to
110 * get the same diagnosis anyway.
111 */
112 if (spa->spa_load_state != SPA_LOAD_NONE &&
113 spa->spa_last_open_failed)
114 return;
115
116 if (zio != NULL) {
117 /*
118 * If this is not a read or write zio, ignore the error. This
119 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
120 */
121 if (zio->io_type != ZIO_TYPE_READ &&
122 zio->io_type != ZIO_TYPE_WRITE)
123 return;
124
125 /*
126 * Ignore any errors from speculative I/Os, as failure is an
127 * expected result.
128 */
129 if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
130 return;
131
132 /*
133 * If the vdev has already been marked as failing due to a
134 * failed probe, then ignore any subsequent I/O errors, as the
135 * DE will automatically fault the vdev on the first such
136 * failure.
137 */
138 if (vd != NULL &&
139 (!vdev_readable(vd) || !vdev_writeable(vd)) &&
140 strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) != 0)
141 return;
142 }
143
144 if ((ereport = fm_nvlist_create(NULL)) == NULL)
145 return;
146
147 if ((detector = fm_nvlist_create(NULL)) == NULL) {
148 fm_nvlist_destroy(ereport, FM_NVA_FREE);
149 return;
150 }
151
152 /*
153 * Serialize ereport generation
154 */
155 mutex_enter(&spa->spa_errlist_lock);
156
157 /*
158 * Determine the ENA to use for this event. If we are in a loading
159 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use
160 * a root zio-wide ENA. Otherwise, simply use a unique ENA.
161 */
162 if (spa->spa_load_state != SPA_LOAD_NONE) {
163 if (spa->spa_ena == 0)
164 spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
165 ena = spa->spa_ena;
166 } else if (zio != NULL && zio->io_logical != NULL) {
167 if (zio->io_logical->io_ena == 0)
168 zio->io_logical->io_ena =
169 fm_ena_generate(0, FM_ENA_FMT1);
170 ena = zio->io_logical->io_ena;
171 } else {
172 ena = fm_ena_generate(0, FM_ENA_FMT1);
173 }
174
175 /*
176 * Construct the full class, detector, and other standard FMA fields.
177 */
178 (void) snprintf(class, sizeof (class), "%s.%s",
179 ZFS_ERROR_CLASS, subclass);
180
181 fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
182 vd != NULL ? vd->vdev_guid : 0);
183
184 fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
185
186 /*
187 * Construct the per-ereport payload, depending on which parameters are
188 * passed in.
189 */
190
191 /*
192 * If we are importing a faulted pool, then we treat it like an open,
193 * not an import. Otherwise, the DE will ignore all faults during
194 * import, since the default behavior is to mark the devices as
195 * persistently unavailable, not leave them in the faulted state.
196 */
197 state = spa->spa_import_faulted ? SPA_LOAD_OPEN : spa->spa_load_state;
198
199 /*
200 * Generic payload members common to all ereports.
201 */
202 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL,
203 DATA_TYPE_STRING, spa_name(spa), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
204 DATA_TYPE_UINT64, spa_guid(spa),
205 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
206 state, NULL);
207
208 if (spa != NULL) {
209 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
210 DATA_TYPE_STRING,
211 spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
212 FM_EREPORT_FAILMODE_WAIT :
213 spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
214 FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
215 NULL);
216 }
217
218 if (vd != NULL) {
219 vdev_t *pvd = vd->vdev_parent;
220
221 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
222 DATA_TYPE_UINT64, vd->vdev_guid,
223 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
224 DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
225 if (vd->vdev_path)
226 fm_payload_set(ereport,
227 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
228 DATA_TYPE_STRING, vd->vdev_path, NULL);
229 if (vd->vdev_devid)
230 fm_payload_set(ereport,
231 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
232 DATA_TYPE_STRING, vd->vdev_devid, NULL);
233
234 if (pvd != NULL) {
235 fm_payload_set(ereport,
236 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
237 DATA_TYPE_UINT64, pvd->vdev_guid,
238 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
239 DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
240 NULL);
241 if (pvd->vdev_path)
242 fm_payload_set(ereport,
243 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
244 DATA_TYPE_STRING, pvd->vdev_path, NULL);
245 if (pvd->vdev_devid)
246 fm_payload_set(ereport,
247 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
248 DATA_TYPE_STRING, pvd->vdev_devid, NULL);
249 }
250 }
251
252 if (zio != NULL) {
253 /*
254 * Payload common to all I/Os.
255 */
256 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
257 DATA_TYPE_INT32, zio->io_error, NULL);
258
259 /*
260 * If the 'size' parameter is non-zero, it indicates this is a
261 * RAID-Z or other I/O where the physical offset and length are
262 * provided for us, instead of within the zio_t.
263 */
264 if (vd != NULL) {
265 if (size)
266 fm_payload_set(ereport,
267 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
268 DATA_TYPE_UINT64, stateoroffset,
269 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
270 DATA_TYPE_UINT64, size, NULL);
271 else
272 fm_payload_set(ereport,
273 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
274 DATA_TYPE_UINT64, zio->io_offset,
275 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
276 DATA_TYPE_UINT64, zio->io_size, NULL);
277 }
278
279 /*
280 * Payload for I/Os with corresponding logical information.
281 */
282 if (zio->io_logical != NULL)
283 fm_payload_set(ereport,
284 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
285 DATA_TYPE_UINT64,
286 zio->io_logical->io_bookmark.zb_objset,
287 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
288 DATA_TYPE_UINT64,
289 zio->io_logical->io_bookmark.zb_object,
290 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
291 DATA_TYPE_INT64,
292 zio->io_logical->io_bookmark.zb_level,
293 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
294 DATA_TYPE_UINT64,
295 zio->io_logical->io_bookmark.zb_blkid, NULL);
296 } else if (vd != NULL) {
297 /*
298 * If we have a vdev but no zio, this is a device fault, and the
299 * 'stateoroffset' parameter indicates the previous state of the
300 * vdev.
301 */
302 fm_payload_set(ereport,
303 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
304 DATA_TYPE_UINT64, stateoroffset, NULL);
305 }
306 mutex_exit(&spa->spa_errlist_lock);
307
308 fm_ereport_post(ereport, EVCH_SLEEP);
309
310 fm_nvlist_destroy(ereport, FM_NVA_FREE);
311 fm_nvlist_destroy(detector, FM_NVA_FREE);
312 #endif
313 }
314
315 static void
316 zfs_post_common(spa_t *spa, vdev_t *vd, const char *name)
317 {
318 #ifdef _KERNEL
319 nvlist_t *resource;
320 char class[64];
321
322 if ((resource = fm_nvlist_create(NULL)) == NULL)
323 return;
324
325 (void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE,
326 ZFS_ERROR_CLASS, name);
327 VERIFY(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION) == 0);
328 VERIFY(nvlist_add_string(resource, FM_CLASS, class) == 0);
329 VERIFY(nvlist_add_uint64(resource,
330 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)) == 0);
331 if (vd)
332 VERIFY(nvlist_add_uint64(resource,
333 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid) == 0);
334
335 fm_ereport_post(resource, EVCH_SLEEP);
336
337 fm_nvlist_destroy(resource, FM_NVA_FREE);
338 #endif
339 }
340
341 /*
342 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
343 * has been removed from the system. This will cause the DE to ignore any
344 * recent I/O errors, inferring that they are due to the asynchronous device
345 * removal.
346 */
347 void
348 zfs_post_remove(spa_t *spa, vdev_t *vd)
349 {
350 zfs_post_common(spa, vd, FM_RESOURCE_REMOVED);
351 }
352
353 /*
354 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
355 * has the 'autoreplace' property set, and therefore any broken vdevs will be
356 * handled by higher level logic, and no vdev fault should be generated.
357 */
358 void
359 zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
360 {
361 zfs_post_common(spa, vd, FM_RESOURCE_AUTOREPLACE);
362 }