]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - zfs/module/zfs/dsl_pool.c
UBUNTU: SAUCE: (noup) Update zfs to 0.7.5-1ubuntu15 (LP: #1764690)
[mirror_ubuntu-bionic-kernel.git] / zfs / module / zfs / dsl_pool.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
27 */
28
29 #include <sys/dsl_pool.h>
30 #include <sys/dsl_dataset.h>
31 #include <sys/dsl_prop.h>
32 #include <sys/dsl_dir.h>
33 #include <sys/dsl_synctask.h>
34 #include <sys/dsl_scan.h>
35 #include <sys/dnode.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/zap.h>
40 #include <sys/zio.h>
41 #include <sys/zfs_context.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/zfs_znode.h>
44 #include <sys/spa_impl.h>
45 #include <sys/dsl_deadlist.h>
46 #include <sys/bptree.h>
47 #include <sys/zfeature.h>
48 #include <sys/zil_impl.h>
49 #include <sys/dsl_userhold.h>
50 #include <sys/trace_txg.h>
51 #include <sys/mmp.h>
52
53 /*
54 * ZFS Write Throttle
55 * ------------------
56 *
57 * ZFS must limit the rate of incoming writes to the rate at which it is able
58 * to sync data modifications to the backend storage. Throttling by too much
59 * creates an artificial limit; throttling by too little can only be sustained
60 * for short periods and would lead to highly lumpy performance. On a per-pool
61 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
62 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
63 * of dirty data decreases. When the amount of dirty data exceeds a
64 * predetermined threshold further modifications are blocked until the amount
65 * of dirty data decreases (as data is synced out).
66 *
67 * The limit on dirty data is tunable, and should be adjusted according to
68 * both the IO capacity and available memory of the system. The larger the
69 * window, the more ZFS is able to aggregate and amortize metadata (and data)
70 * changes. However, memory is a limited resource, and allowing for more dirty
71 * data comes at the cost of keeping other useful data in memory (for example
72 * ZFS data cached by the ARC).
73 *
74 * Implementation
75 *
76 * As buffers are modified dsl_pool_willuse_space() increments both the per-
77 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
78 * dirty space used; dsl_pool_dirty_space() decrements those values as data
79 * is synced out from dsl_pool_sync(). While only the poolwide value is
80 * relevant, the per-txg value is useful for debugging. The tunable
81 * zfs_dirty_data_max determines the dirty space limit. Once that value is
82 * exceeded, new writes are halted until space frees up.
83 *
84 * The zfs_dirty_data_sync tunable dictates the threshold at which we
85 * ensure that there is a txg syncing (see the comment in txg.c for a full
86 * description of transaction group stages).
87 *
88 * The IO scheduler uses both the dirty space limit and current amount of
89 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
90 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
91 *
92 * The delay is also calculated based on the amount of dirty data. See the
93 * comment above dmu_tx_delay() for details.
94 */
95
96 /*
97 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
98 * capped at zfs_dirty_data_max_max. It can also be overridden with a module
99 * parameter.
100 */
101 unsigned long zfs_dirty_data_max = 0;
102 unsigned long zfs_dirty_data_max_max = 0;
103 int zfs_dirty_data_max_percent = 10;
104 int zfs_dirty_data_max_max_percent = 25;
105
106 /*
107 * If there is at least this much dirty data, push out a txg.
108 */
109 unsigned long zfs_dirty_data_sync = 64 * 1024 * 1024;
110
111 /*
112 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
113 * and delay each transaction.
114 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
115 */
116 int zfs_delay_min_dirty_percent = 60;
117
118 /*
119 * This controls how quickly the delay approaches infinity.
120 * Larger values cause it to delay more for a given amount of dirty data.
121 * Therefore larger values will cause there to be less dirty data for a
122 * given throughput.
123 *
124 * For the smoothest delay, this value should be about 1 billion divided
125 * by the maximum number of operations per second. This will smoothly
126 * handle between 10x and 1/10th this number.
127 *
128 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
129 * multiply in dmu_tx_delay().
130 */
131 unsigned long zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
132
133 /*
134 * This determines the number of threads used by the dp_sync_taskq.
135 */
136 int zfs_sync_taskq_batch_pct = 75;
137
138 /*
139 * These tunables determine the behavior of how zil_itxg_clean() is
140 * called via zil_clean() in the context of spa_sync(). When an itxg
141 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
142 * If the dispatch fails, the call to zil_itxg_clean() will occur
143 * synchronously in the context of spa_sync(), which can negatively
144 * impact the performance of spa_sync() (e.g. in the case of the itxg
145 * list having a large number of itxs that needs to be cleaned).
146 *
147 * Thus, these tunables can be used to manipulate the behavior of the
148 * taskq used by zil_clean(); they determine the number of taskq entries
149 * that are pre-populated when the taskq is first created (via the
150 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
151 * taskq entries that are cached after an on-demand allocation (via the
152 * "zfs_zil_clean_taskq_maxalloc").
153 *
154 * The idea being, we want to try reasonably hard to ensure there will
155 * already be a taskq entry pre-allocated by the time that it is needed
156 * by zil_clean(). This way, we can avoid the possibility of an
157 * on-demand allocation of a new taskq entry from failing, which would
158 * result in zil_itxg_clean() being called synchronously from zil_clean()
159 * (which can adversely affect performance of spa_sync()).
160 *
161 * Additionally, the number of threads used by the taskq can be
162 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
163 */
164 int zfs_zil_clean_taskq_nthr_pct = 100;
165 int zfs_zil_clean_taskq_minalloc = 1024;
166 int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
167
168 int
169 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
170 {
171 uint64_t obj;
172 int err;
173
174 err = zap_lookup(dp->dp_meta_objset,
175 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
176 name, sizeof (obj), 1, &obj);
177 if (err)
178 return (err);
179
180 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
181 }
182
183 static dsl_pool_t *
184 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
185 {
186 dsl_pool_t *dp;
187 blkptr_t *bp = spa_get_rootblkptr(spa);
188
189 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
190 dp->dp_spa = spa;
191 dp->dp_meta_rootbp = *bp;
192 rrw_init(&dp->dp_config_rwlock, B_TRUE);
193 txg_init(dp, txg);
194 mmp_init(spa);
195
196 txg_list_create(&dp->dp_dirty_datasets, spa,
197 offsetof(dsl_dataset_t, ds_dirty_link));
198 txg_list_create(&dp->dp_dirty_zilogs, spa,
199 offsetof(zilog_t, zl_dirty_link));
200 txg_list_create(&dp->dp_dirty_dirs, spa,
201 offsetof(dsl_dir_t, dd_dirty_link));
202 txg_list_create(&dp->dp_sync_tasks, spa,
203 offsetof(dsl_sync_task_t, dst_node));
204
205 dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
206 zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
207 TASKQ_THREADS_CPU_PCT);
208
209 dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
210 zfs_zil_clean_taskq_nthr_pct, minclsyspri,
211 zfs_zil_clean_taskq_minalloc,
212 zfs_zil_clean_taskq_maxalloc,
213 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
214
215 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
216 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
217
218 dp->dp_iput_taskq = taskq_create("z_iput", max_ncpus, defclsyspri,
219 max_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
220
221 return (dp);
222 }
223
224 int
225 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
226 {
227 int err;
228 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
229
230 /*
231 * Initialize the caller's dsl_pool_t structure before we actually open
232 * the meta objset. This is done because a self-healing write zio may
233 * be issued as part of dmu_objset_open_impl() and the spa needs its
234 * dsl_pool_t initialized in order to handle the write.
235 */
236 *dpp = dp;
237
238 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
239 &dp->dp_meta_objset);
240 if (err != 0) {
241 dsl_pool_close(dp);
242 *dpp = NULL;
243 }
244
245 return (err);
246 }
247
248 int
249 dsl_pool_open(dsl_pool_t *dp)
250 {
251 int err;
252 dsl_dir_t *dd;
253 dsl_dataset_t *ds;
254 uint64_t obj;
255
256 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
257 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
258 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
259 &dp->dp_root_dir_obj);
260 if (err)
261 goto out;
262
263 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
264 NULL, dp, &dp->dp_root_dir);
265 if (err)
266 goto out;
267
268 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
269 if (err)
270 goto out;
271
272 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
273 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
274 if (err)
275 goto out;
276 err = dsl_dataset_hold_obj(dp,
277 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
278 if (err == 0) {
279 err = dsl_dataset_hold_obj(dp,
280 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
281 &dp->dp_origin_snap);
282 dsl_dataset_rele(ds, FTAG);
283 }
284 dsl_dir_rele(dd, dp);
285 if (err)
286 goto out;
287 }
288
289 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
290 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
291 &dp->dp_free_dir);
292 if (err)
293 goto out;
294
295 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
296 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
297 if (err)
298 goto out;
299 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
300 dp->dp_meta_objset, obj));
301 }
302
303 /*
304 * Note: errors ignored, because the leak dir will not exist if we
305 * have not encountered a leak yet.
306 */
307 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
308 &dp->dp_leak_dir);
309
310 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
311 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
312 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
313 &dp->dp_bptree_obj);
314 if (err != 0)
315 goto out;
316 }
317
318 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
319 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
320 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
321 &dp->dp_empty_bpobj);
322 if (err != 0)
323 goto out;
324 }
325
326 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
327 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
328 &dp->dp_tmp_userrefs_obj);
329 if (err == ENOENT)
330 err = 0;
331 if (err)
332 goto out;
333
334 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
335
336 out:
337 rrw_exit(&dp->dp_config_rwlock, FTAG);
338 return (err);
339 }
340
341 void
342 dsl_pool_close(dsl_pool_t *dp)
343 {
344 /*
345 * Drop our references from dsl_pool_open().
346 *
347 * Since we held the origin_snap from "syncing" context (which
348 * includes pool-opening context), it actually only got a "ref"
349 * and not a hold, so just drop that here.
350 */
351 if (dp->dp_origin_snap)
352 dsl_dataset_rele(dp->dp_origin_snap, dp);
353 if (dp->dp_mos_dir)
354 dsl_dir_rele(dp->dp_mos_dir, dp);
355 if (dp->dp_free_dir)
356 dsl_dir_rele(dp->dp_free_dir, dp);
357 if (dp->dp_leak_dir)
358 dsl_dir_rele(dp->dp_leak_dir, dp);
359 if (dp->dp_root_dir)
360 dsl_dir_rele(dp->dp_root_dir, dp);
361
362 bpobj_close(&dp->dp_free_bpobj);
363
364 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
365 if (dp->dp_meta_objset)
366 dmu_objset_evict(dp->dp_meta_objset);
367
368 txg_list_destroy(&dp->dp_dirty_datasets);
369 txg_list_destroy(&dp->dp_dirty_zilogs);
370 txg_list_destroy(&dp->dp_sync_tasks);
371 txg_list_destroy(&dp->dp_dirty_dirs);
372
373 taskq_destroy(dp->dp_zil_clean_taskq);
374 taskq_destroy(dp->dp_sync_taskq);
375
376 /*
377 * We can't set retry to TRUE since we're explicitly specifying
378 * a spa to flush. This is good enough; any missed buffers for
379 * this spa won't cause trouble, and they'll eventually fall
380 * out of the ARC just like any other unused buffer.
381 */
382 arc_flush(dp->dp_spa, FALSE);
383
384 mmp_fini(dp->dp_spa);
385 txg_fini(dp);
386 dsl_scan_fini(dp);
387 dmu_buf_user_evict_wait();
388
389 rrw_destroy(&dp->dp_config_rwlock);
390 mutex_destroy(&dp->dp_lock);
391 cv_destroy(&dp->dp_spaceavail_cv);
392 taskq_destroy(dp->dp_iput_taskq);
393 if (dp->dp_blkstats)
394 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
395 kmem_free(dp, sizeof (dsl_pool_t));
396 }
397
398 dsl_pool_t *
399 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
400 {
401 int err;
402 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
403 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
404 objset_t *os;
405 dsl_dataset_t *ds;
406 uint64_t obj;
407
408 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
409
410 /* create and open the MOS (meta-objset) */
411 dp->dp_meta_objset = dmu_objset_create_impl(spa,
412 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
413
414 /* create the pool directory */
415 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
416 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
417 ASSERT0(err);
418
419 /* Initialize scan structures */
420 VERIFY0(dsl_scan_init(dp, txg));
421
422 /* create and open the root dir */
423 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
424 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
425 NULL, dp, &dp->dp_root_dir));
426
427 /* create and open the meta-objset dir */
428 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
429 VERIFY0(dsl_pool_open_special_dir(dp,
430 MOS_DIR_NAME, &dp->dp_mos_dir));
431
432 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
433 /* create and open the free dir */
434 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
435 FREE_DIR_NAME, tx);
436 VERIFY0(dsl_pool_open_special_dir(dp,
437 FREE_DIR_NAME, &dp->dp_free_dir));
438
439 /* create and open the free_bplist */
440 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
441 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
442 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
443 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
444 dp->dp_meta_objset, obj));
445 }
446
447 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
448 dsl_pool_create_origin(dp, tx);
449
450 /* create the root dataset */
451 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
452
453 /* create the root objset */
454 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
455 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
456 VERIFY(NULL != (os = dmu_objset_create_impl(dp->dp_spa, ds,
457 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx)));
458 rrw_exit(&ds->ds_bp_rwlock, FTAG);
459 #ifdef _KERNEL
460 zfs_create_fs(os, kcred, zplprops, tx);
461 #endif
462 dsl_dataset_rele(ds, FTAG);
463
464 dmu_tx_commit(tx);
465
466 rrw_exit(&dp->dp_config_rwlock, FTAG);
467
468 return (dp);
469 }
470
471 /*
472 * Account for the meta-objset space in its placeholder dsl_dir.
473 */
474 void
475 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
476 int64_t used, int64_t comp, int64_t uncomp)
477 {
478 ASSERT3U(comp, ==, uncomp); /* it's all metadata */
479 mutex_enter(&dp->dp_lock);
480 dp->dp_mos_used_delta += used;
481 dp->dp_mos_compressed_delta += comp;
482 dp->dp_mos_uncompressed_delta += uncomp;
483 mutex_exit(&dp->dp_lock);
484 }
485
486 static void
487 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
488 {
489 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
490 dmu_objset_sync(dp->dp_meta_objset, zio, tx);
491 VERIFY0(zio_wait(zio));
492 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
493 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
494 }
495
496 static void
497 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
498 {
499 ASSERT(MUTEX_HELD(&dp->dp_lock));
500
501 if (delta < 0)
502 ASSERT3U(-delta, <=, dp->dp_dirty_total);
503
504 dp->dp_dirty_total += delta;
505
506 /*
507 * Note: we signal even when increasing dp_dirty_total.
508 * This ensures forward progress -- each thread wakes the next waiter.
509 */
510 if (dp->dp_dirty_total < zfs_dirty_data_max)
511 cv_signal(&dp->dp_spaceavail_cv);
512 }
513
514 void
515 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
516 {
517 zio_t *zio;
518 dmu_tx_t *tx;
519 dsl_dir_t *dd;
520 dsl_dataset_t *ds;
521 objset_t *mos = dp->dp_meta_objset;
522 list_t synced_datasets;
523
524 list_create(&synced_datasets, sizeof (dsl_dataset_t),
525 offsetof(dsl_dataset_t, ds_synced_link));
526
527 tx = dmu_tx_create_assigned(dp, txg);
528
529 /*
530 * Write out all dirty blocks of dirty datasets.
531 */
532 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
533 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
534 /*
535 * We must not sync any non-MOS datasets twice, because
536 * we may have taken a snapshot of them. However, we
537 * may sync newly-created datasets on pass 2.
538 */
539 ASSERT(!list_link_active(&ds->ds_synced_link));
540 list_insert_tail(&synced_datasets, ds);
541 dsl_dataset_sync(ds, zio, tx);
542 }
543 VERIFY0(zio_wait(zio));
544
545 /*
546 * We have written all of the accounted dirty data, so our
547 * dp_space_towrite should now be zero. However, some seldom-used
548 * code paths do not adhere to this (e.g. dbuf_undirty(), also
549 * rounding error in dbuf_write_physdone).
550 * Shore up the accounting of any dirtied space now.
551 */
552 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
553
554 /*
555 * Update the long range free counter after
556 * we're done syncing user data
557 */
558 mutex_enter(&dp->dp_lock);
559 ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
560 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
561 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
562 mutex_exit(&dp->dp_lock);
563
564 /*
565 * After the data blocks have been written (ensured by the zio_wait()
566 * above), update the user/group space accounting. This happens
567 * in tasks dispatched to dp_sync_taskq, so wait for them before
568 * continuing.
569 */
570 for (ds = list_head(&synced_datasets); ds != NULL;
571 ds = list_next(&synced_datasets, ds)) {
572 dmu_objset_do_userquota_updates(ds->ds_objset, tx);
573 }
574 taskq_wait(dp->dp_sync_taskq);
575
576 /*
577 * Sync the datasets again to push out the changes due to
578 * userspace updates. This must be done before we process the
579 * sync tasks, so that any snapshots will have the correct
580 * user accounting information (and we won't get confused
581 * about which blocks are part of the snapshot).
582 */
583 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
584 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
585 ASSERT(list_link_active(&ds->ds_synced_link));
586 dmu_buf_rele(ds->ds_dbuf, ds);
587 dsl_dataset_sync(ds, zio, tx);
588 }
589 VERIFY0(zio_wait(zio));
590
591 /*
592 * Now that the datasets have been completely synced, we can
593 * clean up our in-memory structures accumulated while syncing:
594 *
595 * - move dead blocks from the pending deadlist to the on-disk deadlist
596 * - release hold from dsl_dataset_dirty()
597 */
598 while ((ds = list_remove_head(&synced_datasets)) != NULL) {
599 dsl_dataset_sync_done(ds, tx);
600 }
601
602 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
603 dsl_dir_sync(dd, tx);
604 }
605
606 /*
607 * The MOS's space is accounted for in the pool/$MOS
608 * (dp_mos_dir). We can't modify the mos while we're syncing
609 * it, so we remember the deltas and apply them here.
610 */
611 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
612 dp->dp_mos_uncompressed_delta != 0) {
613 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
614 dp->dp_mos_used_delta,
615 dp->dp_mos_compressed_delta,
616 dp->dp_mos_uncompressed_delta, tx);
617 dp->dp_mos_used_delta = 0;
618 dp->dp_mos_compressed_delta = 0;
619 dp->dp_mos_uncompressed_delta = 0;
620 }
621
622 if (!multilist_is_empty(mos->os_dirty_dnodes[txg & TXG_MASK])) {
623 dsl_pool_sync_mos(dp, tx);
624 }
625
626 /*
627 * If we modify a dataset in the same txg that we want to destroy it,
628 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
629 * dsl_dir_destroy_check() will fail if there are unexpected holds.
630 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
631 * and clearing the hold on it) before we process the sync_tasks.
632 * The MOS data dirtied by the sync_tasks will be synced on the next
633 * pass.
634 */
635 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
636 dsl_sync_task_t *dst;
637 /*
638 * No more sync tasks should have been added while we
639 * were syncing.
640 */
641 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
642 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
643 dsl_sync_task_sync(dst, tx);
644 }
645
646 dmu_tx_commit(tx);
647
648 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
649 }
650
651 void
652 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
653 {
654 zilog_t *zilog;
655
656 while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) {
657 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
658 /*
659 * We don't remove the zilog from the dp_dirty_zilogs
660 * list until after we've cleaned it. This ensures that
661 * callers of zilog_is_dirty() receive an accurate
662 * answer when they are racing with the spa sync thread.
663 */
664 zil_clean(zilog, txg);
665 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
666 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
667 dmu_buf_rele(ds->ds_dbuf, zilog);
668 }
669 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
670 }
671
672 /*
673 * TRUE if the current thread is the tx_sync_thread or if we
674 * are being called from SPA context during pool initialization.
675 */
676 int
677 dsl_pool_sync_context(dsl_pool_t *dp)
678 {
679 return (curthread == dp->dp_tx.tx_sync_thread ||
680 spa_is_initializing(dp->dp_spa) ||
681 taskq_member(dp->dp_sync_taskq, curthread));
682 }
683
684 uint64_t
685 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
686 {
687 uint64_t space, resv;
688
689 /*
690 * If we're trying to assess whether it's OK to do a free,
691 * cut the reservation in half to allow forward progress
692 * (e.g. make it possible to rm(1) files from a full pool).
693 */
694 space = spa_get_dspace(dp->dp_spa);
695 resv = spa_get_slop_space(dp->dp_spa);
696 if (netfree)
697 resv >>= 1;
698
699 return (space - resv);
700 }
701
702 boolean_t
703 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
704 {
705 uint64_t delay_min_bytes =
706 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
707 boolean_t rv;
708
709 mutex_enter(&dp->dp_lock);
710 if (dp->dp_dirty_total > zfs_dirty_data_sync)
711 txg_kick(dp);
712 rv = (dp->dp_dirty_total > delay_min_bytes);
713 mutex_exit(&dp->dp_lock);
714 return (rv);
715 }
716
717 void
718 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
719 {
720 if (space > 0) {
721 mutex_enter(&dp->dp_lock);
722 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
723 dsl_pool_dirty_delta(dp, space);
724 mutex_exit(&dp->dp_lock);
725 }
726 }
727
728 void
729 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
730 {
731 ASSERT3S(space, >=, 0);
732 if (space == 0)
733 return;
734
735 mutex_enter(&dp->dp_lock);
736 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
737 /* XXX writing something we didn't dirty? */
738 space = dp->dp_dirty_pertxg[txg & TXG_MASK];
739 }
740 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
741 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
742 ASSERT3U(dp->dp_dirty_total, >=, space);
743 dsl_pool_dirty_delta(dp, -space);
744 mutex_exit(&dp->dp_lock);
745 }
746
747 /* ARGSUSED */
748 static int
749 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
750 {
751 dmu_tx_t *tx = arg;
752 dsl_dataset_t *ds, *prev = NULL;
753 int err;
754
755 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
756 if (err)
757 return (err);
758
759 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
760 err = dsl_dataset_hold_obj(dp,
761 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
762 if (err) {
763 dsl_dataset_rele(ds, FTAG);
764 return (err);
765 }
766
767 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
768 break;
769 dsl_dataset_rele(ds, FTAG);
770 ds = prev;
771 prev = NULL;
772 }
773
774 if (prev == NULL) {
775 prev = dp->dp_origin_snap;
776
777 /*
778 * The $ORIGIN can't have any data, or the accounting
779 * will be wrong.
780 */
781 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
782 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
783 rrw_exit(&ds->ds_bp_rwlock, FTAG);
784
785 /* The origin doesn't get attached to itself */
786 if (ds->ds_object == prev->ds_object) {
787 dsl_dataset_rele(ds, FTAG);
788 return (0);
789 }
790
791 dmu_buf_will_dirty(ds->ds_dbuf, tx);
792 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
793 dsl_dataset_phys(ds)->ds_prev_snap_txg =
794 dsl_dataset_phys(prev)->ds_creation_txg;
795
796 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
797 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
798
799 dmu_buf_will_dirty(prev->ds_dbuf, tx);
800 dsl_dataset_phys(prev)->ds_num_children++;
801
802 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
803 ASSERT(ds->ds_prev == NULL);
804 VERIFY0(dsl_dataset_hold_obj(dp,
805 dsl_dataset_phys(ds)->ds_prev_snap_obj,
806 ds, &ds->ds_prev));
807 }
808 }
809
810 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
811 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
812
813 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
814 dmu_buf_will_dirty(prev->ds_dbuf, tx);
815 dsl_dataset_phys(prev)->ds_next_clones_obj =
816 zap_create(dp->dp_meta_objset,
817 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
818 }
819 VERIFY0(zap_add_int(dp->dp_meta_objset,
820 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
821
822 dsl_dataset_rele(ds, FTAG);
823 if (prev != dp->dp_origin_snap)
824 dsl_dataset_rele(prev, FTAG);
825 return (0);
826 }
827
828 void
829 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
830 {
831 ASSERT(dmu_tx_is_syncing(tx));
832 ASSERT(dp->dp_origin_snap != NULL);
833
834 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
835 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
836 }
837
838 /* ARGSUSED */
839 static int
840 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
841 {
842 dmu_tx_t *tx = arg;
843 objset_t *mos = dp->dp_meta_objset;
844
845 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
846 dsl_dataset_t *origin;
847
848 VERIFY0(dsl_dataset_hold_obj(dp,
849 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
850
851 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
852 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
853 dsl_dir_phys(origin->ds_dir)->dd_clones =
854 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
855 0, tx);
856 }
857
858 VERIFY0(zap_add_int(dp->dp_meta_objset,
859 dsl_dir_phys(origin->ds_dir)->dd_clones,
860 ds->ds_object, tx));
861
862 dsl_dataset_rele(origin, FTAG);
863 }
864 return (0);
865 }
866
867 void
868 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
869 {
870 uint64_t obj;
871
872 ASSERT(dmu_tx_is_syncing(tx));
873
874 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
875 VERIFY0(dsl_pool_open_special_dir(dp,
876 FREE_DIR_NAME, &dp->dp_free_dir));
877
878 /*
879 * We can't use bpobj_alloc(), because spa_version() still
880 * returns the old version, and we need a new-version bpobj with
881 * subobj support. So call dmu_object_alloc() directly.
882 */
883 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
884 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
885 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
886 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
887 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
888
889 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
890 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
891 }
892
893 void
894 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
895 {
896 uint64_t dsobj;
897 dsl_dataset_t *ds;
898
899 ASSERT(dmu_tx_is_syncing(tx));
900 ASSERT(dp->dp_origin_snap == NULL);
901 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
902
903 /* create the origin dir, ds, & snap-ds */
904 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
905 NULL, 0, kcred, tx);
906 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
907 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
908 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
909 dp, &dp->dp_origin_snap));
910 dsl_dataset_rele(ds, FTAG);
911 }
912
913 taskq_t *
914 dsl_pool_iput_taskq(dsl_pool_t *dp)
915 {
916 return (dp->dp_iput_taskq);
917 }
918
919 /*
920 * Walk through the pool-wide zap object of temporary snapshot user holds
921 * and release them.
922 */
923 void
924 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
925 {
926 zap_attribute_t za;
927 zap_cursor_t zc;
928 objset_t *mos = dp->dp_meta_objset;
929 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
930 nvlist_t *holds;
931
932 if (zapobj == 0)
933 return;
934 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
935
936 holds = fnvlist_alloc();
937
938 for (zap_cursor_init(&zc, mos, zapobj);
939 zap_cursor_retrieve(&zc, &za) == 0;
940 zap_cursor_advance(&zc)) {
941 char *htag;
942 nvlist_t *tags;
943
944 htag = strchr(za.za_name, '-');
945 *htag = '\0';
946 ++htag;
947 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
948 tags = fnvlist_alloc();
949 fnvlist_add_boolean(tags, htag);
950 fnvlist_add_nvlist(holds, za.za_name, tags);
951 fnvlist_free(tags);
952 } else {
953 fnvlist_add_boolean(tags, htag);
954 }
955 }
956 dsl_dataset_user_release_tmp(dp, holds);
957 fnvlist_free(holds);
958 zap_cursor_fini(&zc);
959 }
960
961 /*
962 * Create the pool-wide zap object for storing temporary snapshot holds.
963 */
964 void
965 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
966 {
967 objset_t *mos = dp->dp_meta_objset;
968
969 ASSERT(dp->dp_tmp_userrefs_obj == 0);
970 ASSERT(dmu_tx_is_syncing(tx));
971
972 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
973 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
974 }
975
976 static int
977 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
978 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
979 {
980 objset_t *mos = dp->dp_meta_objset;
981 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
982 char *name;
983 int error;
984
985 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
986 ASSERT(dmu_tx_is_syncing(tx));
987
988 /*
989 * If the pool was created prior to SPA_VERSION_USERREFS, the
990 * zap object for temporary holds might not exist yet.
991 */
992 if (zapobj == 0) {
993 if (holding) {
994 dsl_pool_user_hold_create_obj(dp, tx);
995 zapobj = dp->dp_tmp_userrefs_obj;
996 } else {
997 return (SET_ERROR(ENOENT));
998 }
999 }
1000
1001 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1002 if (holding)
1003 error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1004 else
1005 error = zap_remove(mos, zapobj, name, tx);
1006 strfree(name);
1007
1008 return (error);
1009 }
1010
1011 /*
1012 * Add a temporary hold for the given dataset object and tag.
1013 */
1014 int
1015 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1016 uint64_t now, dmu_tx_t *tx)
1017 {
1018 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1019 }
1020
1021 /*
1022 * Release a temporary hold for the given dataset object and tag.
1023 */
1024 int
1025 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1026 dmu_tx_t *tx)
1027 {
1028 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
1029 tx, B_FALSE));
1030 }
1031
1032 /*
1033 * DSL Pool Configuration Lock
1034 *
1035 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1036 * creation / destruction / rename / property setting). It must be held for
1037 * read to hold a dataset or dsl_dir. I.e. you must call
1038 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1039 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
1040 * must be held continuously until all datasets and dsl_dirs are released.
1041 *
1042 * The only exception to this rule is that if a "long hold" is placed on
1043 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1044 * is still held. The long hold will prevent the dataset from being
1045 * destroyed -- the destroy will fail with EBUSY. A long hold can be
1046 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1047 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1048 *
1049 * Legitimate long-holders (including owners) should be long-running, cancelable
1050 * tasks that should cause "zfs destroy" to fail. This includes DMU
1051 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1052 * "zfs send", and "zfs diff". There are several other long-holders whose
1053 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1054 *
1055 * The usual formula for long-holding would be:
1056 * dsl_pool_hold()
1057 * dsl_dataset_hold()
1058 * ... perform checks ...
1059 * dsl_dataset_long_hold()
1060 * dsl_pool_rele()
1061 * ... perform long-running task ...
1062 * dsl_dataset_long_rele()
1063 * dsl_dataset_rele()
1064 *
1065 * Note that when the long hold is released, the dataset is still held but
1066 * the pool is not held. The dataset may change arbitrarily during this time
1067 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the
1068 * dataset except release it.
1069 *
1070 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1071 * or modifying operations.
1072 *
1073 * Modifying operations should generally use dsl_sync_task(). The synctask
1074 * infrastructure enforces proper locking strategy with respect to the
1075 * dp_config_rwlock. See the comment above dsl_sync_task() for details.
1076 *
1077 * Read-only operations will manually hold the pool, then the dataset, obtain
1078 * information from the dataset, then release the pool and dataset.
1079 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1080 * hold/rele.
1081 */
1082
1083 int
1084 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1085 {
1086 spa_t *spa;
1087 int error;
1088
1089 error = spa_open(name, &spa, tag);
1090 if (error == 0) {
1091 *dp = spa_get_dsl(spa);
1092 dsl_pool_config_enter(*dp, tag);
1093 }
1094 return (error);
1095 }
1096
1097 void
1098 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1099 {
1100 dsl_pool_config_exit(dp, tag);
1101 spa_close(dp->dp_spa, tag);
1102 }
1103
1104 void
1105 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1106 {
1107 /*
1108 * We use a "reentrant" reader-writer lock, but not reentrantly.
1109 *
1110 * The rrwlock can (with the track_all flag) track all reading threads,
1111 * which is very useful for debugging which code path failed to release
1112 * the lock, and for verifying that the *current* thread does hold
1113 * the lock.
1114 *
1115 * (Unlike a rwlock, which knows that N threads hold it for
1116 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1117 * if any thread holds it for read, even if this thread doesn't).
1118 */
1119 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1120 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1121 }
1122
1123 void
1124 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1125 {
1126 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1127 rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1128 }
1129
1130 void
1131 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1132 {
1133 rrw_exit(&dp->dp_config_rwlock, tag);
1134 }
1135
1136 boolean_t
1137 dsl_pool_config_held(dsl_pool_t *dp)
1138 {
1139 return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1140 }
1141
1142 boolean_t
1143 dsl_pool_config_held_writer(dsl_pool_t *dp)
1144 {
1145 return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1146 }
1147
1148 #if defined(_KERNEL) && defined(HAVE_SPL)
1149 EXPORT_SYMBOL(dsl_pool_config_enter);
1150 EXPORT_SYMBOL(dsl_pool_config_exit);
1151
1152 /* BEGIN CSTYLED */
1153 /* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
1154 module_param(zfs_dirty_data_max_percent, int, 0444);
1155 MODULE_PARM_DESC(zfs_dirty_data_max_percent, "percent of ram can be dirty");
1156
1157 /* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
1158 module_param(zfs_dirty_data_max_max_percent, int, 0444);
1159 MODULE_PARM_DESC(zfs_dirty_data_max_max_percent,
1160 "zfs_dirty_data_max upper bound as % of RAM");
1161
1162 module_param(zfs_delay_min_dirty_percent, int, 0644);
1163 MODULE_PARM_DESC(zfs_delay_min_dirty_percent, "transaction delay threshold");
1164
1165 module_param(zfs_dirty_data_max, ulong, 0644);
1166 MODULE_PARM_DESC(zfs_dirty_data_max, "determines the dirty space limit");
1167
1168 /* zfs_dirty_data_max_max only applied at module load in arc_init(). */
1169 module_param(zfs_dirty_data_max_max, ulong, 0444);
1170 MODULE_PARM_DESC(zfs_dirty_data_max_max,
1171 "zfs_dirty_data_max upper bound in bytes");
1172
1173 module_param(zfs_dirty_data_sync, ulong, 0644);
1174 MODULE_PARM_DESC(zfs_dirty_data_sync, "sync txg when this much dirty data");
1175
1176 module_param(zfs_delay_scale, ulong, 0644);
1177 MODULE_PARM_DESC(zfs_delay_scale, "how quickly delay approaches infinity");
1178
1179 module_param(zfs_sync_taskq_batch_pct, int, 0644);
1180 MODULE_PARM_DESC(zfs_sync_taskq_batch_pct,
1181 "max percent of CPUs that are used to sync dirty data");
1182
1183 module_param(zfs_zil_clean_taskq_nthr_pct, int, 0644);
1184 MODULE_PARM_DESC(zfs_zil_clean_taskq_nthr_pct,
1185 "max percent of CPUs that are used per dp_sync_taskq");
1186
1187 module_param(zfs_zil_clean_taskq_minalloc, int, 0644);
1188 MODULE_PARM_DESC(zfs_zil_clean_taskq_minalloc,
1189 "number of taskq entries that are pre-populated");
1190
1191 module_param(zfs_zil_clean_taskq_maxalloc, int, 0644);
1192 MODULE_PARM_DESC(zfs_zil_clean_taskq_maxalloc,
1193 "max number of taskq entries that are cached");
1194
1195 /* END CSTYLED */
1196 #endif