]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - zfs/module/zfs/dsl_pool.c
UBUNTU: SAUCE: Update zfs to e02aaf17f15ad274fa1f24c9c826f1477911ea3f
[mirror_ubuntu-zesty-kernel.git] / zfs / module / zfs / dsl_pool.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 */
27
28 #include <sys/dsl_pool.h>
29 #include <sys/dsl_dataset.h>
30 #include <sys/dsl_prop.h>
31 #include <sys/dsl_dir.h>
32 #include <sys/dsl_synctask.h>
33 #include <sys/dsl_scan.h>
34 #include <sys/dnode.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/arc.h>
38 #include <sys/zap.h>
39 #include <sys/zio.h>
40 #include <sys/zfs_context.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/zfs_znode.h>
43 #include <sys/spa_impl.h>
44 #include <sys/dsl_deadlist.h>
45 #include <sys/bptree.h>
46 #include <sys/zfeature.h>
47 #include <sys/zil_impl.h>
48 #include <sys/dsl_userhold.h>
49 #include <sys/trace_txg.h>
50
51 /*
52 * ZFS Write Throttle
53 * ------------------
54 *
55 * ZFS must limit the rate of incoming writes to the rate at which it is able
56 * to sync data modifications to the backend storage. Throttling by too much
57 * creates an artificial limit; throttling by too little can only be sustained
58 * for short periods and would lead to highly lumpy performance. On a per-pool
59 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
60 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
61 * of dirty data decreases. When the amount of dirty data exceeds a
62 * predetermined threshold further modifications are blocked until the amount
63 * of dirty data decreases (as data is synced out).
64 *
65 * The limit on dirty data is tunable, and should be adjusted according to
66 * both the IO capacity and available memory of the system. The larger the
67 * window, the more ZFS is able to aggregate and amortize metadata (and data)
68 * changes. However, memory is a limited resource, and allowing for more dirty
69 * data comes at the cost of keeping other useful data in memory (for example
70 * ZFS data cached by the ARC).
71 *
72 * Implementation
73 *
74 * As buffers are modified dsl_pool_willuse_space() increments both the per-
75 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
76 * dirty space used; dsl_pool_dirty_space() decrements those values as data
77 * is synced out from dsl_pool_sync(). While only the poolwide value is
78 * relevant, the per-txg value is useful for debugging. The tunable
79 * zfs_dirty_data_max determines the dirty space limit. Once that value is
80 * exceeded, new writes are halted until space frees up.
81 *
82 * The zfs_dirty_data_sync tunable dictates the threshold at which we
83 * ensure that there is a txg syncing (see the comment in txg.c for a full
84 * description of transaction group stages).
85 *
86 * The IO scheduler uses both the dirty space limit and current amount of
87 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
88 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
89 *
90 * The delay is also calculated based on the amount of dirty data. See the
91 * comment above dmu_tx_delay() for details.
92 */
93
94 /*
95 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
96 * capped at zfs_dirty_data_max_max. It can also be overridden with a module
97 * parameter.
98 */
99 unsigned long zfs_dirty_data_max = 0;
100 unsigned long zfs_dirty_data_max_max = 0;
101 int zfs_dirty_data_max_percent = 10;
102 int zfs_dirty_data_max_max_percent = 25;
103
104 /*
105 * If there is at least this much dirty data, push out a txg.
106 */
107 unsigned long zfs_dirty_data_sync = 64 * 1024 * 1024;
108
109 /*
110 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
111 * and delay each transaction.
112 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
113 */
114 int zfs_delay_min_dirty_percent = 60;
115
116 /*
117 * This controls how quickly the delay approaches infinity.
118 * Larger values cause it to delay more for a given amount of dirty data.
119 * Therefore larger values will cause there to be less dirty data for a
120 * given throughput.
121 *
122 * For the smoothest delay, this value should be about 1 billion divided
123 * by the maximum number of operations per second. This will smoothly
124 * handle between 10x and 1/10th this number.
125 *
126 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
127 * multiply in dmu_tx_delay().
128 */
129 unsigned long zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
130
131 hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
132 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
133
134 int
135 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
136 {
137 uint64_t obj;
138 int err;
139
140 err = zap_lookup(dp->dp_meta_objset,
141 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
142 name, sizeof (obj), 1, &obj);
143 if (err)
144 return (err);
145
146 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
147 }
148
149 static dsl_pool_t *
150 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
151 {
152 dsl_pool_t *dp;
153 blkptr_t *bp = spa_get_rootblkptr(spa);
154
155 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
156 dp->dp_spa = spa;
157 dp->dp_meta_rootbp = *bp;
158 rrw_init(&dp->dp_config_rwlock, B_TRUE);
159 txg_init(dp, txg);
160
161 txg_list_create(&dp->dp_dirty_datasets,
162 offsetof(dsl_dataset_t, ds_dirty_link));
163 txg_list_create(&dp->dp_dirty_zilogs,
164 offsetof(zilog_t, zl_dirty_link));
165 txg_list_create(&dp->dp_dirty_dirs,
166 offsetof(dsl_dir_t, dd_dirty_link));
167 txg_list_create(&dp->dp_sync_tasks,
168 offsetof(dsl_sync_task_t, dst_node));
169
170 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
171 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
172
173 dp->dp_iput_taskq = taskq_create("z_iput", max_ncpus, defclsyspri,
174 max_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
175
176 return (dp);
177 }
178
179 int
180 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
181 {
182 int err;
183 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
184
185 /*
186 * Initialize the caller's dsl_pool_t structure before we actually open
187 * the meta objset. This is done because a self-healing write zio may
188 * be issued as part of dmu_objset_open_impl() and the spa needs its
189 * dsl_pool_t initialized in order to handle the write.
190 */
191 *dpp = dp;
192
193 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
194 &dp->dp_meta_objset);
195 if (err != 0) {
196 dsl_pool_close(dp);
197 *dpp = NULL;
198 }
199
200 return (err);
201 }
202
203 int
204 dsl_pool_open(dsl_pool_t *dp)
205 {
206 int err;
207 dsl_dir_t *dd;
208 dsl_dataset_t *ds;
209 uint64_t obj;
210
211 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
212 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
213 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
214 &dp->dp_root_dir_obj);
215 if (err)
216 goto out;
217
218 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
219 NULL, dp, &dp->dp_root_dir);
220 if (err)
221 goto out;
222
223 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
224 if (err)
225 goto out;
226
227 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
228 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
229 if (err)
230 goto out;
231 err = dsl_dataset_hold_obj(dp,
232 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
233 if (err == 0) {
234 err = dsl_dataset_hold_obj(dp,
235 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
236 &dp->dp_origin_snap);
237 dsl_dataset_rele(ds, FTAG);
238 }
239 dsl_dir_rele(dd, dp);
240 if (err)
241 goto out;
242 }
243
244 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
245 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
246 &dp->dp_free_dir);
247 if (err)
248 goto out;
249
250 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
251 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
252 if (err)
253 goto out;
254 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
255 dp->dp_meta_objset, obj));
256 }
257
258 /*
259 * Note: errors ignored, because the leak dir will not exist if we
260 * have not encountered a leak yet.
261 */
262 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
263 &dp->dp_leak_dir);
264
265 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
266 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
267 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
268 &dp->dp_bptree_obj);
269 if (err != 0)
270 goto out;
271 }
272
273 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
274 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
275 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
276 &dp->dp_empty_bpobj);
277 if (err != 0)
278 goto out;
279 }
280
281 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
282 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
283 &dp->dp_tmp_userrefs_obj);
284 if (err == ENOENT)
285 err = 0;
286 if (err)
287 goto out;
288
289 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
290
291 out:
292 rrw_exit(&dp->dp_config_rwlock, FTAG);
293 return (err);
294 }
295
296 void
297 dsl_pool_close(dsl_pool_t *dp)
298 {
299 /*
300 * Drop our references from dsl_pool_open().
301 *
302 * Since we held the origin_snap from "syncing" context (which
303 * includes pool-opening context), it actually only got a "ref"
304 * and not a hold, so just drop that here.
305 */
306 if (dp->dp_origin_snap)
307 dsl_dataset_rele(dp->dp_origin_snap, dp);
308 if (dp->dp_mos_dir)
309 dsl_dir_rele(dp->dp_mos_dir, dp);
310 if (dp->dp_free_dir)
311 dsl_dir_rele(dp->dp_free_dir, dp);
312 if (dp->dp_leak_dir)
313 dsl_dir_rele(dp->dp_leak_dir, dp);
314 if (dp->dp_root_dir)
315 dsl_dir_rele(dp->dp_root_dir, dp);
316
317 bpobj_close(&dp->dp_free_bpobj);
318
319 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
320 if (dp->dp_meta_objset)
321 dmu_objset_evict(dp->dp_meta_objset);
322
323 txg_list_destroy(&dp->dp_dirty_datasets);
324 txg_list_destroy(&dp->dp_dirty_zilogs);
325 txg_list_destroy(&dp->dp_sync_tasks);
326 txg_list_destroy(&dp->dp_dirty_dirs);
327
328 /*
329 * We can't set retry to TRUE since we're explicitly specifying
330 * a spa to flush. This is good enough; any missed buffers for
331 * this spa won't cause trouble, and they'll eventually fall
332 * out of the ARC just like any other unused buffer.
333 */
334 arc_flush(dp->dp_spa, FALSE);
335
336 txg_fini(dp);
337 dsl_scan_fini(dp);
338 dmu_buf_user_evict_wait();
339
340 rrw_destroy(&dp->dp_config_rwlock);
341 mutex_destroy(&dp->dp_lock);
342 taskq_destroy(dp->dp_iput_taskq);
343 if (dp->dp_blkstats)
344 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
345 kmem_free(dp, sizeof (dsl_pool_t));
346 }
347
348 dsl_pool_t *
349 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
350 {
351 int err;
352 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
353 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
354 objset_t *os;
355 dsl_dataset_t *ds;
356 uint64_t obj;
357
358 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
359
360 /* create and open the MOS (meta-objset) */
361 dp->dp_meta_objset = dmu_objset_create_impl(spa,
362 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
363
364 /* create the pool directory */
365 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
366 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
367 ASSERT0(err);
368
369 /* Initialize scan structures */
370 VERIFY0(dsl_scan_init(dp, txg));
371
372 /* create and open the root dir */
373 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
374 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
375 NULL, dp, &dp->dp_root_dir));
376
377 /* create and open the meta-objset dir */
378 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
379 VERIFY0(dsl_pool_open_special_dir(dp,
380 MOS_DIR_NAME, &dp->dp_mos_dir));
381
382 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
383 /* create and open the free dir */
384 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
385 FREE_DIR_NAME, tx);
386 VERIFY0(dsl_pool_open_special_dir(dp,
387 FREE_DIR_NAME, &dp->dp_free_dir));
388
389 /* create and open the free_bplist */
390 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
391 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
392 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
393 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
394 dp->dp_meta_objset, obj));
395 }
396
397 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
398 dsl_pool_create_origin(dp, tx);
399
400 /* create the root dataset */
401 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
402
403 /* create the root objset */
404 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
405 VERIFY(NULL != (os = dmu_objset_create_impl(dp->dp_spa, ds,
406 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx)));
407 #ifdef _KERNEL
408 zfs_create_fs(os, kcred, zplprops, tx);
409 #endif
410 dsl_dataset_rele(ds, FTAG);
411
412 dmu_tx_commit(tx);
413
414 rrw_exit(&dp->dp_config_rwlock, FTAG);
415
416 return (dp);
417 }
418
419 /*
420 * Account for the meta-objset space in its placeholder dsl_dir.
421 */
422 void
423 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
424 int64_t used, int64_t comp, int64_t uncomp)
425 {
426 ASSERT3U(comp, ==, uncomp); /* it's all metadata */
427 mutex_enter(&dp->dp_lock);
428 dp->dp_mos_used_delta += used;
429 dp->dp_mos_compressed_delta += comp;
430 dp->dp_mos_uncompressed_delta += uncomp;
431 mutex_exit(&dp->dp_lock);
432 }
433
434 static int
435 deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
436 {
437 dsl_deadlist_t *dl = arg;
438 dsl_deadlist_insert(dl, bp, tx);
439 return (0);
440 }
441
442 static void
443 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
444 {
445 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
446 dmu_objset_sync(dp->dp_meta_objset, zio, tx);
447 VERIFY0(zio_wait(zio));
448 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
449 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
450 }
451
452 static void
453 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
454 {
455 ASSERT(MUTEX_HELD(&dp->dp_lock));
456
457 if (delta < 0)
458 ASSERT3U(-delta, <=, dp->dp_dirty_total);
459
460 dp->dp_dirty_total += delta;
461
462 /*
463 * Note: we signal even when increasing dp_dirty_total.
464 * This ensures forward progress -- each thread wakes the next waiter.
465 */
466 if (dp->dp_dirty_total <= zfs_dirty_data_max)
467 cv_signal(&dp->dp_spaceavail_cv);
468 }
469
470 void
471 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
472 {
473 zio_t *zio;
474 dmu_tx_t *tx;
475 dsl_dir_t *dd;
476 dsl_dataset_t *ds;
477 objset_t *mos = dp->dp_meta_objset;
478 list_t synced_datasets;
479
480 list_create(&synced_datasets, sizeof (dsl_dataset_t),
481 offsetof(dsl_dataset_t, ds_synced_link));
482
483 tx = dmu_tx_create_assigned(dp, txg);
484
485 /*
486 * Write out all dirty blocks of dirty datasets.
487 */
488 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
489 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
490 /*
491 * We must not sync any non-MOS datasets twice, because
492 * we may have taken a snapshot of them. However, we
493 * may sync newly-created datasets on pass 2.
494 */
495 ASSERT(!list_link_active(&ds->ds_synced_link));
496 list_insert_tail(&synced_datasets, ds);
497 dsl_dataset_sync(ds, zio, tx);
498 }
499 VERIFY0(zio_wait(zio));
500
501 /*
502 * We have written all of the accounted dirty data, so our
503 * dp_space_towrite should now be zero. However, some seldom-used
504 * code paths do not adhere to this (e.g. dbuf_undirty(), also
505 * rounding error in dbuf_write_physdone).
506 * Shore up the accounting of any dirtied space now.
507 */
508 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
509
510 /*
511 * After the data blocks have been written (ensured by the zio_wait()
512 * above), update the user/group space accounting.
513 */
514 for (ds = list_head(&synced_datasets); ds != NULL;
515 ds = list_next(&synced_datasets, ds)) {
516 dmu_objset_do_userquota_updates(ds->ds_objset, tx);
517 }
518
519 /*
520 * Sync the datasets again to push out the changes due to
521 * userspace updates. This must be done before we process the
522 * sync tasks, so that any snapshots will have the correct
523 * user accounting information (and we won't get confused
524 * about which blocks are part of the snapshot).
525 */
526 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
527 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
528 ASSERT(list_link_active(&ds->ds_synced_link));
529 dmu_buf_rele(ds->ds_dbuf, ds);
530 dsl_dataset_sync(ds, zio, tx);
531 }
532 VERIFY0(zio_wait(zio));
533
534 /*
535 * Now that the datasets have been completely synced, we can
536 * clean up our in-memory structures accumulated while syncing:
537 *
538 * - move dead blocks from the pending deadlist to the on-disk deadlist
539 * - release hold from dsl_dataset_dirty()
540 */
541 while ((ds = list_remove_head(&synced_datasets)) != NULL) {
542 ASSERTV(objset_t *os = ds->ds_objset);
543 bplist_iterate(&ds->ds_pending_deadlist,
544 deadlist_enqueue_cb, &ds->ds_deadlist, tx);
545 ASSERT(!dmu_objset_is_dirty(os, txg));
546 dmu_buf_rele(ds->ds_dbuf, ds);
547 }
548
549 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
550 dsl_dir_sync(dd, tx);
551 }
552
553 /*
554 * The MOS's space is accounted for in the pool/$MOS
555 * (dp_mos_dir). We can't modify the mos while we're syncing
556 * it, so we remember the deltas and apply them here.
557 */
558 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
559 dp->dp_mos_uncompressed_delta != 0) {
560 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
561 dp->dp_mos_used_delta,
562 dp->dp_mos_compressed_delta,
563 dp->dp_mos_uncompressed_delta, tx);
564 dp->dp_mos_used_delta = 0;
565 dp->dp_mos_compressed_delta = 0;
566 dp->dp_mos_uncompressed_delta = 0;
567 }
568
569 if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
570 list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
571 dsl_pool_sync_mos(dp, tx);
572 }
573
574 /*
575 * If we modify a dataset in the same txg that we want to destroy it,
576 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
577 * dsl_dir_destroy_check() will fail if there are unexpected holds.
578 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
579 * and clearing the hold on it) before we process the sync_tasks.
580 * The MOS data dirtied by the sync_tasks will be synced on the next
581 * pass.
582 */
583 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
584 dsl_sync_task_t *dst;
585 /*
586 * No more sync tasks should have been added while we
587 * were syncing.
588 */
589 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
590 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
591 dsl_sync_task_sync(dst, tx);
592 }
593
594 dmu_tx_commit(tx);
595
596 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
597 }
598
599 void
600 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
601 {
602 zilog_t *zilog;
603
604 while ((zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg))) {
605 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
606 zil_clean(zilog, txg);
607 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
608 dmu_buf_rele(ds->ds_dbuf, zilog);
609 }
610 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
611 }
612
613 /*
614 * TRUE if the current thread is the tx_sync_thread or if we
615 * are being called from SPA context during pool initialization.
616 */
617 int
618 dsl_pool_sync_context(dsl_pool_t *dp)
619 {
620 return (curthread == dp->dp_tx.tx_sync_thread ||
621 spa_is_initializing(dp->dp_spa));
622 }
623
624 uint64_t
625 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
626 {
627 uint64_t space, resv;
628
629 /*
630 * If we're trying to assess whether it's OK to do a free,
631 * cut the reservation in half to allow forward progress
632 * (e.g. make it possible to rm(1) files from a full pool).
633 */
634 space = spa_get_dspace(dp->dp_spa);
635 resv = spa_get_slop_space(dp->dp_spa);
636 if (netfree)
637 resv >>= 1;
638
639 return (space - resv);
640 }
641
642 boolean_t
643 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
644 {
645 uint64_t delay_min_bytes =
646 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
647 boolean_t rv;
648
649 mutex_enter(&dp->dp_lock);
650 if (dp->dp_dirty_total > zfs_dirty_data_sync)
651 txg_kick(dp);
652 rv = (dp->dp_dirty_total > delay_min_bytes);
653 mutex_exit(&dp->dp_lock);
654 return (rv);
655 }
656
657 void
658 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
659 {
660 if (space > 0) {
661 mutex_enter(&dp->dp_lock);
662 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
663 dsl_pool_dirty_delta(dp, space);
664 mutex_exit(&dp->dp_lock);
665 }
666 }
667
668 void
669 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
670 {
671 ASSERT3S(space, >=, 0);
672 if (space == 0)
673 return;
674
675 mutex_enter(&dp->dp_lock);
676 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
677 /* XXX writing something we didn't dirty? */
678 space = dp->dp_dirty_pertxg[txg & TXG_MASK];
679 }
680 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
681 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
682 ASSERT3U(dp->dp_dirty_total, >=, space);
683 dsl_pool_dirty_delta(dp, -space);
684 mutex_exit(&dp->dp_lock);
685 }
686
687 /* ARGSUSED */
688 static int
689 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
690 {
691 dmu_tx_t *tx = arg;
692 dsl_dataset_t *ds, *prev = NULL;
693 int err;
694
695 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
696 if (err)
697 return (err);
698
699 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
700 err = dsl_dataset_hold_obj(dp,
701 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
702 if (err) {
703 dsl_dataset_rele(ds, FTAG);
704 return (err);
705 }
706
707 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
708 break;
709 dsl_dataset_rele(ds, FTAG);
710 ds = prev;
711 prev = NULL;
712 }
713
714 if (prev == NULL) {
715 prev = dp->dp_origin_snap;
716
717 /*
718 * The $ORIGIN can't have any data, or the accounting
719 * will be wrong.
720 */
721 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
722
723 /* The origin doesn't get attached to itself */
724 if (ds->ds_object == prev->ds_object) {
725 dsl_dataset_rele(ds, FTAG);
726 return (0);
727 }
728
729 dmu_buf_will_dirty(ds->ds_dbuf, tx);
730 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
731 dsl_dataset_phys(ds)->ds_prev_snap_txg =
732 dsl_dataset_phys(prev)->ds_creation_txg;
733
734 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
735 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
736
737 dmu_buf_will_dirty(prev->ds_dbuf, tx);
738 dsl_dataset_phys(prev)->ds_num_children++;
739
740 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
741 ASSERT(ds->ds_prev == NULL);
742 VERIFY0(dsl_dataset_hold_obj(dp,
743 dsl_dataset_phys(ds)->ds_prev_snap_obj,
744 ds, &ds->ds_prev));
745 }
746 }
747
748 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
749 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
750
751 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
752 dmu_buf_will_dirty(prev->ds_dbuf, tx);
753 dsl_dataset_phys(prev)->ds_next_clones_obj =
754 zap_create(dp->dp_meta_objset,
755 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
756 }
757 VERIFY0(zap_add_int(dp->dp_meta_objset,
758 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
759
760 dsl_dataset_rele(ds, FTAG);
761 if (prev != dp->dp_origin_snap)
762 dsl_dataset_rele(prev, FTAG);
763 return (0);
764 }
765
766 void
767 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
768 {
769 ASSERT(dmu_tx_is_syncing(tx));
770 ASSERT(dp->dp_origin_snap != NULL);
771
772 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
773 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
774 }
775
776 /* ARGSUSED */
777 static int
778 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
779 {
780 dmu_tx_t *tx = arg;
781 objset_t *mos = dp->dp_meta_objset;
782
783 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
784 dsl_dataset_t *origin;
785
786 VERIFY0(dsl_dataset_hold_obj(dp,
787 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
788
789 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
790 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
791 dsl_dir_phys(origin->ds_dir)->dd_clones =
792 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
793 0, tx);
794 }
795
796 VERIFY0(zap_add_int(dp->dp_meta_objset,
797 dsl_dir_phys(origin->ds_dir)->dd_clones,
798 ds->ds_object, tx));
799
800 dsl_dataset_rele(origin, FTAG);
801 }
802 return (0);
803 }
804
805 void
806 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
807 {
808 uint64_t obj;
809
810 ASSERT(dmu_tx_is_syncing(tx));
811
812 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
813 VERIFY0(dsl_pool_open_special_dir(dp,
814 FREE_DIR_NAME, &dp->dp_free_dir));
815
816 /*
817 * We can't use bpobj_alloc(), because spa_version() still
818 * returns the old version, and we need a new-version bpobj with
819 * subobj support. So call dmu_object_alloc() directly.
820 */
821 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
822 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
823 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
824 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
825 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
826
827 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
828 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
829 }
830
831 void
832 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
833 {
834 uint64_t dsobj;
835 dsl_dataset_t *ds;
836
837 ASSERT(dmu_tx_is_syncing(tx));
838 ASSERT(dp->dp_origin_snap == NULL);
839 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
840
841 /* create the origin dir, ds, & snap-ds */
842 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
843 NULL, 0, kcred, tx);
844 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
845 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
846 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
847 dp, &dp->dp_origin_snap));
848 dsl_dataset_rele(ds, FTAG);
849 }
850
851 taskq_t *
852 dsl_pool_iput_taskq(dsl_pool_t *dp)
853 {
854 return (dp->dp_iput_taskq);
855 }
856
857 /*
858 * Walk through the pool-wide zap object of temporary snapshot user holds
859 * and release them.
860 */
861 void
862 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
863 {
864 zap_attribute_t za;
865 zap_cursor_t zc;
866 objset_t *mos = dp->dp_meta_objset;
867 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
868 nvlist_t *holds;
869
870 if (zapobj == 0)
871 return;
872 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
873
874 holds = fnvlist_alloc();
875
876 for (zap_cursor_init(&zc, mos, zapobj);
877 zap_cursor_retrieve(&zc, &za) == 0;
878 zap_cursor_advance(&zc)) {
879 char *htag;
880 nvlist_t *tags;
881
882 htag = strchr(za.za_name, '-');
883 *htag = '\0';
884 ++htag;
885 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
886 tags = fnvlist_alloc();
887 fnvlist_add_boolean(tags, htag);
888 fnvlist_add_nvlist(holds, za.za_name, tags);
889 fnvlist_free(tags);
890 } else {
891 fnvlist_add_boolean(tags, htag);
892 }
893 }
894 dsl_dataset_user_release_tmp(dp, holds);
895 fnvlist_free(holds);
896 zap_cursor_fini(&zc);
897 }
898
899 /*
900 * Create the pool-wide zap object for storing temporary snapshot holds.
901 */
902 void
903 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
904 {
905 objset_t *mos = dp->dp_meta_objset;
906
907 ASSERT(dp->dp_tmp_userrefs_obj == 0);
908 ASSERT(dmu_tx_is_syncing(tx));
909
910 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
911 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
912 }
913
914 static int
915 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
916 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
917 {
918 objset_t *mos = dp->dp_meta_objset;
919 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
920 char *name;
921 int error;
922
923 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
924 ASSERT(dmu_tx_is_syncing(tx));
925
926 /*
927 * If the pool was created prior to SPA_VERSION_USERREFS, the
928 * zap object for temporary holds might not exist yet.
929 */
930 if (zapobj == 0) {
931 if (holding) {
932 dsl_pool_user_hold_create_obj(dp, tx);
933 zapobj = dp->dp_tmp_userrefs_obj;
934 } else {
935 return (SET_ERROR(ENOENT));
936 }
937 }
938
939 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
940 if (holding)
941 error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
942 else
943 error = zap_remove(mos, zapobj, name, tx);
944 strfree(name);
945
946 return (error);
947 }
948
949 /*
950 * Add a temporary hold for the given dataset object and tag.
951 */
952 int
953 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
954 uint64_t now, dmu_tx_t *tx)
955 {
956 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
957 }
958
959 /*
960 * Release a temporary hold for the given dataset object and tag.
961 */
962 int
963 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
964 dmu_tx_t *tx)
965 {
966 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
967 tx, B_FALSE));
968 }
969
970 /*
971 * DSL Pool Configuration Lock
972 *
973 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
974 * creation / destruction / rename / property setting). It must be held for
975 * read to hold a dataset or dsl_dir. I.e. you must call
976 * dsl_pool_config_enter() or dsl_pool_hold() before calling
977 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
978 * must be held continuously until all datasets and dsl_dirs are released.
979 *
980 * The only exception to this rule is that if a "long hold" is placed on
981 * a dataset, then the dp_config_rwlock may be dropped while the dataset
982 * is still held. The long hold will prevent the dataset from being
983 * destroyed -- the destroy will fail with EBUSY. A long hold can be
984 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
985 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
986 *
987 * Legitimate long-holders (including owners) should be long-running, cancelable
988 * tasks that should cause "zfs destroy" to fail. This includes DMU
989 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
990 * "zfs send", and "zfs diff". There are several other long-holders whose
991 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
992 *
993 * The usual formula for long-holding would be:
994 * dsl_pool_hold()
995 * dsl_dataset_hold()
996 * ... perform checks ...
997 * dsl_dataset_long_hold()
998 * dsl_pool_rele()
999 * ... perform long-running task ...
1000 * dsl_dataset_long_rele()
1001 * dsl_dataset_rele()
1002 *
1003 * Note that when the long hold is released, the dataset is still held but
1004 * the pool is not held. The dataset may change arbitrarily during this time
1005 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the
1006 * dataset except release it.
1007 *
1008 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1009 * or modifying operations.
1010 *
1011 * Modifying operations should generally use dsl_sync_task(). The synctask
1012 * infrastructure enforces proper locking strategy with respect to the
1013 * dp_config_rwlock. See the comment above dsl_sync_task() for details.
1014 *
1015 * Read-only operations will manually hold the pool, then the dataset, obtain
1016 * information from the dataset, then release the pool and dataset.
1017 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1018 * hold/rele.
1019 */
1020
1021 int
1022 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1023 {
1024 spa_t *spa;
1025 int error;
1026
1027 error = spa_open(name, &spa, tag);
1028 if (error == 0) {
1029 *dp = spa_get_dsl(spa);
1030 dsl_pool_config_enter(*dp, tag);
1031 }
1032 return (error);
1033 }
1034
1035 void
1036 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1037 {
1038 dsl_pool_config_exit(dp, tag);
1039 spa_close(dp->dp_spa, tag);
1040 }
1041
1042 void
1043 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1044 {
1045 /*
1046 * We use a "reentrant" reader-writer lock, but not reentrantly.
1047 *
1048 * The rrwlock can (with the track_all flag) track all reading threads,
1049 * which is very useful for debugging which code path failed to release
1050 * the lock, and for verifying that the *current* thread does hold
1051 * the lock.
1052 *
1053 * (Unlike a rwlock, which knows that N threads hold it for
1054 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1055 * if any thread holds it for read, even if this thread doesn't).
1056 */
1057 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1058 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1059 }
1060
1061 void
1062 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1063 {
1064 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1065 rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1066 }
1067
1068 void
1069 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1070 {
1071 rrw_exit(&dp->dp_config_rwlock, tag);
1072 }
1073
1074 boolean_t
1075 dsl_pool_config_held(dsl_pool_t *dp)
1076 {
1077 return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1078 }
1079
1080 boolean_t
1081 dsl_pool_config_held_writer(dsl_pool_t *dp)
1082 {
1083 return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1084 }
1085
1086 #if defined(_KERNEL) && defined(HAVE_SPL)
1087 EXPORT_SYMBOL(dsl_pool_config_enter);
1088 EXPORT_SYMBOL(dsl_pool_config_exit);
1089
1090 /* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
1091 module_param(zfs_dirty_data_max_percent, int, 0444);
1092 MODULE_PARM_DESC(zfs_dirty_data_max_percent, "percent of ram can be dirty");
1093
1094 /* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
1095 module_param(zfs_dirty_data_max_max_percent, int, 0444);
1096 MODULE_PARM_DESC(zfs_dirty_data_max_max_percent,
1097 "zfs_dirty_data_max upper bound as % of RAM");
1098
1099 module_param(zfs_delay_min_dirty_percent, int, 0644);
1100 MODULE_PARM_DESC(zfs_delay_min_dirty_percent, "transaction delay threshold");
1101
1102 module_param(zfs_dirty_data_max, ulong, 0644);
1103 MODULE_PARM_DESC(zfs_dirty_data_max, "determines the dirty space limit");
1104
1105 /* zfs_dirty_data_max_max only applied at module load in arc_init(). */
1106 module_param(zfs_dirty_data_max_max, ulong, 0444);
1107 MODULE_PARM_DESC(zfs_dirty_data_max_max,
1108 "zfs_dirty_data_max upper bound in bytes");
1109
1110 module_param(zfs_dirty_data_sync, ulong, 0644);
1111 MODULE_PARM_DESC(zfs_dirty_data_sync, "sync txg when this much dirty data");
1112
1113 module_param(zfs_delay_scale, ulong, 0644);
1114 MODULE_PARM_DESC(zfs_delay_scale, "how quickly delay approaches infinity");
1115 #endif