]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - zfs/module/zfs/metaslab.c
UBUNTU: SAUCE: (noup) Update spl to 0.6.5.8-0ubuntu1, zfs to 0.6.5.8-0ubuntu1
[mirror_ubuntu-zesty-kernel.git] / zfs / module / zfs / metaslab.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/dmu.h>
29 #include <sys/dmu_tx.h>
30 #include <sys/space_map.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio.h>
34 #include <sys/spa_impl.h>
35 #include <sys/zfeature.h>
36
37 #define WITH_DF_BLOCK_ALLOCATOR
38
39 /*
40 * Allow allocations to switch to gang blocks quickly. We do this to
41 * avoid having to load lots of space_maps in a given txg. There are,
42 * however, some cases where we want to avoid "fast" ganging and instead
43 * we want to do an exhaustive search of all metaslabs on this device.
44 * Currently we don't allow any gang, slog, or dump device related allocations
45 * to "fast" gang.
46 */
47 #define CAN_FASTGANG(flags) \
48 (!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \
49 METASLAB_GANG_AVOID)))
50
51 #define METASLAB_WEIGHT_PRIMARY (1ULL << 63)
52 #define METASLAB_WEIGHT_SECONDARY (1ULL << 62)
53 #define METASLAB_ACTIVE_MASK \
54 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
55
56 /*
57 * Metaslab granularity, in bytes. This is roughly similar to what would be
58 * referred to as the "stripe size" in traditional RAID arrays. In normal
59 * operation, we will try to write this amount of data to a top-level vdev
60 * before moving on to the next one.
61 */
62 unsigned long metaslab_aliquot = 512 << 10;
63
64 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
65
66 /*
67 * The in-core space map representation is more compact than its on-disk form.
68 * The zfs_condense_pct determines how much more compact the in-core
69 * space_map representation must be before we compact it on-disk.
70 * Values should be greater than or equal to 100.
71 */
72 int zfs_condense_pct = 200;
73
74 /*
75 * Condensing a metaslab is not guaranteed to actually reduce the amount of
76 * space used on disk. In particular, a space map uses data in increments of
77 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
78 * same number of blocks after condensing. Since the goal of condensing is to
79 * reduce the number of IOPs required to read the space map, we only want to
80 * condense when we can be sure we will reduce the number of blocks used by the
81 * space map. Unfortunately, we cannot precisely compute whether or not this is
82 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
83 * we apply the following heuristic: do not condense a spacemap unless the
84 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
85 * blocks.
86 */
87 int zfs_metaslab_condense_block_threshold = 4;
88
89 /*
90 * The zfs_mg_noalloc_threshold defines which metaslab groups should
91 * be eligible for allocation. The value is defined as a percentage of
92 * free space. Metaslab groups that have more free space than
93 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
94 * a metaslab group's free space is less than or equal to the
95 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
96 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
97 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
98 * groups are allowed to accept allocations. Gang blocks are always
99 * eligible to allocate on any metaslab group. The default value of 0 means
100 * no metaslab group will be excluded based on this criterion.
101 */
102 int zfs_mg_noalloc_threshold = 0;
103
104 /*
105 * Metaslab groups are considered eligible for allocations if their
106 * fragmenation metric (measured as a percentage) is less than or equal to
107 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
108 * then it will be skipped unless all metaslab groups within the metaslab
109 * class have also crossed this threshold.
110 */
111 int zfs_mg_fragmentation_threshold = 85;
112
113 /*
114 * Allow metaslabs to keep their active state as long as their fragmentation
115 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
116 * active metaslab that exceeds this threshold will no longer keep its active
117 * status allowing better metaslabs to be selected.
118 */
119 int zfs_metaslab_fragmentation_threshold = 70;
120
121 /*
122 * When set will load all metaslabs when pool is first opened.
123 */
124 int metaslab_debug_load = 0;
125
126 /*
127 * When set will prevent metaslabs from being unloaded.
128 */
129 int metaslab_debug_unload = 0;
130
131 /*
132 * Minimum size which forces the dynamic allocator to change
133 * it's allocation strategy. Once the space map cannot satisfy
134 * an allocation of this size then it switches to using more
135 * aggressive strategy (i.e search by size rather than offset).
136 */
137 uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
138
139 /*
140 * The minimum free space, in percent, which must be available
141 * in a space map to continue allocations in a first-fit fashion.
142 * Once the space_map's free space drops below this level we dynamically
143 * switch to using best-fit allocations.
144 */
145 int metaslab_df_free_pct = 4;
146
147 /*
148 * Percentage of all cpus that can be used by the metaslab taskq.
149 */
150 int metaslab_load_pct = 50;
151
152 /*
153 * Determines how many txgs a metaslab may remain loaded without having any
154 * allocations from it. As long as a metaslab continues to be used we will
155 * keep it loaded.
156 */
157 int metaslab_unload_delay = TXG_SIZE * 2;
158
159 /*
160 * Max number of metaslabs per group to preload.
161 */
162 int metaslab_preload_limit = SPA_DVAS_PER_BP;
163
164 /*
165 * Enable/disable preloading of metaslab.
166 */
167 int metaslab_preload_enabled = B_TRUE;
168
169 /*
170 * Enable/disable fragmentation weighting on metaslabs.
171 */
172 int metaslab_fragmentation_factor_enabled = B_TRUE;
173
174 /*
175 * Enable/disable lba weighting (i.e. outer tracks are given preference).
176 */
177 int metaslab_lba_weighting_enabled = B_TRUE;
178
179 /*
180 * Enable/disable metaslab group biasing.
181 */
182 int metaslab_bias_enabled = B_TRUE;
183
184 static uint64_t metaslab_fragmentation(metaslab_t *);
185
186 /*
187 * ==========================================================================
188 * Metaslab classes
189 * ==========================================================================
190 */
191 metaslab_class_t *
192 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
193 {
194 metaslab_class_t *mc;
195
196 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
197
198 mc->mc_spa = spa;
199 mc->mc_rotor = NULL;
200 mc->mc_ops = ops;
201 mutex_init(&mc->mc_fastwrite_lock, NULL, MUTEX_DEFAULT, NULL);
202
203 return (mc);
204 }
205
206 void
207 metaslab_class_destroy(metaslab_class_t *mc)
208 {
209 ASSERT(mc->mc_rotor == NULL);
210 ASSERT(mc->mc_alloc == 0);
211 ASSERT(mc->mc_deferred == 0);
212 ASSERT(mc->mc_space == 0);
213 ASSERT(mc->mc_dspace == 0);
214
215 mutex_destroy(&mc->mc_fastwrite_lock);
216 kmem_free(mc, sizeof (metaslab_class_t));
217 }
218
219 int
220 metaslab_class_validate(metaslab_class_t *mc)
221 {
222 metaslab_group_t *mg;
223 vdev_t *vd;
224
225 /*
226 * Must hold one of the spa_config locks.
227 */
228 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
229 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
230
231 if ((mg = mc->mc_rotor) == NULL)
232 return (0);
233
234 do {
235 vd = mg->mg_vd;
236 ASSERT(vd->vdev_mg != NULL);
237 ASSERT3P(vd->vdev_top, ==, vd);
238 ASSERT3P(mg->mg_class, ==, mc);
239 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
240 } while ((mg = mg->mg_next) != mc->mc_rotor);
241
242 return (0);
243 }
244
245 void
246 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
247 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
248 {
249 atomic_add_64(&mc->mc_alloc, alloc_delta);
250 atomic_add_64(&mc->mc_deferred, defer_delta);
251 atomic_add_64(&mc->mc_space, space_delta);
252 atomic_add_64(&mc->mc_dspace, dspace_delta);
253 }
254
255 uint64_t
256 metaslab_class_get_alloc(metaslab_class_t *mc)
257 {
258 return (mc->mc_alloc);
259 }
260
261 uint64_t
262 metaslab_class_get_deferred(metaslab_class_t *mc)
263 {
264 return (mc->mc_deferred);
265 }
266
267 uint64_t
268 metaslab_class_get_space(metaslab_class_t *mc)
269 {
270 return (mc->mc_space);
271 }
272
273 uint64_t
274 metaslab_class_get_dspace(metaslab_class_t *mc)
275 {
276 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
277 }
278
279 void
280 metaslab_class_histogram_verify(metaslab_class_t *mc)
281 {
282 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
283 uint64_t *mc_hist;
284 int i, c;
285
286 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
287 return;
288
289 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
290 KM_SLEEP);
291
292 for (c = 0; c < rvd->vdev_children; c++) {
293 vdev_t *tvd = rvd->vdev_child[c];
294 metaslab_group_t *mg = tvd->vdev_mg;
295
296 /*
297 * Skip any holes, uninitialized top-levels, or
298 * vdevs that are not in this metalab class.
299 */
300 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
301 mg->mg_class != mc) {
302 continue;
303 }
304
305 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
306 mc_hist[i] += mg->mg_histogram[i];
307 }
308
309 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
310 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
311
312 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
313 }
314
315 /*
316 * Calculate the metaslab class's fragmentation metric. The metric
317 * is weighted based on the space contribution of each metaslab group.
318 * The return value will be a number between 0 and 100 (inclusive), or
319 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
320 * zfs_frag_table for more information about the metric.
321 */
322 uint64_t
323 metaslab_class_fragmentation(metaslab_class_t *mc)
324 {
325 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
326 uint64_t fragmentation = 0;
327 int c;
328
329 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
330
331 for (c = 0; c < rvd->vdev_children; c++) {
332 vdev_t *tvd = rvd->vdev_child[c];
333 metaslab_group_t *mg = tvd->vdev_mg;
334
335 /*
336 * Skip any holes, uninitialized top-levels, or
337 * vdevs that are not in this metalab class.
338 */
339 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
340 mg->mg_class != mc) {
341 continue;
342 }
343
344 /*
345 * If a metaslab group does not contain a fragmentation
346 * metric then just bail out.
347 */
348 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
349 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
350 return (ZFS_FRAG_INVALID);
351 }
352
353 /*
354 * Determine how much this metaslab_group is contributing
355 * to the overall pool fragmentation metric.
356 */
357 fragmentation += mg->mg_fragmentation *
358 metaslab_group_get_space(mg);
359 }
360 fragmentation /= metaslab_class_get_space(mc);
361
362 ASSERT3U(fragmentation, <=, 100);
363 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
364 return (fragmentation);
365 }
366
367 /*
368 * Calculate the amount of expandable space that is available in
369 * this metaslab class. If a device is expanded then its expandable
370 * space will be the amount of allocatable space that is currently not
371 * part of this metaslab class.
372 */
373 uint64_t
374 metaslab_class_expandable_space(metaslab_class_t *mc)
375 {
376 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
377 uint64_t space = 0;
378 int c;
379
380 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
381 for (c = 0; c < rvd->vdev_children; c++) {
382 vdev_t *tvd = rvd->vdev_child[c];
383 metaslab_group_t *mg = tvd->vdev_mg;
384
385 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
386 mg->mg_class != mc) {
387 continue;
388 }
389
390 space += tvd->vdev_max_asize - tvd->vdev_asize;
391 }
392 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
393 return (space);
394 }
395
396 /*
397 * ==========================================================================
398 * Metaslab groups
399 * ==========================================================================
400 */
401 static int
402 metaslab_compare(const void *x1, const void *x2)
403 {
404 const metaslab_t *m1 = x1;
405 const metaslab_t *m2 = x2;
406
407 if (m1->ms_weight < m2->ms_weight)
408 return (1);
409 if (m1->ms_weight > m2->ms_weight)
410 return (-1);
411
412 /*
413 * If the weights are identical, use the offset to force uniqueness.
414 */
415 if (m1->ms_start < m2->ms_start)
416 return (-1);
417 if (m1->ms_start > m2->ms_start)
418 return (1);
419
420 ASSERT3P(m1, ==, m2);
421
422 return (0);
423 }
424
425 /*
426 * Update the allocatable flag and the metaslab group's capacity.
427 * The allocatable flag is set to true if the capacity is below
428 * the zfs_mg_noalloc_threshold. If a metaslab group transitions
429 * from allocatable to non-allocatable or vice versa then the metaslab
430 * group's class is updated to reflect the transition.
431 */
432 static void
433 metaslab_group_alloc_update(metaslab_group_t *mg)
434 {
435 vdev_t *vd = mg->mg_vd;
436 metaslab_class_t *mc = mg->mg_class;
437 vdev_stat_t *vs = &vd->vdev_stat;
438 boolean_t was_allocatable;
439
440 ASSERT(vd == vd->vdev_top);
441
442 mutex_enter(&mg->mg_lock);
443 was_allocatable = mg->mg_allocatable;
444
445 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
446 (vs->vs_space + 1);
447
448 /*
449 * A metaslab group is considered allocatable if it has plenty
450 * of free space or is not heavily fragmented. We only take
451 * fragmentation into account if the metaslab group has a valid
452 * fragmentation metric (i.e. a value between 0 and 100).
453 */
454 mg->mg_allocatable = (mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
455 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
456 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
457
458 /*
459 * The mc_alloc_groups maintains a count of the number of
460 * groups in this metaslab class that are still above the
461 * zfs_mg_noalloc_threshold. This is used by the allocating
462 * threads to determine if they should avoid allocations to
463 * a given group. The allocator will avoid allocations to a group
464 * if that group has reached or is below the zfs_mg_noalloc_threshold
465 * and there are still other groups that are above the threshold.
466 * When a group transitions from allocatable to non-allocatable or
467 * vice versa we update the metaslab class to reflect that change.
468 * When the mc_alloc_groups value drops to 0 that means that all
469 * groups have reached the zfs_mg_noalloc_threshold making all groups
470 * eligible for allocations. This effectively means that all devices
471 * are balanced again.
472 */
473 if (was_allocatable && !mg->mg_allocatable)
474 mc->mc_alloc_groups--;
475 else if (!was_allocatable && mg->mg_allocatable)
476 mc->mc_alloc_groups++;
477
478 mutex_exit(&mg->mg_lock);
479 }
480
481 metaslab_group_t *
482 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
483 {
484 metaslab_group_t *mg;
485
486 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
487 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
488 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
489 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
490 mg->mg_vd = vd;
491 mg->mg_class = mc;
492 mg->mg_activation_count = 0;
493
494 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
495 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
496
497 return (mg);
498 }
499
500 void
501 metaslab_group_destroy(metaslab_group_t *mg)
502 {
503 ASSERT(mg->mg_prev == NULL);
504 ASSERT(mg->mg_next == NULL);
505 /*
506 * We may have gone below zero with the activation count
507 * either because we never activated in the first place or
508 * because we're done, and possibly removing the vdev.
509 */
510 ASSERT(mg->mg_activation_count <= 0);
511
512 taskq_destroy(mg->mg_taskq);
513 avl_destroy(&mg->mg_metaslab_tree);
514 mutex_destroy(&mg->mg_lock);
515 kmem_free(mg, sizeof (metaslab_group_t));
516 }
517
518 void
519 metaslab_group_activate(metaslab_group_t *mg)
520 {
521 metaslab_class_t *mc = mg->mg_class;
522 metaslab_group_t *mgprev, *mgnext;
523
524 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
525
526 ASSERT(mc->mc_rotor != mg);
527 ASSERT(mg->mg_prev == NULL);
528 ASSERT(mg->mg_next == NULL);
529 ASSERT(mg->mg_activation_count <= 0);
530
531 if (++mg->mg_activation_count <= 0)
532 return;
533
534 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
535 metaslab_group_alloc_update(mg);
536
537 if ((mgprev = mc->mc_rotor) == NULL) {
538 mg->mg_prev = mg;
539 mg->mg_next = mg;
540 } else {
541 mgnext = mgprev->mg_next;
542 mg->mg_prev = mgprev;
543 mg->mg_next = mgnext;
544 mgprev->mg_next = mg;
545 mgnext->mg_prev = mg;
546 }
547 mc->mc_rotor = mg;
548 }
549
550 void
551 metaslab_group_passivate(metaslab_group_t *mg)
552 {
553 metaslab_class_t *mc = mg->mg_class;
554 metaslab_group_t *mgprev, *mgnext;
555
556 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
557
558 if (--mg->mg_activation_count != 0) {
559 ASSERT(mc->mc_rotor != mg);
560 ASSERT(mg->mg_prev == NULL);
561 ASSERT(mg->mg_next == NULL);
562 ASSERT(mg->mg_activation_count < 0);
563 return;
564 }
565
566 taskq_wait_outstanding(mg->mg_taskq, 0);
567 metaslab_group_alloc_update(mg);
568
569 mgprev = mg->mg_prev;
570 mgnext = mg->mg_next;
571
572 if (mg == mgnext) {
573 mc->mc_rotor = NULL;
574 } else {
575 mc->mc_rotor = mgnext;
576 mgprev->mg_next = mgnext;
577 mgnext->mg_prev = mgprev;
578 }
579
580 mg->mg_prev = NULL;
581 mg->mg_next = NULL;
582 }
583
584 uint64_t
585 metaslab_group_get_space(metaslab_group_t *mg)
586 {
587 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
588 }
589
590 void
591 metaslab_group_histogram_verify(metaslab_group_t *mg)
592 {
593 uint64_t *mg_hist;
594 vdev_t *vd = mg->mg_vd;
595 uint64_t ashift = vd->vdev_ashift;
596 int i, m;
597
598 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
599 return;
600
601 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
602 KM_SLEEP);
603
604 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
605 SPACE_MAP_HISTOGRAM_SIZE + ashift);
606
607 for (m = 0; m < vd->vdev_ms_count; m++) {
608 metaslab_t *msp = vd->vdev_ms[m];
609
610 if (msp->ms_sm == NULL)
611 continue;
612
613 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
614 mg_hist[i + ashift] +=
615 msp->ms_sm->sm_phys->smp_histogram[i];
616 }
617
618 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
619 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
620
621 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
622 }
623
624 static void
625 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
626 {
627 metaslab_class_t *mc = mg->mg_class;
628 uint64_t ashift = mg->mg_vd->vdev_ashift;
629 int i;
630
631 ASSERT(MUTEX_HELD(&msp->ms_lock));
632 if (msp->ms_sm == NULL)
633 return;
634
635 mutex_enter(&mg->mg_lock);
636 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
637 mg->mg_histogram[i + ashift] +=
638 msp->ms_sm->sm_phys->smp_histogram[i];
639 mc->mc_histogram[i + ashift] +=
640 msp->ms_sm->sm_phys->smp_histogram[i];
641 }
642 mutex_exit(&mg->mg_lock);
643 }
644
645 void
646 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
647 {
648 metaslab_class_t *mc = mg->mg_class;
649 uint64_t ashift = mg->mg_vd->vdev_ashift;
650 int i;
651
652 ASSERT(MUTEX_HELD(&msp->ms_lock));
653 if (msp->ms_sm == NULL)
654 return;
655
656 mutex_enter(&mg->mg_lock);
657 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
658 ASSERT3U(mg->mg_histogram[i + ashift], >=,
659 msp->ms_sm->sm_phys->smp_histogram[i]);
660 ASSERT3U(mc->mc_histogram[i + ashift], >=,
661 msp->ms_sm->sm_phys->smp_histogram[i]);
662
663 mg->mg_histogram[i + ashift] -=
664 msp->ms_sm->sm_phys->smp_histogram[i];
665 mc->mc_histogram[i + ashift] -=
666 msp->ms_sm->sm_phys->smp_histogram[i];
667 }
668 mutex_exit(&mg->mg_lock);
669 }
670
671 static void
672 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
673 {
674 ASSERT(msp->ms_group == NULL);
675 mutex_enter(&mg->mg_lock);
676 msp->ms_group = mg;
677 msp->ms_weight = 0;
678 avl_add(&mg->mg_metaslab_tree, msp);
679 mutex_exit(&mg->mg_lock);
680
681 mutex_enter(&msp->ms_lock);
682 metaslab_group_histogram_add(mg, msp);
683 mutex_exit(&msp->ms_lock);
684 }
685
686 static void
687 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
688 {
689 mutex_enter(&msp->ms_lock);
690 metaslab_group_histogram_remove(mg, msp);
691 mutex_exit(&msp->ms_lock);
692
693 mutex_enter(&mg->mg_lock);
694 ASSERT(msp->ms_group == mg);
695 avl_remove(&mg->mg_metaslab_tree, msp);
696 msp->ms_group = NULL;
697 mutex_exit(&mg->mg_lock);
698 }
699
700 static void
701 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
702 {
703 /*
704 * Although in principle the weight can be any value, in
705 * practice we do not use values in the range [1, 511].
706 */
707 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
708 ASSERT(MUTEX_HELD(&msp->ms_lock));
709
710 mutex_enter(&mg->mg_lock);
711 ASSERT(msp->ms_group == mg);
712 avl_remove(&mg->mg_metaslab_tree, msp);
713 msp->ms_weight = weight;
714 avl_add(&mg->mg_metaslab_tree, msp);
715 mutex_exit(&mg->mg_lock);
716 }
717
718 /*
719 * Calculate the fragmentation for a given metaslab group. We can use
720 * a simple average here since all metaslabs within the group must have
721 * the same size. The return value will be a value between 0 and 100
722 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
723 * group have a fragmentation metric.
724 */
725 uint64_t
726 metaslab_group_fragmentation(metaslab_group_t *mg)
727 {
728 vdev_t *vd = mg->mg_vd;
729 uint64_t fragmentation = 0;
730 uint64_t valid_ms = 0;
731 int m;
732
733 for (m = 0; m < vd->vdev_ms_count; m++) {
734 metaslab_t *msp = vd->vdev_ms[m];
735
736 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
737 continue;
738
739 valid_ms++;
740 fragmentation += msp->ms_fragmentation;
741 }
742
743 if (valid_ms <= vd->vdev_ms_count / 2)
744 return (ZFS_FRAG_INVALID);
745
746 fragmentation /= valid_ms;
747 ASSERT3U(fragmentation, <=, 100);
748 return (fragmentation);
749 }
750
751 /*
752 * Determine if a given metaslab group should skip allocations. A metaslab
753 * group should avoid allocations if its free capacity is less than the
754 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
755 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
756 * that can still handle allocations.
757 */
758 static boolean_t
759 metaslab_group_allocatable(metaslab_group_t *mg)
760 {
761 vdev_t *vd = mg->mg_vd;
762 spa_t *spa = vd->vdev_spa;
763 metaslab_class_t *mc = mg->mg_class;
764
765 /*
766 * We use two key metrics to determine if a metaslab group is
767 * considered allocatable -- free space and fragmentation. If
768 * the free space is greater than the free space threshold and
769 * the fragmentation is less than the fragmentation threshold then
770 * consider the group allocatable. There are two case when we will
771 * not consider these key metrics. The first is if the group is
772 * associated with a slog device and the second is if all groups
773 * in this metaslab class have already been consider ineligible
774 * for allocations.
775 */
776 return ((mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
777 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
778 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)) ||
779 mc != spa_normal_class(spa) || mc->mc_alloc_groups == 0);
780 }
781
782 /*
783 * ==========================================================================
784 * Range tree callbacks
785 * ==========================================================================
786 */
787
788 /*
789 * Comparison function for the private size-ordered tree. Tree is sorted
790 * by size, larger sizes at the end of the tree.
791 */
792 static int
793 metaslab_rangesize_compare(const void *x1, const void *x2)
794 {
795 const range_seg_t *r1 = x1;
796 const range_seg_t *r2 = x2;
797 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
798 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
799
800 if (rs_size1 < rs_size2)
801 return (-1);
802 if (rs_size1 > rs_size2)
803 return (1);
804
805 if (r1->rs_start < r2->rs_start)
806 return (-1);
807
808 if (r1->rs_start > r2->rs_start)
809 return (1);
810
811 return (0);
812 }
813
814 /*
815 * Create any block allocator specific components. The current allocators
816 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
817 */
818 static void
819 metaslab_rt_create(range_tree_t *rt, void *arg)
820 {
821 metaslab_t *msp = arg;
822
823 ASSERT3P(rt->rt_arg, ==, msp);
824 ASSERT(msp->ms_tree == NULL);
825
826 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
827 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
828 }
829
830 /*
831 * Destroy the block allocator specific components.
832 */
833 static void
834 metaslab_rt_destroy(range_tree_t *rt, void *arg)
835 {
836 metaslab_t *msp = arg;
837
838 ASSERT3P(rt->rt_arg, ==, msp);
839 ASSERT3P(msp->ms_tree, ==, rt);
840 ASSERT0(avl_numnodes(&msp->ms_size_tree));
841
842 avl_destroy(&msp->ms_size_tree);
843 }
844
845 static void
846 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
847 {
848 metaslab_t *msp = arg;
849
850 ASSERT3P(rt->rt_arg, ==, msp);
851 ASSERT3P(msp->ms_tree, ==, rt);
852 VERIFY(!msp->ms_condensing);
853 avl_add(&msp->ms_size_tree, rs);
854 }
855
856 static void
857 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
858 {
859 metaslab_t *msp = arg;
860
861 ASSERT3P(rt->rt_arg, ==, msp);
862 ASSERT3P(msp->ms_tree, ==, rt);
863 VERIFY(!msp->ms_condensing);
864 avl_remove(&msp->ms_size_tree, rs);
865 }
866
867 static void
868 metaslab_rt_vacate(range_tree_t *rt, void *arg)
869 {
870 metaslab_t *msp = arg;
871
872 ASSERT3P(rt->rt_arg, ==, msp);
873 ASSERT3P(msp->ms_tree, ==, rt);
874
875 /*
876 * Normally one would walk the tree freeing nodes along the way.
877 * Since the nodes are shared with the range trees we can avoid
878 * walking all nodes and just reinitialize the avl tree. The nodes
879 * will be freed by the range tree, so we don't want to free them here.
880 */
881 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
882 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
883 }
884
885 static range_tree_ops_t metaslab_rt_ops = {
886 metaslab_rt_create,
887 metaslab_rt_destroy,
888 metaslab_rt_add,
889 metaslab_rt_remove,
890 metaslab_rt_vacate
891 };
892
893 /*
894 * ==========================================================================
895 * Metaslab block operations
896 * ==========================================================================
897 */
898
899 /*
900 * Return the maximum contiguous segment within the metaslab.
901 */
902 uint64_t
903 metaslab_block_maxsize(metaslab_t *msp)
904 {
905 avl_tree_t *t = &msp->ms_size_tree;
906 range_seg_t *rs;
907
908 if (t == NULL || (rs = avl_last(t)) == NULL)
909 return (0ULL);
910
911 return (rs->rs_end - rs->rs_start);
912 }
913
914 uint64_t
915 metaslab_block_alloc(metaslab_t *msp, uint64_t size)
916 {
917 uint64_t start;
918 range_tree_t *rt = msp->ms_tree;
919
920 VERIFY(!msp->ms_condensing);
921
922 start = msp->ms_ops->msop_alloc(msp, size);
923 if (start != -1ULL) {
924 vdev_t *vd = msp->ms_group->mg_vd;
925
926 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
927 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
928 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
929 range_tree_remove(rt, start, size);
930 }
931 return (start);
932 }
933
934 /*
935 * ==========================================================================
936 * Common allocator routines
937 * ==========================================================================
938 */
939
940 #if defined(WITH_FF_BLOCK_ALLOCATOR) || \
941 defined(WITH_DF_BLOCK_ALLOCATOR) || \
942 defined(WITH_CF_BLOCK_ALLOCATOR)
943 /*
944 * This is a helper function that can be used by the allocator to find
945 * a suitable block to allocate. This will search the specified AVL
946 * tree looking for a block that matches the specified criteria.
947 */
948 static uint64_t
949 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
950 uint64_t align)
951 {
952 range_seg_t *rs, rsearch;
953 avl_index_t where;
954
955 rsearch.rs_start = *cursor;
956 rsearch.rs_end = *cursor + size;
957
958 rs = avl_find(t, &rsearch, &where);
959 if (rs == NULL)
960 rs = avl_nearest(t, where, AVL_AFTER);
961
962 while (rs != NULL) {
963 uint64_t offset = P2ROUNDUP(rs->rs_start, align);
964
965 if (offset + size <= rs->rs_end) {
966 *cursor = offset + size;
967 return (offset);
968 }
969 rs = AVL_NEXT(t, rs);
970 }
971
972 /*
973 * If we know we've searched the whole map (*cursor == 0), give up.
974 * Otherwise, reset the cursor to the beginning and try again.
975 */
976 if (*cursor == 0)
977 return (-1ULL);
978
979 *cursor = 0;
980 return (metaslab_block_picker(t, cursor, size, align));
981 }
982 #endif /* WITH_FF/DF/CF_BLOCK_ALLOCATOR */
983
984 #if defined(WITH_FF_BLOCK_ALLOCATOR)
985 /*
986 * ==========================================================================
987 * The first-fit block allocator
988 * ==========================================================================
989 */
990 static uint64_t
991 metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
992 {
993 /*
994 * Find the largest power of 2 block size that evenly divides the
995 * requested size. This is used to try to allocate blocks with similar
996 * alignment from the same area of the metaslab (i.e. same cursor
997 * bucket) but it does not guarantee that other allocations sizes
998 * may exist in the same region.
999 */
1000 uint64_t align = size & -size;
1001 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1002 avl_tree_t *t = &msp->ms_tree->rt_root;
1003
1004 return (metaslab_block_picker(t, cursor, size, align));
1005 }
1006
1007 static metaslab_ops_t metaslab_ff_ops = {
1008 metaslab_ff_alloc
1009 };
1010
1011 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
1012 #endif /* WITH_FF_BLOCK_ALLOCATOR */
1013
1014 #if defined(WITH_DF_BLOCK_ALLOCATOR)
1015 /*
1016 * ==========================================================================
1017 * Dynamic block allocator -
1018 * Uses the first fit allocation scheme until space get low and then
1019 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1020 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1021 * ==========================================================================
1022 */
1023 static uint64_t
1024 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1025 {
1026 /*
1027 * Find the largest power of 2 block size that evenly divides the
1028 * requested size. This is used to try to allocate blocks with similar
1029 * alignment from the same area of the metaslab (i.e. same cursor
1030 * bucket) but it does not guarantee that other allocations sizes
1031 * may exist in the same region.
1032 */
1033 uint64_t align = size & -size;
1034 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1035 range_tree_t *rt = msp->ms_tree;
1036 avl_tree_t *t = &rt->rt_root;
1037 uint64_t max_size = metaslab_block_maxsize(msp);
1038 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1039
1040 ASSERT(MUTEX_HELD(&msp->ms_lock));
1041 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
1042
1043 if (max_size < size)
1044 return (-1ULL);
1045
1046 /*
1047 * If we're running low on space switch to using the size
1048 * sorted AVL tree (best-fit).
1049 */
1050 if (max_size < metaslab_df_alloc_threshold ||
1051 free_pct < metaslab_df_free_pct) {
1052 t = &msp->ms_size_tree;
1053 *cursor = 0;
1054 }
1055
1056 return (metaslab_block_picker(t, cursor, size, 1ULL));
1057 }
1058
1059 static metaslab_ops_t metaslab_df_ops = {
1060 metaslab_df_alloc
1061 };
1062
1063 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1064 #endif /* WITH_DF_BLOCK_ALLOCATOR */
1065
1066 #if defined(WITH_CF_BLOCK_ALLOCATOR)
1067 /*
1068 * ==========================================================================
1069 * Cursor fit block allocator -
1070 * Select the largest region in the metaslab, set the cursor to the beginning
1071 * of the range and the cursor_end to the end of the range. As allocations
1072 * are made advance the cursor. Continue allocating from the cursor until
1073 * the range is exhausted and then find a new range.
1074 * ==========================================================================
1075 */
1076 static uint64_t
1077 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1078 {
1079 range_tree_t *rt = msp->ms_tree;
1080 avl_tree_t *t = &msp->ms_size_tree;
1081 uint64_t *cursor = &msp->ms_lbas[0];
1082 uint64_t *cursor_end = &msp->ms_lbas[1];
1083 uint64_t offset = 0;
1084
1085 ASSERT(MUTEX_HELD(&msp->ms_lock));
1086 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
1087
1088 ASSERT3U(*cursor_end, >=, *cursor);
1089
1090 if ((*cursor + size) > *cursor_end) {
1091 range_seg_t *rs;
1092
1093 rs = avl_last(&msp->ms_size_tree);
1094 if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1095 return (-1ULL);
1096
1097 *cursor = rs->rs_start;
1098 *cursor_end = rs->rs_end;
1099 }
1100
1101 offset = *cursor;
1102 *cursor += size;
1103
1104 return (offset);
1105 }
1106
1107 static metaslab_ops_t metaslab_cf_ops = {
1108 metaslab_cf_alloc
1109 };
1110
1111 metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
1112 #endif /* WITH_CF_BLOCK_ALLOCATOR */
1113
1114 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1115 /*
1116 * ==========================================================================
1117 * New dynamic fit allocator -
1118 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1119 * contiguous blocks. If no region is found then just use the largest segment
1120 * that remains.
1121 * ==========================================================================
1122 */
1123
1124 /*
1125 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1126 * to request from the allocator.
1127 */
1128 uint64_t metaslab_ndf_clump_shift = 4;
1129
1130 static uint64_t
1131 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1132 {
1133 avl_tree_t *t = &msp->ms_tree->rt_root;
1134 avl_index_t where;
1135 range_seg_t *rs, rsearch;
1136 uint64_t hbit = highbit64(size);
1137 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1138 uint64_t max_size = metaslab_block_maxsize(msp);
1139
1140 ASSERT(MUTEX_HELD(&msp->ms_lock));
1141 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
1142
1143 if (max_size < size)
1144 return (-1ULL);
1145
1146 rsearch.rs_start = *cursor;
1147 rsearch.rs_end = *cursor + size;
1148
1149 rs = avl_find(t, &rsearch, &where);
1150 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1151 t = &msp->ms_size_tree;
1152
1153 rsearch.rs_start = 0;
1154 rsearch.rs_end = MIN(max_size,
1155 1ULL << (hbit + metaslab_ndf_clump_shift));
1156 rs = avl_find(t, &rsearch, &where);
1157 if (rs == NULL)
1158 rs = avl_nearest(t, where, AVL_AFTER);
1159 ASSERT(rs != NULL);
1160 }
1161
1162 if ((rs->rs_end - rs->rs_start) >= size) {
1163 *cursor = rs->rs_start + size;
1164 return (rs->rs_start);
1165 }
1166 return (-1ULL);
1167 }
1168
1169 static metaslab_ops_t metaslab_ndf_ops = {
1170 metaslab_ndf_alloc
1171 };
1172
1173 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
1174 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1175
1176
1177 /*
1178 * ==========================================================================
1179 * Metaslabs
1180 * ==========================================================================
1181 */
1182
1183 /*
1184 * Wait for any in-progress metaslab loads to complete.
1185 */
1186 void
1187 metaslab_load_wait(metaslab_t *msp)
1188 {
1189 ASSERT(MUTEX_HELD(&msp->ms_lock));
1190
1191 while (msp->ms_loading) {
1192 ASSERT(!msp->ms_loaded);
1193 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1194 }
1195 }
1196
1197 int
1198 metaslab_load(metaslab_t *msp)
1199 {
1200 int error = 0;
1201 int t;
1202
1203 ASSERT(MUTEX_HELD(&msp->ms_lock));
1204 ASSERT(!msp->ms_loaded);
1205 ASSERT(!msp->ms_loading);
1206
1207 msp->ms_loading = B_TRUE;
1208
1209 /*
1210 * If the space map has not been allocated yet, then treat
1211 * all the space in the metaslab as free and add it to the
1212 * ms_tree.
1213 */
1214 if (msp->ms_sm != NULL)
1215 error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE);
1216 else
1217 range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size);
1218
1219 msp->ms_loaded = (error == 0);
1220 msp->ms_loading = B_FALSE;
1221
1222 if (msp->ms_loaded) {
1223 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1224 range_tree_walk(msp->ms_defertree[t],
1225 range_tree_remove, msp->ms_tree);
1226 }
1227 }
1228 cv_broadcast(&msp->ms_load_cv);
1229 return (error);
1230 }
1231
1232 void
1233 metaslab_unload(metaslab_t *msp)
1234 {
1235 ASSERT(MUTEX_HELD(&msp->ms_lock));
1236 range_tree_vacate(msp->ms_tree, NULL, NULL);
1237 msp->ms_loaded = B_FALSE;
1238 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
1239 }
1240
1241 int
1242 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
1243 metaslab_t **msp)
1244 {
1245 vdev_t *vd = mg->mg_vd;
1246 objset_t *mos = vd->vdev_spa->spa_meta_objset;
1247 metaslab_t *ms;
1248 int error;
1249
1250 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
1251 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
1252 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
1253 ms->ms_id = id;
1254 ms->ms_start = id << vd->vdev_ms_shift;
1255 ms->ms_size = 1ULL << vd->vdev_ms_shift;
1256
1257 /*
1258 * We only open space map objects that already exist. All others
1259 * will be opened when we finally allocate an object for it.
1260 */
1261 if (object != 0) {
1262 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
1263 ms->ms_size, vd->vdev_ashift, &ms->ms_lock);
1264
1265 if (error != 0) {
1266 kmem_free(ms, sizeof (metaslab_t));
1267 return (error);
1268 }
1269
1270 ASSERT(ms->ms_sm != NULL);
1271 }
1272
1273 /*
1274 * We create the main range tree here, but we don't create the
1275 * alloctree and freetree until metaslab_sync_done(). This serves
1276 * two purposes: it allows metaslab_sync_done() to detect the
1277 * addition of new space; and for debugging, it ensures that we'd
1278 * data fault on any attempt to use this metaslab before it's ready.
1279 */
1280 ms->ms_tree = range_tree_create(&metaslab_rt_ops, ms, &ms->ms_lock);
1281 metaslab_group_add(mg, ms);
1282
1283 ms->ms_fragmentation = metaslab_fragmentation(ms);
1284 ms->ms_ops = mg->mg_class->mc_ops;
1285
1286 /*
1287 * If we're opening an existing pool (txg == 0) or creating
1288 * a new one (txg == TXG_INITIAL), all space is available now.
1289 * If we're adding space to an existing pool, the new space
1290 * does not become available until after this txg has synced.
1291 */
1292 if (txg <= TXG_INITIAL)
1293 metaslab_sync_done(ms, 0);
1294
1295 /*
1296 * If metaslab_debug_load is set and we're initializing a metaslab
1297 * that has an allocated space_map object then load the its space
1298 * map so that can verify frees.
1299 */
1300 if (metaslab_debug_load && ms->ms_sm != NULL) {
1301 mutex_enter(&ms->ms_lock);
1302 VERIFY0(metaslab_load(ms));
1303 mutex_exit(&ms->ms_lock);
1304 }
1305
1306 if (txg != 0) {
1307 vdev_dirty(vd, 0, NULL, txg);
1308 vdev_dirty(vd, VDD_METASLAB, ms, txg);
1309 }
1310
1311 *msp = ms;
1312
1313 return (0);
1314 }
1315
1316 void
1317 metaslab_fini(metaslab_t *msp)
1318 {
1319 int t;
1320
1321 metaslab_group_t *mg = msp->ms_group;
1322
1323 metaslab_group_remove(mg, msp);
1324
1325 mutex_enter(&msp->ms_lock);
1326
1327 VERIFY(msp->ms_group == NULL);
1328 vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
1329 0, -msp->ms_size);
1330 space_map_close(msp->ms_sm);
1331
1332 metaslab_unload(msp);
1333 range_tree_destroy(msp->ms_tree);
1334
1335 for (t = 0; t < TXG_SIZE; t++) {
1336 range_tree_destroy(msp->ms_alloctree[t]);
1337 range_tree_destroy(msp->ms_freetree[t]);
1338 }
1339
1340 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1341 range_tree_destroy(msp->ms_defertree[t]);
1342 }
1343
1344 ASSERT0(msp->ms_deferspace);
1345
1346 mutex_exit(&msp->ms_lock);
1347 cv_destroy(&msp->ms_load_cv);
1348 mutex_destroy(&msp->ms_lock);
1349
1350 kmem_free(msp, sizeof (metaslab_t));
1351 }
1352
1353 #define FRAGMENTATION_TABLE_SIZE 17
1354
1355 /*
1356 * This table defines a segment size based fragmentation metric that will
1357 * allow each metaslab to derive its own fragmentation value. This is done
1358 * by calculating the space in each bucket of the spacemap histogram and
1359 * multiplying that by the fragmetation metric in this table. Doing
1360 * this for all buckets and dividing it by the total amount of free
1361 * space in this metaslab (i.e. the total free space in all buckets) gives
1362 * us the fragmentation metric. This means that a high fragmentation metric
1363 * equates to most of the free space being comprised of small segments.
1364 * Conversely, if the metric is low, then most of the free space is in
1365 * large segments. A 10% change in fragmentation equates to approximately
1366 * double the number of segments.
1367 *
1368 * This table defines 0% fragmented space using 16MB segments. Testing has
1369 * shown that segments that are greater than or equal to 16MB do not suffer
1370 * from drastic performance problems. Using this value, we derive the rest
1371 * of the table. Since the fragmentation value is never stored on disk, it
1372 * is possible to change these calculations in the future.
1373 */
1374 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1375 100, /* 512B */
1376 100, /* 1K */
1377 98, /* 2K */
1378 95, /* 4K */
1379 90, /* 8K */
1380 80, /* 16K */
1381 70, /* 32K */
1382 60, /* 64K */
1383 50, /* 128K */
1384 40, /* 256K */
1385 30, /* 512K */
1386 20, /* 1M */
1387 15, /* 2M */
1388 10, /* 4M */
1389 5, /* 8M */
1390 0 /* 16M */
1391 };
1392
1393 /*
1394 * Calclate the metaslab's fragmentation metric. A return value
1395 * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does
1396 * not support this metric. Otherwise, the return value should be in the
1397 * range [0, 100].
1398 */
1399 static uint64_t
1400 metaslab_fragmentation(metaslab_t *msp)
1401 {
1402 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1403 uint64_t fragmentation = 0;
1404 uint64_t total = 0;
1405 boolean_t feature_enabled = spa_feature_is_enabled(spa,
1406 SPA_FEATURE_SPACEMAP_HISTOGRAM);
1407 int i;
1408
1409 if (!feature_enabled)
1410 return (ZFS_FRAG_INVALID);
1411
1412 /*
1413 * A null space map means that the entire metaslab is free
1414 * and thus is not fragmented.
1415 */
1416 if (msp->ms_sm == NULL)
1417 return (0);
1418
1419 /*
1420 * If this metaslab's space_map has not been upgraded, flag it
1421 * so that we upgrade next time we encounter it.
1422 */
1423 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
1424 vdev_t *vd = msp->ms_group->mg_vd;
1425
1426 if (spa_writeable(vd->vdev_spa)) {
1427 uint64_t txg = spa_syncing_txg(spa);
1428
1429 msp->ms_condense_wanted = B_TRUE;
1430 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1431 spa_dbgmsg(spa, "txg %llu, requesting force condense: "
1432 "msp %p, vd %p", txg, msp, vd);
1433 }
1434 return (ZFS_FRAG_INVALID);
1435 }
1436
1437 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1438 uint64_t space = 0;
1439 uint8_t shift = msp->ms_sm->sm_shift;
1440 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
1441 FRAGMENTATION_TABLE_SIZE - 1);
1442
1443 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1444 continue;
1445
1446 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
1447 total += space;
1448
1449 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
1450 fragmentation += space * zfs_frag_table[idx];
1451 }
1452
1453 if (total > 0)
1454 fragmentation /= total;
1455 ASSERT3U(fragmentation, <=, 100);
1456 return (fragmentation);
1457 }
1458
1459 /*
1460 * Compute a weight -- a selection preference value -- for the given metaslab.
1461 * This is based on the amount of free space, the level of fragmentation,
1462 * the LBA range, and whether the metaslab is loaded.
1463 */
1464 static uint64_t
1465 metaslab_weight(metaslab_t *msp)
1466 {
1467 metaslab_group_t *mg = msp->ms_group;
1468 vdev_t *vd = mg->mg_vd;
1469 uint64_t weight, space;
1470
1471 ASSERT(MUTEX_HELD(&msp->ms_lock));
1472
1473 /*
1474 * This vdev is in the process of being removed so there is nothing
1475 * for us to do here.
1476 */
1477 if (vd->vdev_removing) {
1478 ASSERT0(space_map_allocated(msp->ms_sm));
1479 ASSERT0(vd->vdev_ms_shift);
1480 return (0);
1481 }
1482
1483 /*
1484 * The baseline weight is the metaslab's free space.
1485 */
1486 space = msp->ms_size - space_map_allocated(msp->ms_sm);
1487
1488 msp->ms_fragmentation = metaslab_fragmentation(msp);
1489 if (metaslab_fragmentation_factor_enabled &&
1490 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
1491 /*
1492 * Use the fragmentation information to inversely scale
1493 * down the baseline weight. We need to ensure that we
1494 * don't exclude this metaslab completely when it's 100%
1495 * fragmented. To avoid this we reduce the fragmented value
1496 * by 1.
1497 */
1498 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
1499
1500 /*
1501 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
1502 * this metaslab again. The fragmentation metric may have
1503 * decreased the space to something smaller than
1504 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
1505 * so that we can consume any remaining space.
1506 */
1507 if (space > 0 && space < SPA_MINBLOCKSIZE)
1508 space = SPA_MINBLOCKSIZE;
1509 }
1510 weight = space;
1511
1512 /*
1513 * Modern disks have uniform bit density and constant angular velocity.
1514 * Therefore, the outer recording zones are faster (higher bandwidth)
1515 * than the inner zones by the ratio of outer to inner track diameter,
1516 * which is typically around 2:1. We account for this by assigning
1517 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1518 * In effect, this means that we'll select the metaslab with the most
1519 * free bandwidth rather than simply the one with the most free space.
1520 */
1521 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
1522 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1523 ASSERT(weight >= space && weight <= 2 * space);
1524 }
1525
1526 /*
1527 * If this metaslab is one we're actively using, adjust its
1528 * weight to make it preferable to any inactive metaslab so
1529 * we'll polish it off. If the fragmentation on this metaslab
1530 * has exceed our threshold, then don't mark it active.
1531 */
1532 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
1533 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
1534 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1535 }
1536
1537 return (weight);
1538 }
1539
1540 static int
1541 metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
1542 {
1543 ASSERT(MUTEX_HELD(&msp->ms_lock));
1544
1545 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1546 metaslab_load_wait(msp);
1547 if (!msp->ms_loaded) {
1548 int error = metaslab_load(msp);
1549 if (error) {
1550 metaslab_group_sort(msp->ms_group, msp, 0);
1551 return (error);
1552 }
1553 }
1554
1555 metaslab_group_sort(msp->ms_group, msp,
1556 msp->ms_weight | activation_weight);
1557 }
1558 ASSERT(msp->ms_loaded);
1559 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
1560
1561 return (0);
1562 }
1563
1564 static void
1565 metaslab_passivate(metaslab_t *msp, uint64_t size)
1566 {
1567 /*
1568 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
1569 * this metaslab again. In that case, it had better be empty,
1570 * or we would be leaving space on the table.
1571 */
1572 ASSERT(size >= SPA_MINBLOCKSIZE || range_tree_space(msp->ms_tree) == 0);
1573 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
1574 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
1575 }
1576
1577 static void
1578 metaslab_preload(void *arg)
1579 {
1580 metaslab_t *msp = arg;
1581 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1582 fstrans_cookie_t cookie = spl_fstrans_mark();
1583
1584 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
1585
1586 mutex_enter(&msp->ms_lock);
1587 metaslab_load_wait(msp);
1588 if (!msp->ms_loaded)
1589 (void) metaslab_load(msp);
1590
1591 /*
1592 * Set the ms_access_txg value so that we don't unload it right away.
1593 */
1594 msp->ms_access_txg = spa_syncing_txg(spa) + metaslab_unload_delay + 1;
1595 mutex_exit(&msp->ms_lock);
1596 spl_fstrans_unmark(cookie);
1597 }
1598
1599 static void
1600 metaslab_group_preload(metaslab_group_t *mg)
1601 {
1602 spa_t *spa = mg->mg_vd->vdev_spa;
1603 metaslab_t *msp;
1604 avl_tree_t *t = &mg->mg_metaslab_tree;
1605 int m = 0;
1606
1607 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
1608 taskq_wait_outstanding(mg->mg_taskq, 0);
1609 return;
1610 }
1611
1612 mutex_enter(&mg->mg_lock);
1613 /*
1614 * Load the next potential metaslabs
1615 */
1616 msp = avl_first(t);
1617 while (msp != NULL) {
1618 metaslab_t *msp_next = AVL_NEXT(t, msp);
1619
1620 /*
1621 * We preload only the maximum number of metaslabs specified
1622 * by metaslab_preload_limit. If a metaslab is being forced
1623 * to condense then we preload it too. This will ensure
1624 * that force condensing happens in the next txg.
1625 */
1626 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
1627 msp = msp_next;
1628 continue;
1629 }
1630
1631 /*
1632 * We must drop the metaslab group lock here to preserve
1633 * lock ordering with the ms_lock (when grabbing both
1634 * the mg_lock and the ms_lock, the ms_lock must be taken
1635 * first). As a result, it is possible that the ordering
1636 * of the metaslabs within the avl tree may change before
1637 * we reacquire the lock. The metaslab cannot be removed from
1638 * the tree while we're in syncing context so it is safe to
1639 * drop the mg_lock here. If the metaslabs are reordered
1640 * nothing will break -- we just may end up loading a
1641 * less than optimal one.
1642 */
1643 mutex_exit(&mg->mg_lock);
1644 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
1645 msp, TQ_SLEEP) != 0);
1646 mutex_enter(&mg->mg_lock);
1647 msp = msp_next;
1648 }
1649 mutex_exit(&mg->mg_lock);
1650 }
1651
1652 /*
1653 * Determine if the space map's on-disk footprint is past our tolerance
1654 * for inefficiency. We would like to use the following criteria to make
1655 * our decision:
1656 *
1657 * 1. The size of the space map object should not dramatically increase as a
1658 * result of writing out the free space range tree.
1659 *
1660 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
1661 * times the size than the free space range tree representation
1662 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB).
1663 *
1664 * 3. The on-disk size of the space map should actually decrease.
1665 *
1666 * Checking the first condition is tricky since we don't want to walk
1667 * the entire AVL tree calculating the estimated on-disk size. Instead we
1668 * use the size-ordered range tree in the metaslab and calculate the
1669 * size required to write out the largest segment in our free tree. If the
1670 * size required to represent that segment on disk is larger than the space
1671 * map object then we avoid condensing this map.
1672 *
1673 * To determine the second criterion we use a best-case estimate and assume
1674 * each segment can be represented on-disk as a single 64-bit entry. We refer
1675 * to this best-case estimate as the space map's minimal form.
1676 *
1677 * Unfortunately, we cannot compute the on-disk size of the space map in this
1678 * context because we cannot accurately compute the effects of compression, etc.
1679 * Instead, we apply the heuristic described in the block comment for
1680 * zfs_metaslab_condense_block_threshold - we only condense if the space used
1681 * is greater than a threshold number of blocks.
1682 */
1683 static boolean_t
1684 metaslab_should_condense(metaslab_t *msp)
1685 {
1686 space_map_t *sm = msp->ms_sm;
1687 range_seg_t *rs;
1688 uint64_t size, entries, segsz, object_size, optimal_size, record_size;
1689 dmu_object_info_t doi;
1690 uint64_t vdev_blocksize = 1 << msp->ms_group->mg_vd->vdev_ashift;
1691
1692 ASSERT(MUTEX_HELD(&msp->ms_lock));
1693 ASSERT(msp->ms_loaded);
1694
1695 /*
1696 * Use the ms_size_tree range tree, which is ordered by size, to
1697 * obtain the largest segment in the free tree. We always condense
1698 * metaslabs that are empty and metaslabs for which a condense
1699 * request has been made.
1700 */
1701 rs = avl_last(&msp->ms_size_tree);
1702 if (rs == NULL || msp->ms_condense_wanted)
1703 return (B_TRUE);
1704
1705 /*
1706 * Calculate the number of 64-bit entries this segment would
1707 * require when written to disk. If this single segment would be
1708 * larger on-disk than the entire current on-disk structure, then
1709 * clearly condensing will increase the on-disk structure size.
1710 */
1711 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
1712 entries = size / (MIN(size, SM_RUN_MAX));
1713 segsz = entries * sizeof (uint64_t);
1714
1715 optimal_size = sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root);
1716 object_size = space_map_length(msp->ms_sm);
1717
1718 dmu_object_info_from_db(sm->sm_dbuf, &doi);
1719 record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
1720
1721 return (segsz <= object_size &&
1722 object_size >= (optimal_size * zfs_condense_pct / 100) &&
1723 object_size > zfs_metaslab_condense_block_threshold * record_size);
1724 }
1725
1726 /*
1727 * Condense the on-disk space map representation to its minimized form.
1728 * The minimized form consists of a small number of allocations followed by
1729 * the entries of the free range tree.
1730 */
1731 static void
1732 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
1733 {
1734 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1735 range_tree_t *freetree = msp->ms_freetree[txg & TXG_MASK];
1736 range_tree_t *condense_tree;
1737 space_map_t *sm = msp->ms_sm;
1738 int t;
1739
1740 ASSERT(MUTEX_HELD(&msp->ms_lock));
1741 ASSERT3U(spa_sync_pass(spa), ==, 1);
1742 ASSERT(msp->ms_loaded);
1743
1744
1745 spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, "
1746 "smp size %llu, segments %lu, forcing condense=%s", txg,
1747 msp->ms_id, msp, space_map_length(msp->ms_sm),
1748 avl_numnodes(&msp->ms_tree->rt_root),
1749 msp->ms_condense_wanted ? "TRUE" : "FALSE");
1750
1751 msp->ms_condense_wanted = B_FALSE;
1752
1753 /*
1754 * Create an range tree that is 100% allocated. We remove segments
1755 * that have been freed in this txg, any deferred frees that exist,
1756 * and any allocation in the future. Removing segments should be
1757 * a relatively inexpensive operation since we expect these trees to
1758 * have a small number of nodes.
1759 */
1760 condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock);
1761 range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
1762
1763 /*
1764 * Remove what's been freed in this txg from the condense_tree.
1765 * Since we're in sync_pass 1, we know that all the frees from
1766 * this txg are in the freetree.
1767 */
1768 range_tree_walk(freetree, range_tree_remove, condense_tree);
1769
1770 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1771 range_tree_walk(msp->ms_defertree[t],
1772 range_tree_remove, condense_tree);
1773 }
1774
1775 for (t = 1; t < TXG_CONCURRENT_STATES; t++) {
1776 range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK],
1777 range_tree_remove, condense_tree);
1778 }
1779
1780 /*
1781 * We're about to drop the metaslab's lock thus allowing
1782 * other consumers to change it's content. Set the
1783 * metaslab's ms_condensing flag to ensure that
1784 * allocations on this metaslab do not occur while we're
1785 * in the middle of committing it to disk. This is only critical
1786 * for the ms_tree as all other range trees use per txg
1787 * views of their content.
1788 */
1789 msp->ms_condensing = B_TRUE;
1790
1791 mutex_exit(&msp->ms_lock);
1792 space_map_truncate(sm, tx);
1793 mutex_enter(&msp->ms_lock);
1794
1795 /*
1796 * While we would ideally like to create a space_map representation
1797 * that consists only of allocation records, doing so can be
1798 * prohibitively expensive because the in-core free tree can be
1799 * large, and therefore computationally expensive to subtract
1800 * from the condense_tree. Instead we sync out two trees, a cheap
1801 * allocation only tree followed by the in-core free tree. While not
1802 * optimal, this is typically close to optimal, and much cheaper to
1803 * compute.
1804 */
1805 space_map_write(sm, condense_tree, SM_ALLOC, tx);
1806 range_tree_vacate(condense_tree, NULL, NULL);
1807 range_tree_destroy(condense_tree);
1808
1809 space_map_write(sm, msp->ms_tree, SM_FREE, tx);
1810 msp->ms_condensing = B_FALSE;
1811 }
1812
1813 /*
1814 * Write a metaslab to disk in the context of the specified transaction group.
1815 */
1816 void
1817 metaslab_sync(metaslab_t *msp, uint64_t txg)
1818 {
1819 metaslab_group_t *mg = msp->ms_group;
1820 vdev_t *vd = mg->mg_vd;
1821 spa_t *spa = vd->vdev_spa;
1822 objset_t *mos = spa_meta_objset(spa);
1823 range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK];
1824 range_tree_t **freetree = &msp->ms_freetree[txg & TXG_MASK];
1825 range_tree_t **freed_tree =
1826 &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
1827 dmu_tx_t *tx;
1828 uint64_t object = space_map_object(msp->ms_sm);
1829
1830 ASSERT(!vd->vdev_ishole);
1831
1832 /*
1833 * This metaslab has just been added so there's no work to do now.
1834 */
1835 if (*freetree == NULL) {
1836 ASSERT3P(alloctree, ==, NULL);
1837 return;
1838 }
1839
1840 ASSERT3P(alloctree, !=, NULL);
1841 ASSERT3P(*freetree, !=, NULL);
1842 ASSERT3P(*freed_tree, !=, NULL);
1843
1844 /*
1845 * Normally, we don't want to process a metaslab if there
1846 * are no allocations or frees to perform. However, if the metaslab
1847 * is being forced to condense we need to let it through.
1848 */
1849 if (range_tree_space(alloctree) == 0 &&
1850 range_tree_space(*freetree) == 0 &&
1851 !msp->ms_condense_wanted)
1852 return;
1853
1854 /*
1855 * The only state that can actually be changing concurrently with
1856 * metaslab_sync() is the metaslab's ms_tree. No other thread can
1857 * be modifying this txg's alloctree, freetree, freed_tree, or
1858 * space_map_phys_t. Therefore, we only hold ms_lock to satify
1859 * space_map ASSERTs. We drop it whenever we call into the DMU,
1860 * because the DMU can call down to us (e.g. via zio_free()) at
1861 * any time.
1862 */
1863
1864 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1865
1866 if (msp->ms_sm == NULL) {
1867 uint64_t new_object;
1868
1869 new_object = space_map_alloc(mos, tx);
1870 VERIFY3U(new_object, !=, 0);
1871
1872 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
1873 msp->ms_start, msp->ms_size, vd->vdev_ashift,
1874 &msp->ms_lock));
1875 ASSERT(msp->ms_sm != NULL);
1876 }
1877
1878 mutex_enter(&msp->ms_lock);
1879
1880 /*
1881 * Note: metaslab_condense() clears the space_map's histogram.
1882 * Therefore we muse verify and remove this histogram before
1883 * condensing.
1884 */
1885 metaslab_group_histogram_verify(mg);
1886 metaslab_class_histogram_verify(mg->mg_class);
1887 metaslab_group_histogram_remove(mg, msp);
1888
1889 if (msp->ms_loaded && spa_sync_pass(spa) == 1 &&
1890 metaslab_should_condense(msp)) {
1891 metaslab_condense(msp, txg, tx);
1892 } else {
1893 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx);
1894 space_map_write(msp->ms_sm, *freetree, SM_FREE, tx);
1895 }
1896
1897 if (msp->ms_loaded) {
1898 /*
1899 * When the space map is loaded, we have an accruate
1900 * histogram in the range tree. This gives us an opportunity
1901 * to bring the space map's histogram up-to-date so we clear
1902 * it first before updating it.
1903 */
1904 space_map_histogram_clear(msp->ms_sm);
1905 space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx);
1906 } else {
1907 /*
1908 * Since the space map is not loaded we simply update the
1909 * exisiting histogram with what was freed in this txg. This
1910 * means that the on-disk histogram may not have an accurate
1911 * view of the free space but it's close enough to allow
1912 * us to make allocation decisions.
1913 */
1914 space_map_histogram_add(msp->ms_sm, *freetree, tx);
1915 }
1916 metaslab_group_histogram_add(mg, msp);
1917 metaslab_group_histogram_verify(mg);
1918 metaslab_class_histogram_verify(mg->mg_class);
1919
1920 /*
1921 * For sync pass 1, we avoid traversing this txg's free range tree
1922 * and instead will just swap the pointers for freetree and
1923 * freed_tree. We can safely do this since the freed_tree is
1924 * guaranteed to be empty on the initial pass.
1925 */
1926 if (spa_sync_pass(spa) == 1) {
1927 range_tree_swap(freetree, freed_tree);
1928 } else {
1929 range_tree_vacate(*freetree, range_tree_add, *freed_tree);
1930 }
1931 range_tree_vacate(alloctree, NULL, NULL);
1932
1933 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
1934 ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
1935
1936 mutex_exit(&msp->ms_lock);
1937
1938 if (object != space_map_object(msp->ms_sm)) {
1939 object = space_map_object(msp->ms_sm);
1940 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
1941 msp->ms_id, sizeof (uint64_t), &object, tx);
1942 }
1943 dmu_tx_commit(tx);
1944 }
1945
1946 /*
1947 * Called after a transaction group has completely synced to mark
1948 * all of the metaslab's free space as usable.
1949 */
1950 void
1951 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
1952 {
1953 metaslab_group_t *mg = msp->ms_group;
1954 vdev_t *vd = mg->mg_vd;
1955 range_tree_t **freed_tree;
1956 range_tree_t **defer_tree;
1957 int64_t alloc_delta, defer_delta;
1958 int t;
1959
1960 ASSERT(!vd->vdev_ishole);
1961
1962 mutex_enter(&msp->ms_lock);
1963
1964 /*
1965 * If this metaslab is just becoming available, initialize its
1966 * alloctrees, freetrees, and defertree and add its capacity to
1967 * the vdev.
1968 */
1969 if (msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK] == NULL) {
1970 for (t = 0; t < TXG_SIZE; t++) {
1971 ASSERT(msp->ms_alloctree[t] == NULL);
1972 ASSERT(msp->ms_freetree[t] == NULL);
1973
1974 msp->ms_alloctree[t] = range_tree_create(NULL, msp,
1975 &msp->ms_lock);
1976 msp->ms_freetree[t] = range_tree_create(NULL, msp,
1977 &msp->ms_lock);
1978 }
1979
1980 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1981 ASSERT(msp->ms_defertree[t] == NULL);
1982
1983 msp->ms_defertree[t] = range_tree_create(NULL, msp,
1984 &msp->ms_lock);
1985 }
1986
1987 vdev_space_update(vd, 0, 0, msp->ms_size);
1988 }
1989
1990 freed_tree = &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
1991 defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE];
1992
1993 alloc_delta = space_map_alloc_delta(msp->ms_sm);
1994 defer_delta = range_tree_space(*freed_tree) -
1995 range_tree_space(*defer_tree);
1996
1997 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
1998
1999 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
2000 ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
2001
2002 /*
2003 * If there's a metaslab_load() in progress, wait for it to complete
2004 * so that we have a consistent view of the in-core space map.
2005 */
2006 metaslab_load_wait(msp);
2007
2008 /*
2009 * Move the frees from the defer_tree back to the free
2010 * range tree (if it's loaded). Swap the freed_tree and the
2011 * defer_tree -- this is safe to do because we've just emptied out
2012 * the defer_tree.
2013 */
2014 range_tree_vacate(*defer_tree,
2015 msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
2016 range_tree_swap(freed_tree, defer_tree);
2017
2018 space_map_update(msp->ms_sm);
2019
2020 msp->ms_deferspace += defer_delta;
2021 ASSERT3S(msp->ms_deferspace, >=, 0);
2022 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
2023 if (msp->ms_deferspace != 0) {
2024 /*
2025 * Keep syncing this metaslab until all deferred frees
2026 * are back in circulation.
2027 */
2028 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2029 }
2030
2031 if (msp->ms_loaded && msp->ms_access_txg < txg) {
2032 for (t = 1; t < TXG_CONCURRENT_STATES; t++) {
2033 VERIFY0(range_tree_space(
2034 msp->ms_alloctree[(txg + t) & TXG_MASK]));
2035 }
2036
2037 if (!metaslab_debug_unload)
2038 metaslab_unload(msp);
2039 }
2040
2041 metaslab_group_sort(mg, msp, metaslab_weight(msp));
2042 mutex_exit(&msp->ms_lock);
2043 }
2044
2045 void
2046 metaslab_sync_reassess(metaslab_group_t *mg)
2047 {
2048 metaslab_group_alloc_update(mg);
2049 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
2050
2051 /*
2052 * Preload the next potential metaslabs
2053 */
2054 metaslab_group_preload(mg);
2055 }
2056
2057 static uint64_t
2058 metaslab_distance(metaslab_t *msp, dva_t *dva)
2059 {
2060 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
2061 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
2062 uint64_t start = msp->ms_id;
2063
2064 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
2065 return (1ULL << 63);
2066
2067 if (offset < start)
2068 return ((start - offset) << ms_shift);
2069 if (offset > start)
2070 return ((offset - start) << ms_shift);
2071 return (0);
2072 }
2073
2074 static uint64_t
2075 metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
2076 uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
2077 {
2078 spa_t *spa = mg->mg_vd->vdev_spa;
2079 metaslab_t *msp = NULL;
2080 uint64_t offset = -1ULL;
2081 avl_tree_t *t = &mg->mg_metaslab_tree;
2082 uint64_t activation_weight;
2083 uint64_t target_distance;
2084 int i;
2085
2086 activation_weight = METASLAB_WEIGHT_PRIMARY;
2087 for (i = 0; i < d; i++) {
2088 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
2089 activation_weight = METASLAB_WEIGHT_SECONDARY;
2090 break;
2091 }
2092 }
2093
2094 for (;;) {
2095 boolean_t was_active;
2096
2097 mutex_enter(&mg->mg_lock);
2098 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
2099 if (msp->ms_weight < asize) {
2100 spa_dbgmsg(spa, "%s: failed to meet weight "
2101 "requirement: vdev %llu, txg %llu, mg %p, "
2102 "msp %p, psize %llu, asize %llu, "
2103 "weight %llu", spa_name(spa),
2104 mg->mg_vd->vdev_id, txg,
2105 mg, msp, psize, asize, msp->ms_weight);
2106 mutex_exit(&mg->mg_lock);
2107 return (-1ULL);
2108 }
2109
2110 /*
2111 * If the selected metaslab is condensing, skip it.
2112 */
2113 if (msp->ms_condensing)
2114 continue;
2115
2116 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2117 if (activation_weight == METASLAB_WEIGHT_PRIMARY)
2118 break;
2119
2120 target_distance = min_distance +
2121 (space_map_allocated(msp->ms_sm) != 0 ? 0 :
2122 min_distance >> 1);
2123
2124 for (i = 0; i < d; i++)
2125 if (metaslab_distance(msp, &dva[i]) <
2126 target_distance)
2127 break;
2128 if (i == d)
2129 break;
2130 }
2131 mutex_exit(&mg->mg_lock);
2132 if (msp == NULL)
2133 return (-1ULL);
2134
2135 mutex_enter(&msp->ms_lock);
2136
2137 /*
2138 * Ensure that the metaslab we have selected is still
2139 * capable of handling our request. It's possible that
2140 * another thread may have changed the weight while we
2141 * were blocked on the metaslab lock.
2142 */
2143 if (msp->ms_weight < asize || (was_active &&
2144 !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
2145 activation_weight == METASLAB_WEIGHT_PRIMARY)) {
2146 mutex_exit(&msp->ms_lock);
2147 continue;
2148 }
2149
2150 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
2151 activation_weight == METASLAB_WEIGHT_PRIMARY) {
2152 metaslab_passivate(msp,
2153 msp->ms_weight & ~METASLAB_ACTIVE_MASK);
2154 mutex_exit(&msp->ms_lock);
2155 continue;
2156 }
2157
2158 if (metaslab_activate(msp, activation_weight) != 0) {
2159 mutex_exit(&msp->ms_lock);
2160 continue;
2161 }
2162
2163 /*
2164 * If this metaslab is currently condensing then pick again as
2165 * we can't manipulate this metaslab until it's committed
2166 * to disk.
2167 */
2168 if (msp->ms_condensing) {
2169 mutex_exit(&msp->ms_lock);
2170 continue;
2171 }
2172
2173 if ((offset = metaslab_block_alloc(msp, asize)) != -1ULL)
2174 break;
2175
2176 metaslab_passivate(msp, metaslab_block_maxsize(msp));
2177 mutex_exit(&msp->ms_lock);
2178 }
2179
2180 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2181 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
2182
2183 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, asize);
2184 msp->ms_access_txg = txg + metaslab_unload_delay;
2185
2186 mutex_exit(&msp->ms_lock);
2187
2188 return (offset);
2189 }
2190
2191 /*
2192 * Allocate a block for the specified i/o.
2193 */
2194 static int
2195 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
2196 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
2197 {
2198 metaslab_group_t *mg, *fast_mg, *rotor;
2199 vdev_t *vd;
2200 int dshift = 3;
2201 int all_zero;
2202 int zio_lock = B_FALSE;
2203 boolean_t allocatable;
2204 uint64_t offset = -1ULL;
2205 uint64_t asize;
2206 uint64_t distance;
2207
2208 ASSERT(!DVA_IS_VALID(&dva[d]));
2209
2210 /*
2211 * For testing, make some blocks above a certain size be gang blocks.
2212 */
2213 if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
2214 return (SET_ERROR(ENOSPC));
2215
2216 if (flags & METASLAB_FASTWRITE)
2217 mutex_enter(&mc->mc_fastwrite_lock);
2218
2219 /*
2220 * Start at the rotor and loop through all mgs until we find something.
2221 * Note that there's no locking on mc_rotor or mc_aliquot because
2222 * nothing actually breaks if we miss a few updates -- we just won't
2223 * allocate quite as evenly. It all balances out over time.
2224 *
2225 * If we are doing ditto or log blocks, try to spread them across
2226 * consecutive vdevs. If we're forced to reuse a vdev before we've
2227 * allocated all of our ditto blocks, then try and spread them out on
2228 * that vdev as much as possible. If it turns out to not be possible,
2229 * gradually lower our standards until anything becomes acceptable.
2230 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
2231 * gives us hope of containing our fault domains to something we're
2232 * able to reason about. Otherwise, any two top-level vdev failures
2233 * will guarantee the loss of data. With consecutive allocation,
2234 * only two adjacent top-level vdev failures will result in data loss.
2235 *
2236 * If we are doing gang blocks (hintdva is non-NULL), try to keep
2237 * ourselves on the same vdev as our gang block header. That
2238 * way, we can hope for locality in vdev_cache, plus it makes our
2239 * fault domains something tractable.
2240 */
2241 if (hintdva) {
2242 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
2243
2244 /*
2245 * It's possible the vdev we're using as the hint no
2246 * longer exists (i.e. removed). Consult the rotor when
2247 * all else fails.
2248 */
2249 if (vd != NULL) {
2250 mg = vd->vdev_mg;
2251
2252 if (flags & METASLAB_HINTBP_AVOID &&
2253 mg->mg_next != NULL)
2254 mg = mg->mg_next;
2255 } else {
2256 mg = mc->mc_rotor;
2257 }
2258 } else if (d != 0) {
2259 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
2260 mg = vd->vdev_mg->mg_next;
2261 } else if (flags & METASLAB_FASTWRITE) {
2262 mg = fast_mg = mc->mc_rotor;
2263
2264 do {
2265 if (fast_mg->mg_vd->vdev_pending_fastwrite <
2266 mg->mg_vd->vdev_pending_fastwrite)
2267 mg = fast_mg;
2268 } while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
2269
2270 } else {
2271 mg = mc->mc_rotor;
2272 }
2273
2274 /*
2275 * If the hint put us into the wrong metaslab class, or into a
2276 * metaslab group that has been passivated, just follow the rotor.
2277 */
2278 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
2279 mg = mc->mc_rotor;
2280
2281 rotor = mg;
2282 top:
2283 all_zero = B_TRUE;
2284 do {
2285 ASSERT(mg->mg_activation_count == 1);
2286
2287 vd = mg->mg_vd;
2288
2289 /*
2290 * Don't allocate from faulted devices.
2291 */
2292 if (zio_lock) {
2293 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
2294 allocatable = vdev_allocatable(vd);
2295 spa_config_exit(spa, SCL_ZIO, FTAG);
2296 } else {
2297 allocatable = vdev_allocatable(vd);
2298 }
2299
2300 /*
2301 * Determine if the selected metaslab group is eligible
2302 * for allocations. If we're ganging or have requested
2303 * an allocation for the smallest gang block size
2304 * then we don't want to avoid allocating to the this
2305 * metaslab group. If we're in this condition we should
2306 * try to allocate from any device possible so that we
2307 * don't inadvertently return ENOSPC and suspend the pool
2308 * even though space is still available.
2309 */
2310 if (allocatable && CAN_FASTGANG(flags) &&
2311 psize > SPA_GANGBLOCKSIZE)
2312 allocatable = metaslab_group_allocatable(mg);
2313
2314 if (!allocatable)
2315 goto next;
2316
2317 /*
2318 * Avoid writing single-copy data to a failing vdev
2319 * unless the user instructs us that it is okay.
2320 */
2321 if ((vd->vdev_stat.vs_write_errors > 0 ||
2322 vd->vdev_state < VDEV_STATE_HEALTHY) &&
2323 d == 0 && dshift == 3 && vd->vdev_children == 0) {
2324 all_zero = B_FALSE;
2325 goto next;
2326 }
2327
2328 ASSERT(mg->mg_class == mc);
2329
2330 distance = vd->vdev_asize >> dshift;
2331 if (distance <= (1ULL << vd->vdev_ms_shift))
2332 distance = 0;
2333 else
2334 all_zero = B_FALSE;
2335
2336 asize = vdev_psize_to_asize(vd, psize);
2337 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
2338
2339 offset = metaslab_group_alloc(mg, psize, asize, txg, distance,
2340 dva, d);
2341 if (offset != -1ULL) {
2342 /*
2343 * If we've just selected this metaslab group,
2344 * figure out whether the corresponding vdev is
2345 * over- or under-used relative to the pool,
2346 * and set an allocation bias to even it out.
2347 *
2348 * Bias is also used to compensate for unequally
2349 * sized vdevs so that space is allocated fairly.
2350 */
2351 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
2352 vdev_stat_t *vs = &vd->vdev_stat;
2353 int64_t vs_free = vs->vs_space - vs->vs_alloc;
2354 int64_t mc_free = mc->mc_space - mc->mc_alloc;
2355 int64_t ratio;
2356
2357 /*
2358 * Calculate how much more or less we should
2359 * try to allocate from this device during
2360 * this iteration around the rotor.
2361 *
2362 * This basically introduces a zero-centered
2363 * bias towards the devices with the most
2364 * free space, while compensating for vdev
2365 * size differences.
2366 *
2367 * Examples:
2368 * vdev V1 = 16M/128M
2369 * vdev V2 = 16M/128M
2370 * ratio(V1) = 100% ratio(V2) = 100%
2371 *
2372 * vdev V1 = 16M/128M
2373 * vdev V2 = 64M/128M
2374 * ratio(V1) = 127% ratio(V2) = 72%
2375 *
2376 * vdev V1 = 16M/128M
2377 * vdev V2 = 64M/512M
2378 * ratio(V1) = 40% ratio(V2) = 160%
2379 */
2380 ratio = (vs_free * mc->mc_alloc_groups * 100) /
2381 (mc_free + 1);
2382 mg->mg_bias = ((ratio - 100) *
2383 (int64_t)mg->mg_aliquot) / 100;
2384 } else if (!metaslab_bias_enabled) {
2385 mg->mg_bias = 0;
2386 }
2387
2388 if ((flags & METASLAB_FASTWRITE) ||
2389 atomic_add_64_nv(&mc->mc_aliquot, asize) >=
2390 mg->mg_aliquot + mg->mg_bias) {
2391 mc->mc_rotor = mg->mg_next;
2392 mc->mc_aliquot = 0;
2393 }
2394
2395 DVA_SET_VDEV(&dva[d], vd->vdev_id);
2396 DVA_SET_OFFSET(&dva[d], offset);
2397 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
2398 DVA_SET_ASIZE(&dva[d], asize);
2399
2400 if (flags & METASLAB_FASTWRITE) {
2401 atomic_add_64(&vd->vdev_pending_fastwrite,
2402 psize);
2403 mutex_exit(&mc->mc_fastwrite_lock);
2404 }
2405
2406 return (0);
2407 }
2408 next:
2409 mc->mc_rotor = mg->mg_next;
2410 mc->mc_aliquot = 0;
2411 } while ((mg = mg->mg_next) != rotor);
2412
2413 if (!all_zero) {
2414 dshift++;
2415 ASSERT(dshift < 64);
2416 goto top;
2417 }
2418
2419 if (!allocatable && !zio_lock) {
2420 dshift = 3;
2421 zio_lock = B_TRUE;
2422 goto top;
2423 }
2424
2425 bzero(&dva[d], sizeof (dva_t));
2426
2427 if (flags & METASLAB_FASTWRITE)
2428 mutex_exit(&mc->mc_fastwrite_lock);
2429
2430 return (SET_ERROR(ENOSPC));
2431 }
2432
2433 /*
2434 * Free the block represented by DVA in the context of the specified
2435 * transaction group.
2436 */
2437 static void
2438 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
2439 {
2440 uint64_t vdev = DVA_GET_VDEV(dva);
2441 uint64_t offset = DVA_GET_OFFSET(dva);
2442 uint64_t size = DVA_GET_ASIZE(dva);
2443 vdev_t *vd;
2444 metaslab_t *msp;
2445
2446 if (txg > spa_freeze_txg(spa))
2447 return;
2448
2449 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
2450 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
2451 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
2452 (u_longlong_t)vdev, (u_longlong_t)offset,
2453 (u_longlong_t)size);
2454 return;
2455 }
2456
2457 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2458
2459 if (DVA_GET_GANG(dva))
2460 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2461
2462 mutex_enter(&msp->ms_lock);
2463
2464 if (now) {
2465 range_tree_remove(msp->ms_alloctree[txg & TXG_MASK],
2466 offset, size);
2467
2468 VERIFY(!msp->ms_condensing);
2469 VERIFY3U(offset, >=, msp->ms_start);
2470 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
2471 VERIFY3U(range_tree_space(msp->ms_tree) + size, <=,
2472 msp->ms_size);
2473 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2474 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2475 range_tree_add(msp->ms_tree, offset, size);
2476 } else {
2477 if (range_tree_space(msp->ms_freetree[txg & TXG_MASK]) == 0)
2478 vdev_dirty(vd, VDD_METASLAB, msp, txg);
2479 range_tree_add(msp->ms_freetree[txg & TXG_MASK],
2480 offset, size);
2481 }
2482
2483 mutex_exit(&msp->ms_lock);
2484 }
2485
2486 /*
2487 * Intent log support: upon opening the pool after a crash, notify the SPA
2488 * of blocks that the intent log has allocated for immediate write, but
2489 * which are still considered free by the SPA because the last transaction
2490 * group didn't commit yet.
2491 */
2492 static int
2493 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
2494 {
2495 uint64_t vdev = DVA_GET_VDEV(dva);
2496 uint64_t offset = DVA_GET_OFFSET(dva);
2497 uint64_t size = DVA_GET_ASIZE(dva);
2498 vdev_t *vd;
2499 metaslab_t *msp;
2500 int error = 0;
2501
2502 ASSERT(DVA_IS_VALID(dva));
2503
2504 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
2505 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
2506 return (SET_ERROR(ENXIO));
2507
2508 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2509
2510 if (DVA_GET_GANG(dva))
2511 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2512
2513 mutex_enter(&msp->ms_lock);
2514
2515 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
2516 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
2517
2518 if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size))
2519 error = SET_ERROR(ENOENT);
2520
2521 if (error || txg == 0) { /* txg == 0 indicates dry run */
2522 mutex_exit(&msp->ms_lock);
2523 return (error);
2524 }
2525
2526 VERIFY(!msp->ms_condensing);
2527 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2528 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2529 VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size);
2530 range_tree_remove(msp->ms_tree, offset, size);
2531
2532 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
2533 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2534 vdev_dirty(vd, VDD_METASLAB, msp, txg);
2535 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size);
2536 }
2537
2538 mutex_exit(&msp->ms_lock);
2539
2540 return (0);
2541 }
2542
2543 int
2544 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
2545 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
2546 {
2547 dva_t *dva = bp->blk_dva;
2548 dva_t *hintdva = hintbp->blk_dva;
2549 int d, error = 0;
2550
2551 ASSERT(bp->blk_birth == 0);
2552 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
2553
2554 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2555
2556 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
2557 spa_config_exit(spa, SCL_ALLOC, FTAG);
2558 return (SET_ERROR(ENOSPC));
2559 }
2560
2561 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
2562 ASSERT(BP_GET_NDVAS(bp) == 0);
2563 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
2564
2565 for (d = 0; d < ndvas; d++) {
2566 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
2567 txg, flags);
2568 if (error != 0) {
2569 for (d--; d >= 0; d--) {
2570 metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
2571 bzero(&dva[d], sizeof (dva_t));
2572 }
2573 spa_config_exit(spa, SCL_ALLOC, FTAG);
2574 return (error);
2575 }
2576 }
2577 ASSERT(error == 0);
2578 ASSERT(BP_GET_NDVAS(bp) == ndvas);
2579
2580 spa_config_exit(spa, SCL_ALLOC, FTAG);
2581
2582 BP_SET_BIRTH(bp, txg, txg);
2583
2584 return (0);
2585 }
2586
2587 void
2588 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
2589 {
2590 const dva_t *dva = bp->blk_dva;
2591 int d, ndvas = BP_GET_NDVAS(bp);
2592
2593 ASSERT(!BP_IS_HOLE(bp));
2594 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
2595
2596 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
2597
2598 for (d = 0; d < ndvas; d++)
2599 metaslab_free_dva(spa, &dva[d], txg, now);
2600
2601 spa_config_exit(spa, SCL_FREE, FTAG);
2602 }
2603
2604 int
2605 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
2606 {
2607 const dva_t *dva = bp->blk_dva;
2608 int ndvas = BP_GET_NDVAS(bp);
2609 int d, error = 0;
2610
2611 ASSERT(!BP_IS_HOLE(bp));
2612
2613 if (txg != 0) {
2614 /*
2615 * First do a dry run to make sure all DVAs are claimable,
2616 * so we don't have to unwind from partial failures below.
2617 */
2618 if ((error = metaslab_claim(spa, bp, 0)) != 0)
2619 return (error);
2620 }
2621
2622 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2623
2624 for (d = 0; d < ndvas; d++)
2625 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
2626 break;
2627
2628 spa_config_exit(spa, SCL_ALLOC, FTAG);
2629
2630 ASSERT(error == 0 || txg == 0);
2631
2632 return (error);
2633 }
2634
2635 void
2636 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
2637 {
2638 const dva_t *dva = bp->blk_dva;
2639 int ndvas = BP_GET_NDVAS(bp);
2640 uint64_t psize = BP_GET_PSIZE(bp);
2641 int d;
2642 vdev_t *vd;
2643
2644 ASSERT(!BP_IS_HOLE(bp));
2645 ASSERT(!BP_IS_EMBEDDED(bp));
2646 ASSERT(psize > 0);
2647
2648 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2649
2650 for (d = 0; d < ndvas; d++) {
2651 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
2652 continue;
2653 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
2654 }
2655
2656 spa_config_exit(spa, SCL_VDEV, FTAG);
2657 }
2658
2659 void
2660 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
2661 {
2662 const dva_t *dva = bp->blk_dva;
2663 int ndvas = BP_GET_NDVAS(bp);
2664 uint64_t psize = BP_GET_PSIZE(bp);
2665 int d;
2666 vdev_t *vd;
2667
2668 ASSERT(!BP_IS_HOLE(bp));
2669 ASSERT(!BP_IS_EMBEDDED(bp));
2670 ASSERT(psize > 0);
2671
2672 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2673
2674 for (d = 0; d < ndvas; d++) {
2675 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
2676 continue;
2677 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
2678 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
2679 }
2680
2681 spa_config_exit(spa, SCL_VDEV, FTAG);
2682 }
2683
2684 void
2685 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
2686 {
2687 int i, j;
2688
2689 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
2690 return;
2691
2692 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2693 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
2694 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
2695 vdev_t *vd = vdev_lookup_top(spa, vdev);
2696 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
2697 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
2698 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2699
2700 if (msp->ms_loaded)
2701 range_tree_verify(msp->ms_tree, offset, size);
2702
2703 for (j = 0; j < TXG_SIZE; j++)
2704 range_tree_verify(msp->ms_freetree[j], offset, size);
2705 for (j = 0; j < TXG_DEFER_SIZE; j++)
2706 range_tree_verify(msp->ms_defertree[j], offset, size);
2707 }
2708 spa_config_exit(spa, SCL_VDEV, FTAG);
2709 }
2710
2711 #if defined(_KERNEL) && defined(HAVE_SPL)
2712 module_param(metaslab_aliquot, ulong, 0644);
2713 module_param(metaslab_debug_load, int, 0644);
2714 module_param(metaslab_debug_unload, int, 0644);
2715 module_param(metaslab_preload_enabled, int, 0644);
2716 module_param(zfs_mg_noalloc_threshold, int, 0644);
2717 module_param(zfs_mg_fragmentation_threshold, int, 0644);
2718 module_param(zfs_metaslab_fragmentation_threshold, int, 0644);
2719 module_param(metaslab_fragmentation_factor_enabled, int, 0644);
2720 module_param(metaslab_lba_weighting_enabled, int, 0644);
2721 module_param(metaslab_bias_enabled, int, 0644);
2722
2723 MODULE_PARM_DESC(metaslab_aliquot,
2724 "allocation granularity (a.k.a. stripe size)");
2725 MODULE_PARM_DESC(metaslab_debug_load,
2726 "load all metaslabs when pool is first opened");
2727 MODULE_PARM_DESC(metaslab_debug_unload,
2728 "prevent metaslabs from being unloaded");
2729 MODULE_PARM_DESC(metaslab_preload_enabled,
2730 "preload potential metaslabs during reassessment");
2731
2732 MODULE_PARM_DESC(zfs_mg_noalloc_threshold,
2733 "percentage of free space for metaslab group to allow allocation");
2734 MODULE_PARM_DESC(zfs_mg_fragmentation_threshold,
2735 "fragmentation for metaslab group to allow allocation");
2736
2737 MODULE_PARM_DESC(zfs_metaslab_fragmentation_threshold,
2738 "fragmentation for metaslab to allow allocation");
2739 MODULE_PARM_DESC(metaslab_fragmentation_factor_enabled,
2740 "use the fragmentation metric to prefer less fragmented metaslabs");
2741 MODULE_PARM_DESC(metaslab_lba_weighting_enabled,
2742 "prefer metaslabs with lower LBAs");
2743 MODULE_PARM_DESC(metaslab_bias_enabled,
2744 "enable metaslab group biasing");
2745 #endif /* _KERNEL && HAVE_SPL */