]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - zfs/module/zfs/zap_leaf.c
UBUNTU: SAUCE: (noup) Update spl to 0.6.5.9-1, zfs to 0.6.5.9-2
[mirror_ubuntu-artful-kernel.git] / zfs / module / zfs / zap_leaf.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013, 2014 by Delphix. All rights reserved.
24 */
25
26 /*
27 * The 512-byte leaf is broken into 32 16-byte chunks.
28 * chunk number n means l_chunk[n], even though the header precedes it.
29 * the names are stored null-terminated.
30 */
31
32 #include <sys/zio.h>
33 #include <sys/spa.h>
34 #include <sys/dmu.h>
35 #include <sys/zfs_context.h>
36 #include <sys/fs/zfs.h>
37 #include <sys/zap.h>
38 #include <sys/zap_impl.h>
39 #include <sys/zap_leaf.h>
40 #include <sys/arc.h>
41
42 static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry);
43
44 #define CHAIN_END 0xffff /* end of the chunk chain */
45
46 /* half the (current) minimum block size */
47 #define MAX_ARRAY_BYTES (8<<10)
48
49 #define LEAF_HASH(l, h) \
50 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
51 ((h) >> \
52 (64 - ZAP_LEAF_HASH_SHIFT(l) - zap_leaf_phys(l)->l_hdr.lh_prefix_len)))
53
54 #define LEAF_HASH_ENTPTR(l, h) (&zap_leaf_phys(l)->l_hash[LEAF_HASH(l, h)])
55
56 extern inline zap_leaf_phys_t *zap_leaf_phys(zap_leaf_t *l);
57
58 static void
59 zap_memset(void *a, int c, size_t n)
60 {
61 char *cp = a;
62 char *cpend = cp + n;
63
64 while (cp < cpend)
65 *cp++ = c;
66 }
67
68 static void
69 stv(int len, void *addr, uint64_t value)
70 {
71 switch (len) {
72 case 1:
73 *(uint8_t *)addr = value;
74 return;
75 case 2:
76 *(uint16_t *)addr = value;
77 return;
78 case 4:
79 *(uint32_t *)addr = value;
80 return;
81 case 8:
82 *(uint64_t *)addr = value;
83 return;
84 default:
85 cmn_err(CE_PANIC, "bad int len %d", len);
86 }
87 }
88
89 static uint64_t
90 ldv(int len, const void *addr)
91 {
92 switch (len) {
93 case 1:
94 return (*(uint8_t *)addr);
95 case 2:
96 return (*(uint16_t *)addr);
97 case 4:
98 return (*(uint32_t *)addr);
99 case 8:
100 return (*(uint64_t *)addr);
101 default:
102 cmn_err(CE_PANIC, "bad int len %d", len);
103 }
104 return (0xFEEDFACEDEADBEEFULL);
105 }
106
107 void
108 zap_leaf_byteswap(zap_leaf_phys_t *buf, int size)
109 {
110 int i;
111 zap_leaf_t l;
112 dmu_buf_t l_dbuf;
113
114 l_dbuf.db_data = buf;
115 l.l_bs = highbit64(size) - 1;
116 l.l_dbuf = &l_dbuf;
117
118 buf->l_hdr.lh_block_type = BSWAP_64(buf->l_hdr.lh_block_type);
119 buf->l_hdr.lh_prefix = BSWAP_64(buf->l_hdr.lh_prefix);
120 buf->l_hdr.lh_magic = BSWAP_32(buf->l_hdr.lh_magic);
121 buf->l_hdr.lh_nfree = BSWAP_16(buf->l_hdr.lh_nfree);
122 buf->l_hdr.lh_nentries = BSWAP_16(buf->l_hdr.lh_nentries);
123 buf->l_hdr.lh_prefix_len = BSWAP_16(buf->l_hdr.lh_prefix_len);
124 buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist);
125
126 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++)
127 buf->l_hash[i] = BSWAP_16(buf->l_hash[i]);
128
129 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
130 zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i);
131 struct zap_leaf_entry *le;
132
133 switch (lc->l_free.lf_type) {
134 case ZAP_CHUNK_ENTRY:
135 le = &lc->l_entry;
136
137 le->le_type = BSWAP_8(le->le_type);
138 le->le_value_intlen = BSWAP_8(le->le_value_intlen);
139 le->le_next = BSWAP_16(le->le_next);
140 le->le_name_chunk = BSWAP_16(le->le_name_chunk);
141 le->le_name_numints = BSWAP_16(le->le_name_numints);
142 le->le_value_chunk = BSWAP_16(le->le_value_chunk);
143 le->le_value_numints = BSWAP_16(le->le_value_numints);
144 le->le_cd = BSWAP_32(le->le_cd);
145 le->le_hash = BSWAP_64(le->le_hash);
146 break;
147 case ZAP_CHUNK_FREE:
148 lc->l_free.lf_type = BSWAP_8(lc->l_free.lf_type);
149 lc->l_free.lf_next = BSWAP_16(lc->l_free.lf_next);
150 break;
151 case ZAP_CHUNK_ARRAY:
152 lc->l_array.la_type = BSWAP_8(lc->l_array.la_type);
153 lc->l_array.la_next = BSWAP_16(lc->l_array.la_next);
154 /* la_array doesn't need swapping */
155 break;
156 default:
157 cmn_err(CE_PANIC, "bad leaf type %d",
158 lc->l_free.lf_type);
159 }
160 }
161 }
162
163 void
164 zap_leaf_init(zap_leaf_t *l, boolean_t sort)
165 {
166 int i;
167
168 l->l_bs = highbit64(l->l_dbuf->db_size) - 1;
169 zap_memset(&zap_leaf_phys(l)->l_hdr, 0,
170 sizeof (struct zap_leaf_header));
171 zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
172 2*ZAP_LEAF_HASH_NUMENTRIES(l));
173 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
174 ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE;
175 ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1;
176 }
177 ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END;
178 zap_leaf_phys(l)->l_hdr.lh_block_type = ZBT_LEAF;
179 zap_leaf_phys(l)->l_hdr.lh_magic = ZAP_LEAF_MAGIC;
180 zap_leaf_phys(l)->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l);
181 if (sort)
182 zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
183 }
184
185 /*
186 * Routines which manipulate leaf chunks (l_chunk[]).
187 */
188
189 static uint16_t
190 zap_leaf_chunk_alloc(zap_leaf_t *l)
191 {
192 int chunk;
193
194 ASSERT(zap_leaf_phys(l)->l_hdr.lh_nfree > 0);
195
196 chunk = zap_leaf_phys(l)->l_hdr.lh_freelist;
197 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
198 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE);
199
200 zap_leaf_phys(l)->l_hdr.lh_freelist =
201 ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next;
202
203 zap_leaf_phys(l)->l_hdr.lh_nfree--;
204
205 return (chunk);
206 }
207
208 static void
209 zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk)
210 {
211 struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free;
212 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l));
213 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
214 ASSERT(zlf->lf_type != ZAP_CHUNK_FREE);
215
216 zlf->lf_type = ZAP_CHUNK_FREE;
217 zlf->lf_next = zap_leaf_phys(l)->l_hdr.lh_freelist;
218 bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */
219 zap_leaf_phys(l)->l_hdr.lh_freelist = chunk;
220
221 zap_leaf_phys(l)->l_hdr.lh_nfree++;
222 }
223
224 /*
225 * Routines which manipulate leaf arrays (zap_leaf_array type chunks).
226 */
227
228 static uint16_t
229 zap_leaf_array_create(zap_leaf_t *l, const char *buf,
230 int integer_size, int num_integers)
231 {
232 uint16_t chunk_head;
233 uint16_t *chunkp = &chunk_head;
234 int byten = 0;
235 uint64_t value = 0;
236 int shift = (integer_size-1)*8;
237 int len = num_integers;
238
239 ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES);
240
241 while (len > 0) {
242 uint16_t chunk = zap_leaf_chunk_alloc(l);
243 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
244 int i;
245
246 la->la_type = ZAP_CHUNK_ARRAY;
247 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) {
248 if (byten == 0)
249 value = ldv(integer_size, buf);
250 la->la_array[i] = value >> shift;
251 value <<= 8;
252 if (++byten == integer_size) {
253 byten = 0;
254 buf += integer_size;
255 if (--len == 0)
256 break;
257 }
258 }
259
260 *chunkp = chunk;
261 chunkp = &la->la_next;
262 }
263 *chunkp = CHAIN_END;
264
265 return (chunk_head);
266 }
267
268 static void
269 zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp)
270 {
271 uint16_t chunk = *chunkp;
272
273 *chunkp = CHAIN_END;
274
275 while (chunk != CHAIN_END) {
276 int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next;
277 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==,
278 ZAP_CHUNK_ARRAY);
279 zap_leaf_chunk_free(l, chunk);
280 chunk = nextchunk;
281 }
282 }
283
284 /* array_len and buf_len are in integers, not bytes */
285 static void
286 zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk,
287 int array_int_len, int array_len, int buf_int_len, uint64_t buf_len,
288 void *buf)
289 {
290 int len = MIN(array_len, buf_len);
291 int byten = 0;
292 uint64_t value = 0;
293 char *p = buf;
294
295 ASSERT3U(array_int_len, <=, buf_int_len);
296
297 /* Fast path for one 8-byte integer */
298 if (array_int_len == 8 && buf_int_len == 8 && len == 1) {
299 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
300 uint8_t *ip = la->la_array;
301 uint64_t *buf64 = buf;
302
303 *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 |
304 (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 |
305 (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 |
306 (uint64_t)ip[6] << 8 | (uint64_t)ip[7];
307 return;
308 }
309
310 /* Fast path for an array of 1-byte integers (eg. the entry name) */
311 if (array_int_len == 1 && buf_int_len == 1 &&
312 buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) {
313 while (chunk != CHAIN_END) {
314 struct zap_leaf_array *la =
315 &ZAP_LEAF_CHUNK(l, chunk).l_array;
316 bcopy(la->la_array, p, ZAP_LEAF_ARRAY_BYTES);
317 p += ZAP_LEAF_ARRAY_BYTES;
318 chunk = la->la_next;
319 }
320 return;
321 }
322
323 while (len > 0) {
324 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
325 int i;
326
327 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
328 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
329 value = (value << 8) | la->la_array[i];
330 byten++;
331 if (byten == array_int_len) {
332 stv(buf_int_len, p, value);
333 byten = 0;
334 len--;
335 if (len == 0)
336 return;
337 p += buf_int_len;
338 }
339 }
340 chunk = la->la_next;
341 }
342 }
343
344 static boolean_t
345 zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn,
346 int chunk, int array_numints)
347 {
348 int bseen = 0;
349
350 if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) {
351 uint64_t *thiskey;
352 boolean_t match;
353
354 ASSERT(zn->zn_key_intlen == sizeof (*thiskey));
355 thiskey = kmem_alloc(array_numints * sizeof (*thiskey),
356 KM_SLEEP);
357
358 zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints,
359 sizeof (*thiskey), array_numints, thiskey);
360 match = bcmp(thiskey, zn->zn_key_orig,
361 array_numints * sizeof (*thiskey)) == 0;
362 kmem_free(thiskey, array_numints * sizeof (*thiskey));
363 return (match);
364 }
365
366 ASSERT(zn->zn_key_intlen == 1);
367 if (zn->zn_matchtype == MT_FIRST) {
368 char *thisname = kmem_alloc(array_numints, KM_SLEEP);
369 boolean_t match;
370
371 zap_leaf_array_read(l, chunk, sizeof (char), array_numints,
372 sizeof (char), array_numints, thisname);
373 match = zap_match(zn, thisname);
374 kmem_free(thisname, array_numints);
375 return (match);
376 }
377
378 /*
379 * Fast path for exact matching.
380 * First check that the lengths match, so that we don't read
381 * past the end of the zn_key_orig array.
382 */
383 if (array_numints != zn->zn_key_orig_numints)
384 return (B_FALSE);
385 while (bseen < array_numints) {
386 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
387 int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES);
388 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
389 if (bcmp(la->la_array, (char *)zn->zn_key_orig + bseen, toread))
390 break;
391 chunk = la->la_next;
392 bseen += toread;
393 }
394 return (bseen == array_numints);
395 }
396
397 /*
398 * Routines which manipulate leaf entries.
399 */
400
401 int
402 zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh)
403 {
404 uint16_t *chunkp;
405 struct zap_leaf_entry *le;
406
407 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
408
409 again:
410 for (chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash);
411 *chunkp != CHAIN_END; chunkp = &le->le_next) {
412 uint16_t chunk = *chunkp;
413 le = ZAP_LEAF_ENTRY(l, chunk);
414
415 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
416 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
417
418 if (le->le_hash != zn->zn_hash)
419 continue;
420
421 /*
422 * NB: the entry chain is always sorted by cd on
423 * normalized zap objects, so this will find the
424 * lowest-cd match for MT_FIRST.
425 */
426 ASSERT(zn->zn_matchtype == MT_EXACT ||
427 (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED));
428 if (zap_leaf_array_match(l, zn, le->le_name_chunk,
429 le->le_name_numints)) {
430 zeh->zeh_num_integers = le->le_value_numints;
431 zeh->zeh_integer_size = le->le_value_intlen;
432 zeh->zeh_cd = le->le_cd;
433 zeh->zeh_hash = le->le_hash;
434 zeh->zeh_chunkp = chunkp;
435 zeh->zeh_leaf = l;
436 return (0);
437 }
438 }
439
440 /*
441 * NB: we could of course do this in one pass, but that would be
442 * a pain. We'll see if MT_BEST is even used much.
443 */
444 if (zn->zn_matchtype == MT_BEST) {
445 zn->zn_matchtype = MT_FIRST;
446 goto again;
447 }
448
449 return (SET_ERROR(ENOENT));
450 }
451
452 /* Return (h1,cd1 >= h2,cd2) */
453 #define HCD_GTEQ(h1, cd1, h2, cd2) \
454 ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE))
455
456 int
457 zap_leaf_lookup_closest(zap_leaf_t *l,
458 uint64_t h, uint32_t cd, zap_entry_handle_t *zeh)
459 {
460 uint16_t chunk;
461 uint64_t besth = -1ULL;
462 uint32_t bestcd = -1U;
463 uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1;
464 uint16_t lh;
465 struct zap_leaf_entry *le;
466
467 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
468
469 for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) {
470 for (chunk = zap_leaf_phys(l)->l_hash[lh];
471 chunk != CHAIN_END; chunk = le->le_next) {
472 le = ZAP_LEAF_ENTRY(l, chunk);
473
474 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
475 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
476
477 if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) &&
478 HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) {
479 ASSERT3U(bestlh, >=, lh);
480 bestlh = lh;
481 besth = le->le_hash;
482 bestcd = le->le_cd;
483
484 zeh->zeh_num_integers = le->le_value_numints;
485 zeh->zeh_integer_size = le->le_value_intlen;
486 zeh->zeh_cd = le->le_cd;
487 zeh->zeh_hash = le->le_hash;
488 zeh->zeh_fakechunk = chunk;
489 zeh->zeh_chunkp = &zeh->zeh_fakechunk;
490 zeh->zeh_leaf = l;
491 }
492 }
493 }
494
495 return (bestcd == -1U ? ENOENT : 0);
496 }
497
498 int
499 zap_entry_read(const zap_entry_handle_t *zeh,
500 uint8_t integer_size, uint64_t num_integers, void *buf)
501 {
502 struct zap_leaf_entry *le =
503 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
504 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
505
506 if (le->le_value_intlen > integer_size)
507 return (SET_ERROR(EINVAL));
508
509 zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk,
510 le->le_value_intlen, le->le_value_numints,
511 integer_size, num_integers, buf);
512
513 if (zeh->zeh_num_integers > num_integers)
514 return (SET_ERROR(EOVERFLOW));
515 return (0);
516
517 }
518
519 int
520 zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen,
521 char *buf)
522 {
523 struct zap_leaf_entry *le =
524 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
525 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
526
527 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
528 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8,
529 le->le_name_numints, 8, buflen / 8, buf);
530 } else {
531 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1,
532 le->le_name_numints, 1, buflen, buf);
533 }
534 if (le->le_name_numints > buflen)
535 return (SET_ERROR(EOVERFLOW));
536 return (0);
537 }
538
539 int
540 zap_entry_update(zap_entry_handle_t *zeh,
541 uint8_t integer_size, uint64_t num_integers, const void *buf)
542 {
543 int delta_chunks;
544 zap_leaf_t *l = zeh->zeh_leaf;
545 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp);
546
547 delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) -
548 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen);
549
550 if ((int)zap_leaf_phys(l)->l_hdr.lh_nfree < delta_chunks)
551 return (SET_ERROR(EAGAIN));
552
553 zap_leaf_array_free(l, &le->le_value_chunk);
554 le->le_value_chunk =
555 zap_leaf_array_create(l, buf, integer_size, num_integers);
556 le->le_value_numints = num_integers;
557 le->le_value_intlen = integer_size;
558 return (0);
559 }
560
561 void
562 zap_entry_remove(zap_entry_handle_t *zeh)
563 {
564 uint16_t entry_chunk;
565 struct zap_leaf_entry *le;
566 zap_leaf_t *l = zeh->zeh_leaf;
567
568 ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk);
569
570 entry_chunk = *zeh->zeh_chunkp;
571 le = ZAP_LEAF_ENTRY(l, entry_chunk);
572 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
573
574 zap_leaf_array_free(l, &le->le_name_chunk);
575 zap_leaf_array_free(l, &le->le_value_chunk);
576
577 *zeh->zeh_chunkp = le->le_next;
578 zap_leaf_chunk_free(l, entry_chunk);
579
580 zap_leaf_phys(l)->l_hdr.lh_nentries--;
581 }
582
583 int
584 zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd,
585 uint8_t integer_size, uint64_t num_integers, const void *buf,
586 zap_entry_handle_t *zeh)
587 {
588 uint16_t chunk;
589 uint16_t *chunkp;
590 struct zap_leaf_entry *le;
591 uint64_t valuelen;
592 int numchunks;
593 uint64_t h = zn->zn_hash;
594
595 valuelen = integer_size * num_integers;
596
597 numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints *
598 zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen);
599 if (numchunks > ZAP_LEAF_NUMCHUNKS(l))
600 return (E2BIG);
601
602 if (cd == ZAP_NEED_CD) {
603 /* find the lowest unused cd */
604 if (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) {
605 cd = 0;
606
607 for (chunk = *LEAF_HASH_ENTPTR(l, h);
608 chunk != CHAIN_END; chunk = le->le_next) {
609 le = ZAP_LEAF_ENTRY(l, chunk);
610 if (le->le_cd > cd)
611 break;
612 if (le->le_hash == h) {
613 ASSERT3U(cd, ==, le->le_cd);
614 cd++;
615 }
616 }
617 } else {
618 /* old unsorted format; do it the O(n^2) way */
619 for (cd = 0; ; cd++) {
620 for (chunk = *LEAF_HASH_ENTPTR(l, h);
621 chunk != CHAIN_END; chunk = le->le_next) {
622 le = ZAP_LEAF_ENTRY(l, chunk);
623 if (le->le_hash == h &&
624 le->le_cd == cd) {
625 break;
626 }
627 }
628 /* If this cd is not in use, we are good. */
629 if (chunk == CHAIN_END)
630 break;
631 }
632 }
633 /*
634 * We would run out of space in a block before we could
635 * store enough entries to run out of CD values.
636 */
637 ASSERT3U(cd, <, zap_maxcd(zn->zn_zap));
638 }
639
640 if (zap_leaf_phys(l)->l_hdr.lh_nfree < numchunks)
641 return (SET_ERROR(EAGAIN));
642
643 /* make the entry */
644 chunk = zap_leaf_chunk_alloc(l);
645 le = ZAP_LEAF_ENTRY(l, chunk);
646 le->le_type = ZAP_CHUNK_ENTRY;
647 le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig,
648 zn->zn_key_intlen, zn->zn_key_orig_numints);
649 le->le_name_numints = zn->zn_key_orig_numints;
650 le->le_value_chunk =
651 zap_leaf_array_create(l, buf, integer_size, num_integers);
652 le->le_value_numints = num_integers;
653 le->le_value_intlen = integer_size;
654 le->le_hash = h;
655 le->le_cd = cd;
656
657 /* link it into the hash chain */
658 /* XXX if we did the search above, we could just use that */
659 chunkp = zap_leaf_rehash_entry(l, chunk);
660
661 zap_leaf_phys(l)->l_hdr.lh_nentries++;
662
663 zeh->zeh_leaf = l;
664 zeh->zeh_num_integers = num_integers;
665 zeh->zeh_integer_size = le->le_value_intlen;
666 zeh->zeh_cd = le->le_cd;
667 zeh->zeh_hash = le->le_hash;
668 zeh->zeh_chunkp = chunkp;
669
670 return (0);
671 }
672
673 /*
674 * Determine if there is another entry with the same normalized form.
675 * For performance purposes, either zn or name must be provided (the
676 * other can be NULL). Note, there usually won't be any hash
677 * conflicts, in which case we don't need the concatenated/normalized
678 * form of the name. But all callers have one of these on hand anyway,
679 * so might as well take advantage. A cleaner but slower interface
680 * would accept neither argument, and compute the normalized name as
681 * needed (using zap_name_alloc(zap_entry_read_name(zeh))).
682 */
683 boolean_t
684 zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn,
685 const char *name, zap_t *zap)
686 {
687 uint64_t chunk;
688 struct zap_leaf_entry *le;
689 boolean_t allocdzn = B_FALSE;
690
691 if (zap->zap_normflags == 0)
692 return (B_FALSE);
693
694 for (chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash);
695 chunk != CHAIN_END; chunk = le->le_next) {
696 le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk);
697 if (le->le_hash != zeh->zeh_hash)
698 continue;
699 if (le->le_cd == zeh->zeh_cd)
700 continue;
701
702 if (zn == NULL) {
703 zn = zap_name_alloc(zap, name, MT_FIRST);
704 allocdzn = B_TRUE;
705 }
706 if (zap_leaf_array_match(zeh->zeh_leaf, zn,
707 le->le_name_chunk, le->le_name_numints)) {
708 if (allocdzn)
709 zap_name_free(zn);
710 return (B_TRUE);
711 }
712 }
713 if (allocdzn)
714 zap_name_free(zn);
715 return (B_FALSE);
716 }
717
718 /*
719 * Routines for transferring entries between leafs.
720 */
721
722 static uint16_t *
723 zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry)
724 {
725 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry);
726 struct zap_leaf_entry *le2;
727 uint16_t *chunkp;
728
729 /*
730 * keep the entry chain sorted by cd
731 * NB: this will not cause problems for unsorted leafs, though
732 * it is unnecessary there.
733 */
734 for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash);
735 *chunkp != CHAIN_END; chunkp = &le2->le_next) {
736 le2 = ZAP_LEAF_ENTRY(l, *chunkp);
737 if (le2->le_cd > le->le_cd)
738 break;
739 }
740
741 le->le_next = *chunkp;
742 *chunkp = entry;
743 return (chunkp);
744 }
745
746 static uint16_t
747 zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl)
748 {
749 uint16_t new_chunk;
750 uint16_t *nchunkp = &new_chunk;
751
752 while (chunk != CHAIN_END) {
753 uint16_t nchunk = zap_leaf_chunk_alloc(nl);
754 struct zap_leaf_array *nla =
755 &ZAP_LEAF_CHUNK(nl, nchunk).l_array;
756 struct zap_leaf_array *la =
757 &ZAP_LEAF_CHUNK(l, chunk).l_array;
758 int nextchunk = la->la_next;
759
760 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
761 ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l));
762
763 *nla = *la; /* structure assignment */
764
765 zap_leaf_chunk_free(l, chunk);
766 chunk = nextchunk;
767 *nchunkp = nchunk;
768 nchunkp = &nla->la_next;
769 }
770 *nchunkp = CHAIN_END;
771 return (new_chunk);
772 }
773
774 static void
775 zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl)
776 {
777 struct zap_leaf_entry *le, *nle;
778 uint16_t chunk;
779
780 le = ZAP_LEAF_ENTRY(l, entry);
781 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
782
783 chunk = zap_leaf_chunk_alloc(nl);
784 nle = ZAP_LEAF_ENTRY(nl, chunk);
785 *nle = *le; /* structure assignment */
786
787 (void) zap_leaf_rehash_entry(nl, chunk);
788
789 nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl);
790 nle->le_value_chunk =
791 zap_leaf_transfer_array(l, le->le_value_chunk, nl);
792
793 zap_leaf_chunk_free(l, entry);
794
795 zap_leaf_phys(l)->l_hdr.lh_nentries--;
796 zap_leaf_phys(nl)->l_hdr.lh_nentries++;
797 }
798
799 /*
800 * Transfer the entries whose hash prefix ends in 1 to the new leaf.
801 */
802 void
803 zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort)
804 {
805 int i;
806 int bit = 64 - 1 - zap_leaf_phys(l)->l_hdr.lh_prefix_len;
807
808 /* set new prefix and prefix_len */
809 zap_leaf_phys(l)->l_hdr.lh_prefix <<= 1;
810 zap_leaf_phys(l)->l_hdr.lh_prefix_len++;
811 zap_leaf_phys(nl)->l_hdr.lh_prefix =
812 zap_leaf_phys(l)->l_hdr.lh_prefix | 1;
813 zap_leaf_phys(nl)->l_hdr.lh_prefix_len =
814 zap_leaf_phys(l)->l_hdr.lh_prefix_len;
815
816 /* break existing hash chains */
817 zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
818 2*ZAP_LEAF_HASH_NUMENTRIES(l));
819
820 if (sort)
821 zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
822
823 /*
824 * Transfer entries whose hash bit 'bit' is set to nl; rehash
825 * the remaining entries
826 *
827 * NB: We could find entries via the hashtable instead. That
828 * would be O(hashents+numents) rather than O(numblks+numents),
829 * but this accesses memory more sequentially, and when we're
830 * called, the block is usually pretty full.
831 */
832 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
833 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i);
834 if (le->le_type != ZAP_CHUNK_ENTRY)
835 continue;
836
837 if (le->le_hash & (1ULL << bit))
838 zap_leaf_transfer_entry(l, i, nl);
839 else
840 (void) zap_leaf_rehash_entry(l, i);
841 }
842 }
843
844 void
845 zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs)
846 {
847 int i, n;
848
849 n = zap_f_phys(zap)->zap_ptrtbl.zt_shift -
850 zap_leaf_phys(l)->l_hdr.lh_prefix_len;
851 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
852 zs->zs_leafs_with_2n_pointers[n]++;
853
854
855 n = zap_leaf_phys(l)->l_hdr.lh_nentries/5;
856 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
857 zs->zs_blocks_with_n5_entries[n]++;
858
859 n = ((1<<FZAP_BLOCK_SHIFT(zap)) -
860 zap_leaf_phys(l)->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 /
861 (1<<FZAP_BLOCK_SHIFT(zap));
862 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
863 zs->zs_blocks_n_tenths_full[n]++;
864
865 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) {
866 int nentries = 0;
867 int chunk = zap_leaf_phys(l)->l_hash[i];
868
869 while (chunk != CHAIN_END) {
870 struct zap_leaf_entry *le =
871 ZAP_LEAF_ENTRY(l, chunk);
872
873 n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) +
874 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints *
875 le->le_value_intlen);
876 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
877 zs->zs_entries_using_n_chunks[n]++;
878
879 chunk = le->le_next;
880 nentries++;
881 }
882
883 n = nentries;
884 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
885 zs->zs_buckets_with_n_entries[n]++;
886 }
887 }