]> git.proxmox.com Git - rustc.git/blobdiff - compiler/rustc_hir_typeck/src/closure.rs
New upstream version 1.66.0+dfsg1
[rustc.git] / compiler / rustc_hir_typeck / src / closure.rs
diff --git a/compiler/rustc_hir_typeck/src/closure.rs b/compiler/rustc_hir_typeck/src/closure.rs
new file mode 100644 (file)
index 0000000..a5a45f7
--- /dev/null
@@ -0,0 +1,824 @@
+//! Code for type-checking closure expressions.
+
+use super::{check_fn, Expectation, FnCtxt, GeneratorTypes};
+
+use hir::def::DefKind;
+use rustc_hir as hir;
+use rustc_hir::def_id::DefId;
+use rustc_hir::lang_items::LangItem;
+use rustc_hir_analysis::astconv::AstConv;
+use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
+use rustc_infer::infer::LateBoundRegionConversionTime;
+use rustc_infer::infer::{InferOk, InferResult};
+use rustc_middle::ty::subst::InternalSubsts;
+use rustc_middle::ty::visit::TypeVisitable;
+use rustc_middle::ty::{self, Ty};
+use rustc_span::source_map::Span;
+use rustc_target::spec::abi::Abi;
+use rustc_trait_selection::traits::error_reporting::ArgKind;
+use rustc_trait_selection::traits::error_reporting::InferCtxtExt as _;
+use std::cmp;
+use std::iter;
+
+/// What signature do we *expect* the closure to have from context?
+#[derive(Debug)]
+struct ExpectedSig<'tcx> {
+    /// Span that gave us this expectation, if we know that.
+    cause_span: Option<Span>,
+    sig: ty::PolyFnSig<'tcx>,
+}
+
+struct ClosureSignatures<'tcx> {
+    /// The signature users of the closure see.
+    bound_sig: ty::PolyFnSig<'tcx>,
+    /// The signature within the function body.
+    /// This mostly differs in the sense that lifetimes are now early bound and any
+    /// opaque types from the signature expectation are overriden in case there are
+    /// explicit hidden types written by the user in the closure signature.
+    liberated_sig: ty::FnSig<'tcx>,
+}
+
+impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
+    #[instrument(skip(self, expr, _capture, decl, body_id), level = "debug")]
+    pub fn check_expr_closure(
+        &self,
+        expr: &hir::Expr<'_>,
+        _capture: hir::CaptureBy,
+        decl: &'tcx hir::FnDecl<'tcx>,
+        body_id: hir::BodyId,
+        gen: Option<hir::Movability>,
+        expected: Expectation<'tcx>,
+    ) -> Ty<'tcx> {
+        trace!("decl = {:#?}", decl);
+        trace!("expr = {:#?}", expr);
+
+        // It's always helpful for inference if we know the kind of
+        // closure sooner rather than later, so first examine the expected
+        // type, and see if can glean a closure kind from there.
+        let (expected_sig, expected_kind) = match expected.to_option(self) {
+            Some(ty) => self.deduce_expectations_from_expected_type(ty),
+            None => (None, None),
+        };
+        let body = self.tcx.hir().body(body_id);
+        self.check_closure(expr, expected_kind, decl, body, gen, expected_sig)
+    }
+
+    #[instrument(skip(self, expr, body, decl), level = "debug", ret)]
+    fn check_closure(
+        &self,
+        expr: &hir::Expr<'_>,
+        opt_kind: Option<ty::ClosureKind>,
+        decl: &'tcx hir::FnDecl<'tcx>,
+        body: &'tcx hir::Body<'tcx>,
+        gen: Option<hir::Movability>,
+        expected_sig: Option<ExpectedSig<'tcx>>,
+    ) -> Ty<'tcx> {
+        trace!("decl = {:#?}", decl);
+        let expr_def_id = self.tcx.hir().local_def_id(expr.hir_id);
+        debug!(?expr_def_id);
+
+        let ClosureSignatures { bound_sig, liberated_sig } =
+            self.sig_of_closure(expr.hir_id, expr_def_id.to_def_id(), decl, body, expected_sig);
+
+        debug!(?bound_sig, ?liberated_sig);
+
+        let return_type_pre_known = !liberated_sig.output().is_ty_infer();
+
+        let generator_types = check_fn(
+            self,
+            self.param_env.without_const(),
+            liberated_sig,
+            decl,
+            expr.hir_id,
+            body,
+            gen,
+            return_type_pre_known,
+        )
+        .1;
+
+        let parent_substs = InternalSubsts::identity_for_item(
+            self.tcx,
+            self.tcx.typeck_root_def_id(expr_def_id.to_def_id()),
+        );
+
+        let tupled_upvars_ty = self.next_ty_var(TypeVariableOrigin {
+            kind: TypeVariableOriginKind::ClosureSynthetic,
+            span: self.tcx.hir().span(expr.hir_id),
+        });
+
+        if let Some(GeneratorTypes { resume_ty, yield_ty, interior, movability }) = generator_types
+        {
+            let generator_substs = ty::GeneratorSubsts::new(
+                self.tcx,
+                ty::GeneratorSubstsParts {
+                    parent_substs,
+                    resume_ty,
+                    yield_ty,
+                    return_ty: liberated_sig.output(),
+                    witness: interior,
+                    tupled_upvars_ty,
+                },
+            );
+
+            return self.tcx.mk_generator(
+                expr_def_id.to_def_id(),
+                generator_substs.substs,
+                movability,
+            );
+        }
+
+        // Tuple up the arguments and insert the resulting function type into
+        // the `closures` table.
+        let sig = bound_sig.map_bound(|sig| {
+            self.tcx.mk_fn_sig(
+                iter::once(self.tcx.intern_tup(sig.inputs())),
+                sig.output(),
+                sig.c_variadic,
+                sig.unsafety,
+                sig.abi,
+            )
+        });
+
+        debug!(?sig, ?opt_kind);
+
+        let closure_kind_ty = match opt_kind {
+            Some(kind) => kind.to_ty(self.tcx),
+
+            // Create a type variable (for now) to represent the closure kind.
+            // It will be unified during the upvar inference phase (`upvar.rs`)
+            None => self.next_ty_var(TypeVariableOrigin {
+                // FIXME(eddyb) distinguish closure kind inference variables from the rest.
+                kind: TypeVariableOriginKind::ClosureSynthetic,
+                span: expr.span,
+            }),
+        };
+
+        let closure_substs = ty::ClosureSubsts::new(
+            self.tcx,
+            ty::ClosureSubstsParts {
+                parent_substs,
+                closure_kind_ty,
+                closure_sig_as_fn_ptr_ty: self.tcx.mk_fn_ptr(sig),
+                tupled_upvars_ty,
+            },
+        );
+
+        self.tcx.mk_closure(expr_def_id.to_def_id(), closure_substs.substs)
+    }
+
+    /// Given the expected type, figures out what it can about this closure we
+    /// are about to type check:
+    #[instrument(skip(self), level = "debug")]
+    fn deduce_expectations_from_expected_type(
+        &self,
+        expected_ty: Ty<'tcx>,
+    ) -> (Option<ExpectedSig<'tcx>>, Option<ty::ClosureKind>) {
+        match *expected_ty.kind() {
+            ty::Opaque(def_id, substs) => {
+                let bounds = self.tcx.bound_explicit_item_bounds(def_id);
+                let sig =
+                    bounds.subst_iter_copied(self.tcx, substs).find_map(|(pred, span)| match pred
+                        .kind()
+                        .skip_binder()
+                    {
+                        ty::PredicateKind::Projection(proj_predicate) => self
+                            .deduce_sig_from_projection(
+                                Some(span),
+                                pred.kind().rebind(proj_predicate),
+                            ),
+                        _ => None,
+                    });
+
+                let kind = bounds
+                    .0
+                    .iter()
+                    .filter_map(|(pred, _)| match pred.kind().skip_binder() {
+                        ty::PredicateKind::Trait(tp) => {
+                            self.tcx.fn_trait_kind_from_lang_item(tp.def_id())
+                        }
+                        _ => None,
+                    })
+                    .fold(None, |best, cur| Some(best.map_or(cur, |best| cmp::min(best, cur))));
+                trace!(?sig, ?kind);
+                (sig, kind)
+            }
+            ty::Dynamic(ref object_type, ..) => {
+                let sig = object_type.projection_bounds().find_map(|pb| {
+                    let pb = pb.with_self_ty(self.tcx, self.tcx.types.trait_object_dummy_self);
+                    self.deduce_sig_from_projection(None, pb)
+                });
+                let kind = object_type
+                    .principal_def_id()
+                    .and_then(|did| self.tcx.fn_trait_kind_from_lang_item(did));
+                (sig, kind)
+            }
+            ty::Infer(ty::TyVar(vid)) => self.deduce_expectations_from_obligations(vid),
+            ty::FnPtr(sig) => {
+                let expected_sig = ExpectedSig { cause_span: None, sig };
+                (Some(expected_sig), Some(ty::ClosureKind::Fn))
+            }
+            _ => (None, None),
+        }
+    }
+
+    fn deduce_expectations_from_obligations(
+        &self,
+        expected_vid: ty::TyVid,
+    ) -> (Option<ExpectedSig<'tcx>>, Option<ty::ClosureKind>) {
+        let expected_sig =
+            self.obligations_for_self_ty(expected_vid).find_map(|(_, obligation)| {
+                debug!(?obligation.predicate);
+
+                let bound_predicate = obligation.predicate.kind();
+                if let ty::PredicateKind::Projection(proj_predicate) =
+                    obligation.predicate.kind().skip_binder()
+                {
+                    // Given a Projection predicate, we can potentially infer
+                    // the complete signature.
+                    self.deduce_sig_from_projection(
+                        Some(obligation.cause.span),
+                        bound_predicate.rebind(proj_predicate),
+                    )
+                } else {
+                    None
+                }
+            });
+
+        // Even if we can't infer the full signature, we may be able to
+        // infer the kind. This can occur when we elaborate a predicate
+        // like `F : Fn<A>`. Note that due to subtyping we could encounter
+        // many viable options, so pick the most restrictive.
+        let expected_kind = self
+            .obligations_for_self_ty(expected_vid)
+            .filter_map(|(tr, _)| self.tcx.fn_trait_kind_from_lang_item(tr.def_id()))
+            .fold(None, |best, cur| Some(best.map_or(cur, |best| cmp::min(best, cur))));
+
+        (expected_sig, expected_kind)
+    }
+
+    /// Given a projection like "<F as Fn(X)>::Result == Y", we can deduce
+    /// everything we need to know about a closure or generator.
+    ///
+    /// The `cause_span` should be the span that caused us to
+    /// have this expected signature, or `None` if we can't readily
+    /// know that.
+    #[instrument(level = "debug", skip(self, cause_span), ret)]
+    fn deduce_sig_from_projection(
+        &self,
+        cause_span: Option<Span>,
+        projection: ty::PolyProjectionPredicate<'tcx>,
+    ) -> Option<ExpectedSig<'tcx>> {
+        let tcx = self.tcx;
+
+        let trait_def_id = projection.trait_def_id(tcx);
+
+        let is_fn = tcx.fn_trait_kind_from_lang_item(trait_def_id).is_some();
+        let gen_trait = tcx.require_lang_item(LangItem::Generator, cause_span);
+        let is_gen = gen_trait == trait_def_id;
+        if !is_fn && !is_gen {
+            debug!("not fn or generator");
+            return None;
+        }
+
+        if is_gen {
+            // Check that we deduce the signature from the `<_ as std::ops::Generator>::Return`
+            // associated item and not yield.
+            let return_assoc_item = self.tcx.associated_item_def_ids(gen_trait)[1];
+            if return_assoc_item != projection.projection_def_id() {
+                debug!("not return assoc item of generator");
+                return None;
+            }
+        }
+
+        let input_tys = if is_fn {
+            let arg_param_ty = projection.skip_binder().projection_ty.substs.type_at(1);
+            let arg_param_ty = self.resolve_vars_if_possible(arg_param_ty);
+            debug!(?arg_param_ty);
+
+            match arg_param_ty.kind() {
+                &ty::Tuple(tys) => tys,
+                _ => return None,
+            }
+        } else {
+            // Generators with a `()` resume type may be defined with 0 or 1 explicit arguments,
+            // else they must have exactly 1 argument. For now though, just give up in this case.
+            return None;
+        };
+
+        // Since this is a return parameter type it is safe to unwrap.
+        let ret_param_ty = projection.skip_binder().term.ty().unwrap();
+        let ret_param_ty = self.resolve_vars_if_possible(ret_param_ty);
+        debug!(?ret_param_ty);
+
+        let sig = projection.rebind(self.tcx.mk_fn_sig(
+            input_tys.iter(),
+            ret_param_ty,
+            false,
+            hir::Unsafety::Normal,
+            Abi::Rust,
+        ));
+
+        Some(ExpectedSig { cause_span, sig })
+    }
+
+    fn sig_of_closure(
+        &self,
+        hir_id: hir::HirId,
+        expr_def_id: DefId,
+        decl: &hir::FnDecl<'_>,
+        body: &hir::Body<'_>,
+        expected_sig: Option<ExpectedSig<'tcx>>,
+    ) -> ClosureSignatures<'tcx> {
+        if let Some(e) = expected_sig {
+            self.sig_of_closure_with_expectation(hir_id, expr_def_id, decl, body, e)
+        } else {
+            self.sig_of_closure_no_expectation(hir_id, expr_def_id, decl, body)
+        }
+    }
+
+    /// If there is no expected signature, then we will convert the
+    /// types that the user gave into a signature.
+    #[instrument(skip(self, hir_id, expr_def_id, decl, body), level = "debug")]
+    fn sig_of_closure_no_expectation(
+        &self,
+        hir_id: hir::HirId,
+        expr_def_id: DefId,
+        decl: &hir::FnDecl<'_>,
+        body: &hir::Body<'_>,
+    ) -> ClosureSignatures<'tcx> {
+        let bound_sig = self.supplied_sig_of_closure(hir_id, expr_def_id, decl, body);
+
+        self.closure_sigs(expr_def_id, body, bound_sig)
+    }
+
+    /// Invoked to compute the signature of a closure expression. This
+    /// combines any user-provided type annotations (e.g., `|x: u32|
+    /// -> u32 { .. }`) with the expected signature.
+    ///
+    /// The approach is as follows:
+    ///
+    /// - Let `S` be the (higher-ranked) signature that we derive from the user's annotations.
+    /// - Let `E` be the (higher-ranked) signature that we derive from the expectations, if any.
+    ///   - If we have no expectation `E`, then the signature of the closure is `S`.
+    ///   - Otherwise, the signature of the closure is E. Moreover:
+    ///     - Skolemize the late-bound regions in `E`, yielding `E'`.
+    ///     - Instantiate all the late-bound regions bound in the closure within `S`
+    ///       with fresh (existential) variables, yielding `S'`
+    ///     - Require that `E' = S'`
+    ///       - We could use some kind of subtyping relationship here,
+    ///         I imagine, but equality is easier and works fine for
+    ///         our purposes.
+    ///
+    /// The key intuition here is that the user's types must be valid
+    /// from "the inside" of the closure, but the expectation
+    /// ultimately drives the overall signature.
+    ///
+    /// # Examples
+    ///
+    /// ```ignore (illustrative)
+    /// fn with_closure<F>(_: F)
+    ///   where F: Fn(&u32) -> &u32 { .. }
+    ///
+    /// with_closure(|x: &u32| { ... })
+    /// ```
+    ///
+    /// Here:
+    /// - E would be `fn(&u32) -> &u32`.
+    /// - S would be `fn(&u32) ->
+    /// - E' is `&'!0 u32 -> &'!0 u32`
+    /// - S' is `&'?0 u32 -> ?T`
+    ///
+    /// S' can be unified with E' with `['?0 = '!0, ?T = &'!10 u32]`.
+    ///
+    /// # Arguments
+    ///
+    /// - `expr_def_id`: the `DefId` of the closure expression
+    /// - `decl`: the HIR declaration of the closure
+    /// - `body`: the body of the closure
+    /// - `expected_sig`: the expected signature (if any). Note that
+    ///   this is missing a binder: that is, there may be late-bound
+    ///   regions with depth 1, which are bound then by the closure.
+    #[instrument(skip(self, hir_id, expr_def_id, decl, body), level = "debug")]
+    fn sig_of_closure_with_expectation(
+        &self,
+        hir_id: hir::HirId,
+        expr_def_id: DefId,
+        decl: &hir::FnDecl<'_>,
+        body: &hir::Body<'_>,
+        expected_sig: ExpectedSig<'tcx>,
+    ) -> ClosureSignatures<'tcx> {
+        // Watch out for some surprises and just ignore the
+        // expectation if things don't see to match up with what we
+        // expect.
+        if expected_sig.sig.c_variadic() != decl.c_variadic {
+            return self.sig_of_closure_no_expectation(hir_id, expr_def_id, decl, body);
+        } else if expected_sig.sig.skip_binder().inputs_and_output.len() != decl.inputs.len() + 1 {
+            return self.sig_of_closure_with_mismatched_number_of_arguments(
+                expr_def_id,
+                decl,
+                body,
+                expected_sig,
+            );
+        }
+
+        // Create a `PolyFnSig`. Note the oddity that late bound
+        // regions appearing free in `expected_sig` are now bound up
+        // in this binder we are creating.
+        assert!(!expected_sig.sig.skip_binder().has_vars_bound_above(ty::INNERMOST));
+        let bound_sig = expected_sig.sig.map_bound(|sig| {
+            self.tcx.mk_fn_sig(
+                sig.inputs().iter().cloned(),
+                sig.output(),
+                sig.c_variadic,
+                hir::Unsafety::Normal,
+                Abi::RustCall,
+            )
+        });
+
+        // `deduce_expectations_from_expected_type` introduces
+        // late-bound lifetimes defined elsewhere, which we now
+        // anonymize away, so as not to confuse the user.
+        let bound_sig = self.tcx.anonymize_late_bound_regions(bound_sig);
+
+        let closure_sigs = self.closure_sigs(expr_def_id, body, bound_sig);
+
+        // Up till this point, we have ignored the annotations that the user
+        // gave. This function will check that they unify successfully.
+        // Along the way, it also writes out entries for types that the user
+        // wrote into our typeck results, which are then later used by the privacy
+        // check.
+        match self.merge_supplied_sig_with_expectation(
+            hir_id,
+            expr_def_id,
+            decl,
+            body,
+            closure_sigs,
+        ) {
+            Ok(infer_ok) => self.register_infer_ok_obligations(infer_ok),
+            Err(_) => self.sig_of_closure_no_expectation(hir_id, expr_def_id, decl, body),
+        }
+    }
+
+    fn sig_of_closure_with_mismatched_number_of_arguments(
+        &self,
+        expr_def_id: DefId,
+        decl: &hir::FnDecl<'_>,
+        body: &hir::Body<'_>,
+        expected_sig: ExpectedSig<'tcx>,
+    ) -> ClosureSignatures<'tcx> {
+        let hir = self.tcx.hir();
+        let expr_map_node = hir.get_if_local(expr_def_id).unwrap();
+        let expected_args: Vec<_> = expected_sig
+            .sig
+            .skip_binder()
+            .inputs()
+            .iter()
+            .map(|ty| ArgKind::from_expected_ty(*ty, None))
+            .collect();
+        let (closure_span, found_args) = match self.get_fn_like_arguments(expr_map_node) {
+            Some((sp, args)) => (Some(sp), args),
+            None => (None, Vec::new()),
+        };
+        let expected_span =
+            expected_sig.cause_span.unwrap_or_else(|| hir.span_if_local(expr_def_id).unwrap());
+        self.report_arg_count_mismatch(
+            expected_span,
+            closure_span,
+            expected_args,
+            found_args,
+            true,
+        )
+        .emit();
+
+        let error_sig = self.error_sig_of_closure(decl);
+
+        self.closure_sigs(expr_def_id, body, error_sig)
+    }
+
+    /// Enforce the user's types against the expectation. See
+    /// `sig_of_closure_with_expectation` for details on the overall
+    /// strategy.
+    #[instrument(level = "debug", skip(self, hir_id, expr_def_id, decl, body, expected_sigs))]
+    fn merge_supplied_sig_with_expectation(
+        &self,
+        hir_id: hir::HirId,
+        expr_def_id: DefId,
+        decl: &hir::FnDecl<'_>,
+        body: &hir::Body<'_>,
+        mut expected_sigs: ClosureSignatures<'tcx>,
+    ) -> InferResult<'tcx, ClosureSignatures<'tcx>> {
+        // Get the signature S that the user gave.
+        //
+        // (See comment on `sig_of_closure_with_expectation` for the
+        // meaning of these letters.)
+        let supplied_sig = self.supplied_sig_of_closure(hir_id, expr_def_id, decl, body);
+
+        debug!(?supplied_sig);
+
+        // FIXME(#45727): As discussed in [this comment][c1], naively
+        // forcing equality here actually results in suboptimal error
+        // messages in some cases.  For now, if there would have been
+        // an obvious error, we fallback to declaring the type of the
+        // closure to be the one the user gave, which allows other
+        // error message code to trigger.
+        //
+        // However, I think [there is potential to do even better
+        // here][c2], since in *this* code we have the precise span of
+        // the type parameter in question in hand when we report the
+        // error.
+        //
+        // [c1]: https://github.com/rust-lang/rust/pull/45072#issuecomment-341089706
+        // [c2]: https://github.com/rust-lang/rust/pull/45072#issuecomment-341096796
+        self.commit_if_ok(|_| {
+            let mut all_obligations = vec![];
+            let inputs: Vec<_> = iter::zip(
+                decl.inputs,
+                supplied_sig.inputs().skip_binder(), // binder moved to (*) below
+            )
+            .map(|(hir_ty, &supplied_ty)| {
+                // Instantiate (this part of..) S to S', i.e., with fresh variables.
+                self.replace_bound_vars_with_fresh_vars(
+                    hir_ty.span,
+                    LateBoundRegionConversionTime::FnCall,
+                    // (*) binder moved to here
+                    supplied_sig.inputs().rebind(supplied_ty),
+                )
+            })
+            .collect();
+
+            // The liberated version of this signature should be a subtype
+            // of the liberated form of the expectation.
+            for ((hir_ty, &supplied_ty), expected_ty) in iter::zip(
+                iter::zip(decl.inputs, &inputs),
+                expected_sigs.liberated_sig.inputs(), // `liberated_sig` is E'.
+            ) {
+                // Check that E' = S'.
+                let cause = self.misc(hir_ty.span);
+                let InferOk { value: (), obligations } =
+                    self.at(&cause, self.param_env).eq(*expected_ty, supplied_ty)?;
+                all_obligations.extend(obligations);
+            }
+
+            let supplied_output_ty = self.replace_bound_vars_with_fresh_vars(
+                decl.output.span(),
+                LateBoundRegionConversionTime::FnCall,
+                supplied_sig.output(),
+            );
+            let cause = &self.misc(decl.output.span());
+            let InferOk { value: (), obligations } = self
+                .at(cause, self.param_env)
+                .eq(expected_sigs.liberated_sig.output(), supplied_output_ty)?;
+            all_obligations.extend(obligations);
+
+            let inputs = inputs.into_iter().map(|ty| self.resolve_vars_if_possible(ty));
+
+            expected_sigs.liberated_sig = self.tcx.mk_fn_sig(
+                inputs,
+                supplied_output_ty,
+                expected_sigs.liberated_sig.c_variadic,
+                hir::Unsafety::Normal,
+                Abi::RustCall,
+            );
+
+            Ok(InferOk { value: expected_sigs, obligations: all_obligations })
+        })
+    }
+
+    /// If there is no expected signature, then we will convert the
+    /// types that the user gave into a signature.
+    ///
+    /// Also, record this closure signature for later.
+    #[instrument(skip(self, decl, body), level = "debug", ret)]
+    fn supplied_sig_of_closure(
+        &self,
+        hir_id: hir::HirId,
+        expr_def_id: DefId,
+        decl: &hir::FnDecl<'_>,
+        body: &hir::Body<'_>,
+    ) -> ty::PolyFnSig<'tcx> {
+        let astconv: &dyn AstConv<'_> = self;
+
+        trace!("decl = {:#?}", decl);
+        debug!(?body.generator_kind);
+
+        let bound_vars = self.tcx.late_bound_vars(hir_id);
+
+        // First, convert the types that the user supplied (if any).
+        let supplied_arguments = decl.inputs.iter().map(|a| astconv.ast_ty_to_ty(a));
+        let supplied_return = match decl.output {
+            hir::FnRetTy::Return(ref output) => astconv.ast_ty_to_ty(&output),
+            hir::FnRetTy::DefaultReturn(_) => match body.generator_kind {
+                // In the case of the async block that we create for a function body,
+                // we expect the return type of the block to match that of the enclosing
+                // function.
+                Some(hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Fn)) => {
+                    debug!("closure is async fn body");
+                    self.deduce_future_output_from_obligations(expr_def_id, body.id().hir_id)
+                        .unwrap_or_else(|| {
+                            // AFAIK, deducing the future output
+                            // always succeeds *except* in error cases
+                            // like #65159. I'd like to return Error
+                            // here, but I can't because I can't
+                            // easily (and locally) prove that we
+                            // *have* reported an
+                            // error. --nikomatsakis
+                            astconv.ty_infer(None, decl.output.span())
+                        })
+                }
+
+                _ => astconv.ty_infer(None, decl.output.span()),
+            },
+        };
+
+        let result = ty::Binder::bind_with_vars(
+            self.tcx.mk_fn_sig(
+                supplied_arguments,
+                supplied_return,
+                decl.c_variadic,
+                hir::Unsafety::Normal,
+                Abi::RustCall,
+            ),
+            bound_vars,
+        );
+        // Astconv can't normalize inputs or outputs with escaping bound vars,
+        // so normalize them here, after we've wrapped them in a binder.
+        let result = self.normalize_associated_types_in(self.tcx.hir().span(hir_id), result);
+
+        let c_result = self.inh.infcx.canonicalize_response(result);
+        self.typeck_results.borrow_mut().user_provided_sigs.insert(expr_def_id, c_result);
+
+        result
+    }
+
+    /// Invoked when we are translating the generator that results
+    /// from desugaring an `async fn`. Returns the "sugared" return
+    /// type of the `async fn` -- that is, the return type that the
+    /// user specified. The "desugared" return type is an `impl
+    /// Future<Output = T>`, so we do this by searching through the
+    /// obligations to extract the `T`.
+    #[instrument(skip(self), level = "debug", ret)]
+    fn deduce_future_output_from_obligations(
+        &self,
+        expr_def_id: DefId,
+        body_id: hir::HirId,
+    ) -> Option<Ty<'tcx>> {
+        let ret_coercion = self.ret_coercion.as_ref().unwrap_or_else(|| {
+            span_bug!(self.tcx.def_span(expr_def_id), "async fn generator outside of a fn")
+        });
+
+        let ret_ty = ret_coercion.borrow().expected_ty();
+        let ret_ty = self.inh.infcx.shallow_resolve(ret_ty);
+
+        let get_future_output = |predicate: ty::Predicate<'tcx>, span| {
+            // Search for a pending obligation like
+            //
+            // `<R as Future>::Output = T`
+            //
+            // where R is the return type we are expecting. This type `T`
+            // will be our output.
+            let bound_predicate = predicate.kind();
+            if let ty::PredicateKind::Projection(proj_predicate) = bound_predicate.skip_binder() {
+                self.deduce_future_output_from_projection(
+                    span,
+                    bound_predicate.rebind(proj_predicate),
+                )
+            } else {
+                None
+            }
+        };
+
+        let output_ty = match *ret_ty.kind() {
+            ty::Infer(ty::TyVar(ret_vid)) => {
+                self.obligations_for_self_ty(ret_vid).find_map(|(_, obligation)| {
+                    get_future_output(obligation.predicate, obligation.cause.span)
+                })?
+            }
+            ty::Opaque(def_id, substs) => self
+                .tcx
+                .bound_explicit_item_bounds(def_id)
+                .subst_iter_copied(self.tcx, substs)
+                .find_map(|(p, s)| get_future_output(p, s))?,
+            ty::Error(_) => return None,
+            ty::Projection(proj)
+                if self.tcx.def_kind(proj.item_def_id) == DefKind::ImplTraitPlaceholder =>
+            {
+                self.tcx
+                    .bound_explicit_item_bounds(proj.item_def_id)
+                    .subst_iter_copied(self.tcx, proj.substs)
+                    .find_map(|(p, s)| get_future_output(p, s))?
+            }
+            _ => span_bug!(
+                self.tcx.def_span(expr_def_id),
+                "async fn generator return type not an inference variable: {ret_ty}"
+            ),
+        };
+
+        // async fn that have opaque types in their return type need to redo the conversion to inference variables
+        // as they fetch the still opaque version from the signature.
+        let InferOk { value: output_ty, obligations } = self
+            .replace_opaque_types_with_inference_vars(
+                output_ty,
+                body_id,
+                self.tcx.def_span(expr_def_id),
+                self.param_env,
+            );
+        self.register_predicates(obligations);
+
+        Some(output_ty)
+    }
+
+    /// Given a projection like
+    ///
+    /// `<X as Future>::Output = T`
+    ///
+    /// where `X` is some type that has no late-bound regions, returns
+    /// `Some(T)`. If the projection is for some other trait, returns
+    /// `None`.
+    fn deduce_future_output_from_projection(
+        &self,
+        cause_span: Span,
+        predicate: ty::PolyProjectionPredicate<'tcx>,
+    ) -> Option<Ty<'tcx>> {
+        debug!("deduce_future_output_from_projection(predicate={:?})", predicate);
+
+        // We do not expect any bound regions in our predicate, so
+        // skip past the bound vars.
+        let Some(predicate) = predicate.no_bound_vars() else {
+            debug!("deduce_future_output_from_projection: has late-bound regions");
+            return None;
+        };
+
+        // Check that this is a projection from the `Future` trait.
+        let trait_def_id = predicate.projection_ty.trait_def_id(self.tcx);
+        let future_trait = self.tcx.require_lang_item(LangItem::Future, Some(cause_span));
+        if trait_def_id != future_trait {
+            debug!("deduce_future_output_from_projection: not a future");
+            return None;
+        }
+
+        // The `Future` trait has only one associated item, `Output`,
+        // so check that this is what we see.
+        let output_assoc_item = self.tcx.associated_item_def_ids(future_trait)[0];
+        if output_assoc_item != predicate.projection_ty.item_def_id {
+            span_bug!(
+                cause_span,
+                "projecting associated item `{:?}` from future, which is not Output `{:?}`",
+                predicate.projection_ty.item_def_id,
+                output_assoc_item,
+            );
+        }
+
+        // Extract the type from the projection. Note that there can
+        // be no bound variables in this type because the "self type"
+        // does not have any regions in it.
+        let output_ty = self.resolve_vars_if_possible(predicate.term);
+        debug!("deduce_future_output_from_projection: output_ty={:?}", output_ty);
+        // This is a projection on a Fn trait so will always be a type.
+        Some(output_ty.ty().unwrap())
+    }
+
+    /// Converts the types that the user supplied, in case that doing
+    /// so should yield an error, but returns back a signature where
+    /// all parameters are of type `TyErr`.
+    fn error_sig_of_closure(&self, decl: &hir::FnDecl<'_>) -> ty::PolyFnSig<'tcx> {
+        let astconv: &dyn AstConv<'_> = self;
+
+        let supplied_arguments = decl.inputs.iter().map(|a| {
+            // Convert the types that the user supplied (if any), but ignore them.
+            astconv.ast_ty_to_ty(a);
+            self.tcx.ty_error()
+        });
+
+        if let hir::FnRetTy::Return(ref output) = decl.output {
+            astconv.ast_ty_to_ty(&output);
+        }
+
+        let result = ty::Binder::dummy(self.tcx.mk_fn_sig(
+            supplied_arguments,
+            self.tcx.ty_error(),
+            decl.c_variadic,
+            hir::Unsafety::Normal,
+            Abi::RustCall,
+        ));
+
+        debug!("supplied_sig_of_closure: result={:?}", result);
+
+        result
+    }
+
+    fn closure_sigs(
+        &self,
+        expr_def_id: DefId,
+        body: &hir::Body<'_>,
+        bound_sig: ty::PolyFnSig<'tcx>,
+    ) -> ClosureSignatures<'tcx> {
+        let liberated_sig = self.tcx().liberate_late_bound_regions(expr_def_id, bound_sig);
+        let liberated_sig = self.inh.normalize_associated_types_in(
+            body.value.span,
+            body.value.hir_id,
+            self.param_env,
+            liberated_sig,
+        );
+        ClosureSignatures { bound_sig, liberated_sig }
+    }
+}