]> git.proxmox.com Git - rustc.git/blobdiff - compiler/rustc_hir_typeck/src/coercion.rs
New upstream version 1.66.0+dfsg1
[rustc.git] / compiler / rustc_hir_typeck / src / coercion.rs
diff --git a/compiler/rustc_hir_typeck/src/coercion.rs b/compiler/rustc_hir_typeck/src/coercion.rs
new file mode 100644 (file)
index 0000000..86597a7
--- /dev/null
@@ -0,0 +1,1950 @@
+//! # Type Coercion
+//!
+//! Under certain circumstances we will coerce from one type to another,
+//! for example by auto-borrowing. This occurs in situations where the
+//! compiler has a firm 'expected type' that was supplied from the user,
+//! and where the actual type is similar to that expected type in purpose
+//! but not in representation (so actual subtyping is inappropriate).
+//!
+//! ## Reborrowing
+//!
+//! Note that if we are expecting a reference, we will *reborrow*
+//! even if the argument provided was already a reference. This is
+//! useful for freezing mut things (that is, when the expected type is &T
+//! but you have &mut T) and also for avoiding the linearity
+//! of mut things (when the expected is &mut T and you have &mut T). See
+//! the various `src/test/ui/coerce/*.rs` tests for
+//! examples of where this is useful.
+//!
+//! ## Subtle note
+//!
+//! When inferring the generic arguments of functions, the argument
+//! order is relevant, which can lead to the following edge case:
+//!
+//! ```ignore (illustrative)
+//! fn foo<T>(a: T, b: T) {
+//!     // ...
+//! }
+//!
+//! foo(&7i32, &mut 7i32);
+//! // This compiles, as we first infer `T` to be `&i32`,
+//! // and then coerce `&mut 7i32` to `&7i32`.
+//!
+//! foo(&mut 7i32, &7i32);
+//! // This does not compile, as we first infer `T` to be `&mut i32`
+//! // and are then unable to coerce `&7i32` to `&mut i32`.
+//! ```
+
+use crate::FnCtxt;
+use rustc_errors::{
+    struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed, MultiSpan,
+};
+use rustc_hir as hir;
+use rustc_hir::def_id::DefId;
+use rustc_hir::intravisit::{self, Visitor};
+use rustc_hir::Expr;
+use rustc_hir_analysis::astconv::AstConv;
+use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
+use rustc_infer::infer::{Coercion, InferOk, InferResult};
+use rustc_infer::traits::{Obligation, TraitEngine, TraitEngineExt};
+use rustc_middle::lint::in_external_macro;
+use rustc_middle::ty::adjustment::{
+    Adjust, Adjustment, AllowTwoPhase, AutoBorrow, AutoBorrowMutability, PointerCast,
+};
+use rustc_middle::ty::error::TypeError;
+use rustc_middle::ty::relate::RelateResult;
+use rustc_middle::ty::subst::SubstsRef;
+use rustc_middle::ty::visit::TypeVisitable;
+use rustc_middle::ty::{self, ToPredicate, Ty, TypeAndMut};
+use rustc_session::parse::feature_err;
+use rustc_span::symbol::sym;
+use rustc_span::{self, BytePos, DesugaringKind, Span};
+use rustc_target::spec::abi::Abi;
+use rustc_trait_selection::infer::InferCtxtExt as _;
+use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt as _;
+use rustc_trait_selection::traits::{self, ObligationCause, ObligationCauseCode};
+
+use smallvec::{smallvec, SmallVec};
+use std::ops::Deref;
+
+struct Coerce<'a, 'tcx> {
+    fcx: &'a FnCtxt<'a, 'tcx>,
+    cause: ObligationCause<'tcx>,
+    use_lub: bool,
+    /// Determines whether or not allow_two_phase_borrow is set on any
+    /// autoref adjustments we create while coercing. We don't want to
+    /// allow deref coercions to create two-phase borrows, at least initially,
+    /// but we do need two-phase borrows for function argument reborrows.
+    /// See #47489 and #48598
+    /// See docs on the "AllowTwoPhase" type for a more detailed discussion
+    allow_two_phase: AllowTwoPhase,
+}
+
+impl<'a, 'tcx> Deref for Coerce<'a, 'tcx> {
+    type Target = FnCtxt<'a, 'tcx>;
+    fn deref(&self) -> &Self::Target {
+        &self.fcx
+    }
+}
+
+type CoerceResult<'tcx> = InferResult<'tcx, (Vec<Adjustment<'tcx>>, Ty<'tcx>)>;
+
+struct CollectRetsVisitor<'tcx> {
+    ret_exprs: Vec<&'tcx hir::Expr<'tcx>>,
+}
+
+impl<'tcx> Visitor<'tcx> for CollectRetsVisitor<'tcx> {
+    fn visit_expr(&mut self, expr: &'tcx Expr<'tcx>) {
+        if let hir::ExprKind::Ret(_) = expr.kind {
+            self.ret_exprs.push(expr);
+        }
+        intravisit::walk_expr(self, expr);
+    }
+}
+
+/// Coercing a mutable reference to an immutable works, while
+/// coercing `&T` to `&mut T` should be forbidden.
+fn coerce_mutbls<'tcx>(
+    from_mutbl: hir::Mutability,
+    to_mutbl: hir::Mutability,
+) -> RelateResult<'tcx, ()> {
+    match (from_mutbl, to_mutbl) {
+        (hir::Mutability::Mut, hir::Mutability::Mut | hir::Mutability::Not)
+        | (hir::Mutability::Not, hir::Mutability::Not) => Ok(()),
+        (hir::Mutability::Not, hir::Mutability::Mut) => Err(TypeError::Mutability),
+    }
+}
+
+/// Do not require any adjustments, i.e. coerce `x -> x`.
+fn identity(_: Ty<'_>) -> Vec<Adjustment<'_>> {
+    vec![]
+}
+
+fn simple<'tcx>(kind: Adjust<'tcx>) -> impl FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>> {
+    move |target| vec![Adjustment { kind, target }]
+}
+
+/// This always returns `Ok(...)`.
+fn success<'tcx>(
+    adj: Vec<Adjustment<'tcx>>,
+    target: Ty<'tcx>,
+    obligations: traits::PredicateObligations<'tcx>,
+) -> CoerceResult<'tcx> {
+    Ok(InferOk { value: (adj, target), obligations })
+}
+
+impl<'f, 'tcx> Coerce<'f, 'tcx> {
+    fn new(
+        fcx: &'f FnCtxt<'f, 'tcx>,
+        cause: ObligationCause<'tcx>,
+        allow_two_phase: AllowTwoPhase,
+    ) -> Self {
+        Coerce { fcx, cause, allow_two_phase, use_lub: false }
+    }
+
+    fn unify(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> InferResult<'tcx, Ty<'tcx>> {
+        debug!("unify(a: {:?}, b: {:?}, use_lub: {})", a, b, self.use_lub);
+        self.commit_if_ok(|_| {
+            if self.use_lub {
+                self.at(&self.cause, self.fcx.param_env).lub(b, a)
+            } else {
+                self.at(&self.cause, self.fcx.param_env)
+                    .sup(b, a)
+                    .map(|InferOk { value: (), obligations }| InferOk { value: a, obligations })
+            }
+        })
+    }
+
+    /// Unify two types (using sub or lub) and produce a specific coercion.
+    fn unify_and<F>(&self, a: Ty<'tcx>, b: Ty<'tcx>, f: F) -> CoerceResult<'tcx>
+    where
+        F: FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
+    {
+        self.unify(a, b)
+            .and_then(|InferOk { value: ty, obligations }| success(f(ty), ty, obligations))
+    }
+
+    #[instrument(skip(self))]
+    fn coerce(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx> {
+        // First, remove any resolved type variables (at the top level, at least):
+        let a = self.shallow_resolve(a);
+        let b = self.shallow_resolve(b);
+        debug!("Coerce.tys({:?} => {:?})", a, b);
+
+        // Just ignore error types.
+        if a.references_error() || b.references_error() {
+            return success(vec![], self.fcx.tcx.ty_error(), vec![]);
+        }
+
+        // Coercing from `!` to any type is allowed:
+        if a.is_never() {
+            return success(simple(Adjust::NeverToAny)(b), b, vec![]);
+        }
+
+        // Coercing *from* an unresolved inference variable means that
+        // we have no information about the source type. This will always
+        // ultimately fall back to some form of subtyping.
+        if a.is_ty_var() {
+            return self.coerce_from_inference_variable(a, b, identity);
+        }
+
+        // Consider coercing the subtype to a DST
+        //
+        // NOTE: this is wrapped in a `commit_if_ok` because it creates
+        // a "spurious" type variable, and we don't want to have that
+        // type variable in memory if the coercion fails.
+        let unsize = self.commit_if_ok(|_| self.coerce_unsized(a, b));
+        match unsize {
+            Ok(_) => {
+                debug!("coerce: unsize successful");
+                return unsize;
+            }
+            Err(TypeError::ObjectUnsafeCoercion(did)) => {
+                debug!("coerce: unsize not object safe");
+                return Err(TypeError::ObjectUnsafeCoercion(did));
+            }
+            Err(error) => {
+                debug!(?error, "coerce: unsize failed");
+            }
+        }
+
+        // Examine the supertype and consider auto-borrowing.
+        match *b.kind() {
+            ty::RawPtr(mt_b) => {
+                return self.coerce_unsafe_ptr(a, b, mt_b.mutbl);
+            }
+            ty::Ref(r_b, _, mutbl_b) => {
+                return self.coerce_borrowed_pointer(a, b, r_b, mutbl_b);
+            }
+            ty::Dynamic(predicates, region, ty::DynStar) if self.tcx.features().dyn_star => {
+                return self.coerce_dyn_star(a, b, predicates, region);
+            }
+            _ => {}
+        }
+
+        match *a.kind() {
+            ty::FnDef(..) => {
+                // Function items are coercible to any closure
+                // type; function pointers are not (that would
+                // require double indirection).
+                // Additionally, we permit coercion of function
+                // items to drop the unsafe qualifier.
+                self.coerce_from_fn_item(a, b)
+            }
+            ty::FnPtr(a_f) => {
+                // We permit coercion of fn pointers to drop the
+                // unsafe qualifier.
+                self.coerce_from_fn_pointer(a, a_f, b)
+            }
+            ty::Closure(closure_def_id_a, substs_a) => {
+                // Non-capturing closures are coercible to
+                // function pointers or unsafe function pointers.
+                // It cannot convert closures that require unsafe.
+                self.coerce_closure_to_fn(a, closure_def_id_a, substs_a, b)
+            }
+            _ => {
+                // Otherwise, just use unification rules.
+                self.unify_and(a, b, identity)
+            }
+        }
+    }
+
+    /// Coercing *from* an inference variable. In this case, we have no information
+    /// about the source type, so we can't really do a true coercion and we always
+    /// fall back to subtyping (`unify_and`).
+    fn coerce_from_inference_variable(
+        &self,
+        a: Ty<'tcx>,
+        b: Ty<'tcx>,
+        make_adjustments: impl FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
+    ) -> CoerceResult<'tcx> {
+        debug!("coerce_from_inference_variable(a={:?}, b={:?})", a, b);
+        assert!(a.is_ty_var() && self.shallow_resolve(a) == a);
+        assert!(self.shallow_resolve(b) == b);
+
+        if b.is_ty_var() {
+            // Two unresolved type variables: create a `Coerce` predicate.
+            let target_ty = if self.use_lub {
+                self.next_ty_var(TypeVariableOrigin {
+                    kind: TypeVariableOriginKind::LatticeVariable,
+                    span: self.cause.span,
+                })
+            } else {
+                b
+            };
+
+            let mut obligations = Vec::with_capacity(2);
+            for &source_ty in &[a, b] {
+                if source_ty != target_ty {
+                    obligations.push(Obligation::new(
+                        self.cause.clone(),
+                        self.param_env,
+                        ty::Binder::dummy(ty::PredicateKind::Coerce(ty::CoercePredicate {
+                            a: source_ty,
+                            b: target_ty,
+                        }))
+                        .to_predicate(self.tcx()),
+                    ));
+                }
+            }
+
+            debug!(
+                "coerce_from_inference_variable: two inference variables, target_ty={:?}, obligations={:?}",
+                target_ty, obligations
+            );
+            let adjustments = make_adjustments(target_ty);
+            InferResult::Ok(InferOk { value: (adjustments, target_ty), obligations })
+        } else {
+            // One unresolved type variable: just apply subtyping, we may be able
+            // to do something useful.
+            self.unify_and(a, b, make_adjustments)
+        }
+    }
+
+    /// Reborrows `&mut A` to `&mut B` and `&(mut) A` to `&B`.
+    /// To match `A` with `B`, autoderef will be performed,
+    /// calling `deref`/`deref_mut` where necessary.
+    fn coerce_borrowed_pointer(
+        &self,
+        a: Ty<'tcx>,
+        b: Ty<'tcx>,
+        r_b: ty::Region<'tcx>,
+        mutbl_b: hir::Mutability,
+    ) -> CoerceResult<'tcx> {
+        debug!("coerce_borrowed_pointer(a={:?}, b={:?})", a, b);
+
+        // If we have a parameter of type `&M T_a` and the value
+        // provided is `expr`, we will be adding an implicit borrow,
+        // meaning that we convert `f(expr)` to `f(&M *expr)`.  Therefore,
+        // to type check, we will construct the type that `&M*expr` would
+        // yield.
+
+        let (r_a, mt_a) = match *a.kind() {
+            ty::Ref(r_a, ty, mutbl) => {
+                let mt_a = ty::TypeAndMut { ty, mutbl };
+                coerce_mutbls(mt_a.mutbl, mutbl_b)?;
+                (r_a, mt_a)
+            }
+            _ => return self.unify_and(a, b, identity),
+        };
+
+        let span = self.cause.span;
+
+        let mut first_error = None;
+        let mut r_borrow_var = None;
+        let mut autoderef = self.autoderef(span, a);
+        let mut found = None;
+
+        for (referent_ty, autoderefs) in autoderef.by_ref() {
+            if autoderefs == 0 {
+                // Don't let this pass, otherwise it would cause
+                // &T to autoref to &&T.
+                continue;
+            }
+
+            // At this point, we have deref'd `a` to `referent_ty`.  So
+            // imagine we are coercing from `&'a mut Vec<T>` to `&'b mut [T]`.
+            // In the autoderef loop for `&'a mut Vec<T>`, we would get
+            // three callbacks:
+            //
+            // - `&'a mut Vec<T>` -- 0 derefs, just ignore it
+            // - `Vec<T>` -- 1 deref
+            // - `[T]` -- 2 deref
+            //
+            // At each point after the first callback, we want to
+            // check to see whether this would match out target type
+            // (`&'b mut [T]`) if we autoref'd it. We can't just
+            // compare the referent types, though, because we still
+            // have to consider the mutability. E.g., in the case
+            // we've been considering, we have an `&mut` reference, so
+            // the `T` in `[T]` needs to be unified with equality.
+            //
+            // Therefore, we construct reference types reflecting what
+            // the types will be after we do the final auto-ref and
+            // compare those. Note that this means we use the target
+            // mutability [1], since it may be that we are coercing
+            // from `&mut T` to `&U`.
+            //
+            // One fine point concerns the region that we use. We
+            // choose the region such that the region of the final
+            // type that results from `unify` will be the region we
+            // want for the autoref:
+            //
+            // - if in sub mode, that means we want to use `'b` (the
+            //   region from the target reference) for both
+            //   pointers [2]. This is because sub mode (somewhat
+            //   arbitrarily) returns the subtype region.  In the case
+            //   where we are coercing to a target type, we know we
+            //   want to use that target type region (`'b`) because --
+            //   for the program to type-check -- it must be the
+            //   smaller of the two.
+            //   - One fine point. It may be surprising that we can
+            //     use `'b` without relating `'a` and `'b`. The reason
+            //     that this is ok is that what we produce is
+            //     effectively a `&'b *x` expression (if you could
+            //     annotate the region of a borrow), and regionck has
+            //     code that adds edges from the region of a borrow
+            //     (`'b`, here) into the regions in the borrowed
+            //     expression (`*x`, here).  (Search for "link".)
+            // - if in lub mode, things can get fairly complicated. The
+            //   easiest thing is just to make a fresh
+            //   region variable [4], which effectively means we defer
+            //   the decision to region inference (and regionck, which will add
+            //   some more edges to this variable). However, this can wind up
+            //   creating a crippling number of variables in some cases --
+            //   e.g., #32278 -- so we optimize one particular case [3].
+            //   Let me try to explain with some examples:
+            //   - The "running example" above represents the simple case,
+            //     where we have one `&` reference at the outer level and
+            //     ownership all the rest of the way down. In this case,
+            //     we want `LUB('a, 'b)` as the resulting region.
+            //   - However, if there are nested borrows, that region is
+            //     too strong. Consider a coercion from `&'a &'x Rc<T>` to
+            //     `&'b T`. In this case, `'a` is actually irrelevant.
+            //     The pointer we want is `LUB('x, 'b`). If we choose `LUB('a,'b)`
+            //     we get spurious errors (`ui/regions-lub-ref-ref-rc.rs`).
+            //     (The errors actually show up in borrowck, typically, because
+            //     this extra edge causes the region `'a` to be inferred to something
+            //     too big, which then results in borrowck errors.)
+            //   - We could track the innermost shared reference, but there is already
+            //     code in regionck that has the job of creating links between
+            //     the region of a borrow and the regions in the thing being
+            //     borrowed (here, `'a` and `'x`), and it knows how to handle
+            //     all the various cases. So instead we just make a region variable
+            //     and let regionck figure it out.
+            let r = if !self.use_lub {
+                r_b // [2] above
+            } else if autoderefs == 1 {
+                r_a // [3] above
+            } else {
+                if r_borrow_var.is_none() {
+                    // create var lazily, at most once
+                    let coercion = Coercion(span);
+                    let r = self.next_region_var(coercion);
+                    r_borrow_var = Some(r); // [4] above
+                }
+                r_borrow_var.unwrap()
+            };
+            let derefd_ty_a = self.tcx.mk_ref(
+                r,
+                TypeAndMut {
+                    ty: referent_ty,
+                    mutbl: mutbl_b, // [1] above
+                },
+            );
+            match self.unify(derefd_ty_a, b) {
+                Ok(ok) => {
+                    found = Some(ok);
+                    break;
+                }
+                Err(err) => {
+                    if first_error.is_none() {
+                        first_error = Some(err);
+                    }
+                }
+            }
+        }
+
+        // Extract type or return an error. We return the first error
+        // we got, which should be from relating the "base" type
+        // (e.g., in example above, the failure from relating `Vec<T>`
+        // to the target type), since that should be the least
+        // confusing.
+        let Some(InferOk { value: ty, mut obligations }) = found else {
+            let err = first_error.expect("coerce_borrowed_pointer had no error");
+            debug!("coerce_borrowed_pointer: failed with err = {:?}", err);
+            return Err(err);
+        };
+
+        if ty == a && mt_a.mutbl == hir::Mutability::Not && autoderef.step_count() == 1 {
+            // As a special case, if we would produce `&'a *x`, that's
+            // a total no-op. We end up with the type `&'a T` just as
+            // we started with.  In that case, just skip it
+            // altogether. This is just an optimization.
+            //
+            // Note that for `&mut`, we DO want to reborrow --
+            // otherwise, this would be a move, which might be an
+            // error. For example `foo(self.x)` where `self` and
+            // `self.x` both have `&mut `type would be a move of
+            // `self.x`, but we auto-coerce it to `foo(&mut *self.x)`,
+            // which is a borrow.
+            assert_eq!(mutbl_b, hir::Mutability::Not); // can only coerce &T -> &U
+            return success(vec![], ty, obligations);
+        }
+
+        let InferOk { value: mut adjustments, obligations: o } =
+            self.adjust_steps_as_infer_ok(&autoderef);
+        obligations.extend(o);
+        obligations.extend(autoderef.into_obligations());
+
+        // Now apply the autoref. We have to extract the region out of
+        // the final ref type we got.
+        let ty::Ref(r_borrow, _, _) = ty.kind() else {
+            span_bug!(span, "expected a ref type, got {:?}", ty);
+        };
+        let mutbl = match mutbl_b {
+            hir::Mutability::Not => AutoBorrowMutability::Not,
+            hir::Mutability::Mut => {
+                AutoBorrowMutability::Mut { allow_two_phase_borrow: self.allow_two_phase }
+            }
+        };
+        adjustments.push(Adjustment {
+            kind: Adjust::Borrow(AutoBorrow::Ref(*r_borrow, mutbl)),
+            target: ty,
+        });
+
+        debug!("coerce_borrowed_pointer: succeeded ty={:?} adjustments={:?}", ty, adjustments);
+
+        success(adjustments, ty, obligations)
+    }
+
+    // &[T; n] or &mut [T; n] -> &[T]
+    // or &mut [T; n] -> &mut [T]
+    // or &Concrete -> &Trait, etc.
+    #[instrument(skip(self), level = "debug")]
+    fn coerce_unsized(&self, mut source: Ty<'tcx>, mut target: Ty<'tcx>) -> CoerceResult<'tcx> {
+        source = self.shallow_resolve(source);
+        target = self.shallow_resolve(target);
+        debug!(?source, ?target);
+
+        // These 'if' statements require some explanation.
+        // The `CoerceUnsized` trait is special - it is only
+        // possible to write `impl CoerceUnsized<B> for A` where
+        // A and B have 'matching' fields. This rules out the following
+        // two types of blanket impls:
+        //
+        // `impl<T> CoerceUnsized<T> for SomeType`
+        // `impl<T> CoerceUnsized<SomeType> for T`
+        //
+        // Both of these trigger a special `CoerceUnsized`-related error (E0376)
+        //
+        // We can take advantage of this fact to avoid performing unnecessary work.
+        // If either `source` or `target` is a type variable, then any applicable impl
+        // would need to be generic over the self-type (`impl<T> CoerceUnsized<SomeType> for T`)
+        // or generic over the `CoerceUnsized` type parameter (`impl<T> CoerceUnsized<T> for
+        // SomeType`).
+        //
+        // However, these are exactly the kinds of impls which are forbidden by
+        // the compiler! Therefore, we can be sure that coercion will always fail
+        // when either the source or target type is a type variable. This allows us
+        // to skip performing any trait selection, and immediately bail out.
+        if source.is_ty_var() {
+            debug!("coerce_unsized: source is a TyVar, bailing out");
+            return Err(TypeError::Mismatch);
+        }
+        if target.is_ty_var() {
+            debug!("coerce_unsized: target is a TyVar, bailing out");
+            return Err(TypeError::Mismatch);
+        }
+
+        let traits =
+            (self.tcx.lang_items().unsize_trait(), self.tcx.lang_items().coerce_unsized_trait());
+        let (Some(unsize_did), Some(coerce_unsized_did)) = traits else {
+            debug!("missing Unsize or CoerceUnsized traits");
+            return Err(TypeError::Mismatch);
+        };
+
+        // Note, we want to avoid unnecessary unsizing. We don't want to coerce to
+        // a DST unless we have to. This currently comes out in the wash since
+        // we can't unify [T] with U. But to properly support DST, we need to allow
+        // that, at which point we will need extra checks on the target here.
+
+        // Handle reborrows before selecting `Source: CoerceUnsized<Target>`.
+        let reborrow = match (source.kind(), target.kind()) {
+            (&ty::Ref(_, ty_a, mutbl_a), &ty::Ref(_, _, mutbl_b)) => {
+                coerce_mutbls(mutbl_a, mutbl_b)?;
+
+                let coercion = Coercion(self.cause.span);
+                let r_borrow = self.next_region_var(coercion);
+                let mutbl = match mutbl_b {
+                    hir::Mutability::Not => AutoBorrowMutability::Not,
+                    hir::Mutability::Mut => AutoBorrowMutability::Mut {
+                        // We don't allow two-phase borrows here, at least for initial
+                        // implementation. If it happens that this coercion is a function argument,
+                        // the reborrow in coerce_borrowed_ptr will pick it up.
+                        allow_two_phase_borrow: AllowTwoPhase::No,
+                    },
+                };
+                Some((
+                    Adjustment { kind: Adjust::Deref(None), target: ty_a },
+                    Adjustment {
+                        kind: Adjust::Borrow(AutoBorrow::Ref(r_borrow, mutbl)),
+                        target: self
+                            .tcx
+                            .mk_ref(r_borrow, ty::TypeAndMut { mutbl: mutbl_b, ty: ty_a }),
+                    },
+                ))
+            }
+            (&ty::Ref(_, ty_a, mt_a), &ty::RawPtr(ty::TypeAndMut { mutbl: mt_b, .. })) => {
+                coerce_mutbls(mt_a, mt_b)?;
+
+                Some((
+                    Adjustment { kind: Adjust::Deref(None), target: ty_a },
+                    Adjustment {
+                        kind: Adjust::Borrow(AutoBorrow::RawPtr(mt_b)),
+                        target: self.tcx.mk_ptr(ty::TypeAndMut { mutbl: mt_b, ty: ty_a }),
+                    },
+                ))
+            }
+            _ => None,
+        };
+        let coerce_source = reborrow.as_ref().map_or(source, |&(_, ref r)| r.target);
+
+        // Setup either a subtyping or a LUB relationship between
+        // the `CoerceUnsized` target type and the expected type.
+        // We only have the latter, so we use an inference variable
+        // for the former and let type inference do the rest.
+        let origin = TypeVariableOrigin {
+            kind: TypeVariableOriginKind::MiscVariable,
+            span: self.cause.span,
+        };
+        let coerce_target = self.next_ty_var(origin);
+        let mut coercion = self.unify_and(coerce_target, target, |target| {
+            let unsize = Adjustment { kind: Adjust::Pointer(PointerCast::Unsize), target };
+            match reborrow {
+                None => vec![unsize],
+                Some((ref deref, ref autoref)) => vec![deref.clone(), autoref.clone(), unsize],
+            }
+        })?;
+
+        let mut selcx = traits::SelectionContext::new(self);
+
+        // Create an obligation for `Source: CoerceUnsized<Target>`.
+        let cause = ObligationCause::new(
+            self.cause.span,
+            self.body_id,
+            ObligationCauseCode::Coercion { source, target },
+        );
+
+        // Use a FIFO queue for this custom fulfillment procedure.
+        //
+        // A Vec (or SmallVec) is not a natural choice for a queue. However,
+        // this code path is hot, and this queue usually has a max length of 1
+        // and almost never more than 3. By using a SmallVec we avoid an
+        // allocation, at the (very small) cost of (occasionally) having to
+        // shift subsequent elements down when removing the front element.
+        let mut queue: SmallVec<[_; 4]> = smallvec![traits::predicate_for_trait_def(
+            self.tcx,
+            self.fcx.param_env,
+            cause,
+            coerce_unsized_did,
+            0,
+            coerce_source,
+            &[coerce_target.into()]
+        )];
+
+        let mut has_unsized_tuple_coercion = false;
+        let mut has_trait_upcasting_coercion = None;
+
+        // Keep resolving `CoerceUnsized` and `Unsize` predicates to avoid
+        // emitting a coercion in cases like `Foo<$1>` -> `Foo<$2>`, where
+        // inference might unify those two inner type variables later.
+        let traits = [coerce_unsized_did, unsize_did];
+        while !queue.is_empty() {
+            let obligation = queue.remove(0);
+            debug!("coerce_unsized resolve step: {:?}", obligation);
+            let bound_predicate = obligation.predicate.kind();
+            let trait_pred = match bound_predicate.skip_binder() {
+                ty::PredicateKind::Trait(trait_pred) if traits.contains(&trait_pred.def_id()) => {
+                    if unsize_did == trait_pred.def_id() {
+                        let self_ty = trait_pred.self_ty();
+                        let unsize_ty = trait_pred.trait_ref.substs[1].expect_ty();
+                        if let (ty::Dynamic(ref data_a, ..), ty::Dynamic(ref data_b, ..)) =
+                            (self_ty.kind(), unsize_ty.kind())
+                            && data_a.principal_def_id() != data_b.principal_def_id()
+                        {
+                            debug!("coerce_unsized: found trait upcasting coercion");
+                            has_trait_upcasting_coercion = Some((self_ty, unsize_ty));
+                        }
+                        if let ty::Tuple(..) = unsize_ty.kind() {
+                            debug!("coerce_unsized: found unsized tuple coercion");
+                            has_unsized_tuple_coercion = true;
+                        }
+                    }
+                    bound_predicate.rebind(trait_pred)
+                }
+                _ => {
+                    coercion.obligations.push(obligation);
+                    continue;
+                }
+            };
+            match selcx.select(&obligation.with(trait_pred)) {
+                // Uncertain or unimplemented.
+                Ok(None) => {
+                    if trait_pred.def_id() == unsize_did {
+                        let trait_pred = self.resolve_vars_if_possible(trait_pred);
+                        let self_ty = trait_pred.skip_binder().self_ty();
+                        let unsize_ty = trait_pred.skip_binder().trait_ref.substs[1].expect_ty();
+                        debug!("coerce_unsized: ambiguous unsize case for {:?}", trait_pred);
+                        match (&self_ty.kind(), &unsize_ty.kind()) {
+                            (ty::Infer(ty::TyVar(v)), ty::Dynamic(..))
+                                if self.type_var_is_sized(*v) =>
+                            {
+                                debug!("coerce_unsized: have sized infer {:?}", v);
+                                coercion.obligations.push(obligation);
+                                // `$0: Unsize<dyn Trait>` where we know that `$0: Sized`, try going
+                                // for unsizing.
+                            }
+                            _ => {
+                                // Some other case for `$0: Unsize<Something>`. Note that we
+                                // hit this case even if `Something` is a sized type, so just
+                                // don't do the coercion.
+                                debug!("coerce_unsized: ambiguous unsize");
+                                return Err(TypeError::Mismatch);
+                            }
+                        }
+                    } else {
+                        debug!("coerce_unsized: early return - ambiguous");
+                        return Err(TypeError::Mismatch);
+                    }
+                }
+                Err(traits::Unimplemented) => {
+                    debug!("coerce_unsized: early return - can't prove obligation");
+                    return Err(TypeError::Mismatch);
+                }
+
+                // Object safety violations or miscellaneous.
+                Err(err) => {
+                    self.err_ctxt().report_selection_error(
+                        obligation.clone(),
+                        &obligation,
+                        &err,
+                        false,
+                    );
+                    // Treat this like an obligation and follow through
+                    // with the unsizing - the lack of a coercion should
+                    // be silent, as it causes a type mismatch later.
+                }
+
+                Ok(Some(impl_source)) => queue.extend(impl_source.nested_obligations()),
+            }
+        }
+
+        if has_unsized_tuple_coercion && !self.tcx.features().unsized_tuple_coercion {
+            feature_err(
+                &self.tcx.sess.parse_sess,
+                sym::unsized_tuple_coercion,
+                self.cause.span,
+                "unsized tuple coercion is not stable enough for use and is subject to change",
+            )
+            .emit();
+        }
+
+        if let Some((sub, sup)) = has_trait_upcasting_coercion
+            && !self.tcx().features().trait_upcasting
+        {
+            // Renders better when we erase regions, since they're not really the point here.
+            let (sub, sup) = self.tcx.erase_regions((sub, sup));
+            let mut err = feature_err(
+                &self.tcx.sess.parse_sess,
+                sym::trait_upcasting,
+                self.cause.span,
+                &format!("cannot cast `{sub}` to `{sup}`, trait upcasting coercion is experimental"),
+            );
+            err.note(&format!("required when coercing `{source}` into `{target}`"));
+            err.emit();
+        }
+
+        Ok(coercion)
+    }
+
+    fn coerce_dyn_star(
+        &self,
+        a: Ty<'tcx>,
+        b: Ty<'tcx>,
+        predicates: &'tcx ty::List<ty::Binder<'tcx, ty::ExistentialPredicate<'tcx>>>,
+        b_region: ty::Region<'tcx>,
+    ) -> CoerceResult<'tcx> {
+        if !self.tcx.features().dyn_star {
+            return Err(TypeError::Mismatch);
+        }
+
+        if let ty::Dynamic(a_data, _, _) = a.kind()
+            && let ty::Dynamic(b_data, _, _) = b.kind()
+        {
+            if a_data.principal_def_id() == b_data.principal_def_id() {
+                return self.unify_and(a, b, |_| vec![]);
+            } else if !self.tcx().features().trait_upcasting {
+                let mut err = feature_err(
+                    &self.tcx.sess.parse_sess,
+                    sym::trait_upcasting,
+                    self.cause.span,
+                    &format!(
+                        "cannot cast `{a}` to `{b}`, trait upcasting coercion is experimental"
+                    ),
+                );
+                err.emit();
+            }
+        }
+
+        // Check the obligations of the cast -- for example, when casting
+        // `usize` to `dyn* Clone + 'static`:
+        let obligations = predicates
+            .iter()
+            .map(|predicate| {
+                // For each existential predicate (e.g., `?Self: Clone`) substitute
+                // the type of the expression (e.g., `usize` in our example above)
+                // and then require that the resulting predicate (e.g., `usize: Clone`)
+                // holds (it does).
+                let predicate = predicate.with_self_ty(self.tcx, a);
+                Obligation::new(self.cause.clone(), self.param_env, predicate)
+            })
+            // Enforce the region bound (e.g., `usize: 'static`, in our example).
+            .chain([Obligation::new(
+                self.cause.clone(),
+                self.param_env,
+                self.tcx.mk_predicate(ty::Binder::dummy(ty::PredicateKind::TypeOutlives(
+                    ty::OutlivesPredicate(a, b_region),
+                ))),
+            )])
+            .collect();
+
+        Ok(InferOk {
+            value: (vec![Adjustment { kind: Adjust::DynStar, target: b }], b),
+            obligations,
+        })
+    }
+
+    fn coerce_from_safe_fn<F, G>(
+        &self,
+        a: Ty<'tcx>,
+        fn_ty_a: ty::PolyFnSig<'tcx>,
+        b: Ty<'tcx>,
+        to_unsafe: F,
+        normal: G,
+    ) -> CoerceResult<'tcx>
+    where
+        F: FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
+        G: FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
+    {
+        self.commit_if_ok(|snapshot| {
+            let result = if let ty::FnPtr(fn_ty_b) = b.kind()
+                && let (hir::Unsafety::Normal, hir::Unsafety::Unsafe) =
+                    (fn_ty_a.unsafety(), fn_ty_b.unsafety())
+            {
+                let unsafe_a = self.tcx.safe_to_unsafe_fn_ty(fn_ty_a);
+                self.unify_and(unsafe_a, b, to_unsafe)
+            } else {
+                self.unify_and(a, b, normal)
+            };
+
+            // FIXME(#73154): This is a hack. Currently LUB can generate
+            // unsolvable constraints. Additionally, it returns `a`
+            // unconditionally, even when the "LUB" is `b`. In the future, we
+            // want the coerced type to be the actual supertype of these two,
+            // but for now, we want to just error to ensure we don't lock
+            // ourselves into a specific behavior with NLL.
+            self.leak_check(false, snapshot)?;
+
+            result
+        })
+    }
+
+    fn coerce_from_fn_pointer(
+        &self,
+        a: Ty<'tcx>,
+        fn_ty_a: ty::PolyFnSig<'tcx>,
+        b: Ty<'tcx>,
+    ) -> CoerceResult<'tcx> {
+        //! Attempts to coerce from the type of a Rust function item
+        //! into a closure or a `proc`.
+        //!
+
+        let b = self.shallow_resolve(b);
+        debug!("coerce_from_fn_pointer(a={:?}, b={:?})", a, b);
+
+        self.coerce_from_safe_fn(
+            a,
+            fn_ty_a,
+            b,
+            simple(Adjust::Pointer(PointerCast::UnsafeFnPointer)),
+            identity,
+        )
+    }
+
+    fn coerce_from_fn_item(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx> {
+        //! Attempts to coerce from the type of a Rust function item
+        //! into a closure or a `proc`.
+
+        let b = self.shallow_resolve(b);
+        let InferOk { value: b, mut obligations } =
+            self.normalize_associated_types_in_as_infer_ok(self.cause.span, b);
+        debug!("coerce_from_fn_item(a={:?}, b={:?})", a, b);
+
+        match b.kind() {
+            ty::FnPtr(b_sig) => {
+                let a_sig = a.fn_sig(self.tcx);
+                if let ty::FnDef(def_id, _) = *a.kind() {
+                    // Intrinsics are not coercible to function pointers
+                    if self.tcx.is_intrinsic(def_id) {
+                        return Err(TypeError::IntrinsicCast);
+                    }
+
+                    // Safe `#[target_feature]` functions are not assignable to safe fn pointers (RFC 2396).
+
+                    if b_sig.unsafety() == hir::Unsafety::Normal
+                        && !self.tcx.codegen_fn_attrs(def_id).target_features.is_empty()
+                    {
+                        return Err(TypeError::TargetFeatureCast(def_id));
+                    }
+                }
+
+                let InferOk { value: a_sig, obligations: o1 } =
+                    self.normalize_associated_types_in_as_infer_ok(self.cause.span, a_sig);
+                obligations.extend(o1);
+
+                let a_fn_pointer = self.tcx.mk_fn_ptr(a_sig);
+                let InferOk { value, obligations: o2 } = self.coerce_from_safe_fn(
+                    a_fn_pointer,
+                    a_sig,
+                    b,
+                    |unsafe_ty| {
+                        vec![
+                            Adjustment {
+                                kind: Adjust::Pointer(PointerCast::ReifyFnPointer),
+                                target: a_fn_pointer,
+                            },
+                            Adjustment {
+                                kind: Adjust::Pointer(PointerCast::UnsafeFnPointer),
+                                target: unsafe_ty,
+                            },
+                        ]
+                    },
+                    simple(Adjust::Pointer(PointerCast::ReifyFnPointer)),
+                )?;
+
+                obligations.extend(o2);
+                Ok(InferOk { value, obligations })
+            }
+            _ => self.unify_and(a, b, identity),
+        }
+    }
+
+    fn coerce_closure_to_fn(
+        &self,
+        a: Ty<'tcx>,
+        closure_def_id_a: DefId,
+        substs_a: SubstsRef<'tcx>,
+        b: Ty<'tcx>,
+    ) -> CoerceResult<'tcx> {
+        //! Attempts to coerce from the type of a non-capturing closure
+        //! into a function pointer.
+        //!
+
+        let b = self.shallow_resolve(b);
+
+        match b.kind() {
+            // At this point we haven't done capture analysis, which means
+            // that the ClosureSubsts just contains an inference variable instead
+            // of tuple of captured types.
+            //
+            // All we care here is if any variable is being captured and not the exact paths,
+            // so we check `upvars_mentioned` for root variables being captured.
+            ty::FnPtr(fn_ty)
+                if self
+                    .tcx
+                    .upvars_mentioned(closure_def_id_a.expect_local())
+                    .map_or(true, |u| u.is_empty()) =>
+            {
+                // We coerce the closure, which has fn type
+                //     `extern "rust-call" fn((arg0,arg1,...)) -> _`
+                // to
+                //     `fn(arg0,arg1,...) -> _`
+                // or
+                //     `unsafe fn(arg0,arg1,...) -> _`
+                let closure_sig = substs_a.as_closure().sig();
+                let unsafety = fn_ty.unsafety();
+                let pointer_ty =
+                    self.tcx.mk_fn_ptr(self.tcx.signature_unclosure(closure_sig, unsafety));
+                debug!("coerce_closure_to_fn(a={:?}, b={:?}, pty={:?})", a, b, pointer_ty);
+                self.unify_and(
+                    pointer_ty,
+                    b,
+                    simple(Adjust::Pointer(PointerCast::ClosureFnPointer(unsafety))),
+                )
+            }
+            _ => self.unify_and(a, b, identity),
+        }
+    }
+
+    fn coerce_unsafe_ptr(
+        &self,
+        a: Ty<'tcx>,
+        b: Ty<'tcx>,
+        mutbl_b: hir::Mutability,
+    ) -> CoerceResult<'tcx> {
+        debug!("coerce_unsafe_ptr(a={:?}, b={:?})", a, b);
+
+        let (is_ref, mt_a) = match *a.kind() {
+            ty::Ref(_, ty, mutbl) => (true, ty::TypeAndMut { ty, mutbl }),
+            ty::RawPtr(mt) => (false, mt),
+            _ => return self.unify_and(a, b, identity),
+        };
+        coerce_mutbls(mt_a.mutbl, mutbl_b)?;
+
+        // Check that the types which they point at are compatible.
+        let a_unsafe = self.tcx.mk_ptr(ty::TypeAndMut { mutbl: mutbl_b, ty: mt_a.ty });
+        // Although references and unsafe ptrs have the same
+        // representation, we still register an Adjust::DerefRef so that
+        // regionck knows that the region for `a` must be valid here.
+        if is_ref {
+            self.unify_and(a_unsafe, b, |target| {
+                vec![
+                    Adjustment { kind: Adjust::Deref(None), target: mt_a.ty },
+                    Adjustment { kind: Adjust::Borrow(AutoBorrow::RawPtr(mutbl_b)), target },
+                ]
+            })
+        } else if mt_a.mutbl != mutbl_b {
+            self.unify_and(a_unsafe, b, simple(Adjust::Pointer(PointerCast::MutToConstPointer)))
+        } else {
+            self.unify_and(a_unsafe, b, identity)
+        }
+    }
+}
+
+impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
+    /// Attempt to coerce an expression to a type, and return the
+    /// adjusted type of the expression, if successful.
+    /// Adjustments are only recorded if the coercion succeeded.
+    /// The expressions *must not* have any pre-existing adjustments.
+    pub fn try_coerce(
+        &self,
+        expr: &hir::Expr<'_>,
+        expr_ty: Ty<'tcx>,
+        target: Ty<'tcx>,
+        allow_two_phase: AllowTwoPhase,
+        cause: Option<ObligationCause<'tcx>>,
+    ) -> RelateResult<'tcx, Ty<'tcx>> {
+        let source = self.resolve_vars_with_obligations(expr_ty);
+        debug!("coercion::try({:?}: {:?} -> {:?})", expr, source, target);
+
+        let cause =
+            cause.unwrap_or_else(|| self.cause(expr.span, ObligationCauseCode::ExprAssignable));
+        let coerce = Coerce::new(self, cause, allow_two_phase);
+        let ok = self.commit_if_ok(|_| coerce.coerce(source, target))?;
+
+        let (adjustments, _) = self.register_infer_ok_obligations(ok);
+        self.apply_adjustments(expr, adjustments);
+        Ok(if expr_ty.references_error() { self.tcx.ty_error() } else { target })
+    }
+
+    /// Same as `try_coerce()`, but without side-effects.
+    ///
+    /// Returns false if the coercion creates any obligations that result in
+    /// errors.
+    pub fn can_coerce(&self, expr_ty: Ty<'tcx>, target: Ty<'tcx>) -> bool {
+        let source = self.resolve_vars_with_obligations(expr_ty);
+        debug!("coercion::can_with_predicates({:?} -> {:?})", source, target);
+
+        let cause = self.cause(rustc_span::DUMMY_SP, ObligationCauseCode::ExprAssignable);
+        // We don't ever need two-phase here since we throw out the result of the coercion
+        let coerce = Coerce::new(self, cause, AllowTwoPhase::No);
+        self.probe(|_| {
+            let Ok(ok) = coerce.coerce(source, target) else {
+                return false;
+            };
+            let mut fcx = traits::FulfillmentContext::new_in_snapshot();
+            fcx.register_predicate_obligations(self, ok.obligations);
+            fcx.select_where_possible(&self).is_empty()
+        })
+    }
+
+    /// Given a type and a target type, this function will calculate and return
+    /// how many dereference steps needed to achieve `expr_ty <: target`. If
+    /// it's not possible, return `None`.
+    pub fn deref_steps(&self, expr_ty: Ty<'tcx>, target: Ty<'tcx>) -> Option<usize> {
+        let cause = self.cause(rustc_span::DUMMY_SP, ObligationCauseCode::ExprAssignable);
+        // We don't ever need two-phase here since we throw out the result of the coercion
+        let coerce = Coerce::new(self, cause, AllowTwoPhase::No);
+        coerce
+            .autoderef(rustc_span::DUMMY_SP, expr_ty)
+            .find_map(|(ty, steps)| self.probe(|_| coerce.unify(ty, target)).ok().map(|_| steps))
+    }
+
+    /// Given a type, this function will calculate and return the type given
+    /// for `<Ty as Deref>::Target` only if `Ty` also implements `DerefMut`.
+    ///
+    /// This function is for diagnostics only, since it does not register
+    /// trait or region sub-obligations. (presumably we could, but it's not
+    /// particularly important for diagnostics...)
+    pub fn deref_once_mutably_for_diagnostic(&self, expr_ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
+        self.autoderef(rustc_span::DUMMY_SP, expr_ty).nth(1).and_then(|(deref_ty, _)| {
+            self.infcx
+                .type_implements_trait(
+                    self.tcx.lang_items().deref_mut_trait()?,
+                    expr_ty,
+                    ty::List::empty(),
+                    self.param_env,
+                )
+                .may_apply()
+                .then(|| deref_ty)
+        })
+    }
+
+    /// Given some expressions, their known unified type and another expression,
+    /// tries to unify the types, potentially inserting coercions on any of the
+    /// provided expressions and returns their LUB (aka "common supertype").
+    ///
+    /// This is really an internal helper. From outside the coercion
+    /// module, you should instantiate a `CoerceMany` instance.
+    fn try_find_coercion_lub<E>(
+        &self,
+        cause: &ObligationCause<'tcx>,
+        exprs: &[E],
+        prev_ty: Ty<'tcx>,
+        new: &hir::Expr<'_>,
+        new_ty: Ty<'tcx>,
+    ) -> RelateResult<'tcx, Ty<'tcx>>
+    where
+        E: AsCoercionSite,
+    {
+        let prev_ty = self.resolve_vars_with_obligations(prev_ty);
+        let new_ty = self.resolve_vars_with_obligations(new_ty);
+        debug!(
+            "coercion::try_find_coercion_lub({:?}, {:?}, exprs={:?} exprs)",
+            prev_ty,
+            new_ty,
+            exprs.len()
+        );
+
+        // The following check fixes #88097, where the compiler erroneously
+        // attempted to coerce a closure type to itself via a function pointer.
+        if prev_ty == new_ty {
+            return Ok(prev_ty);
+        }
+
+        // Special-case that coercion alone cannot handle:
+        // Function items or non-capturing closures of differing IDs or InternalSubsts.
+        let (a_sig, b_sig) = {
+            #[allow(rustc::usage_of_ty_tykind)]
+            let is_capturing_closure = |ty: &ty::TyKind<'tcx>| {
+                if let &ty::Closure(closure_def_id, _substs) = ty {
+                    self.tcx.upvars_mentioned(closure_def_id.expect_local()).is_some()
+                } else {
+                    false
+                }
+            };
+            if is_capturing_closure(prev_ty.kind()) || is_capturing_closure(new_ty.kind()) {
+                (None, None)
+            } else {
+                match (prev_ty.kind(), new_ty.kind()) {
+                    (ty::FnDef(..), ty::FnDef(..)) => {
+                        // Don't reify if the function types have a LUB, i.e., they
+                        // are the same function and their parameters have a LUB.
+                        match self
+                            .commit_if_ok(|_| self.at(cause, self.param_env).lub(prev_ty, new_ty))
+                        {
+                            // We have a LUB of prev_ty and new_ty, just return it.
+                            Ok(ok) => return Ok(self.register_infer_ok_obligations(ok)),
+                            Err(_) => {
+                                (Some(prev_ty.fn_sig(self.tcx)), Some(new_ty.fn_sig(self.tcx)))
+                            }
+                        }
+                    }
+                    (ty::Closure(_, substs), ty::FnDef(..)) => {
+                        let b_sig = new_ty.fn_sig(self.tcx);
+                        let a_sig = self
+                            .tcx
+                            .signature_unclosure(substs.as_closure().sig(), b_sig.unsafety());
+                        (Some(a_sig), Some(b_sig))
+                    }
+                    (ty::FnDef(..), ty::Closure(_, substs)) => {
+                        let a_sig = prev_ty.fn_sig(self.tcx);
+                        let b_sig = self
+                            .tcx
+                            .signature_unclosure(substs.as_closure().sig(), a_sig.unsafety());
+                        (Some(a_sig), Some(b_sig))
+                    }
+                    (ty::Closure(_, substs_a), ty::Closure(_, substs_b)) => (
+                        Some(self.tcx.signature_unclosure(
+                            substs_a.as_closure().sig(),
+                            hir::Unsafety::Normal,
+                        )),
+                        Some(self.tcx.signature_unclosure(
+                            substs_b.as_closure().sig(),
+                            hir::Unsafety::Normal,
+                        )),
+                    ),
+                    _ => (None, None),
+                }
+            }
+        };
+        if let (Some(a_sig), Some(b_sig)) = (a_sig, b_sig) {
+            // Intrinsics are not coercible to function pointers.
+            if a_sig.abi() == Abi::RustIntrinsic
+                || a_sig.abi() == Abi::PlatformIntrinsic
+                || b_sig.abi() == Abi::RustIntrinsic
+                || b_sig.abi() == Abi::PlatformIntrinsic
+            {
+                return Err(TypeError::IntrinsicCast);
+            }
+            // The signature must match.
+            let a_sig = self.normalize_associated_types_in(new.span, a_sig);
+            let b_sig = self.normalize_associated_types_in(new.span, b_sig);
+            let sig = self
+                .at(cause, self.param_env)
+                .trace(prev_ty, new_ty)
+                .lub(a_sig, b_sig)
+                .map(|ok| self.register_infer_ok_obligations(ok))?;
+
+            // Reify both sides and return the reified fn pointer type.
+            let fn_ptr = self.tcx.mk_fn_ptr(sig);
+            let prev_adjustment = match prev_ty.kind() {
+                ty::Closure(..) => Adjust::Pointer(PointerCast::ClosureFnPointer(a_sig.unsafety())),
+                ty::FnDef(..) => Adjust::Pointer(PointerCast::ReifyFnPointer),
+                _ => unreachable!(),
+            };
+            let next_adjustment = match new_ty.kind() {
+                ty::Closure(..) => Adjust::Pointer(PointerCast::ClosureFnPointer(b_sig.unsafety())),
+                ty::FnDef(..) => Adjust::Pointer(PointerCast::ReifyFnPointer),
+                _ => unreachable!(),
+            };
+            for expr in exprs.iter().map(|e| e.as_coercion_site()) {
+                self.apply_adjustments(
+                    expr,
+                    vec![Adjustment { kind: prev_adjustment.clone(), target: fn_ptr }],
+                );
+            }
+            self.apply_adjustments(new, vec![Adjustment { kind: next_adjustment, target: fn_ptr }]);
+            return Ok(fn_ptr);
+        }
+
+        // Configure a Coerce instance to compute the LUB.
+        // We don't allow two-phase borrows on any autorefs this creates since we
+        // probably aren't processing function arguments here and even if we were,
+        // they're going to get autorefed again anyway and we can apply 2-phase borrows
+        // at that time.
+        let mut coerce = Coerce::new(self, cause.clone(), AllowTwoPhase::No);
+        coerce.use_lub = true;
+
+        // First try to coerce the new expression to the type of the previous ones,
+        // but only if the new expression has no coercion already applied to it.
+        let mut first_error = None;
+        if !self.typeck_results.borrow().adjustments().contains_key(new.hir_id) {
+            let result = self.commit_if_ok(|_| coerce.coerce(new_ty, prev_ty));
+            match result {
+                Ok(ok) => {
+                    let (adjustments, target) = self.register_infer_ok_obligations(ok);
+                    self.apply_adjustments(new, adjustments);
+                    debug!(
+                        "coercion::try_find_coercion_lub: was able to coerce from new type {:?} to previous type {:?} ({:?})",
+                        new_ty, prev_ty, target
+                    );
+                    return Ok(target);
+                }
+                Err(e) => first_error = Some(e),
+            }
+        }
+
+        // Then try to coerce the previous expressions to the type of the new one.
+        // This requires ensuring there are no coercions applied to *any* of the
+        // previous expressions, other than noop reborrows (ignoring lifetimes).
+        for expr in exprs {
+            let expr = expr.as_coercion_site();
+            let noop = match self.typeck_results.borrow().expr_adjustments(expr) {
+                &[
+                    Adjustment { kind: Adjust::Deref(_), .. },
+                    Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(_, mutbl_adj)), .. },
+                ] => {
+                    match *self.node_ty(expr.hir_id).kind() {
+                        ty::Ref(_, _, mt_orig) => {
+                            let mutbl_adj: hir::Mutability = mutbl_adj.into();
+                            // Reborrow that we can safely ignore, because
+                            // the next adjustment can only be a Deref
+                            // which will be merged into it.
+                            mutbl_adj == mt_orig
+                        }
+                        _ => false,
+                    }
+                }
+                &[Adjustment { kind: Adjust::NeverToAny, .. }] | &[] => true,
+                _ => false,
+            };
+
+            if !noop {
+                debug!(
+                    "coercion::try_find_coercion_lub: older expression {:?} had adjustments, requiring LUB",
+                    expr,
+                );
+
+                return self
+                    .commit_if_ok(|_| self.at(cause, self.param_env).lub(prev_ty, new_ty))
+                    .map(|ok| self.register_infer_ok_obligations(ok));
+            }
+        }
+
+        match self.commit_if_ok(|_| coerce.coerce(prev_ty, new_ty)) {
+            Err(_) => {
+                // Avoid giving strange errors on failed attempts.
+                if let Some(e) = first_error {
+                    Err(e)
+                } else {
+                    self.commit_if_ok(|_| self.at(cause, self.param_env).lub(prev_ty, new_ty))
+                        .map(|ok| self.register_infer_ok_obligations(ok))
+                }
+            }
+            Ok(ok) => {
+                let (adjustments, target) = self.register_infer_ok_obligations(ok);
+                for expr in exprs {
+                    let expr = expr.as_coercion_site();
+                    self.apply_adjustments(expr, adjustments.clone());
+                }
+                debug!(
+                    "coercion::try_find_coercion_lub: was able to coerce previous type {:?} to new type {:?} ({:?})",
+                    prev_ty, new_ty, target
+                );
+                Ok(target)
+            }
+        }
+    }
+}
+
+/// CoerceMany encapsulates the pattern you should use when you have
+/// many expressions that are all getting coerced to a common
+/// type. This arises, for example, when you have a match (the result
+/// of each arm is coerced to a common type). It also arises in less
+/// obvious places, such as when you have many `break foo` expressions
+/// that target the same loop, or the various `return` expressions in
+/// a function.
+///
+/// The basic protocol is as follows:
+///
+/// - Instantiate the `CoerceMany` with an initial `expected_ty`.
+///   This will also serve as the "starting LUB". The expectation is
+///   that this type is something which all of the expressions *must*
+///   be coercible to. Use a fresh type variable if needed.
+/// - For each expression whose result is to be coerced, invoke `coerce()` with.
+///   - In some cases we wish to coerce "non-expressions" whose types are implicitly
+///     unit. This happens for example if you have a `break` with no expression,
+///     or an `if` with no `else`. In that case, invoke `coerce_forced_unit()`.
+///   - `coerce()` and `coerce_forced_unit()` may report errors. They hide this
+///     from you so that you don't have to worry your pretty head about it.
+///     But if an error is reported, the final type will be `err`.
+///   - Invoking `coerce()` may cause us to go and adjust the "adjustments" on
+///     previously coerced expressions.
+/// - When all done, invoke `complete()`. This will return the LUB of
+///   all your expressions.
+///   - WARNING: I don't believe this final type is guaranteed to be
+///     related to your initial `expected_ty` in any particular way,
+///     although it will typically be a subtype, so you should check it.
+///   - Invoking `complete()` may cause us to go and adjust the "adjustments" on
+///     previously coerced expressions.
+///
+/// Example:
+///
+/// ```ignore (illustrative)
+/// let mut coerce = CoerceMany::new(expected_ty);
+/// for expr in exprs {
+///     let expr_ty = fcx.check_expr_with_expectation(expr, expected);
+///     coerce.coerce(fcx, &cause, expr, expr_ty);
+/// }
+/// let final_ty = coerce.complete(fcx);
+/// ```
+pub struct CoerceMany<'tcx, 'exprs, E: AsCoercionSite> {
+    expected_ty: Ty<'tcx>,
+    final_ty: Option<Ty<'tcx>>,
+    expressions: Expressions<'tcx, 'exprs, E>,
+    pushed: usize,
+}
+
+/// The type of a `CoerceMany` that is storing up the expressions into
+/// a buffer. We use this in `check/mod.rs` for things like `break`.
+pub type DynamicCoerceMany<'tcx> = CoerceMany<'tcx, 'tcx, &'tcx hir::Expr<'tcx>>;
+
+enum Expressions<'tcx, 'exprs, E: AsCoercionSite> {
+    Dynamic(Vec<&'tcx hir::Expr<'tcx>>),
+    UpFront(&'exprs [E]),
+}
+
+impl<'tcx, 'exprs, E: AsCoercionSite> CoerceMany<'tcx, 'exprs, E> {
+    /// The usual case; collect the set of expressions dynamically.
+    /// If the full set of coercion sites is known before hand,
+    /// consider `with_coercion_sites()` instead to avoid allocation.
+    pub fn new(expected_ty: Ty<'tcx>) -> Self {
+        Self::make(expected_ty, Expressions::Dynamic(vec![]))
+    }
+
+    /// As an optimization, you can create a `CoerceMany` with a
+    /// pre-existing slice of expressions. In this case, you are
+    /// expected to pass each element in the slice to `coerce(...)` in
+    /// order. This is used with arrays in particular to avoid
+    /// needlessly cloning the slice.
+    pub fn with_coercion_sites(expected_ty: Ty<'tcx>, coercion_sites: &'exprs [E]) -> Self {
+        Self::make(expected_ty, Expressions::UpFront(coercion_sites))
+    }
+
+    fn make(expected_ty: Ty<'tcx>, expressions: Expressions<'tcx, 'exprs, E>) -> Self {
+        CoerceMany { expected_ty, final_ty: None, expressions, pushed: 0 }
+    }
+
+    /// Returns the "expected type" with which this coercion was
+    /// constructed. This represents the "downward propagated" type
+    /// that was given to us at the start of typing whatever construct
+    /// we are typing (e.g., the match expression).
+    ///
+    /// Typically, this is used as the expected type when
+    /// type-checking each of the alternative expressions whose types
+    /// we are trying to merge.
+    pub fn expected_ty(&self) -> Ty<'tcx> {
+        self.expected_ty
+    }
+
+    /// Returns the current "merged type", representing our best-guess
+    /// at the LUB of the expressions we've seen so far (if any). This
+    /// isn't *final* until you call `self.complete()`, which will return
+    /// the merged type.
+    pub fn merged_ty(&self) -> Ty<'tcx> {
+        self.final_ty.unwrap_or(self.expected_ty)
+    }
+
+    /// Indicates that the value generated by `expression`, which is
+    /// of type `expression_ty`, is one of the possibilities that we
+    /// could coerce from. This will record `expression`, and later
+    /// calls to `coerce` may come back and add adjustments and things
+    /// if necessary.
+    pub fn coerce<'a>(
+        &mut self,
+        fcx: &FnCtxt<'a, 'tcx>,
+        cause: &ObligationCause<'tcx>,
+        expression: &'tcx hir::Expr<'tcx>,
+        expression_ty: Ty<'tcx>,
+    ) {
+        self.coerce_inner(fcx, cause, Some(expression), expression_ty, None, false)
+    }
+
+    /// Indicates that one of the inputs is a "forced unit". This
+    /// occurs in a case like `if foo { ... };`, where the missing else
+    /// generates a "forced unit". Another example is a `loop { break;
+    /// }`, where the `break` has no argument expression. We treat
+    /// these cases slightly differently for error-reporting
+    /// purposes. Note that these tend to correspond to cases where
+    /// the `()` expression is implicit in the source, and hence we do
+    /// not take an expression argument.
+    ///
+    /// The `augment_error` gives you a chance to extend the error
+    /// message, in case any results (e.g., we use this to suggest
+    /// removing a `;`).
+    pub fn coerce_forced_unit<'a>(
+        &mut self,
+        fcx: &FnCtxt<'a, 'tcx>,
+        cause: &ObligationCause<'tcx>,
+        augment_error: &mut dyn FnMut(&mut Diagnostic),
+        label_unit_as_expected: bool,
+    ) {
+        self.coerce_inner(
+            fcx,
+            cause,
+            None,
+            fcx.tcx.mk_unit(),
+            Some(augment_error),
+            label_unit_as_expected,
+        )
+    }
+
+    /// The inner coercion "engine". If `expression` is `None`, this
+    /// is a forced-unit case, and hence `expression_ty` must be
+    /// `Nil`.
+    #[instrument(skip(self, fcx, augment_error, label_expression_as_expected), level = "debug")]
+    pub(crate) fn coerce_inner<'a>(
+        &mut self,
+        fcx: &FnCtxt<'a, 'tcx>,
+        cause: &ObligationCause<'tcx>,
+        expression: Option<&'tcx hir::Expr<'tcx>>,
+        mut expression_ty: Ty<'tcx>,
+        augment_error: Option<&mut dyn FnMut(&mut Diagnostic)>,
+        label_expression_as_expected: bool,
+    ) {
+        // Incorporate whatever type inference information we have
+        // until now; in principle we might also want to process
+        // pending obligations, but doing so should only improve
+        // compatibility (hopefully that is true) by helping us
+        // uncover never types better.
+        if expression_ty.is_ty_var() {
+            expression_ty = fcx.infcx.shallow_resolve(expression_ty);
+        }
+
+        // If we see any error types, just propagate that error
+        // upwards.
+        if expression_ty.references_error() || self.merged_ty().references_error() {
+            self.final_ty = Some(fcx.tcx.ty_error());
+            return;
+        }
+
+        // Handle the actual type unification etc.
+        let result = if let Some(expression) = expression {
+            if self.pushed == 0 {
+                // Special-case the first expression we are coercing.
+                // To be honest, I'm not entirely sure why we do this.
+                // We don't allow two-phase borrows, see comment in try_find_coercion_lub for why
+                fcx.try_coerce(
+                    expression,
+                    expression_ty,
+                    self.expected_ty,
+                    AllowTwoPhase::No,
+                    Some(cause.clone()),
+                )
+            } else {
+                match self.expressions {
+                    Expressions::Dynamic(ref exprs) => fcx.try_find_coercion_lub(
+                        cause,
+                        exprs,
+                        self.merged_ty(),
+                        expression,
+                        expression_ty,
+                    ),
+                    Expressions::UpFront(ref coercion_sites) => fcx.try_find_coercion_lub(
+                        cause,
+                        &coercion_sites[0..self.pushed],
+                        self.merged_ty(),
+                        expression,
+                        expression_ty,
+                    ),
+                }
+            }
+        } else {
+            // this is a hack for cases where we default to `()` because
+            // the expression etc has been omitted from the source. An
+            // example is an `if let` without an else:
+            //
+            //     if let Some(x) = ... { }
+            //
+            // we wind up with a second match arm that is like `_ =>
+            // ()`.  That is the case we are considering here. We take
+            // a different path to get the right "expected, found"
+            // message and so forth (and because we know that
+            // `expression_ty` will be unit).
+            //
+            // Another example is `break` with no argument expression.
+            assert!(expression_ty.is_unit(), "if let hack without unit type");
+            fcx.at(cause, fcx.param_env)
+                .eq_exp(label_expression_as_expected, expression_ty, self.merged_ty())
+                .map(|infer_ok| {
+                    fcx.register_infer_ok_obligations(infer_ok);
+                    expression_ty
+                })
+        };
+
+        debug!(?result);
+        match result {
+            Ok(v) => {
+                self.final_ty = Some(v);
+                if let Some(e) = expression {
+                    match self.expressions {
+                        Expressions::Dynamic(ref mut buffer) => buffer.push(e),
+                        Expressions::UpFront(coercion_sites) => {
+                            // if the user gave us an array to validate, check that we got
+                            // the next expression in the list, as expected
+                            assert_eq!(
+                                coercion_sites[self.pushed].as_coercion_site().hir_id,
+                                e.hir_id
+                            );
+                        }
+                    }
+                    self.pushed += 1;
+                }
+            }
+            Err(coercion_error) => {
+                // Mark that we've failed to coerce the types here to suppress
+                // any superfluous errors we might encounter while trying to
+                // emit or provide suggestions on how to fix the initial error.
+                fcx.set_tainted_by_errors();
+                let (expected, found) = if label_expression_as_expected {
+                    // In the case where this is a "forced unit", like
+                    // `break`, we want to call the `()` "expected"
+                    // since it is implied by the syntax.
+                    // (Note: not all force-units work this way.)"
+                    (expression_ty, self.merged_ty())
+                } else {
+                    // Otherwise, the "expected" type for error
+                    // reporting is the current unification type,
+                    // which is basically the LUB of the expressions
+                    // we've seen so far (combined with the expected
+                    // type)
+                    (self.merged_ty(), expression_ty)
+                };
+                let (expected, found) = fcx.resolve_vars_if_possible((expected, found));
+
+                let mut err;
+                let mut unsized_return = false;
+                let mut visitor = CollectRetsVisitor { ret_exprs: vec![] };
+                match *cause.code() {
+                    ObligationCauseCode::ReturnNoExpression => {
+                        err = struct_span_err!(
+                            fcx.tcx.sess,
+                            cause.span,
+                            E0069,
+                            "`return;` in a function whose return type is not `()`"
+                        );
+                        err.span_label(cause.span, "return type is not `()`");
+                    }
+                    ObligationCauseCode::BlockTailExpression(blk_id) => {
+                        let parent_id = fcx.tcx.hir().get_parent_node(blk_id);
+                        err = self.report_return_mismatched_types(
+                            cause,
+                            expected,
+                            found,
+                            coercion_error.clone(),
+                            fcx,
+                            parent_id,
+                            expression,
+                            Some(blk_id),
+                        );
+                        if !fcx.tcx.features().unsized_locals {
+                            unsized_return = self.is_return_ty_unsized(fcx, blk_id);
+                        }
+                        if let Some(expression) = expression
+                            && let hir::ExprKind::Loop(loop_blk, ..) = expression.kind {
+                              intravisit::walk_block(& mut visitor, loop_blk);
+                        }
+                    }
+                    ObligationCauseCode::ReturnValue(id) => {
+                        err = self.report_return_mismatched_types(
+                            cause,
+                            expected,
+                            found,
+                            coercion_error.clone(),
+                            fcx,
+                            id,
+                            expression,
+                            None,
+                        );
+                        if !fcx.tcx.features().unsized_locals {
+                            let id = fcx.tcx.hir().get_parent_node(id);
+                            unsized_return = self.is_return_ty_unsized(fcx, id);
+                        }
+                    }
+                    _ => {
+                        err = fcx.err_ctxt().report_mismatched_types(
+                            cause,
+                            expected,
+                            found,
+                            coercion_error.clone(),
+                        );
+                    }
+                }
+
+                if let Some(augment_error) = augment_error {
+                    augment_error(&mut err);
+                }
+
+                let is_insufficiently_polymorphic =
+                    matches!(coercion_error, TypeError::RegionsInsufficientlyPolymorphic(..));
+
+                if !is_insufficiently_polymorphic && let Some(expr) = expression {
+                    fcx.emit_coerce_suggestions(
+                        &mut err,
+                        expr,
+                        found,
+                        expected,
+                        None,
+                        Some(coercion_error),
+                    );
+                }
+
+                if visitor.ret_exprs.len() > 0 && let Some(expr) = expression {
+                    self.note_unreachable_loop_return(&mut err, &expr, &visitor.ret_exprs);
+                }
+                err.emit_unless(unsized_return);
+
+                self.final_ty = Some(fcx.tcx.ty_error());
+            }
+        }
+    }
+    fn note_unreachable_loop_return(
+        &self,
+        err: &mut Diagnostic,
+        expr: &hir::Expr<'tcx>,
+        ret_exprs: &Vec<&'tcx hir::Expr<'tcx>>,
+    ) {
+        let hir::ExprKind::Loop(_, _, _, loop_span) = expr.kind else { return;};
+        let mut span: MultiSpan = vec![loop_span].into();
+        span.push_span_label(loop_span, "this might have zero elements to iterate on");
+        const MAXITER: usize = 3;
+        let iter = ret_exprs.iter().take(MAXITER);
+        for ret_expr in iter {
+            span.push_span_label(
+                ret_expr.span,
+                "if the loop doesn't execute, this value would never get returned",
+            );
+        }
+        err.span_note(
+            span,
+            "the function expects a value to always be returned, but loops might run zero times",
+        );
+        if MAXITER < ret_exprs.len() {
+            err.note(&format!(
+                "if the loop doesn't execute, {} other values would never get returned",
+                ret_exprs.len() - MAXITER
+            ));
+        }
+        err.help(
+            "return a value for the case when the loop has zero elements to iterate on, or \
+           consider changing the return type to account for that possibility",
+        );
+    }
+
+    fn report_return_mismatched_types<'a>(
+        &self,
+        cause: &ObligationCause<'tcx>,
+        expected: Ty<'tcx>,
+        found: Ty<'tcx>,
+        ty_err: TypeError<'tcx>,
+        fcx: &FnCtxt<'a, 'tcx>,
+        id: hir::HirId,
+        expression: Option<&'tcx hir::Expr<'tcx>>,
+        blk_id: Option<hir::HirId>,
+    ) -> DiagnosticBuilder<'a, ErrorGuaranteed> {
+        let mut err = fcx.err_ctxt().report_mismatched_types(cause, expected, found, ty_err);
+
+        let mut pointing_at_return_type = false;
+        let mut fn_output = None;
+
+        let parent_id = fcx.tcx.hir().get_parent_node(id);
+        let parent = fcx.tcx.hir().get(parent_id);
+        if let Some(expr) = expression
+            && let hir::Node::Expr(hir::Expr { kind: hir::ExprKind::Closure(&hir::Closure { body, .. }), .. }) = parent
+            && !matches!(fcx.tcx.hir().body(body).value.kind, hir::ExprKind::Block(..))
+        {
+            fcx.suggest_missing_semicolon(&mut err, expr, expected, true);
+        }
+        // Verify that this is a tail expression of a function, otherwise the
+        // label pointing out the cause for the type coercion will be wrong
+        // as prior return coercions would not be relevant (#57664).
+        let fn_decl = if let (Some(expr), Some(blk_id)) = (expression, blk_id) {
+            pointing_at_return_type =
+                fcx.suggest_mismatched_types_on_tail(&mut err, expr, expected, found, blk_id);
+            if let (Some(cond_expr), true, false) = (
+                fcx.tcx.hir().get_if_cause(expr.hir_id),
+                expected.is_unit(),
+                pointing_at_return_type,
+            )
+                // If the block is from an external macro or try (`?`) desugaring, then
+                // do not suggest adding a semicolon, because there's nowhere to put it.
+                // See issues #81943 and #87051.
+                && matches!(
+                    cond_expr.span.desugaring_kind(),
+                    None | Some(DesugaringKind::WhileLoop)
+                ) && !in_external_macro(fcx.tcx.sess, cond_expr.span)
+                    && !matches!(
+                        cond_expr.kind,
+                        hir::ExprKind::Match(.., hir::MatchSource::TryDesugar)
+                    )
+            {
+                err.span_label(cond_expr.span, "expected this to be `()`");
+                if expr.can_have_side_effects() {
+                    fcx.suggest_semicolon_at_end(cond_expr.span, &mut err);
+                }
+            }
+            fcx.get_node_fn_decl(parent).map(|(fn_decl, _, is_main)| (fn_decl, is_main))
+        } else {
+            fcx.get_fn_decl(parent_id)
+        };
+
+        if let Some((fn_decl, can_suggest)) = fn_decl {
+            if blk_id.is_none() {
+                pointing_at_return_type |= fcx.suggest_missing_return_type(
+                    &mut err,
+                    &fn_decl,
+                    expected,
+                    found,
+                    can_suggest,
+                    fcx.tcx.hir().get_parent_item(id).into(),
+                );
+            }
+            if !pointing_at_return_type {
+                fn_output = Some(&fn_decl.output); // `impl Trait` return type
+            }
+        }
+
+        let parent_id = fcx.tcx.hir().get_parent_item(id);
+        let parent_item = fcx.tcx.hir().get_by_def_id(parent_id.def_id);
+
+        if let (Some(expr), Some(_), Some((fn_decl, _, _))) =
+            (expression, blk_id, fcx.get_node_fn_decl(parent_item))
+        {
+            fcx.suggest_missing_break_or_return_expr(
+                &mut err,
+                expr,
+                fn_decl,
+                expected,
+                found,
+                id,
+                parent_id.into(),
+            );
+        }
+
+        let ret_coercion_span = fcx.ret_coercion_span.get();
+
+        if let Some(sp) = ret_coercion_span
+            // If the closure has an explicit return type annotation, or if
+            // the closure's return type has been inferred from outside
+            // requirements (such as an Fn* trait bound), then a type error
+            // may occur at the first return expression we see in the closure
+            // (if it conflicts with the declared return type). Skip adding a
+            // note in this case, since it would be incorrect.
+            && !fcx.return_type_pre_known
+        {
+            err.span_note(
+                sp,
+                &format!(
+                    "return type inferred to be `{}` here",
+                    expected
+                ),
+            );
+        }
+
+        if let (Some(sp), Some(fn_output)) = (ret_coercion_span, fn_output) {
+            self.add_impl_trait_explanation(&mut err, cause, fcx, expected, sp, fn_output);
+        }
+
+        err
+    }
+
+    fn add_impl_trait_explanation<'a>(
+        &self,
+        err: &mut Diagnostic,
+        cause: &ObligationCause<'tcx>,
+        fcx: &FnCtxt<'a, 'tcx>,
+        expected: Ty<'tcx>,
+        sp: Span,
+        fn_output: &hir::FnRetTy<'_>,
+    ) {
+        let return_sp = fn_output.span();
+        err.span_label(return_sp, "expected because this return type...");
+        err.span_label(
+            sp,
+            format!("...is found to be `{}` here", fcx.resolve_vars_with_obligations(expected)),
+        );
+        let impl_trait_msg = "for information on `impl Trait`, see \
+                <https://doc.rust-lang.org/book/ch10-02-traits.html\
+                #returning-types-that-implement-traits>";
+        let trait_obj_msg = "for information on trait objects, see \
+                <https://doc.rust-lang.org/book/ch17-02-trait-objects.html\
+                #using-trait-objects-that-allow-for-values-of-different-types>";
+        err.note("to return `impl Trait`, all returned values must be of the same type");
+        err.note(impl_trait_msg);
+        let snippet = fcx
+            .tcx
+            .sess
+            .source_map()
+            .span_to_snippet(return_sp)
+            .unwrap_or_else(|_| "dyn Trait".to_string());
+        let mut snippet_iter = snippet.split_whitespace();
+        let has_impl = snippet_iter.next().map_or(false, |s| s == "impl");
+        // Only suggest `Box<dyn Trait>` if `Trait` in `impl Trait` is object safe.
+        let mut is_object_safe = false;
+        if let hir::FnRetTy::Return(ty) = fn_output
+            // Get the return type.
+            && let hir::TyKind::OpaqueDef(..) = ty.kind
+        {
+            let ty = <dyn AstConv<'_>>::ast_ty_to_ty(fcx, ty);
+            // Get the `impl Trait`'s `DefId`.
+            if let ty::Opaque(def_id, _) = ty.kind()
+                // Get the `impl Trait`'s `Item` so that we can get its trait bounds and
+                // get the `Trait`'s `DefId`.
+                && let hir::ItemKind::OpaqueTy(hir::OpaqueTy { bounds, .. }) =
+                    fcx.tcx.hir().expect_item(def_id.expect_local()).kind
+            {
+                // Are of this `impl Trait`'s traits object safe?
+                is_object_safe = bounds.iter().all(|bound| {
+                    bound
+                        .trait_ref()
+                        .and_then(|t| t.trait_def_id())
+                        .map_or(false, |def_id| {
+                            fcx.tcx.object_safety_violations(def_id).is_empty()
+                        })
+                })
+            }
+        };
+        if has_impl {
+            if is_object_safe {
+                err.multipart_suggestion(
+                    "you could change the return type to be a boxed trait object",
+                    vec![
+                        (return_sp.with_hi(return_sp.lo() + BytePos(4)), "Box<dyn".to_string()),
+                        (return_sp.shrink_to_hi(), ">".to_string()),
+                    ],
+                    Applicability::MachineApplicable,
+                );
+                let sugg = [sp, cause.span]
+                    .into_iter()
+                    .flat_map(|sp| {
+                        [
+                            (sp.shrink_to_lo(), "Box::new(".to_string()),
+                            (sp.shrink_to_hi(), ")".to_string()),
+                        ]
+                        .into_iter()
+                    })
+                    .collect::<Vec<_>>();
+                err.multipart_suggestion(
+                    "if you change the return type to expect trait objects, box the returned \
+                     expressions",
+                    sugg,
+                    Applicability::MaybeIncorrect,
+                );
+            } else {
+                err.help(&format!(
+                    "if the trait `{}` were object safe, you could return a boxed trait object",
+                    &snippet[5..]
+                ));
+            }
+            err.note(trait_obj_msg);
+        }
+        err.help("you could instead create a new `enum` with a variant for each returned type");
+    }
+
+    fn is_return_ty_unsized<'a>(&self, fcx: &FnCtxt<'a, 'tcx>, blk_id: hir::HirId) -> bool {
+        if let Some((fn_decl, _)) = fcx.get_fn_decl(blk_id)
+            && let hir::FnRetTy::Return(ty) = fn_decl.output
+            && let ty = <dyn AstConv<'_>>::ast_ty_to_ty(fcx, ty)
+            && let ty::Dynamic(..) = ty.kind()
+        {
+            return true;
+        }
+        false
+    }
+
+    pub fn complete<'a>(self, fcx: &FnCtxt<'a, 'tcx>) -> Ty<'tcx> {
+        if let Some(final_ty) = self.final_ty {
+            final_ty
+        } else {
+            // If we only had inputs that were of type `!` (or no
+            // inputs at all), then the final type is `!`.
+            assert_eq!(self.pushed, 0);
+            fcx.tcx.types.never
+        }
+    }
+}
+
+/// Something that can be converted into an expression to which we can
+/// apply a coercion.
+pub trait AsCoercionSite {
+    fn as_coercion_site(&self) -> &hir::Expr<'_>;
+}
+
+impl AsCoercionSite for hir::Expr<'_> {
+    fn as_coercion_site(&self) -> &hir::Expr<'_> {
+        self
+    }
+}
+
+impl<'a, T> AsCoercionSite for &'a T
+where
+    T: AsCoercionSite,
+{
+    fn as_coercion_site(&self) -> &hir::Expr<'_> {
+        (**self).as_coercion_site()
+    }
+}
+
+impl AsCoercionSite for ! {
+    fn as_coercion_site(&self) -> &hir::Expr<'_> {
+        unreachable!()
+    }
+}
+
+impl AsCoercionSite for hir::Arm<'_> {
+    fn as_coercion_site(&self) -> &hir::Expr<'_> {
+        &self.body
+    }
+}