]> git.proxmox.com Git - rustc.git/blobdiff - compiler/rustc_hir_typeck/src/expr.rs
New upstream version 1.66.0+dfsg1
[rustc.git] / compiler / rustc_hir_typeck / src / expr.rs
diff --git a/compiler/rustc_hir_typeck/src/expr.rs b/compiler/rustc_hir_typeck/src/expr.rs
new file mode 100644 (file)
index 0000000..9fde62a
--- /dev/null
@@ -0,0 +1,2896 @@
+//! Type checking expressions.
+//!
+//! See `mod.rs` for more context on type checking in general.
+
+use crate::cast;
+use crate::coercion::CoerceMany;
+use crate::coercion::DynamicCoerceMany;
+use crate::errors::{AddressOfTemporaryTaken, ReturnStmtOutsideOfFnBody, StructExprNonExhaustive};
+use crate::errors::{
+    FieldMultiplySpecifiedInInitializer, FunctionalRecordUpdateOnNonStruct,
+    YieldExprOutsideOfGenerator,
+};
+use crate::fatally_break_rust;
+use crate::method::SelfSource;
+use crate::type_error_struct;
+use crate::Expectation::{self, ExpectCastableToType, ExpectHasType, NoExpectation};
+use crate::{
+    report_unexpected_variant_res, BreakableCtxt, Diverges, FnCtxt, Needs,
+    TupleArgumentsFlag::DontTupleArguments,
+};
+use rustc_ast as ast;
+use rustc_data_structures::fx::FxHashMap;
+use rustc_data_structures::stack::ensure_sufficient_stack;
+use rustc_errors::{
+    pluralize, struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, DiagnosticId,
+    ErrorGuaranteed, StashKey,
+};
+use rustc_hir as hir;
+use rustc_hir::def::{CtorKind, DefKind, Res};
+use rustc_hir::def_id::DefId;
+use rustc_hir::intravisit::Visitor;
+use rustc_hir::lang_items::LangItem;
+use rustc_hir::{Closure, ExprKind, HirId, QPath};
+use rustc_hir_analysis::astconv::AstConv as _;
+use rustc_hir_analysis::check::ty_kind_suggestion;
+use rustc_infer::infer;
+use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
+use rustc_infer::infer::InferOk;
+use rustc_infer::traits::ObligationCause;
+use rustc_middle::middle::stability;
+use rustc_middle::ty::adjustment::{Adjust, Adjustment, AllowTwoPhase};
+use rustc_middle::ty::error::TypeError::FieldMisMatch;
+use rustc_middle::ty::subst::SubstsRef;
+use rustc_middle::ty::{self, AdtKind, Ty, TypeVisitable};
+use rustc_session::errors::ExprParenthesesNeeded;
+use rustc_session::parse::feature_err;
+use rustc_span::hygiene::DesugaringKind;
+use rustc_span::lev_distance::find_best_match_for_name;
+use rustc_span::source_map::{Span, Spanned};
+use rustc_span::symbol::{kw, sym, Ident, Symbol};
+use rustc_target::spec::abi::Abi::RustIntrinsic;
+use rustc_trait_selection::infer::InferCtxtExt;
+use rustc_trait_selection::traits::{self, ObligationCauseCode};
+
+impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
+    fn check_expr_eq_type(&self, expr: &'tcx hir::Expr<'tcx>, expected: Ty<'tcx>) {
+        let ty = self.check_expr_with_hint(expr, expected);
+        self.demand_eqtype(expr.span, expected, ty);
+    }
+
+    pub fn check_expr_has_type_or_error(
+        &self,
+        expr: &'tcx hir::Expr<'tcx>,
+        expected: Ty<'tcx>,
+        extend_err: impl FnMut(&mut Diagnostic),
+    ) -> Ty<'tcx> {
+        self.check_expr_meets_expectation_or_error(expr, ExpectHasType(expected), extend_err)
+    }
+
+    fn check_expr_meets_expectation_or_error(
+        &self,
+        expr: &'tcx hir::Expr<'tcx>,
+        expected: Expectation<'tcx>,
+        mut extend_err: impl FnMut(&mut Diagnostic),
+    ) -> Ty<'tcx> {
+        let expected_ty = expected.to_option(&self).unwrap_or(self.tcx.types.bool);
+        let mut ty = self.check_expr_with_expectation(expr, expected);
+
+        // While we don't allow *arbitrary* coercions here, we *do* allow
+        // coercions from ! to `expected`.
+        if ty.is_never() {
+            if let Some(adjustments) = self.typeck_results.borrow().adjustments().get(expr.hir_id) {
+                self.tcx().sess.delay_span_bug(
+                    expr.span,
+                    "expression with never type wound up being adjusted",
+                );
+                return if let [Adjustment { kind: Adjust::NeverToAny, target }] = &adjustments[..] {
+                    target.to_owned()
+                } else {
+                    self.tcx().ty_error()
+                };
+            }
+
+            let adj_ty = self.next_ty_var(TypeVariableOrigin {
+                kind: TypeVariableOriginKind::AdjustmentType,
+                span: expr.span,
+            });
+            self.apply_adjustments(
+                expr,
+                vec![Adjustment { kind: Adjust::NeverToAny, target: adj_ty }],
+            );
+            ty = adj_ty;
+        }
+
+        if let Some(mut err) = self.demand_suptype_diag(expr.span, expected_ty, ty) {
+            let expr = expr.peel_drop_temps();
+            self.suggest_deref_ref_or_into(&mut err, expr, expected_ty, ty, None);
+            extend_err(&mut err);
+            err.emit();
+        }
+        ty
+    }
+
+    pub(super) fn check_expr_coercable_to_type(
+        &self,
+        expr: &'tcx hir::Expr<'tcx>,
+        expected: Ty<'tcx>,
+        expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
+    ) -> Ty<'tcx> {
+        let ty = self.check_expr_with_hint(expr, expected);
+        // checks don't need two phase
+        self.demand_coerce(expr, ty, expected, expected_ty_expr, AllowTwoPhase::No)
+    }
+
+    pub(super) fn check_expr_with_hint(
+        &self,
+        expr: &'tcx hir::Expr<'tcx>,
+        expected: Ty<'tcx>,
+    ) -> Ty<'tcx> {
+        self.check_expr_with_expectation(expr, ExpectHasType(expected))
+    }
+
+    fn check_expr_with_expectation_and_needs(
+        &self,
+        expr: &'tcx hir::Expr<'tcx>,
+        expected: Expectation<'tcx>,
+        needs: Needs,
+    ) -> Ty<'tcx> {
+        let ty = self.check_expr_with_expectation(expr, expected);
+
+        // If the expression is used in a place whether mutable place is required
+        // e.g. LHS of assignment, perform the conversion.
+        if let Needs::MutPlace = needs {
+            self.convert_place_derefs_to_mutable(expr);
+        }
+
+        ty
+    }
+
+    pub(super) fn check_expr(&self, expr: &'tcx hir::Expr<'tcx>) -> Ty<'tcx> {
+        self.check_expr_with_expectation(expr, NoExpectation)
+    }
+
+    pub(super) fn check_expr_with_needs(
+        &self,
+        expr: &'tcx hir::Expr<'tcx>,
+        needs: Needs,
+    ) -> Ty<'tcx> {
+        self.check_expr_with_expectation_and_needs(expr, NoExpectation, needs)
+    }
+
+    /// Invariant:
+    /// If an expression has any sub-expressions that result in a type error,
+    /// inspecting that expression's type with `ty.references_error()` will return
+    /// true. Likewise, if an expression is known to diverge, inspecting its
+    /// type with `ty::type_is_bot` will return true (n.b.: since Rust is
+    /// strict, _|_ can appear in the type of an expression that does not,
+    /// itself, diverge: for example, fn() -> _|_.)
+    /// Note that inspecting a type's structure *directly* may expose the fact
+    /// that there are actually multiple representations for `Error`, so avoid
+    /// that when err needs to be handled differently.
+    #[instrument(skip(self, expr), level = "debug")]
+    pub(super) fn check_expr_with_expectation(
+        &self,
+        expr: &'tcx hir::Expr<'tcx>,
+        expected: Expectation<'tcx>,
+    ) -> Ty<'tcx> {
+        self.check_expr_with_expectation_and_args(expr, expected, &[])
+    }
+
+    /// Same as `check_expr_with_expectation`, but allows us to pass in the arguments of a
+    /// `ExprKind::Call` when evaluating its callee when it is an `ExprKind::Path`.
+    pub(super) fn check_expr_with_expectation_and_args(
+        &self,
+        expr: &'tcx hir::Expr<'tcx>,
+        expected: Expectation<'tcx>,
+        args: &'tcx [hir::Expr<'tcx>],
+    ) -> Ty<'tcx> {
+        if self.tcx().sess.verbose() {
+            // make this code only run with -Zverbose because it is probably slow
+            if let Ok(lint_str) = self.tcx.sess.source_map().span_to_snippet(expr.span) {
+                if !lint_str.contains('\n') {
+                    debug!("expr text: {lint_str}");
+                } else {
+                    let mut lines = lint_str.lines();
+                    if let Some(line0) = lines.next() {
+                        let remaining_lines = lines.count();
+                        debug!("expr text: {line0}");
+                        debug!("expr text: ...(and {remaining_lines} more lines)");
+                    }
+                }
+            }
+        }
+
+        // True if `expr` is a `Try::from_ok(())` that is a result of desugaring a try block
+        // without the final expr (e.g. `try { return; }`). We don't want to generate an
+        // unreachable_code lint for it since warnings for autogenerated code are confusing.
+        let is_try_block_generated_unit_expr = match expr.kind {
+            ExprKind::Call(_, args) if expr.span.is_desugaring(DesugaringKind::TryBlock) => {
+                args.len() == 1 && args[0].span.is_desugaring(DesugaringKind::TryBlock)
+            }
+
+            _ => false,
+        };
+
+        // Warn for expressions after diverging siblings.
+        if !is_try_block_generated_unit_expr {
+            self.warn_if_unreachable(expr.hir_id, expr.span, "expression");
+        }
+
+        // Hide the outer diverging and has_errors flags.
+        let old_diverges = self.diverges.replace(Diverges::Maybe);
+        let old_has_errors = self.has_errors.replace(false);
+
+        let ty = ensure_sufficient_stack(|| match &expr.kind {
+            hir::ExprKind::Path(
+                qpath @ hir::QPath::Resolved(..) | qpath @ hir::QPath::TypeRelative(..),
+            ) => self.check_expr_path(qpath, expr, args),
+            _ => self.check_expr_kind(expr, expected),
+        });
+
+        // Warn for non-block expressions with diverging children.
+        match expr.kind {
+            ExprKind::Block(..)
+            | ExprKind::If(..)
+            | ExprKind::Let(..)
+            | ExprKind::Loop(..)
+            | ExprKind::Match(..) => {}
+            // If `expr` is a result of desugaring the try block and is an ok-wrapped
+            // diverging expression (e.g. it arose from desugaring of `try { return }`),
+            // we skip issuing a warning because it is autogenerated code.
+            ExprKind::Call(..) if expr.span.is_desugaring(DesugaringKind::TryBlock) => {}
+            ExprKind::Call(callee, _) => self.warn_if_unreachable(expr.hir_id, callee.span, "call"),
+            ExprKind::MethodCall(segment, ..) => {
+                self.warn_if_unreachable(expr.hir_id, segment.ident.span, "call")
+            }
+            _ => self.warn_if_unreachable(expr.hir_id, expr.span, "expression"),
+        }
+
+        // Any expression that produces a value of type `!` must have diverged
+        if ty.is_never() {
+            self.diverges.set(self.diverges.get() | Diverges::always(expr.span));
+        }
+
+        // Record the type, which applies it effects.
+        // We need to do this after the warning above, so that
+        // we don't warn for the diverging expression itself.
+        self.write_ty(expr.hir_id, ty);
+
+        // Combine the diverging and has_error flags.
+        self.diverges.set(self.diverges.get() | old_diverges);
+        self.has_errors.set(self.has_errors.get() | old_has_errors);
+
+        debug!("type of {} is...", self.tcx.hir().node_to_string(expr.hir_id));
+        debug!("... {:?}, expected is {:?}", ty, expected);
+
+        ty
+    }
+
+    #[instrument(skip(self, expr), level = "debug")]
+    fn check_expr_kind(
+        &self,
+        expr: &'tcx hir::Expr<'tcx>,
+        expected: Expectation<'tcx>,
+    ) -> Ty<'tcx> {
+        trace!("expr={:#?}", expr);
+
+        let tcx = self.tcx;
+        match expr.kind {
+            ExprKind::Box(subexpr) => self.check_expr_box(subexpr, expected),
+            ExprKind::Lit(ref lit) => self.check_lit(&lit, expected),
+            ExprKind::Binary(op, lhs, rhs) => self.check_binop(expr, op, lhs, rhs, expected),
+            ExprKind::Assign(lhs, rhs, span) => {
+                self.check_expr_assign(expr, expected, lhs, rhs, span)
+            }
+            ExprKind::AssignOp(op, lhs, rhs) => {
+                self.check_binop_assign(expr, op, lhs, rhs, expected)
+            }
+            ExprKind::Unary(unop, oprnd) => self.check_expr_unary(unop, oprnd, expected, expr),
+            ExprKind::AddrOf(kind, mutbl, oprnd) => {
+                self.check_expr_addr_of(kind, mutbl, oprnd, expected, expr)
+            }
+            ExprKind::Path(QPath::LangItem(lang_item, _, hir_id)) => {
+                self.check_lang_item_path(lang_item, expr, hir_id)
+            }
+            ExprKind::Path(ref qpath) => self.check_expr_path(qpath, expr, &[]),
+            ExprKind::InlineAsm(asm) => {
+                // We defer some asm checks as we may not have resolved the input and output types yet (they may still be infer vars).
+                self.deferred_asm_checks.borrow_mut().push((asm, expr.hir_id));
+                self.check_expr_asm(asm)
+            }
+            ExprKind::Break(destination, ref expr_opt) => {
+                self.check_expr_break(destination, expr_opt.as_deref(), expr)
+            }
+            ExprKind::Continue(destination) => {
+                if destination.target_id.is_ok() {
+                    tcx.types.never
+                } else {
+                    // There was an error; make type-check fail.
+                    tcx.ty_error()
+                }
+            }
+            ExprKind::Ret(ref expr_opt) => self.check_expr_return(expr_opt.as_deref(), expr),
+            ExprKind::Let(let_expr) => self.check_expr_let(let_expr),
+            ExprKind::Loop(body, _, source, _) => {
+                self.check_expr_loop(body, source, expected, expr)
+            }
+            ExprKind::Match(discrim, arms, match_src) => {
+                self.check_match(expr, &discrim, arms, expected, match_src)
+            }
+            ExprKind::Closure(&Closure { capture_clause, fn_decl, body, movability, .. }) => {
+                self.check_expr_closure(expr, capture_clause, &fn_decl, body, movability, expected)
+            }
+            ExprKind::Block(body, _) => self.check_block_with_expected(&body, expected),
+            ExprKind::Call(callee, args) => self.check_call(expr, &callee, args, expected),
+            ExprKind::MethodCall(segment, receiver, args, _) => {
+                self.check_method_call(expr, segment, receiver, args, expected)
+            }
+            ExprKind::Cast(e, t) => self.check_expr_cast(e, t, expr),
+            ExprKind::Type(e, t) => {
+                let ty = self.to_ty_saving_user_provided_ty(&t);
+                self.check_expr_eq_type(&e, ty);
+                ty
+            }
+            ExprKind::If(cond, then_expr, opt_else_expr) => {
+                self.check_then_else(cond, then_expr, opt_else_expr, expr.span, expected)
+            }
+            ExprKind::DropTemps(e) => self.check_expr_with_expectation(e, expected),
+            ExprKind::Array(args) => self.check_expr_array(args, expected, expr),
+            ExprKind::ConstBlock(ref anon_const) => {
+                self.check_expr_const_block(anon_const, expected, expr)
+            }
+            ExprKind::Repeat(element, ref count) => {
+                self.check_expr_repeat(element, count, expected, expr)
+            }
+            ExprKind::Tup(elts) => self.check_expr_tuple(elts, expected, expr),
+            ExprKind::Struct(qpath, fields, ref base_expr) => {
+                self.check_expr_struct(expr, expected, qpath, fields, base_expr)
+            }
+            ExprKind::Field(base, field) => self.check_field(expr, &base, field),
+            ExprKind::Index(base, idx) => self.check_expr_index(base, idx, expr),
+            ExprKind::Yield(value, ref src) => self.check_expr_yield(value, expr, src),
+            hir::ExprKind::Err => tcx.ty_error(),
+        }
+    }
+
+    fn check_expr_box(&self, expr: &'tcx hir::Expr<'tcx>, expected: Expectation<'tcx>) -> Ty<'tcx> {
+        let expected_inner = expected.to_option(self).map_or(NoExpectation, |ty| match ty.kind() {
+            ty::Adt(def, _) if def.is_box() => Expectation::rvalue_hint(self, ty.boxed_ty()),
+            _ => NoExpectation,
+        });
+        let referent_ty = self.check_expr_with_expectation(expr, expected_inner);
+        self.require_type_is_sized(referent_ty, expr.span, traits::SizedBoxType);
+        self.tcx.mk_box(referent_ty)
+    }
+
+    fn check_expr_unary(
+        &self,
+        unop: hir::UnOp,
+        oprnd: &'tcx hir::Expr<'tcx>,
+        expected: Expectation<'tcx>,
+        expr: &'tcx hir::Expr<'tcx>,
+    ) -> Ty<'tcx> {
+        let tcx = self.tcx;
+        let expected_inner = match unop {
+            hir::UnOp::Not | hir::UnOp::Neg => expected,
+            hir::UnOp::Deref => NoExpectation,
+        };
+        let mut oprnd_t = self.check_expr_with_expectation(&oprnd, expected_inner);
+
+        if !oprnd_t.references_error() {
+            oprnd_t = self.structurally_resolved_type(expr.span, oprnd_t);
+            match unop {
+                hir::UnOp::Deref => {
+                    if let Some(ty) = self.lookup_derefing(expr, oprnd, oprnd_t) {
+                        oprnd_t = ty;
+                    } else {
+                        let mut err = type_error_struct!(
+                            tcx.sess,
+                            expr.span,
+                            oprnd_t,
+                            E0614,
+                            "type `{oprnd_t}` cannot be dereferenced",
+                        );
+                        let sp = tcx.sess.source_map().start_point(expr.span);
+                        if let Some(sp) =
+                            tcx.sess.parse_sess.ambiguous_block_expr_parse.borrow().get(&sp)
+                        {
+                            err.subdiagnostic(ExprParenthesesNeeded::surrounding(*sp));
+                        }
+                        err.emit();
+                        oprnd_t = tcx.ty_error();
+                    }
+                }
+                hir::UnOp::Not => {
+                    let result = self.check_user_unop(expr, oprnd_t, unop, expected_inner);
+                    // If it's builtin, we can reuse the type, this helps inference.
+                    if !(oprnd_t.is_integral() || *oprnd_t.kind() == ty::Bool) {
+                        oprnd_t = result;
+                    }
+                }
+                hir::UnOp::Neg => {
+                    let result = self.check_user_unop(expr, oprnd_t, unop, expected_inner);
+                    // If it's builtin, we can reuse the type, this helps inference.
+                    if !oprnd_t.is_numeric() {
+                        oprnd_t = result;
+                    }
+                }
+            }
+        }
+        oprnd_t
+    }
+
+    fn check_expr_addr_of(
+        &self,
+        kind: hir::BorrowKind,
+        mutbl: hir::Mutability,
+        oprnd: &'tcx hir::Expr<'tcx>,
+        expected: Expectation<'tcx>,
+        expr: &'tcx hir::Expr<'tcx>,
+    ) -> Ty<'tcx> {
+        let hint = expected.only_has_type(self).map_or(NoExpectation, |ty| {
+            match ty.kind() {
+                ty::Ref(_, ty, _) | ty::RawPtr(ty::TypeAndMut { ty, .. }) => {
+                    if oprnd.is_syntactic_place_expr() {
+                        // Places may legitimately have unsized types.
+                        // For example, dereferences of a fat pointer and
+                        // the last field of a struct can be unsized.
+                        ExpectHasType(*ty)
+                    } else {
+                        Expectation::rvalue_hint(self, *ty)
+                    }
+                }
+                _ => NoExpectation,
+            }
+        });
+        let ty =
+            self.check_expr_with_expectation_and_needs(&oprnd, hint, Needs::maybe_mut_place(mutbl));
+
+        let tm = ty::TypeAndMut { ty, mutbl };
+        match kind {
+            _ if tm.ty.references_error() => self.tcx.ty_error(),
+            hir::BorrowKind::Raw => {
+                self.check_named_place_expr(oprnd);
+                self.tcx.mk_ptr(tm)
+            }
+            hir::BorrowKind::Ref => {
+                // Note: at this point, we cannot say what the best lifetime
+                // is to use for resulting pointer.  We want to use the
+                // shortest lifetime possible so as to avoid spurious borrowck
+                // errors.  Moreover, the longest lifetime will depend on the
+                // precise details of the value whose address is being taken
+                // (and how long it is valid), which we don't know yet until
+                // type inference is complete.
+                //
+                // Therefore, here we simply generate a region variable. The
+                // region inferencer will then select a suitable value.
+                // Finally, borrowck will infer the value of the region again,
+                // this time with enough precision to check that the value
+                // whose address was taken can actually be made to live as long
+                // as it needs to live.
+                let region = self.next_region_var(infer::AddrOfRegion(expr.span));
+                self.tcx.mk_ref(region, tm)
+            }
+        }
+    }
+
+    /// Does this expression refer to a place that either:
+    /// * Is based on a local or static.
+    /// * Contains a dereference
+    /// Note that the adjustments for the children of `expr` should already
+    /// have been resolved.
+    fn check_named_place_expr(&self, oprnd: &'tcx hir::Expr<'tcx>) {
+        let is_named = oprnd.is_place_expr(|base| {
+            // Allow raw borrows if there are any deref adjustments.
+            //
+            // const VAL: (i32,) = (0,);
+            // const REF: &(i32,) = &(0,);
+            //
+            // &raw const VAL.0;            // ERROR
+            // &raw const REF.0;            // OK, same as &raw const (*REF).0;
+            //
+            // This is maybe too permissive, since it allows
+            // `let u = &raw const Box::new((1,)).0`, which creates an
+            // immediately dangling raw pointer.
+            self.typeck_results
+                .borrow()
+                .adjustments()
+                .get(base.hir_id)
+                .map_or(false, |x| x.iter().any(|adj| matches!(adj.kind, Adjust::Deref(_))))
+        });
+        if !is_named {
+            self.tcx.sess.emit_err(AddressOfTemporaryTaken { span: oprnd.span });
+        }
+    }
+
+    fn check_lang_item_path(
+        &self,
+        lang_item: hir::LangItem,
+        expr: &'tcx hir::Expr<'tcx>,
+        hir_id: Option<hir::HirId>,
+    ) -> Ty<'tcx> {
+        self.resolve_lang_item_path(lang_item, expr.span, expr.hir_id, hir_id).1
+    }
+
+    pub(crate) fn check_expr_path(
+        &self,
+        qpath: &'tcx hir::QPath<'tcx>,
+        expr: &'tcx hir::Expr<'tcx>,
+        args: &'tcx [hir::Expr<'tcx>],
+    ) -> Ty<'tcx> {
+        let tcx = self.tcx;
+        let (res, opt_ty, segs) =
+            self.resolve_ty_and_res_fully_qualified_call(qpath, expr.hir_id, expr.span);
+        let ty = match res {
+            Res::Err => {
+                self.set_tainted_by_errors();
+                tcx.ty_error()
+            }
+            Res::Def(DefKind::Ctor(_, CtorKind::Fictive), _) => {
+                report_unexpected_variant_res(tcx, res, qpath, expr.span);
+                tcx.ty_error()
+            }
+            _ => self.instantiate_value_path(segs, opt_ty, res, expr.span, expr.hir_id).0,
+        };
+
+        if let ty::FnDef(did, ..) = *ty.kind() {
+            let fn_sig = ty.fn_sig(tcx);
+            if tcx.fn_sig(did).abi() == RustIntrinsic && tcx.item_name(did) == sym::transmute {
+                let from = fn_sig.inputs().skip_binder()[0];
+                let to = fn_sig.output().skip_binder();
+                // We defer the transmute to the end of typeck, once all inference vars have
+                // been resolved or we errored. This is important as we can only check transmute
+                // on concrete types, but the output type may not be known yet (it would only
+                // be known if explicitly specified via turbofish).
+                self.deferred_transmute_checks.borrow_mut().push((from, to, expr.hir_id));
+            }
+            if !tcx.features().unsized_fn_params {
+                // We want to remove some Sized bounds from std functions,
+                // but don't want to expose the removal to stable Rust.
+                // i.e., we don't want to allow
+                //
+                // ```rust
+                // drop as fn(str);
+                // ```
+                //
+                // to work in stable even if the Sized bound on `drop` is relaxed.
+                for i in 0..fn_sig.inputs().skip_binder().len() {
+                    // We just want to check sizedness, so instead of introducing
+                    // placeholder lifetimes with probing, we just replace higher lifetimes
+                    // with fresh vars.
+                    let span = args.get(i).map(|a| a.span).unwrap_or(expr.span);
+                    let input = self.replace_bound_vars_with_fresh_vars(
+                        span,
+                        infer::LateBoundRegionConversionTime::FnCall,
+                        fn_sig.input(i),
+                    );
+                    self.require_type_is_sized_deferred(
+                        input,
+                        span,
+                        traits::SizedArgumentType(None),
+                    );
+                }
+            }
+            // Here we want to prevent struct constructors from returning unsized types.
+            // There were two cases this happened: fn pointer coercion in stable
+            // and usual function call in presence of unsized_locals.
+            // Also, as we just want to check sizedness, instead of introducing
+            // placeholder lifetimes with probing, we just replace higher lifetimes
+            // with fresh vars.
+            let output = self.replace_bound_vars_with_fresh_vars(
+                expr.span,
+                infer::LateBoundRegionConversionTime::FnCall,
+                fn_sig.output(),
+            );
+            self.require_type_is_sized_deferred(output, expr.span, traits::SizedReturnType);
+        }
+
+        // We always require that the type provided as the value for
+        // a type parameter outlives the moment of instantiation.
+        let substs = self.typeck_results.borrow().node_substs(expr.hir_id);
+        self.add_wf_bounds(substs, expr);
+
+        ty
+    }
+
+    fn check_expr_break(
+        &self,
+        destination: hir::Destination,
+        expr_opt: Option<&'tcx hir::Expr<'tcx>>,
+        expr: &'tcx hir::Expr<'tcx>,
+    ) -> Ty<'tcx> {
+        let tcx = self.tcx;
+        if let Ok(target_id) = destination.target_id {
+            let (e_ty, cause);
+            if let Some(e) = expr_opt {
+                // If this is a break with a value, we need to type-check
+                // the expression. Get an expected type from the loop context.
+                let opt_coerce_to = {
+                    // We should release `enclosing_breakables` before the `check_expr_with_hint`
+                    // below, so can't move this block of code to the enclosing scope and share
+                    // `ctxt` with the second `enclosing_breakables` borrow below.
+                    let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
+                    match enclosing_breakables.opt_find_breakable(target_id) {
+                        Some(ctxt) => ctxt.coerce.as_ref().map(|coerce| coerce.expected_ty()),
+                        None => {
+                            // Avoid ICE when `break` is inside a closure (#65383).
+                            return tcx.ty_error_with_message(
+                                expr.span,
+                                "break was outside loop, but no error was emitted",
+                            );
+                        }
+                    }
+                };
+
+                // If the loop context is not a `loop { }`, then break with
+                // a value is illegal, and `opt_coerce_to` will be `None`.
+                // Just set expectation to error in that case.
+                let coerce_to = opt_coerce_to.unwrap_or_else(|| tcx.ty_error());
+
+                // Recurse without `enclosing_breakables` borrowed.
+                e_ty = self.check_expr_with_hint(e, coerce_to);
+                cause = self.misc(e.span);
+            } else {
+                // Otherwise, this is a break *without* a value. That's
+                // always legal, and is equivalent to `break ()`.
+                e_ty = tcx.mk_unit();
+                cause = self.misc(expr.span);
+            }
+
+            // Now that we have type-checked `expr_opt`, borrow
+            // the `enclosing_loops` field and let's coerce the
+            // type of `expr_opt` into what is expected.
+            let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
+            let Some(ctxt) = enclosing_breakables.opt_find_breakable(target_id) else {
+                // Avoid ICE when `break` is inside a closure (#65383).
+                return tcx.ty_error_with_message(
+                    expr.span,
+                    "break was outside loop, but no error was emitted",
+                );
+            };
+
+            if let Some(ref mut coerce) = ctxt.coerce {
+                if let Some(ref e) = expr_opt {
+                    coerce.coerce(self, &cause, e, e_ty);
+                } else {
+                    assert!(e_ty.is_unit());
+                    let ty = coerce.expected_ty();
+                    coerce.coerce_forced_unit(
+                        self,
+                        &cause,
+                        &mut |mut err| {
+                            self.suggest_mismatched_types_on_tail(
+                                &mut err, expr, ty, e_ty, target_id,
+                            );
+                            if let Some(val) = ty_kind_suggestion(ty) {
+                                let label = destination
+                                    .label
+                                    .map(|l| format!(" {}", l.ident))
+                                    .unwrap_or_else(String::new);
+                                err.span_suggestion(
+                                    expr.span,
+                                    "give it a value of the expected type",
+                                    format!("break{label} {val}"),
+                                    Applicability::HasPlaceholders,
+                                );
+                            }
+                        },
+                        false,
+                    );
+                }
+            } else {
+                // If `ctxt.coerce` is `None`, we can just ignore
+                // the type of the expression.  This is because
+                // either this was a break *without* a value, in
+                // which case it is always a legal type (`()`), or
+                // else an error would have been flagged by the
+                // `loops` pass for using break with an expression
+                // where you are not supposed to.
+                assert!(expr_opt.is_none() || self.tcx.sess.has_errors().is_some());
+            }
+
+            // If we encountered a `break`, then (no surprise) it may be possible to break from the
+            // loop... unless the value being returned from the loop diverges itself, e.g.
+            // `break return 5` or `break loop {}`.
+            ctxt.may_break |= !self.diverges.get().is_always();
+
+            // the type of a `break` is always `!`, since it diverges
+            tcx.types.never
+        } else {
+            // Otherwise, we failed to find the enclosing loop;
+            // this can only happen if the `break` was not
+            // inside a loop at all, which is caught by the
+            // loop-checking pass.
+            let err = self.tcx.ty_error_with_message(
+                expr.span,
+                "break was outside loop, but no error was emitted",
+            );
+
+            // We still need to assign a type to the inner expression to
+            // prevent the ICE in #43162.
+            if let Some(e) = expr_opt {
+                self.check_expr_with_hint(e, err);
+
+                // ... except when we try to 'break rust;'.
+                // ICE this expression in particular (see #43162).
+                if let ExprKind::Path(QPath::Resolved(_, path)) = e.kind {
+                    if path.segments.len() == 1 && path.segments[0].ident.name == sym::rust {
+                        fatally_break_rust(self.tcx.sess);
+                    }
+                }
+            }
+
+            // There was an error; make type-check fail.
+            err
+        }
+    }
+
+    fn check_expr_return(
+        &self,
+        expr_opt: Option<&'tcx hir::Expr<'tcx>>,
+        expr: &'tcx hir::Expr<'tcx>,
+    ) -> Ty<'tcx> {
+        if self.ret_coercion.is_none() {
+            let mut err = ReturnStmtOutsideOfFnBody {
+                span: expr.span,
+                encl_body_span: None,
+                encl_fn_span: None,
+            };
+
+            let encl_item_id = self.tcx.hir().get_parent_item(expr.hir_id);
+
+            if let Some(hir::Node::Item(hir::Item {
+                kind: hir::ItemKind::Fn(..),
+                span: encl_fn_span,
+                ..
+            }))
+            | Some(hir::Node::TraitItem(hir::TraitItem {
+                kind: hir::TraitItemKind::Fn(_, hir::TraitFn::Provided(_)),
+                span: encl_fn_span,
+                ..
+            }))
+            | Some(hir::Node::ImplItem(hir::ImplItem {
+                kind: hir::ImplItemKind::Fn(..),
+                span: encl_fn_span,
+                ..
+            })) = self.tcx.hir().find_by_def_id(encl_item_id.def_id)
+            {
+                // We are inside a function body, so reporting "return statement
+                // outside of function body" needs an explanation.
+
+                let encl_body_owner_id = self.tcx.hir().enclosing_body_owner(expr.hir_id);
+
+                // If this didn't hold, we would not have to report an error in
+                // the first place.
+                assert_ne!(encl_item_id.def_id, encl_body_owner_id);
+
+                let encl_body_id = self.tcx.hir().body_owned_by(encl_body_owner_id);
+                let encl_body = self.tcx.hir().body(encl_body_id);
+
+                err.encl_body_span = Some(encl_body.value.span);
+                err.encl_fn_span = Some(*encl_fn_span);
+            }
+
+            self.tcx.sess.emit_err(err);
+
+            if let Some(e) = expr_opt {
+                // We still have to type-check `e` (issue #86188), but calling
+                // `check_return_expr` only works inside fn bodies.
+                self.check_expr(e);
+            }
+        } else if let Some(e) = expr_opt {
+            if self.ret_coercion_span.get().is_none() {
+                self.ret_coercion_span.set(Some(e.span));
+            }
+            self.check_return_expr(e, true);
+        } else {
+            let mut coercion = self.ret_coercion.as_ref().unwrap().borrow_mut();
+            if self.ret_coercion_span.get().is_none() {
+                self.ret_coercion_span.set(Some(expr.span));
+            }
+            let cause = self.cause(expr.span, ObligationCauseCode::ReturnNoExpression);
+            if let Some((fn_decl, _)) = self.get_fn_decl(expr.hir_id) {
+                coercion.coerce_forced_unit(
+                    self,
+                    &cause,
+                    &mut |db| {
+                        let span = fn_decl.output.span();
+                        if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
+                            db.span_label(
+                                span,
+                                format!("expected `{snippet}` because of this return type"),
+                            );
+                        }
+                    },
+                    true,
+                );
+            } else {
+                coercion.coerce_forced_unit(self, &cause, &mut |_| (), true);
+            }
+        }
+        self.tcx.types.never
+    }
+
+    /// `explicit_return` is `true` if we're checking an explicit `return expr`,
+    /// and `false` if we're checking a trailing expression.
+    pub(super) fn check_return_expr(
+        &self,
+        return_expr: &'tcx hir::Expr<'tcx>,
+        explicit_return: bool,
+    ) {
+        let ret_coercion = self.ret_coercion.as_ref().unwrap_or_else(|| {
+            span_bug!(return_expr.span, "check_return_expr called outside fn body")
+        });
+
+        let ret_ty = ret_coercion.borrow().expected_ty();
+        let return_expr_ty = self.check_expr_with_hint(return_expr, ret_ty);
+        let mut span = return_expr.span;
+        // Use the span of the trailing expression for our cause,
+        // not the span of the entire function
+        if !explicit_return {
+            if let ExprKind::Block(body, _) = return_expr.kind && let Some(last_expr) = body.expr {
+                span = last_expr.span;
+            }
+        }
+        ret_coercion.borrow_mut().coerce(
+            self,
+            &self.cause(span, ObligationCauseCode::ReturnValue(return_expr.hir_id)),
+            return_expr,
+            return_expr_ty,
+        );
+
+        if self.return_type_has_opaque {
+            // Point any obligations that were registered due to opaque type
+            // inference at the return expression.
+            self.select_obligations_where_possible(false, |errors| {
+                self.point_at_return_for_opaque_ty_error(errors, span, return_expr_ty);
+            });
+        }
+    }
+
+    fn point_at_return_for_opaque_ty_error(
+        &self,
+        errors: &mut Vec<traits::FulfillmentError<'tcx>>,
+        span: Span,
+        return_expr_ty: Ty<'tcx>,
+    ) {
+        // Don't point at the whole block if it's empty
+        if span == self.tcx.hir().span(self.body_id) {
+            return;
+        }
+        for err in errors {
+            let cause = &mut err.obligation.cause;
+            if let ObligationCauseCode::OpaqueReturnType(None) = cause.code() {
+                let new_cause = ObligationCause::new(
+                    cause.span,
+                    cause.body_id,
+                    ObligationCauseCode::OpaqueReturnType(Some((return_expr_ty, span))),
+                );
+                *cause = new_cause;
+            }
+        }
+    }
+
+    pub(crate) fn check_lhs_assignable(
+        &self,
+        lhs: &'tcx hir::Expr<'tcx>,
+        err_code: &'static str,
+        op_span: Span,
+        adjust_err: impl FnOnce(&mut Diagnostic),
+    ) {
+        if lhs.is_syntactic_place_expr() {
+            return;
+        }
+
+        // FIXME: Make this use Diagnostic once error codes can be dynamically set.
+        let mut err = self.tcx.sess.struct_span_err_with_code(
+            op_span,
+            "invalid left-hand side of assignment",
+            DiagnosticId::Error(err_code.into()),
+        );
+        err.span_label(lhs.span, "cannot assign to this expression");
+
+        self.comes_from_while_condition(lhs.hir_id, |expr| {
+            err.span_suggestion_verbose(
+                expr.span.shrink_to_lo(),
+                "you might have meant to use pattern destructuring",
+                "let ",
+                Applicability::MachineApplicable,
+            );
+        });
+
+        adjust_err(&mut err);
+
+        err.emit();
+    }
+
+    // Check if an expression `original_expr_id` comes from the condition of a while loop,
+    // as opposed from the body of a while loop, which we can naively check by iterating
+    // parents until we find a loop...
+    pub(super) fn comes_from_while_condition(
+        &self,
+        original_expr_id: HirId,
+        then: impl FnOnce(&hir::Expr<'_>),
+    ) {
+        let mut parent = self.tcx.hir().get_parent_node(original_expr_id);
+        while let Some(node) = self.tcx.hir().find(parent) {
+            match node {
+                hir::Node::Expr(hir::Expr {
+                    kind:
+                        hir::ExprKind::Loop(
+                            hir::Block {
+                                expr:
+                                    Some(hir::Expr {
+                                        kind:
+                                            hir::ExprKind::Match(expr, ..) | hir::ExprKind::If(expr, ..),
+                                        ..
+                                    }),
+                                ..
+                            },
+                            _,
+                            hir::LoopSource::While,
+                            _,
+                        ),
+                    ..
+                }) => {
+                    // Check if our original expression is a child of the condition of a while loop
+                    let expr_is_ancestor = std::iter::successors(Some(original_expr_id), |id| {
+                        self.tcx.hir().find_parent_node(*id)
+                    })
+                    .take_while(|id| *id != parent)
+                    .any(|id| id == expr.hir_id);
+                    // if it is, then we have a situation like `while Some(0) = value.get(0) {`,
+                    // where `while let` was more likely intended.
+                    if expr_is_ancestor {
+                        then(expr);
+                    }
+                    break;
+                }
+                hir::Node::Item(_)
+                | hir::Node::ImplItem(_)
+                | hir::Node::TraitItem(_)
+                | hir::Node::Crate(_) => break,
+                _ => {
+                    parent = self.tcx.hir().get_parent_node(parent);
+                }
+            }
+        }
+    }
+
+    // A generic function for checking the 'then' and 'else' clauses in an 'if'
+    // or 'if-else' expression.
+    fn check_then_else(
+        &self,
+        cond_expr: &'tcx hir::Expr<'tcx>,
+        then_expr: &'tcx hir::Expr<'tcx>,
+        opt_else_expr: Option<&'tcx hir::Expr<'tcx>>,
+        sp: Span,
+        orig_expected: Expectation<'tcx>,
+    ) -> Ty<'tcx> {
+        let cond_ty = self.check_expr_has_type_or_error(cond_expr, self.tcx.types.bool, |_| {});
+
+        self.warn_if_unreachable(
+            cond_expr.hir_id,
+            then_expr.span,
+            "block in `if` or `while` expression",
+        );
+
+        let cond_diverges = self.diverges.get();
+        self.diverges.set(Diverges::Maybe);
+
+        let expected = orig_expected.adjust_for_branches(self);
+        let then_ty = self.check_expr_with_expectation(then_expr, expected);
+        let then_diverges = self.diverges.get();
+        self.diverges.set(Diverges::Maybe);
+
+        // We've already taken the expected type's preferences
+        // into account when typing the `then` branch. To figure
+        // out the initial shot at a LUB, we thus only consider
+        // `expected` if it represents a *hard* constraint
+        // (`only_has_type`); otherwise, we just go with a
+        // fresh type variable.
+        let coerce_to_ty = expected.coercion_target_type(self, sp);
+        let mut coerce: DynamicCoerceMany<'_> = CoerceMany::new(coerce_to_ty);
+
+        coerce.coerce(self, &self.misc(sp), then_expr, then_ty);
+
+        if let Some(else_expr) = opt_else_expr {
+            let else_ty = self.check_expr_with_expectation(else_expr, expected);
+            let else_diverges = self.diverges.get();
+
+            let opt_suggest_box_span = self.opt_suggest_box_span(then_ty, else_ty, orig_expected);
+            let if_cause = self.if_cause(
+                sp,
+                cond_expr.span,
+                then_expr,
+                else_expr,
+                then_ty,
+                else_ty,
+                opt_suggest_box_span,
+            );
+
+            coerce.coerce(self, &if_cause, else_expr, else_ty);
+
+            // We won't diverge unless both branches do (or the condition does).
+            self.diverges.set(cond_diverges | then_diverges & else_diverges);
+        } else {
+            self.if_fallback_coercion(sp, then_expr, &mut coerce);
+
+            // If the condition is false we can't diverge.
+            self.diverges.set(cond_diverges);
+        }
+
+        let result_ty = coerce.complete(self);
+        if cond_ty.references_error() { self.tcx.ty_error() } else { result_ty }
+    }
+
+    /// Type check assignment expression `expr` of form `lhs = rhs`.
+    /// The expected type is `()` and is passed to the function for the purposes of diagnostics.
+    fn check_expr_assign(
+        &self,
+        expr: &'tcx hir::Expr<'tcx>,
+        expected: Expectation<'tcx>,
+        lhs: &'tcx hir::Expr<'tcx>,
+        rhs: &'tcx hir::Expr<'tcx>,
+        span: Span,
+    ) -> Ty<'tcx> {
+        let expected_ty = expected.coercion_target_type(self, expr.span);
+        if expected_ty == self.tcx.types.bool {
+            // The expected type is `bool` but this will result in `()` so we can reasonably
+            // say that the user intended to write `lhs == rhs` instead of `lhs = rhs`.
+            // The likely cause of this is `if foo = bar { .. }`.
+            let actual_ty = self.tcx.mk_unit();
+            let mut err = self.demand_suptype_diag(expr.span, expected_ty, actual_ty).unwrap();
+            let lhs_ty = self.check_expr(&lhs);
+            let rhs_ty = self.check_expr(&rhs);
+            let (applicability, eq) = if self.can_coerce(rhs_ty, lhs_ty) {
+                (Applicability::MachineApplicable, true)
+            } else if let ExprKind::Binary(
+                Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
+                _,
+                rhs_expr,
+            ) = lhs.kind
+            {
+                // if x == 1 && y == 2 { .. }
+                //                 +
+                let actual_lhs_ty = self.check_expr(&rhs_expr);
+                (Applicability::MaybeIncorrect, self.can_coerce(rhs_ty, actual_lhs_ty))
+            } else if let ExprKind::Binary(
+                Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
+                lhs_expr,
+                _,
+            ) = rhs.kind
+            {
+                // if x == 1 && y == 2 { .. }
+                //       +
+                let actual_rhs_ty = self.check_expr(&lhs_expr);
+                (Applicability::MaybeIncorrect, self.can_coerce(actual_rhs_ty, lhs_ty))
+            } else {
+                (Applicability::MaybeIncorrect, false)
+            };
+            if !lhs.is_syntactic_place_expr()
+                && lhs.is_approximately_pattern()
+                && !matches!(lhs.kind, hir::ExprKind::Lit(_))
+            {
+                // Do not suggest `if let x = y` as `==` is way more likely to be the intention.
+                let hir = self.tcx.hir();
+                if let hir::Node::Expr(hir::Expr { kind: ExprKind::If { .. }, .. }) =
+                    hir.get(hir.get_parent_node(hir.get_parent_node(expr.hir_id)))
+                {
+                    err.span_suggestion_verbose(
+                        expr.span.shrink_to_lo(),
+                        "you might have meant to use pattern matching",
+                        "let ",
+                        applicability,
+                    );
+                };
+            }
+            if eq {
+                err.span_suggestion_verbose(
+                    span.shrink_to_hi(),
+                    "you might have meant to compare for equality",
+                    '=',
+                    applicability,
+                );
+            }
+
+            // If the assignment expression itself is ill-formed, don't
+            // bother emitting another error
+            if lhs_ty.references_error() || rhs_ty.references_error() {
+                err.delay_as_bug()
+            } else {
+                err.emit();
+            }
+            return self.tcx.ty_error();
+        }
+
+        let lhs_ty = self.check_expr_with_needs(&lhs, Needs::MutPlace);
+
+        let suggest_deref_binop = |err: &mut Diagnostic, rhs_ty: Ty<'tcx>| {
+            if let Some(lhs_deref_ty) = self.deref_once_mutably_for_diagnostic(lhs_ty) {
+                // Can only assign if the type is sized, so if `DerefMut` yields a type that is
+                // unsized, do not suggest dereferencing it.
+                let lhs_deref_ty_is_sized = self
+                    .infcx
+                    .type_implements_trait(
+                        self.tcx.lang_items().sized_trait().unwrap(),
+                        lhs_deref_ty,
+                        ty::List::empty(),
+                        self.param_env,
+                    )
+                    .may_apply();
+                if lhs_deref_ty_is_sized && self.can_coerce(rhs_ty, lhs_deref_ty) {
+                    err.span_suggestion_verbose(
+                        lhs.span.shrink_to_lo(),
+                        "consider dereferencing here to assign to the mutably borrowed value",
+                        "*",
+                        Applicability::MachineApplicable,
+                    );
+                }
+            }
+        };
+
+        // This is (basically) inlined `check_expr_coercable_to_type`, but we want
+        // to suggest an additional fixup here in `suggest_deref_binop`.
+        let rhs_ty = self.check_expr_with_hint(&rhs, lhs_ty);
+        if let (_, Some(mut diag)) =
+            self.demand_coerce_diag(rhs, rhs_ty, lhs_ty, Some(lhs), AllowTwoPhase::No)
+        {
+            suggest_deref_binop(&mut diag, rhs_ty);
+            diag.emit();
+        }
+
+        self.check_lhs_assignable(lhs, "E0070", span, |err| {
+            if let Some(rhs_ty) = self.typeck_results.borrow().expr_ty_opt(rhs) {
+                suggest_deref_binop(err, rhs_ty);
+            }
+        });
+
+        self.require_type_is_sized(lhs_ty, lhs.span, traits::AssignmentLhsSized);
+
+        if lhs_ty.references_error() || rhs_ty.references_error() {
+            self.tcx.ty_error()
+        } else {
+            self.tcx.mk_unit()
+        }
+    }
+
+    pub(super) fn check_expr_let(&self, let_expr: &'tcx hir::Let<'tcx>) -> Ty<'tcx> {
+        // for let statements, this is done in check_stmt
+        let init = let_expr.init;
+        self.warn_if_unreachable(init.hir_id, init.span, "block in `let` expression");
+        // otherwise check exactly as a let statement
+        self.check_decl(let_expr.into());
+        // but return a bool, for this is a boolean expression
+        self.tcx.types.bool
+    }
+
+    fn check_expr_loop(
+        &self,
+        body: &'tcx hir::Block<'tcx>,
+        source: hir::LoopSource,
+        expected: Expectation<'tcx>,
+        expr: &'tcx hir::Expr<'tcx>,
+    ) -> Ty<'tcx> {
+        let coerce = match source {
+            // you can only use break with a value from a normal `loop { }`
+            hir::LoopSource::Loop => {
+                let coerce_to = expected.coercion_target_type(self, body.span);
+                Some(CoerceMany::new(coerce_to))
+            }
+
+            hir::LoopSource::While | hir::LoopSource::ForLoop => None,
+        };
+
+        let ctxt = BreakableCtxt {
+            coerce,
+            may_break: false, // Will get updated if/when we find a `break`.
+        };
+
+        let (ctxt, ()) = self.with_breakable_ctxt(expr.hir_id, ctxt, || {
+            self.check_block_no_value(&body);
+        });
+
+        if ctxt.may_break {
+            // No way to know whether it's diverging because
+            // of a `break` or an outer `break` or `return`.
+            self.diverges.set(Diverges::Maybe);
+        }
+
+        // If we permit break with a value, then result type is
+        // the LUB of the breaks (possibly ! if none); else, it
+        // is nil. This makes sense because infinite loops
+        // (which would have type !) are only possible iff we
+        // permit break with a value [1].
+        if ctxt.coerce.is_none() && !ctxt.may_break {
+            // [1]
+            self.tcx.sess.delay_span_bug(body.span, "no coercion, but loop may not break");
+        }
+        ctxt.coerce.map(|c| c.complete(self)).unwrap_or_else(|| self.tcx.mk_unit())
+    }
+
+    /// Checks a method call.
+    fn check_method_call(
+        &self,
+        expr: &'tcx hir::Expr<'tcx>,
+        segment: &hir::PathSegment<'_>,
+        rcvr: &'tcx hir::Expr<'tcx>,
+        args: &'tcx [hir::Expr<'tcx>],
+        expected: Expectation<'tcx>,
+    ) -> Ty<'tcx> {
+        let rcvr_t = self.check_expr(&rcvr);
+        // no need to check for bot/err -- callee does that
+        let rcvr_t = self.structurally_resolved_type(rcvr.span, rcvr_t);
+        let span = segment.ident.span;
+
+        let method = match self.lookup_method(rcvr_t, segment, span, expr, rcvr, args) {
+            Ok(method) => {
+                // We could add a "consider `foo::<params>`" suggestion here, but I wasn't able to
+                // trigger this codepath causing `structurally_resolved_type` to emit an error.
+
+                self.write_method_call(expr.hir_id, method);
+                Ok(method)
+            }
+            Err(error) => {
+                if segment.ident.name != kw::Empty {
+                    if let Some(mut err) = self.report_method_error(
+                        span,
+                        rcvr_t,
+                        segment.ident,
+                        SelfSource::MethodCall(rcvr),
+                        error,
+                        Some((rcvr, args)),
+                    ) {
+                        err.emit();
+                    }
+                }
+                Err(())
+            }
+        };
+
+        // Call the generic checker.
+        self.check_method_argument_types(span, expr, method, &args, DontTupleArguments, expected)
+    }
+
+    fn check_expr_cast(
+        &self,
+        e: &'tcx hir::Expr<'tcx>,
+        t: &'tcx hir::Ty<'tcx>,
+        expr: &'tcx hir::Expr<'tcx>,
+    ) -> Ty<'tcx> {
+        // Find the type of `e`. Supply hints based on the type we are casting to,
+        // if appropriate.
+        let t_cast = self.to_ty_saving_user_provided_ty(t);
+        let t_cast = self.resolve_vars_if_possible(t_cast);
+        let t_expr = self.check_expr_with_expectation(e, ExpectCastableToType(t_cast));
+        let t_expr = self.resolve_vars_if_possible(t_expr);
+
+        // Eagerly check for some obvious errors.
+        if t_expr.references_error() || t_cast.references_error() {
+            self.tcx.ty_error()
+        } else {
+            // Defer other checks until we're done type checking.
+            let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut();
+            match cast::CastCheck::new(
+                self,
+                e,
+                t_expr,
+                t_cast,
+                t.span,
+                expr.span,
+                self.param_env.constness(),
+            ) {
+                Ok(cast_check) => {
+                    debug!(
+                        "check_expr_cast: deferring cast from {:?} to {:?}: {:?}",
+                        t_cast, t_expr, cast_check,
+                    );
+                    deferred_cast_checks.push(cast_check);
+                    t_cast
+                }
+                Err(_) => self.tcx.ty_error(),
+            }
+        }
+    }
+
+    fn check_expr_array(
+        &self,
+        args: &'tcx [hir::Expr<'tcx>],
+        expected: Expectation<'tcx>,
+        expr: &'tcx hir::Expr<'tcx>,
+    ) -> Ty<'tcx> {
+        let element_ty = if !args.is_empty() {
+            let coerce_to = expected
+                .to_option(self)
+                .and_then(|uty| match *uty.kind() {
+                    ty::Array(ty, _) | ty::Slice(ty) => Some(ty),
+                    _ => None,
+                })
+                .unwrap_or_else(|| {
+                    self.next_ty_var(TypeVariableOrigin {
+                        kind: TypeVariableOriginKind::TypeInference,
+                        span: expr.span,
+                    })
+                });
+            let mut coerce = CoerceMany::with_coercion_sites(coerce_to, args);
+            assert_eq!(self.diverges.get(), Diverges::Maybe);
+            for e in args {
+                let e_ty = self.check_expr_with_hint(e, coerce_to);
+                let cause = self.misc(e.span);
+                coerce.coerce(self, &cause, e, e_ty);
+            }
+            coerce.complete(self)
+        } else {
+            self.next_ty_var(TypeVariableOrigin {
+                kind: TypeVariableOriginKind::TypeInference,
+                span: expr.span,
+            })
+        };
+        let array_len = args.len() as u64;
+        self.suggest_array_len(expr, array_len);
+        self.tcx.mk_array(element_ty, array_len)
+    }
+
+    fn suggest_array_len(&self, expr: &'tcx hir::Expr<'tcx>, array_len: u64) {
+        let parent_node = self.tcx.hir().parent_iter(expr.hir_id).find(|(_, node)| {
+            !matches!(node, hir::Node::Expr(hir::Expr { kind: hir::ExprKind::AddrOf(..), .. }))
+        });
+        let Some((_,
+            hir::Node::Local(hir::Local { ty: Some(ty), .. })
+            | hir::Node::Item(hir::Item { kind: hir::ItemKind::Const(ty, _), .. }))
+        ) = parent_node else {
+            return
+        };
+        if let hir::TyKind::Array(_, length) = ty.peel_refs().kind
+            && let hir::ArrayLen::Body(hir::AnonConst { hir_id, .. }) = length
+            && let Some(span) = self.tcx.hir().opt_span(hir_id)
+        {
+            match self.tcx.sess.diagnostic().steal_diagnostic(span, StashKey::UnderscoreForArrayLengths) {
+                Some(mut err) => {
+                    err.span_suggestion(
+                        span,
+                        "consider specifying the array length",
+                        array_len,
+                        Applicability::MaybeIncorrect,
+                    );
+                    err.emit();
+                }
+                None => ()
+            }
+        }
+    }
+
+    fn check_expr_const_block(
+        &self,
+        anon_const: &'tcx hir::AnonConst,
+        expected: Expectation<'tcx>,
+        _expr: &'tcx hir::Expr<'tcx>,
+    ) -> Ty<'tcx> {
+        let body = self.tcx.hir().body(anon_const.body);
+
+        // Create a new function context.
+        let fcx = FnCtxt::new(self, self.param_env.with_const(), body.value.hir_id);
+        crate::GatherLocalsVisitor::new(&fcx).visit_body(body);
+
+        let ty = fcx.check_expr_with_expectation(&body.value, expected);
+        fcx.require_type_is_sized(ty, body.value.span, traits::ConstSized);
+        fcx.write_ty(anon_const.hir_id, ty);
+        ty
+    }
+
+    fn check_expr_repeat(
+        &self,
+        element: &'tcx hir::Expr<'tcx>,
+        count: &'tcx hir::ArrayLen,
+        expected: Expectation<'tcx>,
+        expr: &'tcx hir::Expr<'tcx>,
+    ) -> Ty<'tcx> {
+        let tcx = self.tcx;
+        let count = self.array_length_to_const(count);
+        if let Some(count) = count.try_eval_usize(tcx, self.param_env) {
+            self.suggest_array_len(expr, count);
+        }
+
+        let uty = match expected {
+            ExpectHasType(uty) => match *uty.kind() {
+                ty::Array(ty, _) | ty::Slice(ty) => Some(ty),
+                _ => None,
+            },
+            _ => None,
+        };
+
+        let (element_ty, t) = match uty {
+            Some(uty) => {
+                self.check_expr_coercable_to_type(&element, uty, None);
+                (uty, uty)
+            }
+            None => {
+                let ty = self.next_ty_var(TypeVariableOrigin {
+                    kind: TypeVariableOriginKind::MiscVariable,
+                    span: element.span,
+                });
+                let element_ty = self.check_expr_has_type_or_error(&element, ty, |_| {});
+                (element_ty, ty)
+            }
+        };
+
+        if element_ty.references_error() {
+            return tcx.ty_error();
+        }
+
+        self.check_repeat_element_needs_copy_bound(element, count, element_ty);
+
+        tcx.mk_ty(ty::Array(t, count))
+    }
+
+    fn check_repeat_element_needs_copy_bound(
+        &self,
+        element: &hir::Expr<'_>,
+        count: ty::Const<'tcx>,
+        element_ty: Ty<'tcx>,
+    ) {
+        let tcx = self.tcx;
+        // Actual constants as the repeat element get inserted repeatedly instead of getting copied via Copy.
+        match &element.kind {
+            hir::ExprKind::ConstBlock(..) => return,
+            hir::ExprKind::Path(qpath) => {
+                let res = self.typeck_results.borrow().qpath_res(qpath, element.hir_id);
+                if let Res::Def(DefKind::Const | DefKind::AssocConst | DefKind::AnonConst, _) = res
+                {
+                    return;
+                }
+            }
+            _ => {}
+        }
+        // If someone calls a const fn, they can extract that call out into a separate constant (or a const
+        // block in the future), so we check that to tell them that in the diagnostic. Does not affect typeck.
+        let is_const_fn = match element.kind {
+            hir::ExprKind::Call(func, _args) => match *self.node_ty(func.hir_id).kind() {
+                ty::FnDef(def_id, _) => tcx.is_const_fn(def_id),
+                _ => false,
+            },
+            _ => false,
+        };
+
+        // If the length is 0, we don't create any elements, so we don't copy any. If the length is 1, we
+        // don't copy that one element, we move it. Only check for Copy if the length is larger.
+        if count.try_eval_usize(tcx, self.param_env).map_or(true, |len| len > 1) {
+            let lang_item = self.tcx.require_lang_item(LangItem::Copy, None);
+            let code = traits::ObligationCauseCode::RepeatElementCopy { is_const_fn };
+            self.require_type_meets(element_ty, element.span, code, lang_item);
+        }
+    }
+
+    fn check_expr_tuple(
+        &self,
+        elts: &'tcx [hir::Expr<'tcx>],
+        expected: Expectation<'tcx>,
+        expr: &'tcx hir::Expr<'tcx>,
+    ) -> Ty<'tcx> {
+        let flds = expected.only_has_type(self).and_then(|ty| {
+            let ty = self.resolve_vars_with_obligations(ty);
+            match ty.kind() {
+                ty::Tuple(flds) => Some(&flds[..]),
+                _ => None,
+            }
+        });
+
+        let elt_ts_iter = elts.iter().enumerate().map(|(i, e)| match flds {
+            Some(fs) if i < fs.len() => {
+                let ety = fs[i];
+                self.check_expr_coercable_to_type(&e, ety, None);
+                ety
+            }
+            _ => self.check_expr_with_expectation(&e, NoExpectation),
+        });
+        let tuple = self.tcx.mk_tup(elt_ts_iter);
+        if tuple.references_error() {
+            self.tcx.ty_error()
+        } else {
+            self.require_type_is_sized(tuple, expr.span, traits::TupleInitializerSized);
+            tuple
+        }
+    }
+
+    fn check_expr_struct(
+        &self,
+        expr: &hir::Expr<'_>,
+        expected: Expectation<'tcx>,
+        qpath: &QPath<'_>,
+        fields: &'tcx [hir::ExprField<'tcx>],
+        base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
+    ) -> Ty<'tcx> {
+        // Find the relevant variant
+        let Some((variant, adt_ty)) = self.check_struct_path(qpath, expr.hir_id) else {
+            self.check_struct_fields_on_error(fields, base_expr);
+            return self.tcx.ty_error();
+        };
+
+        // Prohibit struct expressions when non-exhaustive flag is set.
+        let adt = adt_ty.ty_adt_def().expect("`check_struct_path` returned non-ADT type");
+        if !adt.did().is_local() && variant.is_field_list_non_exhaustive() {
+            self.tcx
+                .sess
+                .emit_err(StructExprNonExhaustive { span: expr.span, what: adt.variant_descr() });
+        }
+
+        self.check_expr_struct_fields(
+            adt_ty,
+            expected,
+            expr.hir_id,
+            qpath.span(),
+            variant,
+            fields,
+            base_expr,
+            expr.span,
+        );
+
+        self.require_type_is_sized(adt_ty, expr.span, traits::StructInitializerSized);
+        adt_ty
+    }
+
+    fn check_expr_struct_fields(
+        &self,
+        adt_ty: Ty<'tcx>,
+        expected: Expectation<'tcx>,
+        expr_id: hir::HirId,
+        span: Span,
+        variant: &'tcx ty::VariantDef,
+        ast_fields: &'tcx [hir::ExprField<'tcx>],
+        base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
+        expr_span: Span,
+    ) {
+        let tcx = self.tcx;
+
+        let expected_inputs =
+            self.expected_inputs_for_expected_output(span, expected, adt_ty, &[adt_ty]);
+        let adt_ty_hint = if let Some(expected_inputs) = expected_inputs {
+            expected_inputs.get(0).cloned().unwrap_or(adt_ty)
+        } else {
+            adt_ty
+        };
+        // re-link the regions that EIfEO can erase.
+        self.demand_eqtype(span, adt_ty_hint, adt_ty);
+
+        let ty::Adt(adt, substs) = adt_ty.kind() else {
+            span_bug!(span, "non-ADT passed to check_expr_struct_fields");
+        };
+        let adt_kind = adt.adt_kind();
+
+        let mut remaining_fields = variant
+            .fields
+            .iter()
+            .enumerate()
+            .map(|(i, field)| (field.ident(tcx).normalize_to_macros_2_0(), (i, field)))
+            .collect::<FxHashMap<_, _>>();
+
+        let mut seen_fields = FxHashMap::default();
+
+        let mut error_happened = false;
+
+        // Type-check each field.
+        for (idx, field) in ast_fields.iter().enumerate() {
+            let ident = tcx.adjust_ident(field.ident, variant.def_id);
+            let field_type = if let Some((i, v_field)) = remaining_fields.remove(&ident) {
+                seen_fields.insert(ident, field.span);
+                self.write_field_index(field.hir_id, i);
+
+                // We don't look at stability attributes on
+                // struct-like enums (yet...), but it's definitely not
+                // a bug to have constructed one.
+                if adt_kind != AdtKind::Enum {
+                    tcx.check_stability(v_field.did, Some(expr_id), field.span, None);
+                }
+
+                self.field_ty(field.span, v_field, substs)
+            } else {
+                error_happened = true;
+                if let Some(prev_span) = seen_fields.get(&ident) {
+                    tcx.sess.emit_err(FieldMultiplySpecifiedInInitializer {
+                        span: field.ident.span,
+                        prev_span: *prev_span,
+                        ident,
+                    });
+                } else {
+                    self.report_unknown_field(
+                        adt_ty,
+                        variant,
+                        field,
+                        ast_fields,
+                        adt.variant_descr(),
+                        expr_span,
+                    );
+                }
+
+                tcx.ty_error()
+            };
+
+            // Make sure to give a type to the field even if there's
+            // an error, so we can continue type-checking.
+            let ty = self.check_expr_with_hint(&field.expr, field_type);
+            let (_, diag) =
+                self.demand_coerce_diag(&field.expr, ty, field_type, None, AllowTwoPhase::No);
+
+            if let Some(mut diag) = diag {
+                if idx == ast_fields.len() - 1 && remaining_fields.is_empty() {
+                    self.suggest_fru_from_range(field, variant, substs, &mut diag);
+                }
+                diag.emit();
+            }
+        }
+
+        // Make sure the programmer specified correct number of fields.
+        if adt_kind == AdtKind::Union {
+            if ast_fields.len() != 1 {
+                struct_span_err!(
+                    tcx.sess,
+                    span,
+                    E0784,
+                    "union expressions should have exactly one field",
+                )
+                .emit();
+            }
+        }
+
+        // If check_expr_struct_fields hit an error, do not attempt to populate
+        // the fields with the base_expr. This could cause us to hit errors later
+        // when certain fields are assumed to exist that in fact do not.
+        if error_happened {
+            return;
+        }
+
+        if let Some(base_expr) = base_expr {
+            // FIXME: We are currently creating two branches here in order to maintain
+            // consistency. But they should be merged as much as possible.
+            let fru_tys = if self.tcx.features().type_changing_struct_update {
+                if adt.is_struct() {
+                    // Make some fresh substitutions for our ADT type.
+                    let fresh_substs = self.fresh_substs_for_item(base_expr.span, adt.did());
+                    // We do subtyping on the FRU fields first, so we can
+                    // learn exactly what types we expect the base expr
+                    // needs constrained to be compatible with the struct
+                    // type we expect from the expectation value.
+                    let fru_tys = variant
+                        .fields
+                        .iter()
+                        .map(|f| {
+                            let fru_ty = self.normalize_associated_types_in(
+                                expr_span,
+                                self.field_ty(base_expr.span, f, fresh_substs),
+                            );
+                            let ident = self.tcx.adjust_ident(f.ident(self.tcx), variant.def_id);
+                            if let Some(_) = remaining_fields.remove(&ident) {
+                                let target_ty = self.field_ty(base_expr.span, f, substs);
+                                let cause = self.misc(base_expr.span);
+                                match self.at(&cause, self.param_env).sup(target_ty, fru_ty) {
+                                    Ok(InferOk { obligations, value: () }) => {
+                                        self.register_predicates(obligations)
+                                    }
+                                    Err(_) => {
+                                        // This should never happen, since we're just subtyping the
+                                        // remaining_fields, but it's fine to emit this, I guess.
+                                        self.err_ctxt()
+                                            .report_mismatched_types(
+                                                &cause,
+                                                target_ty,
+                                                fru_ty,
+                                                FieldMisMatch(variant.name, ident.name),
+                                            )
+                                            .emit();
+                                    }
+                                }
+                            }
+                            self.resolve_vars_if_possible(fru_ty)
+                        })
+                        .collect();
+                    // The use of fresh substs that we have subtyped against
+                    // our base ADT type's fields allows us to guide inference
+                    // along so that, e.g.
+                    // ```
+                    // MyStruct<'a, F1, F2, const C: usize> {
+                    //     f: F1,
+                    //     // Other fields that reference `'a`, `F2`, and `C`
+                    // }
+                    //
+                    // let x = MyStruct {
+                    //    f: 1usize,
+                    //    ..other_struct
+                    // };
+                    // ```
+                    // will have the `other_struct` expression constrained to
+                    // `MyStruct<'a, _, F2, C>`, as opposed to just `_`...
+                    // This is important to allow coercions to happen in
+                    // `other_struct` itself. See `coerce-in-base-expr.rs`.
+                    let fresh_base_ty = self.tcx.mk_adt(*adt, fresh_substs);
+                    self.check_expr_has_type_or_error(
+                        base_expr,
+                        self.resolve_vars_if_possible(fresh_base_ty),
+                        |_| {},
+                    );
+                    fru_tys
+                } else {
+                    // Check the base_expr, regardless of a bad expected adt_ty, so we can get
+                    // type errors on that expression, too.
+                    self.check_expr(base_expr);
+                    self.tcx
+                        .sess
+                        .emit_err(FunctionalRecordUpdateOnNonStruct { span: base_expr.span });
+                    return;
+                }
+            } else {
+                self.check_expr_has_type_or_error(base_expr, adt_ty, |_| {
+                    let base_ty = self.typeck_results.borrow().expr_ty(*base_expr);
+                    let same_adt = match (adt_ty.kind(), base_ty.kind()) {
+                        (ty::Adt(adt, _), ty::Adt(base_adt, _)) if adt == base_adt => true,
+                        _ => false,
+                    };
+                    if self.tcx.sess.is_nightly_build() && same_adt {
+                        feature_err(
+                            &self.tcx.sess.parse_sess,
+                            sym::type_changing_struct_update,
+                            base_expr.span,
+                            "type changing struct updating is experimental",
+                        )
+                        .emit();
+                    }
+                });
+                match adt_ty.kind() {
+                    ty::Adt(adt, substs) if adt.is_struct() => variant
+                        .fields
+                        .iter()
+                        .map(|f| {
+                            self.normalize_associated_types_in(expr_span, f.ty(self.tcx, substs))
+                        })
+                        .collect(),
+                    _ => {
+                        self.tcx
+                            .sess
+                            .emit_err(FunctionalRecordUpdateOnNonStruct { span: base_expr.span });
+                        return;
+                    }
+                }
+            };
+            self.typeck_results.borrow_mut().fru_field_types_mut().insert(expr_id, fru_tys);
+        } else if adt_kind != AdtKind::Union && !remaining_fields.is_empty() {
+            debug!(?remaining_fields);
+            let private_fields: Vec<&ty::FieldDef> = variant
+                .fields
+                .iter()
+                .filter(|field| !field.vis.is_accessible_from(tcx.parent_module(expr_id), tcx))
+                .collect();
+
+            if !private_fields.is_empty() {
+                self.report_private_fields(adt_ty, span, private_fields, ast_fields);
+            } else {
+                self.report_missing_fields(
+                    adt_ty,
+                    span,
+                    remaining_fields,
+                    variant,
+                    ast_fields,
+                    substs,
+                );
+            }
+        }
+    }
+
+    fn check_struct_fields_on_error(
+        &self,
+        fields: &'tcx [hir::ExprField<'tcx>],
+        base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
+    ) {
+        for field in fields {
+            self.check_expr(&field.expr);
+        }
+        if let Some(base) = *base_expr {
+            self.check_expr(&base);
+        }
+    }
+
+    /// Report an error for a struct field expression when there are fields which aren't provided.
+    ///
+    /// ```text
+    /// error: missing field `you_can_use_this_field` in initializer of `foo::Foo`
+    ///  --> src/main.rs:8:5
+    ///   |
+    /// 8 |     foo::Foo {};
+    ///   |     ^^^^^^^^ missing `you_can_use_this_field`
+    ///
+    /// error: aborting due to previous error
+    /// ```
+    fn report_missing_fields(
+        &self,
+        adt_ty: Ty<'tcx>,
+        span: Span,
+        remaining_fields: FxHashMap<Ident, (usize, &ty::FieldDef)>,
+        variant: &'tcx ty::VariantDef,
+        ast_fields: &'tcx [hir::ExprField<'tcx>],
+        substs: SubstsRef<'tcx>,
+    ) {
+        let len = remaining_fields.len();
+
+        let mut displayable_field_names: Vec<&str> =
+            remaining_fields.keys().map(|ident| ident.as_str()).collect();
+        // sorting &str primitives here, sort_unstable is ok
+        displayable_field_names.sort_unstable();
+
+        let mut truncated_fields_error = String::new();
+        let remaining_fields_names = match &displayable_field_names[..] {
+            [field1] => format!("`{}`", field1),
+            [field1, field2] => format!("`{field1}` and `{field2}`"),
+            [field1, field2, field3] => format!("`{field1}`, `{field2}` and `{field3}`"),
+            _ => {
+                truncated_fields_error =
+                    format!(" and {} other field{}", len - 3, pluralize!(len - 3));
+                displayable_field_names
+                    .iter()
+                    .take(3)
+                    .map(|n| format!("`{n}`"))
+                    .collect::<Vec<_>>()
+                    .join(", ")
+            }
+        };
+
+        let mut err = struct_span_err!(
+            self.tcx.sess,
+            span,
+            E0063,
+            "missing field{} {}{} in initializer of `{}`",
+            pluralize!(len),
+            remaining_fields_names,
+            truncated_fields_error,
+            adt_ty
+        );
+        err.span_label(span, format!("missing {remaining_fields_names}{truncated_fields_error}"));
+
+        if let Some(last) = ast_fields.last() {
+            self.suggest_fru_from_range(last, variant, substs, &mut err);
+        }
+
+        err.emit();
+    }
+
+    /// If the last field is a range literal, but it isn't supposed to be, then they probably
+    /// meant to use functional update syntax.
+    fn suggest_fru_from_range(
+        &self,
+        last_expr_field: &hir::ExprField<'tcx>,
+        variant: &ty::VariantDef,
+        substs: SubstsRef<'tcx>,
+        err: &mut Diagnostic,
+    ) {
+        // I don't use 'is_range_literal' because only double-sided, half-open ranges count.
+        if let ExprKind::Struct(
+                QPath::LangItem(LangItem::Range, ..),
+                &[ref range_start, ref range_end],
+                _,
+            ) = last_expr_field.expr.kind
+            && let variant_field =
+                variant.fields.iter().find(|field| field.ident(self.tcx) == last_expr_field.ident)
+            && let range_def_id = self.tcx.lang_items().range_struct()
+            && variant_field
+                .and_then(|field| field.ty(self.tcx, substs).ty_adt_def())
+                .map(|adt| adt.did())
+                != range_def_id
+        {
+            let instead = self
+                .tcx
+                .sess
+                .source_map()
+                .span_to_snippet(range_end.expr.span)
+                .map(|s| format!(" from `{s}`"))
+                .unwrap_or_default();
+            err.span_suggestion(
+                range_start.span.shrink_to_hi(),
+                &format!("to set the remaining fields{instead}, separate the last named field with a comma"),
+                ",",
+                Applicability::MaybeIncorrect,
+            );
+        }
+    }
+
+    /// Report an error for a struct field expression when there are invisible fields.
+    ///
+    /// ```text
+    /// error: cannot construct `Foo` with struct literal syntax due to private fields
+    ///  --> src/main.rs:8:5
+    ///   |
+    /// 8 |     foo::Foo {};
+    ///   |     ^^^^^^^^
+    ///
+    /// error: aborting due to previous error
+    /// ```
+    fn report_private_fields(
+        &self,
+        adt_ty: Ty<'tcx>,
+        span: Span,
+        private_fields: Vec<&ty::FieldDef>,
+        used_fields: &'tcx [hir::ExprField<'tcx>],
+    ) {
+        let mut err = self.tcx.sess.struct_span_err(
+            span,
+            &format!(
+                "cannot construct `{adt_ty}` with struct literal syntax due to private fields",
+            ),
+        );
+        let (used_private_fields, remaining_private_fields): (
+            Vec<(Symbol, Span, bool)>,
+            Vec<(Symbol, Span, bool)>,
+        ) = private_fields
+            .iter()
+            .map(|field| {
+                match used_fields.iter().find(|used_field| field.name == used_field.ident.name) {
+                    Some(used_field) => (field.name, used_field.span, true),
+                    None => (field.name, self.tcx.def_span(field.did), false),
+                }
+            })
+            .partition(|field| field.2);
+        err.span_labels(used_private_fields.iter().map(|(_, span, _)| *span), "private field");
+        if !remaining_private_fields.is_empty() {
+            let remaining_private_fields_len = remaining_private_fields.len();
+            let names = match &remaining_private_fields
+                .iter()
+                .map(|(name, _, _)| name)
+                .collect::<Vec<_>>()[..]
+            {
+                _ if remaining_private_fields_len > 6 => String::new(),
+                [name] => format!("`{name}` "),
+                [names @ .., last] => {
+                    let names = names.iter().map(|name| format!("`{name}`")).collect::<Vec<_>>();
+                    format!("{} and `{last}` ", names.join(", "))
+                }
+                [] => unreachable!(),
+            };
+            err.note(format!(
+                "... and other private field{s} {names}that {were} not provided",
+                s = pluralize!(remaining_private_fields_len),
+                were = pluralize!("was", remaining_private_fields_len),
+            ));
+        }
+        err.emit();
+    }
+
+    fn report_unknown_field(
+        &self,
+        ty: Ty<'tcx>,
+        variant: &'tcx ty::VariantDef,
+        field: &hir::ExprField<'_>,
+        skip_fields: &[hir::ExprField<'_>],
+        kind_name: &str,
+        expr_span: Span,
+    ) {
+        if variant.is_recovered() {
+            self.set_tainted_by_errors();
+            return;
+        }
+        let mut err = self.err_ctxt().type_error_struct_with_diag(
+            field.ident.span,
+            |actual| match ty.kind() {
+                ty::Adt(adt, ..) if adt.is_enum() => struct_span_err!(
+                    self.tcx.sess,
+                    field.ident.span,
+                    E0559,
+                    "{} `{}::{}` has no field named `{}`",
+                    kind_name,
+                    actual,
+                    variant.name,
+                    field.ident
+                ),
+                _ => struct_span_err!(
+                    self.tcx.sess,
+                    field.ident.span,
+                    E0560,
+                    "{} `{}` has no field named `{}`",
+                    kind_name,
+                    actual,
+                    field.ident
+                ),
+            },
+            ty,
+        );
+
+        let variant_ident_span = self.tcx.def_ident_span(variant.def_id).unwrap();
+        match variant.ctor_kind {
+            CtorKind::Fn => match ty.kind() {
+                ty::Adt(adt, ..) if adt.is_enum() => {
+                    err.span_label(
+                        variant_ident_span,
+                        format!(
+                            "`{adt}::{variant}` defined here",
+                            adt = ty,
+                            variant = variant.name,
+                        ),
+                    );
+                    err.span_label(field.ident.span, "field does not exist");
+                    err.span_suggestion_verbose(
+                        expr_span,
+                        &format!(
+                            "`{adt}::{variant}` is a tuple {kind_name}, use the appropriate syntax",
+                            adt = ty,
+                            variant = variant.name,
+                        ),
+                        format!(
+                            "{adt}::{variant}(/* fields */)",
+                            adt = ty,
+                            variant = variant.name,
+                        ),
+                        Applicability::HasPlaceholders,
+                    );
+                }
+                _ => {
+                    err.span_label(variant_ident_span, format!("`{adt}` defined here", adt = ty));
+                    err.span_label(field.ident.span, "field does not exist");
+                    err.span_suggestion_verbose(
+                        expr_span,
+                        &format!(
+                            "`{adt}` is a tuple {kind_name}, use the appropriate syntax",
+                            adt = ty,
+                            kind_name = kind_name,
+                        ),
+                        format!("{adt}(/* fields */)", adt = ty),
+                        Applicability::HasPlaceholders,
+                    );
+                }
+            },
+            _ => {
+                // prevent all specified fields from being suggested
+                let skip_fields = skip_fields.iter().map(|x| x.ident.name);
+                if let Some(field_name) = self.suggest_field_name(
+                    variant,
+                    field.ident.name,
+                    skip_fields.collect(),
+                    expr_span,
+                ) {
+                    err.span_suggestion(
+                        field.ident.span,
+                        "a field with a similar name exists",
+                        field_name,
+                        Applicability::MaybeIncorrect,
+                    );
+                } else {
+                    match ty.kind() {
+                        ty::Adt(adt, ..) => {
+                            if adt.is_enum() {
+                                err.span_label(
+                                    field.ident.span,
+                                    format!("`{}::{}` does not have this field", ty, variant.name),
+                                );
+                            } else {
+                                err.span_label(
+                                    field.ident.span,
+                                    format!("`{ty}` does not have this field"),
+                                );
+                            }
+                            let available_field_names =
+                                self.available_field_names(variant, expr_span);
+                            if !available_field_names.is_empty() {
+                                err.note(&format!(
+                                    "available fields are: {}",
+                                    self.name_series_display(available_field_names)
+                                ));
+                            }
+                        }
+                        _ => bug!("non-ADT passed to report_unknown_field"),
+                    }
+                };
+            }
+        }
+        err.emit();
+    }
+
+    // Return a hint about the closest match in field names
+    fn suggest_field_name(
+        &self,
+        variant: &'tcx ty::VariantDef,
+        field: Symbol,
+        skip: Vec<Symbol>,
+        // The span where stability will be checked
+        span: Span,
+    ) -> Option<Symbol> {
+        let names = variant
+            .fields
+            .iter()
+            .filter_map(|field| {
+                // ignore already set fields and private fields from non-local crates
+                // and unstable fields.
+                if skip.iter().any(|&x| x == field.name)
+                    || (!variant.def_id.is_local() && !field.vis.is_public())
+                    || matches!(
+                        self.tcx.eval_stability(field.did, None, span, None),
+                        stability::EvalResult::Deny { .. }
+                    )
+                {
+                    None
+                } else {
+                    Some(field.name)
+                }
+            })
+            .collect::<Vec<Symbol>>();
+
+        find_best_match_for_name(&names, field, None)
+    }
+
+    fn available_field_names(
+        &self,
+        variant: &'tcx ty::VariantDef,
+        access_span: Span,
+    ) -> Vec<Symbol> {
+        variant
+            .fields
+            .iter()
+            .filter(|field| {
+                let def_scope = self
+                    .tcx
+                    .adjust_ident_and_get_scope(field.ident(self.tcx), variant.def_id, self.body_id)
+                    .1;
+                field.vis.is_accessible_from(def_scope, self.tcx)
+                    && !matches!(
+                        self.tcx.eval_stability(field.did, None, access_span, None),
+                        stability::EvalResult::Deny { .. }
+                    )
+            })
+            .filter(|field| !self.tcx.is_doc_hidden(field.did))
+            .map(|field| field.name)
+            .collect()
+    }
+
+    fn name_series_display(&self, names: Vec<Symbol>) -> String {
+        // dynamic limit, to never omit just one field
+        let limit = if names.len() == 6 { 6 } else { 5 };
+        let mut display =
+            names.iter().take(limit).map(|n| format!("`{}`", n)).collect::<Vec<_>>().join(", ");
+        if names.len() > limit {
+            display = format!("{} ... and {} others", display, names.len() - limit);
+        }
+        display
+    }
+
+    // Check field access expressions
+    fn check_field(
+        &self,
+        expr: &'tcx hir::Expr<'tcx>,
+        base: &'tcx hir::Expr<'tcx>,
+        field: Ident,
+    ) -> Ty<'tcx> {
+        debug!("check_field(expr: {:?}, base: {:?}, field: {:?})", expr, base, field);
+        let base_ty = self.check_expr(base);
+        let base_ty = self.structurally_resolved_type(base.span, base_ty);
+        let mut private_candidate = None;
+        let mut autoderef = self.autoderef(expr.span, base_ty);
+        while let Some((deref_base_ty, _)) = autoderef.next() {
+            debug!("deref_base_ty: {:?}", deref_base_ty);
+            match deref_base_ty.kind() {
+                ty::Adt(base_def, substs) if !base_def.is_enum() => {
+                    debug!("struct named {:?}", deref_base_ty);
+                    let (ident, def_scope) =
+                        self.tcx.adjust_ident_and_get_scope(field, base_def.did(), self.body_id);
+                    let fields = &base_def.non_enum_variant().fields;
+                    if let Some(index) = fields
+                        .iter()
+                        .position(|f| f.ident(self.tcx).normalize_to_macros_2_0() == ident)
+                    {
+                        let field = &fields[index];
+                        let field_ty = self.field_ty(expr.span, field, substs);
+                        // Save the index of all fields regardless of their visibility in case
+                        // of error recovery.
+                        self.write_field_index(expr.hir_id, index);
+                        let adjustments = self.adjust_steps(&autoderef);
+                        if field.vis.is_accessible_from(def_scope, self.tcx) {
+                            self.apply_adjustments(base, adjustments);
+                            self.register_predicates(autoderef.into_obligations());
+
+                            self.tcx.check_stability(field.did, Some(expr.hir_id), expr.span, None);
+                            return field_ty;
+                        }
+                        private_candidate = Some((adjustments, base_def.did(), field_ty));
+                    }
+                }
+                ty::Tuple(tys) => {
+                    let fstr = field.as_str();
+                    if let Ok(index) = fstr.parse::<usize>() {
+                        if fstr == index.to_string() {
+                            if let Some(&field_ty) = tys.get(index) {
+                                let adjustments = self.adjust_steps(&autoderef);
+                                self.apply_adjustments(base, adjustments);
+                                self.register_predicates(autoderef.into_obligations());
+
+                                self.write_field_index(expr.hir_id, index);
+                                return field_ty;
+                            }
+                        }
+                    }
+                }
+                _ => {}
+            }
+        }
+        self.structurally_resolved_type(autoderef.span(), autoderef.final_ty(false));
+
+        if let Some((adjustments, did, field_ty)) = private_candidate {
+            // (#90483) apply adjustments to avoid ExprUseVisitor from
+            // creating erroneous projection.
+            self.apply_adjustments(base, adjustments);
+            self.ban_private_field_access(expr, base_ty, field, did);
+            return field_ty;
+        }
+
+        if field.name == kw::Empty {
+        } else if self.method_exists(field, base_ty, expr.hir_id, true) {
+            self.ban_take_value_of_method(expr, base_ty, field);
+        } else if !base_ty.is_primitive_ty() {
+            self.ban_nonexisting_field(field, base, expr, base_ty);
+        } else {
+            let field_name = field.to_string();
+            let mut err = type_error_struct!(
+                self.tcx().sess,
+                field.span,
+                base_ty,
+                E0610,
+                "`{base_ty}` is a primitive type and therefore doesn't have fields",
+            );
+            let is_valid_suffix = |field: &str| {
+                if field == "f32" || field == "f64" {
+                    return true;
+                }
+                let mut chars = field.chars().peekable();
+                match chars.peek() {
+                    Some('e') | Some('E') => {
+                        chars.next();
+                        if let Some(c) = chars.peek()
+                            && !c.is_numeric() && *c != '-' && *c != '+'
+                        {
+                            return false;
+                        }
+                        while let Some(c) = chars.peek() {
+                            if !c.is_numeric() {
+                                break;
+                            }
+                            chars.next();
+                        }
+                    }
+                    _ => (),
+                }
+                let suffix = chars.collect::<String>();
+                suffix.is_empty() || suffix == "f32" || suffix == "f64"
+            };
+            let maybe_partial_suffix = |field: &str| -> Option<&str> {
+                let first_chars = ['f', 'l'];
+                if field.len() >= 1
+                    && field.to_lowercase().starts_with(first_chars)
+                    && field[1..].chars().all(|c| c.is_ascii_digit())
+                {
+                    if field.to_lowercase().starts_with(['f']) { Some("f32") } else { Some("f64") }
+                } else {
+                    None
+                }
+            };
+            if let ty::Infer(ty::IntVar(_)) = base_ty.kind()
+                && let ExprKind::Lit(Spanned {
+                    node: ast::LitKind::Int(_, ast::LitIntType::Unsuffixed),
+                    ..
+                }) = base.kind
+                && !base.span.from_expansion()
+            {
+                if is_valid_suffix(&field_name) {
+                    err.span_suggestion_verbose(
+                        field.span.shrink_to_lo(),
+                        "if intended to be a floating point literal, consider adding a `0` after the period",
+                        '0',
+                        Applicability::MaybeIncorrect,
+                    );
+                } else if let Some(correct_suffix) = maybe_partial_suffix(&field_name) {
+                    err.span_suggestion_verbose(
+                        field.span,
+                        format!("if intended to be a floating point literal, consider adding a `0` after the period and a `{correct_suffix}` suffix"),
+                        format!("0{correct_suffix}"),
+                        Applicability::MaybeIncorrect,
+                    );
+                }
+            }
+            err.emit();
+        }
+
+        self.tcx().ty_error()
+    }
+
+    fn suggest_await_on_field_access(
+        &self,
+        err: &mut Diagnostic,
+        field_ident: Ident,
+        base: &'tcx hir::Expr<'tcx>,
+        ty: Ty<'tcx>,
+    ) {
+        let output_ty = match self.get_impl_future_output_ty(ty) {
+            Some(output_ty) => self.resolve_vars_if_possible(output_ty),
+            _ => return,
+        };
+        let mut add_label = true;
+        if let ty::Adt(def, _) = output_ty.skip_binder().kind() {
+            // no field access on enum type
+            if !def.is_enum() {
+                if def
+                    .non_enum_variant()
+                    .fields
+                    .iter()
+                    .any(|field| field.ident(self.tcx) == field_ident)
+                {
+                    add_label = false;
+                    err.span_label(
+                        field_ident.span,
+                        "field not available in `impl Future`, but it is available in its `Output`",
+                    );
+                    err.span_suggestion_verbose(
+                        base.span.shrink_to_hi(),
+                        "consider `await`ing on the `Future` and access the field of its `Output`",
+                        ".await",
+                        Applicability::MaybeIncorrect,
+                    );
+                }
+            }
+        }
+        if add_label {
+            err.span_label(field_ident.span, &format!("field not found in `{ty}`"));
+        }
+    }
+
+    fn ban_nonexisting_field(
+        &self,
+        ident: Ident,
+        base: &'tcx hir::Expr<'tcx>,
+        expr: &'tcx hir::Expr<'tcx>,
+        base_ty: Ty<'tcx>,
+    ) {
+        debug!(
+            "ban_nonexisting_field: field={:?}, base={:?}, expr={:?}, base_ty={:?}",
+            ident, base, expr, base_ty
+        );
+        let mut err = self.no_such_field_err(ident, base_ty, base.hir_id);
+
+        match *base_ty.peel_refs().kind() {
+            ty::Array(_, len) => {
+                self.maybe_suggest_array_indexing(&mut err, expr, base, ident, len);
+            }
+            ty::RawPtr(..) => {
+                self.suggest_first_deref_field(&mut err, expr, base, ident);
+            }
+            ty::Adt(def, _) if !def.is_enum() => {
+                self.suggest_fields_on_recordish(&mut err, def, ident, expr.span);
+            }
+            ty::Param(param_ty) => {
+                self.point_at_param_definition(&mut err, param_ty);
+            }
+            ty::Opaque(_, _) => {
+                self.suggest_await_on_field_access(&mut err, ident, base, base_ty.peel_refs());
+            }
+            _ => {}
+        }
+
+        self.suggest_fn_call(&mut err, base, base_ty, |output_ty| {
+            if let ty::Adt(def, _) = output_ty.kind() && !def.is_enum() {
+                def.non_enum_variant().fields.iter().any(|field| {
+                    field.ident(self.tcx) == ident
+                        && field.vis.is_accessible_from(expr.hir_id.owner.def_id, self.tcx)
+                })
+            } else if let ty::Tuple(tys) = output_ty.kind()
+                && let Ok(idx) = ident.as_str().parse::<usize>()
+            {
+                idx < tys.len()
+            } else {
+                false
+            }
+        });
+
+        if ident.name == kw::Await {
+            // We know by construction that `<expr>.await` is either on Rust 2015
+            // or results in `ExprKind::Await`. Suggest switching the edition to 2018.
+            err.note("to `.await` a `Future`, switch to Rust 2018 or later");
+            err.help_use_latest_edition();
+        }
+
+        err.emit();
+    }
+
+    fn ban_private_field_access(
+        &self,
+        expr: &hir::Expr<'_>,
+        expr_t: Ty<'tcx>,
+        field: Ident,
+        base_did: DefId,
+    ) {
+        let struct_path = self.tcx().def_path_str(base_did);
+        let kind_name = self.tcx().def_kind(base_did).descr(base_did);
+        let mut err = struct_span_err!(
+            self.tcx().sess,
+            field.span,
+            E0616,
+            "field `{field}` of {kind_name} `{struct_path}` is private",
+        );
+        err.span_label(field.span, "private field");
+        // Also check if an accessible method exists, which is often what is meant.
+        if self.method_exists(field, expr_t, expr.hir_id, false) && !self.expr_in_place(expr.hir_id)
+        {
+            self.suggest_method_call(
+                &mut err,
+                &format!("a method `{field}` also exists, call it with parentheses"),
+                field,
+                expr_t,
+                expr,
+                None,
+            );
+        }
+        err.emit();
+    }
+
+    fn ban_take_value_of_method(&self, expr: &hir::Expr<'_>, expr_t: Ty<'tcx>, field: Ident) {
+        let mut err = type_error_struct!(
+            self.tcx().sess,
+            field.span,
+            expr_t,
+            E0615,
+            "attempted to take value of method `{field}` on type `{expr_t}`",
+        );
+        err.span_label(field.span, "method, not a field");
+        let expr_is_call =
+            if let hir::Node::Expr(hir::Expr { kind: ExprKind::Call(callee, _args), .. }) =
+                self.tcx.hir().get(self.tcx.hir().get_parent_node(expr.hir_id))
+            {
+                expr.hir_id == callee.hir_id
+            } else {
+                false
+            };
+        let expr_snippet =
+            self.tcx.sess.source_map().span_to_snippet(expr.span).unwrap_or_default();
+        let is_wrapped = expr_snippet.starts_with('(') && expr_snippet.ends_with(')');
+        let after_open = expr.span.lo() + rustc_span::BytePos(1);
+        let before_close = expr.span.hi() - rustc_span::BytePos(1);
+
+        if expr_is_call && is_wrapped {
+            err.multipart_suggestion(
+                "remove wrapping parentheses to call the method",
+                vec![
+                    (expr.span.with_hi(after_open), String::new()),
+                    (expr.span.with_lo(before_close), String::new()),
+                ],
+                Applicability::MachineApplicable,
+            );
+        } else if !self.expr_in_place(expr.hir_id) {
+            // Suggest call parentheses inside the wrapping parentheses
+            let span = if is_wrapped {
+                expr.span.with_lo(after_open).with_hi(before_close)
+            } else {
+                expr.span
+            };
+            self.suggest_method_call(
+                &mut err,
+                "use parentheses to call the method",
+                field,
+                expr_t,
+                expr,
+                Some(span),
+            );
+        } else if let ty::RawPtr(ty_and_mut) = expr_t.kind()
+            && let ty::Adt(adt_def, _) = ty_and_mut.ty.kind()
+            && let ExprKind::Field(base_expr, _) = expr.kind
+            && adt_def.variants().len() == 1
+            && adt_def
+                .variants()
+                .iter()
+                .next()
+                .unwrap()
+                .fields
+                .iter()
+                .any(|f| f.ident(self.tcx) == field)
+        {
+            err.multipart_suggestion(
+                "to access the field, dereference first",
+                vec![
+                    (base_expr.span.shrink_to_lo(), "(*".to_string()),
+                    (base_expr.span.shrink_to_hi(), ")".to_string()),
+                ],
+                Applicability::MaybeIncorrect,
+            );
+        } else {
+            err.help("methods are immutable and cannot be assigned to");
+        }
+
+        err.emit();
+    }
+
+    fn point_at_param_definition(&self, err: &mut Diagnostic, param: ty::ParamTy) {
+        let generics = self.tcx.generics_of(self.body_id.owner.to_def_id());
+        let generic_param = generics.type_param(&param, self.tcx);
+        if let ty::GenericParamDefKind::Type { synthetic: true, .. } = generic_param.kind {
+            return;
+        }
+        let param_def_id = generic_param.def_id;
+        let param_hir_id = match param_def_id.as_local() {
+            Some(x) => self.tcx.hir().local_def_id_to_hir_id(x),
+            None => return,
+        };
+        let param_span = self.tcx.hir().span(param_hir_id);
+        let param_name = self.tcx.hir().ty_param_name(param_def_id.expect_local());
+
+        err.span_label(param_span, &format!("type parameter '{param_name}' declared here"));
+    }
+
+    fn suggest_fields_on_recordish(
+        &self,
+        err: &mut Diagnostic,
+        def: ty::AdtDef<'tcx>,
+        field: Ident,
+        access_span: Span,
+    ) {
+        if let Some(suggested_field_name) =
+            self.suggest_field_name(def.non_enum_variant(), field.name, vec![], access_span)
+        {
+            err.span_suggestion(
+                field.span,
+                "a field with a similar name exists",
+                suggested_field_name,
+                Applicability::MaybeIncorrect,
+            );
+        } else {
+            err.span_label(field.span, "unknown field");
+            let struct_variant_def = def.non_enum_variant();
+            let field_names = self.available_field_names(struct_variant_def, access_span);
+            if !field_names.is_empty() {
+                err.note(&format!(
+                    "available fields are: {}",
+                    self.name_series_display(field_names),
+                ));
+            }
+        }
+    }
+
+    fn maybe_suggest_array_indexing(
+        &self,
+        err: &mut Diagnostic,
+        expr: &hir::Expr<'_>,
+        base: &hir::Expr<'_>,
+        field: Ident,
+        len: ty::Const<'tcx>,
+    ) {
+        if let (Some(len), Ok(user_index)) =
+            (len.try_eval_usize(self.tcx, self.param_env), field.as_str().parse::<u64>())
+            && let Ok(base) = self.tcx.sess.source_map().span_to_snippet(base.span)
+        {
+            let help = "instead of using tuple indexing, use array indexing";
+            let suggestion = format!("{base}[{field}]");
+            let applicability = if len < user_index {
+                Applicability::MachineApplicable
+            } else {
+                Applicability::MaybeIncorrect
+            };
+            err.span_suggestion(expr.span, help, suggestion, applicability);
+        }
+    }
+
+    fn suggest_first_deref_field(
+        &self,
+        err: &mut Diagnostic,
+        expr: &hir::Expr<'_>,
+        base: &hir::Expr<'_>,
+        field: Ident,
+    ) {
+        if let Ok(base) = self.tcx.sess.source_map().span_to_snippet(base.span) {
+            let msg = format!("`{base}` is a raw pointer; try dereferencing it");
+            let suggestion = format!("(*{base}).{field}");
+            err.span_suggestion(expr.span, &msg, suggestion, Applicability::MaybeIncorrect);
+        }
+    }
+
+    fn no_such_field_err(
+        &self,
+        field: Ident,
+        expr_t: Ty<'tcx>,
+        id: HirId,
+    ) -> DiagnosticBuilder<'_, ErrorGuaranteed> {
+        let span = field.span;
+        debug!("no_such_field_err(span: {:?}, field: {:?}, expr_t: {:?})", span, field, expr_t);
+
+        let mut err = type_error_struct!(
+            self.tcx().sess,
+            field.span,
+            expr_t,
+            E0609,
+            "no field `{field}` on type `{expr_t}`",
+        );
+
+        // try to add a suggestion in case the field is a nested field of a field of the Adt
+        let mod_id = self.tcx.parent_module(id).to_def_id();
+        if let Some((fields, substs)) =
+            self.get_field_candidates_considering_privacy(span, expr_t, mod_id)
+        {
+            let candidate_fields: Vec<_> = fields
+                .filter_map(|candidate_field| {
+                    self.check_for_nested_field_satisfying(
+                        span,
+                        &|candidate_field, _| candidate_field.ident(self.tcx()) == field,
+                        candidate_field,
+                        substs,
+                        vec![],
+                        mod_id,
+                    )
+                })
+                .map(|mut field_path| {
+                    field_path.pop();
+                    field_path
+                        .iter()
+                        .map(|id| id.name.to_ident_string())
+                        .collect::<Vec<String>>()
+                        .join(".")
+                })
+                .collect::<Vec<_>>();
+
+            let len = candidate_fields.len();
+            if len > 0 {
+                err.span_suggestions(
+                    field.span.shrink_to_lo(),
+                    format!(
+                        "{} of the expressions' fields {} a field of the same name",
+                        if len > 1 { "some" } else { "one" },
+                        if len > 1 { "have" } else { "has" },
+                    ),
+                    candidate_fields.iter().map(|path| format!("{path}.")),
+                    Applicability::MaybeIncorrect,
+                );
+            }
+        }
+        err
+    }
+
+    pub(crate) fn get_field_candidates_considering_privacy(
+        &self,
+        span: Span,
+        base_ty: Ty<'tcx>,
+        mod_id: DefId,
+    ) -> Option<(impl Iterator<Item = &'tcx ty::FieldDef> + 'tcx, SubstsRef<'tcx>)> {
+        debug!("get_field_candidates(span: {:?}, base_t: {:?}", span, base_ty);
+
+        for (base_t, _) in self.autoderef(span, base_ty) {
+            match base_t.kind() {
+                ty::Adt(base_def, substs) if !base_def.is_enum() => {
+                    let tcx = self.tcx;
+                    let fields = &base_def.non_enum_variant().fields;
+                    // Some struct, e.g. some that impl `Deref`, have all private fields
+                    // because you're expected to deref them to access the _real_ fields.
+                    // This, for example, will help us suggest accessing a field through a `Box<T>`.
+                    if fields.iter().all(|field| !field.vis.is_accessible_from(mod_id, tcx)) {
+                        continue;
+                    }
+                    return Some((
+                        fields
+                            .iter()
+                            .filter(move |field| field.vis.is_accessible_from(mod_id, tcx))
+                            // For compile-time reasons put a limit on number of fields we search
+                            .take(100),
+                        substs,
+                    ));
+                }
+                _ => {}
+            }
+        }
+        None
+    }
+
+    /// This method is called after we have encountered a missing field error to recursively
+    /// search for the field
+    pub(crate) fn check_for_nested_field_satisfying(
+        &self,
+        span: Span,
+        matches: &impl Fn(&ty::FieldDef, Ty<'tcx>) -> bool,
+        candidate_field: &ty::FieldDef,
+        subst: SubstsRef<'tcx>,
+        mut field_path: Vec<Ident>,
+        mod_id: DefId,
+    ) -> Option<Vec<Ident>> {
+        debug!(
+            "check_for_nested_field_satisfying(span: {:?}, candidate_field: {:?}, field_path: {:?}",
+            span, candidate_field, field_path
+        );
+
+        if field_path.len() > 3 {
+            // For compile-time reasons and to avoid infinite recursion we only check for fields
+            // up to a depth of three
+            None
+        } else {
+            field_path.push(candidate_field.ident(self.tcx).normalize_to_macros_2_0());
+            let field_ty = candidate_field.ty(self.tcx, subst);
+            if matches(candidate_field, field_ty) {
+                return Some(field_path);
+            } else if let Some((nested_fields, subst)) =
+                self.get_field_candidates_considering_privacy(span, field_ty, mod_id)
+            {
+                // recursively search fields of `candidate_field` if it's a ty::Adt
+                for field in nested_fields {
+                    if let Some(field_path) = self.check_for_nested_field_satisfying(
+                        span,
+                        matches,
+                        field,
+                        subst,
+                        field_path.clone(),
+                        mod_id,
+                    ) {
+                        return Some(field_path);
+                    }
+                }
+            }
+            None
+        }
+    }
+
+    fn check_expr_index(
+        &self,
+        base: &'tcx hir::Expr<'tcx>,
+        idx: &'tcx hir::Expr<'tcx>,
+        expr: &'tcx hir::Expr<'tcx>,
+    ) -> Ty<'tcx> {
+        let base_t = self.check_expr(&base);
+        let idx_t = self.check_expr(&idx);
+
+        if base_t.references_error() {
+            base_t
+        } else if idx_t.references_error() {
+            idx_t
+        } else {
+            let base_t = self.structurally_resolved_type(base.span, base_t);
+            match self.lookup_indexing(expr, base, base_t, idx, idx_t) {
+                Some((index_ty, element_ty)) => {
+                    // two-phase not needed because index_ty is never mutable
+                    self.demand_coerce(idx, idx_t, index_ty, None, AllowTwoPhase::No);
+                    self.select_obligations_where_possible(false, |errors| {
+                        self.point_at_index_if_possible(errors, idx.span)
+                    });
+                    element_ty
+                }
+                None => {
+                    let mut err = type_error_struct!(
+                        self.tcx.sess,
+                        expr.span,
+                        base_t,
+                        E0608,
+                        "cannot index into a value of type `{base_t}`",
+                    );
+                    // Try to give some advice about indexing tuples.
+                    if let ty::Tuple(..) = base_t.kind() {
+                        let mut needs_note = true;
+                        // If the index is an integer, we can show the actual
+                        // fixed expression:
+                        if let ExprKind::Lit(ref lit) = idx.kind {
+                            if let ast::LitKind::Int(i, ast::LitIntType::Unsuffixed) = lit.node {
+                                let snip = self.tcx.sess.source_map().span_to_snippet(base.span);
+                                if let Ok(snip) = snip {
+                                    err.span_suggestion(
+                                        expr.span,
+                                        "to access tuple elements, use",
+                                        format!("{snip}.{i}"),
+                                        Applicability::MachineApplicable,
+                                    );
+                                    needs_note = false;
+                                }
+                            }
+                        }
+                        if needs_note {
+                            err.help(
+                                "to access tuple elements, use tuple indexing \
+                                        syntax (e.g., `tuple.0`)",
+                            );
+                        }
+                    }
+                    err.emit();
+                    self.tcx.ty_error()
+                }
+            }
+        }
+    }
+
+    fn point_at_index_if_possible(
+        &self,
+        errors: &mut Vec<traits::FulfillmentError<'tcx>>,
+        span: Span,
+    ) {
+        for error in errors {
+            match error.obligation.predicate.kind().skip_binder() {
+                ty::PredicateKind::Trait(predicate)
+                    if self.tcx.is_diagnostic_item(sym::SliceIndex, predicate.trait_ref.def_id) => {
+                }
+                _ => continue,
+            }
+            error.obligation.cause.span = span;
+        }
+    }
+
+    fn check_expr_yield(
+        &self,
+        value: &'tcx hir::Expr<'tcx>,
+        expr: &'tcx hir::Expr<'tcx>,
+        src: &'tcx hir::YieldSource,
+    ) -> Ty<'tcx> {
+        match self.resume_yield_tys {
+            Some((resume_ty, yield_ty)) => {
+                self.check_expr_coercable_to_type(&value, yield_ty, None);
+
+                resume_ty
+            }
+            // Given that this `yield` expression was generated as a result of lowering a `.await`,
+            // we know that the yield type must be `()`; however, the context won't contain this
+            // information. Hence, we check the source of the yield expression here and check its
+            // value's type against `()` (this check should always hold).
+            None if src.is_await() => {
+                self.check_expr_coercable_to_type(&value, self.tcx.mk_unit(), None);
+                self.tcx.mk_unit()
+            }
+            _ => {
+                self.tcx.sess.emit_err(YieldExprOutsideOfGenerator { span: expr.span });
+                // Avoid expressions without types during writeback (#78653).
+                self.check_expr(value);
+                self.tcx.mk_unit()
+            }
+        }
+    }
+
+    fn check_expr_asm_operand(&self, expr: &'tcx hir::Expr<'tcx>, is_input: bool) {
+        let needs = if is_input { Needs::None } else { Needs::MutPlace };
+        let ty = self.check_expr_with_needs(expr, needs);
+        self.require_type_is_sized(ty, expr.span, traits::InlineAsmSized);
+
+        if !is_input && !expr.is_syntactic_place_expr() {
+            let mut err = self.tcx.sess.struct_span_err(expr.span, "invalid asm output");
+            err.span_label(expr.span, "cannot assign to this expression");
+            err.emit();
+        }
+
+        // If this is an input value, we require its type to be fully resolved
+        // at this point. This allows us to provide helpful coercions which help
+        // pass the type candidate list in a later pass.
+        //
+        // We don't require output types to be resolved at this point, which
+        // allows them to be inferred based on how they are used later in the
+        // function.
+        if is_input {
+            let ty = self.structurally_resolved_type(expr.span, ty);
+            match *ty.kind() {
+                ty::FnDef(..) => {
+                    let fnptr_ty = self.tcx.mk_fn_ptr(ty.fn_sig(self.tcx));
+                    self.demand_coerce(expr, ty, fnptr_ty, None, AllowTwoPhase::No);
+                }
+                ty::Ref(_, base_ty, mutbl) => {
+                    let ptr_ty = self.tcx.mk_ptr(ty::TypeAndMut { ty: base_ty, mutbl });
+                    self.demand_coerce(expr, ty, ptr_ty, None, AllowTwoPhase::No);
+                }
+                _ => {}
+            }
+        }
+    }
+
+    fn check_expr_asm(&self, asm: &'tcx hir::InlineAsm<'tcx>) -> Ty<'tcx> {
+        for (op, _op_sp) in asm.operands {
+            match op {
+                hir::InlineAsmOperand::In { expr, .. } => {
+                    self.check_expr_asm_operand(expr, true);
+                }
+                hir::InlineAsmOperand::Out { expr: Some(expr), .. }
+                | hir::InlineAsmOperand::InOut { expr, .. } => {
+                    self.check_expr_asm_operand(expr, false);
+                }
+                hir::InlineAsmOperand::Out { expr: None, .. } => {}
+                hir::InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
+                    self.check_expr_asm_operand(in_expr, true);
+                    if let Some(out_expr) = out_expr {
+                        self.check_expr_asm_operand(out_expr, false);
+                    }
+                }
+                // `AnonConst`s have their own body and is type-checked separately.
+                // As they don't flow into the type system we don't need them to
+                // be well-formed.
+                hir::InlineAsmOperand::Const { .. } | hir::InlineAsmOperand::SymFn { .. } => {}
+                hir::InlineAsmOperand::SymStatic { .. } => {}
+            }
+        }
+        if asm.options.contains(ast::InlineAsmOptions::NORETURN) {
+            self.tcx.types.never
+        } else {
+            self.tcx.mk_unit()
+        }
+    }
+}