]> git.proxmox.com Git - rustc.git/blobdiff - compiler/rustc_mir_transform/src/simplify.rs
New upstream version 1.57.0+dfsg1
[rustc.git] / compiler / rustc_mir_transform / src / simplify.rs
diff --git a/compiler/rustc_mir_transform/src/simplify.rs b/compiler/rustc_mir_transform/src/simplify.rs
new file mode 100644 (file)
index 0000000..d6cd505
--- /dev/null
@@ -0,0 +1,567 @@
+//! A number of passes which remove various redundancies in the CFG.
+//!
+//! The `SimplifyCfg` pass gets rid of unnecessary blocks in the CFG, whereas the `SimplifyLocals`
+//! gets rid of all the unnecessary local variable declarations.
+//!
+//! The `SimplifyLocals` pass is kinda expensive and therefore not very suitable to be run often.
+//! Most of the passes should not care or be impacted in meaningful ways due to extra locals
+//! either, so running the pass once, right before codegen, should suffice.
+//!
+//! On the other side of the spectrum, the `SimplifyCfg` pass is considerably cheap to run, thus
+//! one should run it after every pass which may modify CFG in significant ways. This pass must
+//! also be run before any analysis passes because it removes dead blocks, and some of these can be
+//! ill-typed.
+//!
+//! The cause of this typing issue is typeck allowing most blocks whose end is not reachable have
+//! an arbitrary return type, rather than having the usual () return type (as a note, typeck's
+//! notion of reachability is in fact slightly weaker than MIR CFG reachability - see #31617). A
+//! standard example of the situation is:
+//!
+//! ```rust
+//!   fn example() {
+//!       let _a: char = { return; };
+//!   }
+//! ```
+//!
+//! Here the block (`{ return; }`) has the return type `char`, rather than `()`, but the MIR we
+//! naively generate still contains the `_a = ()` write in the unreachable block "after" the
+//! return.
+
+use crate::MirPass;
+use rustc_index::vec::{Idx, IndexVec};
+use rustc_middle::mir::coverage::*;
+use rustc_middle::mir::visit::{MutVisitor, MutatingUseContext, PlaceContext, Visitor};
+use rustc_middle::mir::*;
+use rustc_middle::ty::TyCtxt;
+use smallvec::SmallVec;
+use std::borrow::Cow;
+use std::convert::TryInto;
+
+pub struct SimplifyCfg {
+    label: String,
+}
+
+impl SimplifyCfg {
+    pub fn new(label: &str) -> Self {
+        SimplifyCfg { label: format!("SimplifyCfg-{}", label) }
+    }
+}
+
+pub fn simplify_cfg(tcx: TyCtxt<'tcx>, body: &mut Body<'_>) {
+    CfgSimplifier::new(body).simplify();
+    remove_dead_blocks(tcx, body);
+
+    // FIXME: Should probably be moved into some kind of pass manager
+    body.basic_blocks_mut().raw.shrink_to_fit();
+}
+
+impl<'tcx> MirPass<'tcx> for SimplifyCfg {
+    fn name(&self) -> Cow<'_, str> {
+        Cow::Borrowed(&self.label)
+    }
+
+    fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
+        debug!("SimplifyCfg({:?}) - simplifying {:?}", self.label, body.source);
+        simplify_cfg(tcx, body);
+    }
+}
+
+pub struct CfgSimplifier<'a, 'tcx> {
+    basic_blocks: &'a mut IndexVec<BasicBlock, BasicBlockData<'tcx>>,
+    pred_count: IndexVec<BasicBlock, u32>,
+}
+
+impl<'a, 'tcx> CfgSimplifier<'a, 'tcx> {
+    pub fn new(body: &'a mut Body<'tcx>) -> Self {
+        let mut pred_count = IndexVec::from_elem(0u32, body.basic_blocks());
+
+        // we can't use mir.predecessors() here because that counts
+        // dead blocks, which we don't want to.
+        pred_count[START_BLOCK] = 1;
+
+        for (_, data) in traversal::preorder(body) {
+            if let Some(ref term) = data.terminator {
+                for &tgt in term.successors() {
+                    pred_count[tgt] += 1;
+                }
+            }
+        }
+
+        let basic_blocks = body.basic_blocks_mut();
+
+        CfgSimplifier { basic_blocks, pred_count }
+    }
+
+    pub fn simplify(mut self) {
+        self.strip_nops();
+
+        // Vec of the blocks that should be merged. We store the indices here, instead of the
+        // statements itself to avoid moving the (relatively) large statements twice.
+        // We do not push the statements directly into the target block (`bb`) as that is slower
+        // due to additional reallocations
+        let mut merged_blocks = Vec::new();
+        loop {
+            let mut changed = false;
+
+            for bb in self.basic_blocks.indices() {
+                if self.pred_count[bb] == 0 {
+                    continue;
+                }
+
+                debug!("simplifying {:?}", bb);
+
+                let mut terminator =
+                    self.basic_blocks[bb].terminator.take().expect("invalid terminator state");
+
+                for successor in terminator.successors_mut() {
+                    self.collapse_goto_chain(successor, &mut changed);
+                }
+
+                let mut inner_changed = true;
+                merged_blocks.clear();
+                while inner_changed {
+                    inner_changed = false;
+                    inner_changed |= self.simplify_branch(&mut terminator);
+                    inner_changed |= self.merge_successor(&mut merged_blocks, &mut terminator);
+                    changed |= inner_changed;
+                }
+
+                let statements_to_merge =
+                    merged_blocks.iter().map(|&i| self.basic_blocks[i].statements.len()).sum();
+
+                if statements_to_merge > 0 {
+                    let mut statements = std::mem::take(&mut self.basic_blocks[bb].statements);
+                    statements.reserve(statements_to_merge);
+                    for &from in &merged_blocks {
+                        statements.append(&mut self.basic_blocks[from].statements);
+                    }
+                    self.basic_blocks[bb].statements = statements;
+                }
+
+                self.basic_blocks[bb].terminator = Some(terminator);
+            }
+
+            if !changed {
+                break;
+            }
+        }
+    }
+
+    /// This function will return `None` if
+    /// * the block has statements
+    /// * the block has a terminator other than `goto`
+    /// * the block has no terminator (meaning some other part of the current optimization stole it)
+    fn take_terminator_if_simple_goto(&mut self, bb: BasicBlock) -> Option<Terminator<'tcx>> {
+        match self.basic_blocks[bb] {
+            BasicBlockData {
+                ref statements,
+                terminator:
+                    ref mut terminator @ Some(Terminator { kind: TerminatorKind::Goto { .. }, .. }),
+                ..
+            } if statements.is_empty() => terminator.take(),
+            // if `terminator` is None, this means we are in a loop. In that
+            // case, let all the loop collapse to its entry.
+            _ => None,
+        }
+    }
+
+    /// Collapse a goto chain starting from `start`
+    fn collapse_goto_chain(&mut self, start: &mut BasicBlock, changed: &mut bool) {
+        // Using `SmallVec` here, because in some logs on libcore oli-obk saw many single-element
+        // goto chains. We should probably benchmark different sizes.
+        let mut terminators: SmallVec<[_; 1]> = Default::default();
+        let mut current = *start;
+        while let Some(terminator) = self.take_terminator_if_simple_goto(current) {
+            let target = match terminator {
+                Terminator { kind: TerminatorKind::Goto { target }, .. } => target,
+                _ => unreachable!(),
+            };
+            terminators.push((current, terminator));
+            current = target;
+        }
+        let last = current;
+        *start = last;
+        while let Some((current, mut terminator)) = terminators.pop() {
+            let target = match terminator {
+                Terminator { kind: TerminatorKind::Goto { ref mut target }, .. } => target,
+                _ => unreachable!(),
+            };
+            *changed |= *target != last;
+            *target = last;
+            debug!("collapsing goto chain from {:?} to {:?}", current, target);
+
+            if self.pred_count[current] == 1 {
+                // This is the last reference to current, so the pred-count to
+                // to target is moved into the current block.
+                self.pred_count[current] = 0;
+            } else {
+                self.pred_count[*target] += 1;
+                self.pred_count[current] -= 1;
+            }
+            self.basic_blocks[current].terminator = Some(terminator);
+        }
+    }
+
+    // merge a block with 1 `goto` predecessor to its parent
+    fn merge_successor(
+        &mut self,
+        merged_blocks: &mut Vec<BasicBlock>,
+        terminator: &mut Terminator<'tcx>,
+    ) -> bool {
+        let target = match terminator.kind {
+            TerminatorKind::Goto { target } if self.pred_count[target] == 1 => target,
+            _ => return false,
+        };
+
+        debug!("merging block {:?} into {:?}", target, terminator);
+        *terminator = match self.basic_blocks[target].terminator.take() {
+            Some(terminator) => terminator,
+            None => {
+                // unreachable loop - this should not be possible, as we
+                // don't strand blocks, but handle it correctly.
+                return false;
+            }
+        };
+
+        merged_blocks.push(target);
+        self.pred_count[target] = 0;
+
+        true
+    }
+
+    // turn a branch with all successors identical to a goto
+    fn simplify_branch(&mut self, terminator: &mut Terminator<'tcx>) -> bool {
+        match terminator.kind {
+            TerminatorKind::SwitchInt { .. } => {}
+            _ => return false,
+        };
+
+        let first_succ = {
+            if let Some(&first_succ) = terminator.successors().next() {
+                if terminator.successors().all(|s| *s == first_succ) {
+                    let count = terminator.successors().count();
+                    self.pred_count[first_succ] -= (count - 1) as u32;
+                    first_succ
+                } else {
+                    return false;
+                }
+            } else {
+                return false;
+            }
+        };
+
+        debug!("simplifying branch {:?}", terminator);
+        terminator.kind = TerminatorKind::Goto { target: first_succ };
+        true
+    }
+
+    fn strip_nops(&mut self) {
+        for blk in self.basic_blocks.iter_mut() {
+            blk.statements.retain(|stmt| !matches!(stmt.kind, StatementKind::Nop))
+        }
+    }
+}
+
+pub fn remove_dead_blocks(tcx: TyCtxt<'tcx>, body: &mut Body<'_>) {
+    let reachable = traversal::reachable_as_bitset(body);
+    let num_blocks = body.basic_blocks().len();
+    if num_blocks == reachable.count() {
+        return;
+    }
+
+    let basic_blocks = body.basic_blocks_mut();
+    let mut replacements: Vec<_> = (0..num_blocks).map(BasicBlock::new).collect();
+    let mut used_blocks = 0;
+    for alive_index in reachable.iter() {
+        let alive_index = alive_index.index();
+        replacements[alive_index] = BasicBlock::new(used_blocks);
+        if alive_index != used_blocks {
+            // Swap the next alive block data with the current available slot. Since
+            // alive_index is non-decreasing this is a valid operation.
+            basic_blocks.raw.swap(alive_index, used_blocks);
+        }
+        used_blocks += 1;
+    }
+
+    if tcx.sess.instrument_coverage() {
+        save_unreachable_coverage(basic_blocks, used_blocks);
+    }
+
+    basic_blocks.raw.truncate(used_blocks);
+
+    for block in basic_blocks {
+        for target in block.terminator_mut().successors_mut() {
+            *target = replacements[target.index()];
+        }
+    }
+}
+
+/// Some MIR transforms can determine at compile time that a sequences of
+/// statements will never be executed, so they can be dropped from the MIR.
+/// For example, an `if` or `else` block that is guaranteed to never be executed
+/// because its condition can be evaluated at compile time, such as by const
+/// evaluation: `if false { ... }`.
+///
+/// Those statements are bypassed by redirecting paths in the CFG around the
+/// `dead blocks`; but with `-Z instrument-coverage`, the dead blocks usually
+/// include `Coverage` statements representing the Rust source code regions to
+/// be counted at runtime. Without these `Coverage` statements, the regions are
+/// lost, and the Rust source code will show no coverage information.
+///
+/// What we want to show in a coverage report is the dead code with coverage
+/// counts of `0`. To do this, we need to save the code regions, by injecting
+/// `Unreachable` coverage statements. These are non-executable statements whose
+/// code regions are still recorded in the coverage map, representing regions
+/// with `0` executions.
+fn save_unreachable_coverage(
+    basic_blocks: &mut IndexVec<BasicBlock, BasicBlockData<'_>>,
+    first_dead_block: usize,
+) {
+    let has_live_counters = basic_blocks.raw[0..first_dead_block].iter().any(|live_block| {
+        live_block.statements.iter().any(|statement| {
+            if let StatementKind::Coverage(coverage) = &statement.kind {
+                matches!(coverage.kind, CoverageKind::Counter { .. })
+            } else {
+                false
+            }
+        })
+    });
+    if !has_live_counters {
+        // If there are no live `Counter` `Coverage` statements anymore, don't
+        // move dead coverage to the `START_BLOCK`. Just allow the dead
+        // `Coverage` statements to be dropped with the dead blocks.
+        //
+        // The `generator::StateTransform` MIR pass can create atypical
+        // conditions, where all live `Counter`s are dropped from the MIR.
+        //
+        // At least one Counter per function is required by LLVM (and necessary,
+        // to add the `function_hash` to the counter's call to the LLVM
+        // intrinsic `instrprof.increment()`).
+        return;
+    }
+
+    // Retain coverage info for dead blocks, so coverage reports will still
+    // report `0` executions for the uncovered code regions.
+    let mut dropped_coverage = Vec::new();
+    for dead_block in basic_blocks.raw[first_dead_block..].iter() {
+        for statement in dead_block.statements.iter() {
+            if let StatementKind::Coverage(coverage) = &statement.kind {
+                if let Some(code_region) = &coverage.code_region {
+                    dropped_coverage.push((statement.source_info, code_region.clone()));
+                }
+            }
+        }
+    }
+
+    let start_block = &mut basic_blocks[START_BLOCK];
+    for (source_info, code_region) in dropped_coverage {
+        start_block.statements.push(Statement {
+            source_info,
+            kind: StatementKind::Coverage(Box::new(Coverage {
+                kind: CoverageKind::Unreachable,
+                code_region: Some(code_region),
+            })),
+        })
+    }
+}
+
+pub struct SimplifyLocals;
+
+impl<'tcx> MirPass<'tcx> for SimplifyLocals {
+    fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
+        trace!("running SimplifyLocals on {:?}", body.source);
+        simplify_locals(body, tcx);
+    }
+}
+
+pub fn simplify_locals<'tcx>(body: &mut Body<'tcx>, tcx: TyCtxt<'tcx>) {
+    // First, we're going to get a count of *actual* uses for every `Local`.
+    let mut used_locals = UsedLocals::new(body);
+
+    // Next, we're going to remove any `Local` with zero actual uses. When we remove those
+    // `Locals`, we're also going to subtract any uses of other `Locals` from the `used_locals`
+    // count. For example, if we removed `_2 = discriminant(_1)`, then we'll subtract one from
+    // `use_counts[_1]`. That in turn might make `_1` unused, so we loop until we hit a
+    // fixedpoint where there are no more unused locals.
+    remove_unused_definitions(&mut used_locals, body);
+
+    // Finally, we'll actually do the work of shrinking `body.local_decls` and remapping the `Local`s.
+    let map = make_local_map(&mut body.local_decls, &used_locals);
+
+    // Only bother running the `LocalUpdater` if we actually found locals to remove.
+    if map.iter().any(Option::is_none) {
+        // Update references to all vars and tmps now
+        let mut updater = LocalUpdater { map, tcx };
+        updater.visit_body(body);
+
+        body.local_decls.shrink_to_fit();
+    }
+}
+
+/// Construct the mapping while swapping out unused stuff out from the `vec`.
+fn make_local_map<V>(
+    local_decls: &mut IndexVec<Local, V>,
+    used_locals: &UsedLocals,
+) -> IndexVec<Local, Option<Local>> {
+    let mut map: IndexVec<Local, Option<Local>> = IndexVec::from_elem(None, &*local_decls);
+    let mut used = Local::new(0);
+
+    for alive_index in local_decls.indices() {
+        // `is_used` treats the `RETURN_PLACE` and arguments as used.
+        if !used_locals.is_used(alive_index) {
+            continue;
+        }
+
+        map[alive_index] = Some(used);
+        if alive_index != used {
+            local_decls.swap(alive_index, used);
+        }
+        used.increment_by(1);
+    }
+    local_decls.truncate(used.index());
+    map
+}
+
+/// Keeps track of used & unused locals.
+struct UsedLocals {
+    increment: bool,
+    arg_count: u32,
+    use_count: IndexVec<Local, u32>,
+}
+
+impl UsedLocals {
+    /// Determines which locals are used & unused in the given body.
+    fn new(body: &Body<'_>) -> Self {
+        let mut this = Self {
+            increment: true,
+            arg_count: body.arg_count.try_into().unwrap(),
+            use_count: IndexVec::from_elem(0, &body.local_decls),
+        };
+        this.visit_body(body);
+        this
+    }
+
+    /// Checks if local is used.
+    ///
+    /// Return place and arguments are always considered used.
+    fn is_used(&self, local: Local) -> bool {
+        trace!("is_used({:?}): use_count: {:?}", local, self.use_count[local]);
+        local.as_u32() <= self.arg_count || self.use_count[local] != 0
+    }
+
+    /// Updates the use counts to reflect the removal of given statement.
+    fn statement_removed(&mut self, statement: &Statement<'tcx>) {
+        self.increment = false;
+
+        // The location of the statement is irrelevant.
+        let location = Location { block: START_BLOCK, statement_index: 0 };
+        self.visit_statement(statement, location);
+    }
+
+    /// Visits a left-hand side of an assignment.
+    fn visit_lhs(&mut self, place: &Place<'tcx>, location: Location) {
+        if place.is_indirect() {
+            // A use, not a definition.
+            self.visit_place(place, PlaceContext::MutatingUse(MutatingUseContext::Store), location);
+        } else {
+            // A definition. The base local itself is not visited, so this occurrence is not counted
+            // toward its use count. There might be other locals still, used in an indexing
+            // projection.
+            self.super_projection(
+                place.as_ref(),
+                PlaceContext::MutatingUse(MutatingUseContext::Projection),
+                location,
+            );
+        }
+    }
+}
+
+impl Visitor<'_> for UsedLocals {
+    fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
+        match statement.kind {
+            StatementKind::LlvmInlineAsm(..)
+            | StatementKind::CopyNonOverlapping(..)
+            | StatementKind::Retag(..)
+            | StatementKind::Coverage(..)
+            | StatementKind::FakeRead(..)
+            | StatementKind::AscribeUserType(..) => {
+                self.super_statement(statement, location);
+            }
+
+            StatementKind::Nop => {}
+
+            StatementKind::StorageLive(_local) | StatementKind::StorageDead(_local) => {}
+
+            StatementKind::Assign(box (ref place, ref rvalue)) => {
+                self.visit_lhs(place, location);
+                self.visit_rvalue(rvalue, location);
+            }
+
+            StatementKind::SetDiscriminant { ref place, variant_index: _ } => {
+                self.visit_lhs(place, location);
+            }
+        }
+    }
+
+    fn visit_local(&mut self, local: &Local, _ctx: PlaceContext, _location: Location) {
+        if self.increment {
+            self.use_count[*local] += 1;
+        } else {
+            assert_ne!(self.use_count[*local], 0);
+            self.use_count[*local] -= 1;
+        }
+    }
+}
+
+/// Removes unused definitions. Updates the used locals to reflect the changes made.
+fn remove_unused_definitions<'a, 'tcx>(used_locals: &'a mut UsedLocals, body: &mut Body<'tcx>) {
+    // The use counts are updated as we remove the statements. A local might become unused
+    // during the retain operation, leading to a temporary inconsistency (storage statements or
+    // definitions referencing the local might remain). For correctness it is crucial that this
+    // computation reaches a fixed point.
+
+    let mut modified = true;
+    while modified {
+        modified = false;
+
+        for data in body.basic_blocks_mut() {
+            // Remove unnecessary StorageLive and StorageDead annotations.
+            data.statements.retain(|statement| {
+                let keep = match &statement.kind {
+                    StatementKind::StorageLive(local) | StatementKind::StorageDead(local) => {
+                        used_locals.is_used(*local)
+                    }
+                    StatementKind::Assign(box (place, _)) => used_locals.is_used(place.local),
+
+                    StatementKind::SetDiscriminant { ref place, .. } => {
+                        used_locals.is_used(place.local)
+                    }
+                    _ => true,
+                };
+
+                if !keep {
+                    trace!("removing statement {:?}", statement);
+                    modified = true;
+                    used_locals.statement_removed(statement);
+                }
+
+                keep
+            });
+        }
+    }
+}
+
+struct LocalUpdater<'tcx> {
+    map: IndexVec<Local, Option<Local>>,
+    tcx: TyCtxt<'tcx>,
+}
+
+impl<'tcx> MutVisitor<'tcx> for LocalUpdater<'tcx> {
+    fn tcx(&self) -> TyCtxt<'tcx> {
+        self.tcx
+    }
+
+    fn visit_local(&mut self, l: &mut Local, _: PlaceContext, _: Location) {
+        *l = self.map[*l].unwrap();
+    }
+}