]> git.proxmox.com Git - rustc.git/blobdiff - compiler/rustc_mir_transform/src/simplify_try.rs
New upstream version 1.57.0+dfsg1
[rustc.git] / compiler / rustc_mir_transform / src / simplify_try.rs
diff --git a/compiler/rustc_mir_transform/src/simplify_try.rs b/compiler/rustc_mir_transform/src/simplify_try.rs
new file mode 100644 (file)
index 0000000..e436d73
--- /dev/null
@@ -0,0 +1,821 @@
+//! The general point of the optimizations provided here is to simplify something like:
+//!
+//! ```rust
+//! match x {
+//!     Ok(x) => Ok(x),
+//!     Err(x) => Err(x)
+//! }
+//! ```
+//!
+//! into just `x`.
+
+use crate::{simplify, MirPass};
+use itertools::Itertools as _;
+use rustc_index::{bit_set::BitSet, vec::IndexVec};
+use rustc_middle::mir::visit::{NonUseContext, PlaceContext, Visitor};
+use rustc_middle::mir::*;
+use rustc_middle::ty::{self, List, Ty, TyCtxt};
+use rustc_target::abi::VariantIdx;
+use std::iter::{once, Enumerate, Peekable};
+use std::slice::Iter;
+
+/// Simplifies arms of form `Variant(x) => Variant(x)` to just a move.
+///
+/// This is done by transforming basic blocks where the statements match:
+///
+/// ```rust
+/// _LOCAL_TMP = ((_LOCAL_1 as Variant ).FIELD: TY );
+/// _TMP_2 = _LOCAL_TMP;
+/// ((_LOCAL_0 as Variant).FIELD: TY) = move _TMP_2;
+/// discriminant(_LOCAL_0) = VAR_IDX;
+/// ```
+///
+/// into:
+///
+/// ```rust
+/// _LOCAL_0 = move _LOCAL_1
+/// ```
+pub struct SimplifyArmIdentity;
+
+#[derive(Debug)]
+struct ArmIdentityInfo<'tcx> {
+    /// Storage location for the variant's field
+    local_temp_0: Local,
+    /// Storage location holding the variant being read from
+    local_1: Local,
+    /// The variant field being read from
+    vf_s0: VarField<'tcx>,
+    /// Index of the statement which loads the variant being read
+    get_variant_field_stmt: usize,
+
+    /// Tracks each assignment to a temporary of the variant's field
+    field_tmp_assignments: Vec<(Local, Local)>,
+
+    /// Storage location holding the variant's field that was read from
+    local_tmp_s1: Local,
+    /// Storage location holding the enum that we are writing to
+    local_0: Local,
+    /// The variant field being written to
+    vf_s1: VarField<'tcx>,
+
+    /// Storage location that the discriminant is being written to
+    set_discr_local: Local,
+    /// The variant being written
+    set_discr_var_idx: VariantIdx,
+
+    /// Index of the statement that should be overwritten as a move
+    stmt_to_overwrite: usize,
+    /// SourceInfo for the new move
+    source_info: SourceInfo,
+
+    /// Indices of matching Storage{Live,Dead} statements encountered.
+    /// (StorageLive index,, StorageDead index, Local)
+    storage_stmts: Vec<(usize, usize, Local)>,
+
+    /// The statements that should be removed (turned into nops)
+    stmts_to_remove: Vec<usize>,
+
+    /// Indices of debug variables that need to be adjusted to point to
+    // `{local_0}.{dbg_projection}`.
+    dbg_info_to_adjust: Vec<usize>,
+
+    /// The projection used to rewrite debug info.
+    dbg_projection: &'tcx List<PlaceElem<'tcx>>,
+}
+
+fn get_arm_identity_info<'a, 'tcx>(
+    stmts: &'a [Statement<'tcx>],
+    locals_count: usize,
+    debug_info: &'a [VarDebugInfo<'tcx>],
+) -> Option<ArmIdentityInfo<'tcx>> {
+    // This can't possibly match unless there are at least 3 statements in the block
+    // so fail fast on tiny blocks.
+    if stmts.len() < 3 {
+        return None;
+    }
+
+    let mut tmp_assigns = Vec::new();
+    let mut nop_stmts = Vec::new();
+    let mut storage_stmts = Vec::new();
+    let mut storage_live_stmts = Vec::new();
+    let mut storage_dead_stmts = Vec::new();
+
+    type StmtIter<'a, 'tcx> = Peekable<Enumerate<Iter<'a, Statement<'tcx>>>>;
+
+    fn is_storage_stmt<'tcx>(stmt: &Statement<'tcx>) -> bool {
+        matches!(stmt.kind, StatementKind::StorageLive(_) | StatementKind::StorageDead(_))
+    }
+
+    /// Eats consecutive Statements which match `test`, performing the specified `action` for each.
+    /// The iterator `stmt_iter` is not advanced if none were matched.
+    fn try_eat<'a, 'tcx>(
+        stmt_iter: &mut StmtIter<'a, 'tcx>,
+        test: impl Fn(&'a Statement<'tcx>) -> bool,
+        mut action: impl FnMut(usize, &'a Statement<'tcx>),
+    ) {
+        while stmt_iter.peek().map_or(false, |(_, stmt)| test(stmt)) {
+            let (idx, stmt) = stmt_iter.next().unwrap();
+
+            action(idx, stmt);
+        }
+    }
+
+    /// Eats consecutive `StorageLive` and `StorageDead` Statements.
+    /// The iterator `stmt_iter` is not advanced if none were found.
+    fn try_eat_storage_stmts<'a, 'tcx>(
+        stmt_iter: &mut StmtIter<'a, 'tcx>,
+        storage_live_stmts: &mut Vec<(usize, Local)>,
+        storage_dead_stmts: &mut Vec<(usize, Local)>,
+    ) {
+        try_eat(stmt_iter, is_storage_stmt, |idx, stmt| {
+            if let StatementKind::StorageLive(l) = stmt.kind {
+                storage_live_stmts.push((idx, l));
+            } else if let StatementKind::StorageDead(l) = stmt.kind {
+                storage_dead_stmts.push((idx, l));
+            }
+        })
+    }
+
+    fn is_tmp_storage_stmt<'tcx>(stmt: &Statement<'tcx>) -> bool {
+        use rustc_middle::mir::StatementKind::Assign;
+        if let Assign(box (place, Rvalue::Use(Operand::Copy(p) | Operand::Move(p)))) = &stmt.kind {
+            place.as_local().is_some() && p.as_local().is_some()
+        } else {
+            false
+        }
+    }
+
+    /// Eats consecutive `Assign` Statements.
+    // The iterator `stmt_iter` is not advanced if none were found.
+    fn try_eat_assign_tmp_stmts<'a, 'tcx>(
+        stmt_iter: &mut StmtIter<'a, 'tcx>,
+        tmp_assigns: &mut Vec<(Local, Local)>,
+        nop_stmts: &mut Vec<usize>,
+    ) {
+        try_eat(stmt_iter, is_tmp_storage_stmt, |idx, stmt| {
+            use rustc_middle::mir::StatementKind::Assign;
+            if let Assign(box (place, Rvalue::Use(Operand::Copy(p) | Operand::Move(p)))) =
+                &stmt.kind
+            {
+                tmp_assigns.push((place.as_local().unwrap(), p.as_local().unwrap()));
+                nop_stmts.push(idx);
+            }
+        })
+    }
+
+    fn find_storage_live_dead_stmts_for_local<'tcx>(
+        local: Local,
+        stmts: &[Statement<'tcx>],
+    ) -> Option<(usize, usize)> {
+        trace!("looking for {:?}", local);
+        let mut storage_live_stmt = None;
+        let mut storage_dead_stmt = None;
+        for (idx, stmt) in stmts.iter().enumerate() {
+            if stmt.kind == StatementKind::StorageLive(local) {
+                storage_live_stmt = Some(idx);
+            } else if stmt.kind == StatementKind::StorageDead(local) {
+                storage_dead_stmt = Some(idx);
+            }
+        }
+
+        Some((storage_live_stmt?, storage_dead_stmt.unwrap_or(usize::MAX)))
+    }
+
+    // Try to match the expected MIR structure with the basic block we're processing.
+    // We want to see something that looks like:
+    // ```
+    // (StorageLive(_) | StorageDead(_));*
+    // _LOCAL_INTO = ((_LOCAL_FROM as Variant).FIELD: TY);
+    // (StorageLive(_) | StorageDead(_));*
+    // (tmp_n+1 = tmp_n);*
+    // (StorageLive(_) | StorageDead(_));*
+    // (tmp_n+1 = tmp_n);*
+    // ((LOCAL_FROM as Variant).FIELD: TY) = move tmp;
+    // discriminant(LOCAL_FROM) = VariantIdx;
+    // (StorageLive(_) | StorageDead(_));*
+    // ```
+    let mut stmt_iter = stmts.iter().enumerate().peekable();
+
+    try_eat_storage_stmts(&mut stmt_iter, &mut storage_live_stmts, &mut storage_dead_stmts);
+
+    let (get_variant_field_stmt, stmt) = stmt_iter.next()?;
+    let (local_tmp_s0, local_1, vf_s0, dbg_projection) = match_get_variant_field(stmt)?;
+
+    try_eat_storage_stmts(&mut stmt_iter, &mut storage_live_stmts, &mut storage_dead_stmts);
+
+    try_eat_assign_tmp_stmts(&mut stmt_iter, &mut tmp_assigns, &mut nop_stmts);
+
+    try_eat_storage_stmts(&mut stmt_iter, &mut storage_live_stmts, &mut storage_dead_stmts);
+
+    try_eat_assign_tmp_stmts(&mut stmt_iter, &mut tmp_assigns, &mut nop_stmts);
+
+    let (idx, stmt) = stmt_iter.next()?;
+    let (local_tmp_s1, local_0, vf_s1) = match_set_variant_field(stmt)?;
+    nop_stmts.push(idx);
+
+    let (idx, stmt) = stmt_iter.next()?;
+    let (set_discr_local, set_discr_var_idx) = match_set_discr(stmt)?;
+    let discr_stmt_source_info = stmt.source_info;
+    nop_stmts.push(idx);
+
+    try_eat_storage_stmts(&mut stmt_iter, &mut storage_live_stmts, &mut storage_dead_stmts);
+
+    for (live_idx, live_local) in storage_live_stmts {
+        if let Some(i) = storage_dead_stmts.iter().rposition(|(_, l)| *l == live_local) {
+            let (dead_idx, _) = storage_dead_stmts.swap_remove(i);
+            storage_stmts.push((live_idx, dead_idx, live_local));
+
+            if live_local == local_tmp_s0 {
+                nop_stmts.push(get_variant_field_stmt);
+            }
+        }
+    }
+    // We sort primitive usize here so we can use unstable sort
+    nop_stmts.sort_unstable();
+
+    // Use one of the statements we're going to discard between the point
+    // where the storage location for the variant field becomes live and
+    // is killed.
+    let (live_idx, dead_idx) = find_storage_live_dead_stmts_for_local(local_tmp_s0, stmts)?;
+    let stmt_to_overwrite =
+        nop_stmts.iter().find(|stmt_idx| live_idx < **stmt_idx && **stmt_idx < dead_idx);
+
+    let mut tmp_assigned_vars = BitSet::new_empty(locals_count);
+    for (l, r) in &tmp_assigns {
+        tmp_assigned_vars.insert(*l);
+        tmp_assigned_vars.insert(*r);
+    }
+
+    let dbg_info_to_adjust: Vec<_> = debug_info
+        .iter()
+        .enumerate()
+        .filter_map(|(i, var_info)| {
+            if let VarDebugInfoContents::Place(p) = var_info.value {
+                if tmp_assigned_vars.contains(p.local) {
+                    return Some(i);
+                }
+            }
+
+            None
+        })
+        .collect();
+
+    Some(ArmIdentityInfo {
+        local_temp_0: local_tmp_s0,
+        local_1,
+        vf_s0,
+        get_variant_field_stmt,
+        field_tmp_assignments: tmp_assigns,
+        local_tmp_s1,
+        local_0,
+        vf_s1,
+        set_discr_local,
+        set_discr_var_idx,
+        stmt_to_overwrite: *stmt_to_overwrite?,
+        source_info: discr_stmt_source_info,
+        storage_stmts,
+        stmts_to_remove: nop_stmts,
+        dbg_info_to_adjust,
+        dbg_projection,
+    })
+}
+
+fn optimization_applies<'tcx>(
+    opt_info: &ArmIdentityInfo<'tcx>,
+    local_decls: &IndexVec<Local, LocalDecl<'tcx>>,
+    local_uses: &IndexVec<Local, usize>,
+    var_debug_info: &[VarDebugInfo<'tcx>],
+) -> bool {
+    trace!("testing if optimization applies...");
+
+    // FIXME(wesleywiser): possibly relax this restriction?
+    if opt_info.local_0 == opt_info.local_1 {
+        trace!("NO: moving into ourselves");
+        return false;
+    } else if opt_info.vf_s0 != opt_info.vf_s1 {
+        trace!("NO: the field-and-variant information do not match");
+        return false;
+    } else if local_decls[opt_info.local_0].ty != local_decls[opt_info.local_1].ty {
+        // FIXME(Centril,oli-obk): possibly relax to same layout?
+        trace!("NO: source and target locals have different types");
+        return false;
+    } else if (opt_info.local_0, opt_info.vf_s0.var_idx)
+        != (opt_info.set_discr_local, opt_info.set_discr_var_idx)
+    {
+        trace!("NO: the discriminants do not match");
+        return false;
+    }
+
+    // Verify the assignment chain consists of the form b = a; c = b; d = c; etc...
+    if opt_info.field_tmp_assignments.is_empty() {
+        trace!("NO: no assignments found");
+        return false;
+    }
+    let mut last_assigned_to = opt_info.field_tmp_assignments[0].1;
+    let source_local = last_assigned_to;
+    for (l, r) in &opt_info.field_tmp_assignments {
+        if *r != last_assigned_to {
+            trace!("NO: found unexpected assignment {:?} = {:?}", l, r);
+            return false;
+        }
+
+        last_assigned_to = *l;
+    }
+
+    // Check that the first and last used locals are only used twice
+    // since they are of the form:
+    //
+    // ```
+    // _first = ((_x as Variant).n: ty);
+    // _n = _first;
+    // ...
+    // ((_y as Variant).n: ty) = _n;
+    // discriminant(_y) = z;
+    // ```
+    for (l, r) in &opt_info.field_tmp_assignments {
+        if local_uses[*l] != 2 {
+            warn!("NO: FAILED assignment chain local {:?} was used more than twice", l);
+            return false;
+        } else if local_uses[*r] != 2 {
+            warn!("NO: FAILED assignment chain local {:?} was used more than twice", r);
+            return false;
+        }
+    }
+
+    // Check that debug info only points to full Locals and not projections.
+    for dbg_idx in &opt_info.dbg_info_to_adjust {
+        let dbg_info = &var_debug_info[*dbg_idx];
+        if let VarDebugInfoContents::Place(p) = dbg_info.value {
+            if !p.projection.is_empty() {
+                trace!("NO: debug info for {:?} had a projection {:?}", dbg_info.name, p);
+                return false;
+            }
+        }
+    }
+
+    if source_local != opt_info.local_temp_0 {
+        trace!(
+            "NO: start of assignment chain does not match enum variant temp: {:?} != {:?}",
+            source_local,
+            opt_info.local_temp_0
+        );
+        return false;
+    } else if last_assigned_to != opt_info.local_tmp_s1 {
+        trace!(
+            "NO: end of assignemnt chain does not match written enum temp: {:?} != {:?}",
+            last_assigned_to,
+            opt_info.local_tmp_s1
+        );
+        return false;
+    }
+
+    trace!("SUCCESS: optimization applies!");
+    true
+}
+
+impl<'tcx> MirPass<'tcx> for SimplifyArmIdentity {
+    fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
+        // FIXME(77359): This optimization can result in unsoundness.
+        if !tcx.sess.opts.debugging_opts.unsound_mir_opts {
+            return;
+        }
+
+        let source = body.source;
+        trace!("running SimplifyArmIdentity on {:?}", source);
+
+        let local_uses = LocalUseCounter::get_local_uses(body);
+        let (basic_blocks, local_decls, debug_info) =
+            body.basic_blocks_local_decls_mut_and_var_debug_info();
+        for bb in basic_blocks {
+            if let Some(opt_info) =
+                get_arm_identity_info(&bb.statements, local_decls.len(), debug_info)
+            {
+                trace!("got opt_info = {:#?}", opt_info);
+                if !optimization_applies(&opt_info, local_decls, &local_uses, &debug_info) {
+                    debug!("optimization skipped for {:?}", source);
+                    continue;
+                }
+
+                // Also remove unused Storage{Live,Dead} statements which correspond
+                // to temps used previously.
+                for (live_idx, dead_idx, local) in &opt_info.storage_stmts {
+                    // The temporary that we've read the variant field into is scoped to this block,
+                    // so we can remove the assignment.
+                    if *local == opt_info.local_temp_0 {
+                        bb.statements[opt_info.get_variant_field_stmt].make_nop();
+                    }
+
+                    for (left, right) in &opt_info.field_tmp_assignments {
+                        if local == left || local == right {
+                            bb.statements[*live_idx].make_nop();
+                            bb.statements[*dead_idx].make_nop();
+                        }
+                    }
+                }
+
+                // Right shape; transform
+                for stmt_idx in opt_info.stmts_to_remove {
+                    bb.statements[stmt_idx].make_nop();
+                }
+
+                let stmt = &mut bb.statements[opt_info.stmt_to_overwrite];
+                stmt.source_info = opt_info.source_info;
+                stmt.kind = StatementKind::Assign(Box::new((
+                    opt_info.local_0.into(),
+                    Rvalue::Use(Operand::Move(opt_info.local_1.into())),
+                )));
+
+                bb.statements.retain(|stmt| stmt.kind != StatementKind::Nop);
+
+                // Fix the debug info to point to the right local
+                for dbg_index in opt_info.dbg_info_to_adjust {
+                    let dbg_info = &mut debug_info[dbg_index];
+                    assert!(
+                        matches!(dbg_info.value, VarDebugInfoContents::Place(_)),
+                        "value was not a Place"
+                    );
+                    if let VarDebugInfoContents::Place(p) = &mut dbg_info.value {
+                        assert!(p.projection.is_empty());
+                        p.local = opt_info.local_0;
+                        p.projection = opt_info.dbg_projection;
+                    }
+                }
+
+                trace!("block is now {:?}", bb.statements);
+            }
+        }
+    }
+}
+
+struct LocalUseCounter {
+    local_uses: IndexVec<Local, usize>,
+}
+
+impl LocalUseCounter {
+    fn get_local_uses<'tcx>(body: &Body<'tcx>) -> IndexVec<Local, usize> {
+        let mut counter = LocalUseCounter { local_uses: IndexVec::from_elem(0, &body.local_decls) };
+        counter.visit_body(body);
+        counter.local_uses
+    }
+}
+
+impl<'tcx> Visitor<'tcx> for LocalUseCounter {
+    fn visit_local(&mut self, local: &Local, context: PlaceContext, _location: Location) {
+        if context.is_storage_marker()
+            || context == PlaceContext::NonUse(NonUseContext::VarDebugInfo)
+        {
+            return;
+        }
+
+        self.local_uses[*local] += 1;
+    }
+}
+
+/// Match on:
+/// ```rust
+/// _LOCAL_INTO = ((_LOCAL_FROM as Variant).FIELD: TY);
+/// ```
+fn match_get_variant_field<'tcx>(
+    stmt: &Statement<'tcx>,
+) -> Option<(Local, Local, VarField<'tcx>, &'tcx List<PlaceElem<'tcx>>)> {
+    match &stmt.kind {
+        StatementKind::Assign(box (
+            place_into,
+            Rvalue::Use(Operand::Copy(pf) | Operand::Move(pf)),
+        )) => {
+            let local_into = place_into.as_local()?;
+            let (local_from, vf) = match_variant_field_place(*pf)?;
+            Some((local_into, local_from, vf, pf.projection))
+        }
+        _ => None,
+    }
+}
+
+/// Match on:
+/// ```rust
+/// ((_LOCAL_FROM as Variant).FIELD: TY) = move _LOCAL_INTO;
+/// ```
+fn match_set_variant_field<'tcx>(stmt: &Statement<'tcx>) -> Option<(Local, Local, VarField<'tcx>)> {
+    match &stmt.kind {
+        StatementKind::Assign(box (place_from, Rvalue::Use(Operand::Move(place_into)))) => {
+            let local_into = place_into.as_local()?;
+            let (local_from, vf) = match_variant_field_place(*place_from)?;
+            Some((local_into, local_from, vf))
+        }
+        _ => None,
+    }
+}
+
+/// Match on:
+/// ```rust
+/// discriminant(_LOCAL_TO_SET) = VAR_IDX;
+/// ```
+fn match_set_discr<'tcx>(stmt: &Statement<'tcx>) -> Option<(Local, VariantIdx)> {
+    match &stmt.kind {
+        StatementKind::SetDiscriminant { place, variant_index } => {
+            Some((place.as_local()?, *variant_index))
+        }
+        _ => None,
+    }
+}
+
+#[derive(PartialEq, Debug)]
+struct VarField<'tcx> {
+    field: Field,
+    field_ty: Ty<'tcx>,
+    var_idx: VariantIdx,
+}
+
+/// Match on `((_LOCAL as Variant).FIELD: TY)`.
+fn match_variant_field_place<'tcx>(place: Place<'tcx>) -> Option<(Local, VarField<'tcx>)> {
+    match place.as_ref() {
+        PlaceRef {
+            local,
+            projection: &[ProjectionElem::Downcast(_, var_idx), ProjectionElem::Field(field, ty)],
+        } => Some((local, VarField { field, field_ty: ty, var_idx })),
+        _ => None,
+    }
+}
+
+/// Simplifies `SwitchInt(_) -> [targets]`,
+/// where all the `targets` have the same form,
+/// into `goto -> target_first`.
+pub struct SimplifyBranchSame;
+
+impl<'tcx> MirPass<'tcx> for SimplifyBranchSame {
+    fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
+        // This optimization is disabled by default for now due to
+        // soundness concerns; see issue #89485 and PR #89489.
+        if !tcx.sess.opts.debugging_opts.unsound_mir_opts {
+            return;
+        }
+
+        trace!("Running SimplifyBranchSame on {:?}", body.source);
+        let finder = SimplifyBranchSameOptimizationFinder { body, tcx };
+        let opts = finder.find();
+
+        let did_remove_blocks = opts.len() > 0;
+        for opt in opts.iter() {
+            trace!("SUCCESS: Applying optimization {:?}", opt);
+            // Replace `SwitchInt(..) -> [bb_first, ..];` with a `goto -> bb_first;`.
+            body.basic_blocks_mut()[opt.bb_to_opt_terminator].terminator_mut().kind =
+                TerminatorKind::Goto { target: opt.bb_to_goto };
+        }
+
+        if did_remove_blocks {
+            // We have dead blocks now, so remove those.
+            simplify::remove_dead_blocks(tcx, body);
+        }
+    }
+}
+
+#[derive(Debug)]
+struct SimplifyBranchSameOptimization {
+    /// All basic blocks are equal so go to this one
+    bb_to_goto: BasicBlock,
+    /// Basic block where the terminator can be simplified to a goto
+    bb_to_opt_terminator: BasicBlock,
+}
+
+struct SwitchTargetAndValue {
+    target: BasicBlock,
+    // None in case of the `otherwise` case
+    value: Option<u128>,
+}
+
+struct SimplifyBranchSameOptimizationFinder<'a, 'tcx> {
+    body: &'a Body<'tcx>,
+    tcx: TyCtxt<'tcx>,
+}
+
+impl<'a, 'tcx> SimplifyBranchSameOptimizationFinder<'a, 'tcx> {
+    fn find(&self) -> Vec<SimplifyBranchSameOptimization> {
+        self.body
+            .basic_blocks()
+            .iter_enumerated()
+            .filter_map(|(bb_idx, bb)| {
+                let (discr_switched_on, targets_and_values) = match &bb.terminator().kind {
+                    TerminatorKind::SwitchInt { targets, discr, .. } => {
+                        let targets_and_values: Vec<_> = targets.iter()
+                            .map(|(val, target)| SwitchTargetAndValue { target, value: Some(val) })
+                            .chain(once(SwitchTargetAndValue { target: targets.otherwise(), value: None }))
+                            .collect();
+                        (discr, targets_and_values)
+                    },
+                    _ => return None,
+                };
+
+                // find the adt that has its discriminant read
+                // assuming this must be the last statement of the block
+                let adt_matched_on = match &bb.statements.last()?.kind {
+                    StatementKind::Assign(box (place, rhs))
+                        if Some(*place) == discr_switched_on.place() =>
+                    {
+                        match rhs {
+                            Rvalue::Discriminant(adt_place) if adt_place.ty(self.body, self.tcx).ty.is_enum() => adt_place,
+                            _ => {
+                                trace!("NO: expected a discriminant read of an enum instead of: {:?}", rhs);
+                                return None;
+                            }
+                        }
+                    }
+                    other => {
+                        trace!("NO: expected an assignment of a discriminant read to a place. Found: {:?}", other);
+                        return None
+                    },
+                };
+
+                let mut iter_bbs_reachable = targets_and_values
+                    .iter()
+                    .map(|target_and_value| (target_and_value, &self.body.basic_blocks()[target_and_value.target]))
+                    .filter(|(_, bb)| {
+                        // Reaching `unreachable` is UB so assume it doesn't happen.
+                        bb.terminator().kind != TerminatorKind::Unreachable
+                    // But `asm!(...)` could abort the program,
+                    // so we cannot assume that the `unreachable` terminator itself is reachable.
+                    // FIXME(Centril): use a normalization pass instead of a check.
+                    || bb.statements.iter().any(|stmt| matches!(stmt.kind, StatementKind::LlvmInlineAsm(..)))
+                    })
+                    .peekable();
+
+                let bb_first = iter_bbs_reachable.peek().map_or(&targets_and_values[0], |(idx, _)| *idx);
+                let mut all_successors_equivalent = StatementEquality::TrivialEqual;
+
+                // All successor basic blocks must be equal or contain statements that are pairwise considered equal.
+                for ((target_and_value_l,bb_l), (target_and_value_r,bb_r)) in iter_bbs_reachable.tuple_windows() {
+                    let trivial_checks = bb_l.is_cleanup == bb_r.is_cleanup
+                                            && bb_l.terminator().kind == bb_r.terminator().kind
+                                            && bb_l.statements.len() == bb_r.statements.len();
+                    let statement_check = || {
+                        bb_l.statements.iter().zip(&bb_r.statements).try_fold(StatementEquality::TrivialEqual, |acc,(l,r)| {
+                            let stmt_equality = self.statement_equality(*adt_matched_on, &l, target_and_value_l, &r, target_and_value_r);
+                            if matches!(stmt_equality, StatementEquality::NotEqual) {
+                                // short circuit
+                                None
+                            } else {
+                                Some(acc.combine(&stmt_equality))
+                            }
+                        })
+                        .unwrap_or(StatementEquality::NotEqual)
+                    };
+                    if !trivial_checks {
+                        all_successors_equivalent = StatementEquality::NotEqual;
+                        break;
+                    }
+                    all_successors_equivalent = all_successors_equivalent.combine(&statement_check());
+                };
+
+                match all_successors_equivalent{
+                    StatementEquality::TrivialEqual => {
+                        // statements are trivially equal, so just take first
+                        trace!("Statements are trivially equal");
+                        Some(SimplifyBranchSameOptimization {
+                            bb_to_goto: bb_first.target,
+                            bb_to_opt_terminator: bb_idx,
+                        })
+                    }
+                    StatementEquality::ConsideredEqual(bb_to_choose) => {
+                        trace!("Statements are considered equal");
+                        Some(SimplifyBranchSameOptimization {
+                            bb_to_goto: bb_to_choose,
+                            bb_to_opt_terminator: bb_idx,
+                        })
+                    }
+                    StatementEquality::NotEqual => {
+                        trace!("NO: not all successors of basic block {:?} were equivalent", bb_idx);
+                        None
+                    }
+                }
+            })
+            .collect()
+    }
+
+    /// Tests if two statements can be considered equal
+    ///
+    /// Statements can be trivially equal if the kinds match.
+    /// But they can also be considered equal in the following case A:
+    /// ```
+    /// discriminant(_0) = 0;   // bb1
+    /// _0 = move _1;           // bb2
+    /// ```
+    /// In this case the two statements are equal iff
+    /// - `_0` is an enum where the variant index 0 is fieldless, and
+    /// -  bb1 was targeted by a switch where the discriminant of `_1` was switched on
+    fn statement_equality(
+        &self,
+        adt_matched_on: Place<'tcx>,
+        x: &Statement<'tcx>,
+        x_target_and_value: &SwitchTargetAndValue,
+        y: &Statement<'tcx>,
+        y_target_and_value: &SwitchTargetAndValue,
+    ) -> StatementEquality {
+        let helper = |rhs: &Rvalue<'tcx>,
+                      place: &Place<'tcx>,
+                      variant_index: &VariantIdx,
+                      switch_value: u128,
+                      side_to_choose| {
+            let place_type = place.ty(self.body, self.tcx).ty;
+            let adt = match *place_type.kind() {
+                ty::Adt(adt, _) if adt.is_enum() => adt,
+                _ => return StatementEquality::NotEqual,
+            };
+            // We need to make sure that the switch value that targets the bb with
+            // SetDiscriminant is the same as the variant discriminant.
+            let variant_discr = adt.discriminant_for_variant(self.tcx, *variant_index).val;
+            if variant_discr != switch_value {
+                trace!(
+                    "NO: variant discriminant {} does not equal switch value {}",
+                    variant_discr,
+                    switch_value
+                );
+                return StatementEquality::NotEqual;
+            }
+            let variant_is_fieldless = adt.variants[*variant_index].fields.is_empty();
+            if !variant_is_fieldless {
+                trace!("NO: variant {:?} was not fieldless", variant_index);
+                return StatementEquality::NotEqual;
+            }
+
+            match rhs {
+                Rvalue::Use(operand) if operand.place() == Some(adt_matched_on) => {
+                    StatementEquality::ConsideredEqual(side_to_choose)
+                }
+                _ => {
+                    trace!(
+                        "NO: RHS of assignment was {:?}, but expected it to match the adt being matched on in the switch, which is {:?}",
+                        rhs,
+                        adt_matched_on
+                    );
+                    StatementEquality::NotEqual
+                }
+            }
+        };
+        match (&x.kind, &y.kind) {
+            // trivial case
+            (x, y) if x == y => StatementEquality::TrivialEqual,
+
+            // check for case A
+            (
+                StatementKind::Assign(box (_, rhs)),
+                StatementKind::SetDiscriminant { place, variant_index },
+            ) if y_target_and_value.value.is_some() => {
+                // choose basic block of x, as that has the assign
+                helper(
+                    rhs,
+                    place,
+                    variant_index,
+                    y_target_and_value.value.unwrap(),
+                    x_target_and_value.target,
+                )
+            }
+            (
+                StatementKind::SetDiscriminant { place, variant_index },
+                StatementKind::Assign(box (_, rhs)),
+            ) if x_target_and_value.value.is_some() => {
+                // choose basic block of y, as that has the assign
+                helper(
+                    rhs,
+                    place,
+                    variant_index,
+                    x_target_and_value.value.unwrap(),
+                    y_target_and_value.target,
+                )
+            }
+            _ => {
+                trace!("NO: statements `{:?}` and `{:?}` not considered equal", x, y);
+                StatementEquality::NotEqual
+            }
+        }
+    }
+}
+
+#[derive(Copy, Clone, Eq, PartialEq)]
+enum StatementEquality {
+    /// The two statements are trivially equal; same kind
+    TrivialEqual,
+    /// The two statements are considered equal, but may be of different kinds. The BasicBlock field is the basic block to jump to when performing the branch-same optimization.
+    /// For example, `_0 = _1` and `discriminant(_0) = discriminant(0)` are considered equal if 0 is a fieldless variant of an enum. But we don't want to jump to the basic block with the SetDiscriminant, as that is not legal if _1 is not the 0 variant index
+    ConsideredEqual(BasicBlock),
+    /// The two statements are not equal
+    NotEqual,
+}
+
+impl StatementEquality {
+    fn combine(&self, other: &StatementEquality) -> StatementEquality {
+        use StatementEquality::*;
+        match (self, other) {
+            (TrivialEqual, TrivialEqual) => TrivialEqual,
+            (TrivialEqual, ConsideredEqual(b)) | (ConsideredEqual(b), TrivialEqual) => {
+                ConsideredEqual(*b)
+            }
+            (ConsideredEqual(b1), ConsideredEqual(b2)) => {
+                if b1 == b2 {
+                    ConsideredEqual(*b1)
+                } else {
+                    NotEqual
+                }
+            }
+            (_, NotEqual) | (NotEqual, _) => NotEqual,
+        }
+    }
+}