]> git.proxmox.com Git - rustc.git/blobdiff - compiler/rustc_trait_selection/src/solve/assembly/mod.rs
New upstream version 1.70.0+dfsg1
[rustc.git] / compiler / rustc_trait_selection / src / solve / assembly / mod.rs
diff --git a/compiler/rustc_trait_selection/src/solve/assembly/mod.rs b/compiler/rustc_trait_selection/src/solve/assembly/mod.rs
new file mode 100644 (file)
index 0000000..10d817f
--- /dev/null
@@ -0,0 +1,605 @@
+//! Code shared by trait and projection goals for candidate assembly.
+
+use super::search_graph::OverflowHandler;
+use super::{EvalCtxt, SolverMode};
+use crate::solve::CanonicalResponseExt;
+use crate::traits::coherence;
+use rustc_data_structures::fx::FxIndexSet;
+use rustc_hir::def_id::DefId;
+use rustc_infer::traits::query::NoSolution;
+use rustc_infer::traits::util::elaborate;
+use rustc_middle::traits::solve::{CanonicalResponse, Certainty, Goal, MaybeCause, QueryResult};
+use rustc_middle::ty::fast_reject::TreatProjections;
+use rustc_middle::ty::TypeFoldable;
+use rustc_middle::ty::{self, Ty, TyCtxt};
+use std::fmt::Debug;
+
+pub(super) mod structural_traits;
+
+/// A candidate is a possible way to prove a goal.
+///
+/// It consists of both the `source`, which describes how that goal would be proven,
+/// and the `result` when using the given `source`.
+#[derive(Debug, Clone)]
+pub(super) struct Candidate<'tcx> {
+    pub(super) source: CandidateSource,
+    pub(super) result: CanonicalResponse<'tcx>,
+}
+
+/// Possible ways the given goal can be proven.
+#[derive(Debug, Clone, Copy)]
+pub(super) enum CandidateSource {
+    /// A user written impl.
+    ///
+    /// ## Examples
+    ///
+    /// ```rust
+    /// fn main() {
+    ///     let x: Vec<u32> = Vec::new();
+    ///     // This uses the impl from the standard library to prove `Vec<T>: Clone`.
+    ///     let y = x.clone();
+    /// }
+    /// ```
+    Impl(DefId),
+    /// A builtin impl generated by the compiler. When adding a new special
+    /// trait, try to use actual impls whenever possible. Builtin impls should
+    /// only be used in cases where the impl cannot be manually be written.
+    ///
+    /// Notable examples are auto traits, `Sized`, and `DiscriminantKind`.
+    /// For a list of all traits with builtin impls, check out the
+    /// [`EvalCtxt::assemble_builtin_impl_candidates`] method. Not
+    BuiltinImpl,
+    /// An assumption from the environment.
+    ///
+    /// More precicely we've used the `n-th` assumption in the `param_env`.
+    ///
+    /// ## Examples
+    ///
+    /// ```rust
+    /// fn is_clone<T: Clone>(x: T) -> (T, T) {
+    ///     // This uses the assumption `T: Clone` from the `where`-bounds
+    ///     // to prove `T: Clone`.
+    ///     (x.clone(), x)
+    /// }
+    /// ```
+    ParamEnv(usize),
+    /// If the self type is an alias type, e.g. an opaque type or a projection,
+    /// we know the bounds on that alias to hold even without knowing its concrete
+    /// underlying type.
+    ///
+    /// More precisely this candidate is using the `n-th` bound in the `item_bounds` of
+    /// the self type.
+    ///
+    /// ## Examples
+    ///
+    /// ```rust
+    /// trait Trait {
+    ///     type Assoc: Clone;
+    /// }
+    ///
+    /// fn foo<T: Trait>(x: <T as Trait>::Assoc) {
+    ///     // We prove `<T as Trait>::Assoc` by looking at the bounds on `Assoc` in
+    ///     // in the trait definition.
+    ///     let _y = x.clone();
+    /// }
+    /// ```
+    AliasBound,
+}
+
+/// Methods used to assemble candidates for either trait or projection goals.
+pub(super) trait GoalKind<'tcx>: TypeFoldable<TyCtxt<'tcx>> + Copy + Eq {
+    fn self_ty(self) -> Ty<'tcx>;
+
+    fn trait_ref(self, tcx: TyCtxt<'tcx>) -> ty::TraitRef<'tcx>;
+
+    fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> Self;
+
+    fn trait_def_id(self, tcx: TyCtxt<'tcx>) -> DefId;
+
+    // Consider a clause, which consists of a "assumption" and some "requirements",
+    // to satisfy a goal. If the requirements hold, then attempt to satisfy our
+    // goal by equating it with the assumption.
+    fn consider_implied_clause(
+        ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+        assumption: ty::Predicate<'tcx>,
+        requirements: impl IntoIterator<Item = Goal<'tcx, ty::Predicate<'tcx>>>,
+    ) -> QueryResult<'tcx>;
+
+    // Consider a clause specifically for a `dyn Trait` self type. This requires
+    // additionally checking all of the supertraits and object bounds to hold,
+    // since they're not implied by the well-formedness of the object type.
+    fn consider_object_bound_candidate(
+        ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+        assumption: ty::Predicate<'tcx>,
+    ) -> QueryResult<'tcx>;
+
+    fn consider_impl_candidate(
+        ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+        impl_def_id: DefId,
+    ) -> QueryResult<'tcx>;
+
+    // A type implements an `auto trait` if its components do as well. These components
+    // are given by built-in rules from [`instantiate_constituent_tys_for_auto_trait`].
+    fn consider_auto_trait_candidate(
+        ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+    ) -> QueryResult<'tcx>;
+
+    // A trait alias holds if the RHS traits and `where` clauses hold.
+    fn consider_trait_alias_candidate(
+        ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+    ) -> QueryResult<'tcx>;
+
+    // A type is `Copy` or `Clone` if its components are `Sized`. These components
+    // are given by built-in rules from [`instantiate_constituent_tys_for_sized_trait`].
+    fn consider_builtin_sized_candidate(
+        ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+    ) -> QueryResult<'tcx>;
+
+    // A type is `Copy` or `Clone` if its components are `Copy` or `Clone`. These
+    // components are given by built-in rules from [`instantiate_constituent_tys_for_copy_clone_trait`].
+    fn consider_builtin_copy_clone_candidate(
+        ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+    ) -> QueryResult<'tcx>;
+
+    // A type is `PointerLike` if we can compute its layout, and that layout
+    // matches the layout of `usize`.
+    fn consider_builtin_pointer_like_candidate(
+        ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+    ) -> QueryResult<'tcx>;
+
+    // A type is a `FnPtr` if it is of `FnPtr` type.
+    fn consider_builtin_fn_ptr_trait_candidate(
+        ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+    ) -> QueryResult<'tcx>;
+
+    // A callable type (a closure, fn def, or fn ptr) is known to implement the `Fn<A>`
+    // family of traits where `A` is given by the signature of the type.
+    fn consider_builtin_fn_trait_candidates(
+        ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+        kind: ty::ClosureKind,
+    ) -> QueryResult<'tcx>;
+
+    // `Tuple` is implemented if the `Self` type is a tuple.
+    fn consider_builtin_tuple_candidate(
+        ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+    ) -> QueryResult<'tcx>;
+
+    // `Pointee` is always implemented.
+    //
+    // See the projection implementation for the `Metadata` types for all of
+    // the built-in types. For structs, the metadata type is given by the struct
+    // tail.
+    fn consider_builtin_pointee_candidate(
+        ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+    ) -> QueryResult<'tcx>;
+
+    // A generator (that comes from an `async` desugaring) is known to implement
+    // `Future<Output = O>`, where `O` is given by the generator's return type
+    // that was computed during type-checking.
+    fn consider_builtin_future_candidate(
+        ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+    ) -> QueryResult<'tcx>;
+
+    // A generator (that doesn't come from an `async` desugaring) is known to
+    // implement `Generator<R, Yield = Y, Return = O>`, given the resume, yield,
+    // and return types of the generator computed during type-checking.
+    fn consider_builtin_generator_candidate(
+        ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+    ) -> QueryResult<'tcx>;
+
+    // The most common forms of unsizing are array to slice, and concrete (Sized)
+    // type into a `dyn Trait`. ADTs and Tuples can also have their final field
+    // unsized if it's generic.
+    fn consider_builtin_unsize_candidate(
+        ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+    ) -> QueryResult<'tcx>;
+
+    // `dyn Trait1` can be unsized to `dyn Trait2` if they are the same trait, or
+    // if `Trait2` is a (transitive) supertrait of `Trait2`.
+    fn consider_builtin_dyn_upcast_candidates(
+        ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+    ) -> Vec<CanonicalResponse<'tcx>>;
+
+    fn consider_builtin_discriminant_kind_candidate(
+        ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+    ) -> QueryResult<'tcx>;
+
+    fn consider_builtin_destruct_candidate(
+        ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+    ) -> QueryResult<'tcx>;
+
+    fn consider_builtin_transmute_candidate(
+        ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+    ) -> QueryResult<'tcx>;
+}
+
+impl<'tcx> EvalCtxt<'_, 'tcx> {
+    pub(super) fn assemble_and_evaluate_candidates<G: GoalKind<'tcx>>(
+        &mut self,
+        goal: Goal<'tcx, G>,
+    ) -> Vec<Candidate<'tcx>> {
+        debug_assert_eq!(goal, self.resolve_vars_if_possible(goal));
+
+        // HACK: `_: Trait` is ambiguous, because it may be satisfied via a builtin rule,
+        // object bound, alias bound, etc. We are unable to determine this until we can at
+        // least structually resolve the type one layer.
+        if goal.predicate.self_ty().is_ty_var() {
+            return vec![Candidate {
+                source: CandidateSource::BuiltinImpl,
+                result: self
+                    .evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS)
+                    .unwrap(),
+            }];
+        }
+
+        let mut candidates = Vec::new();
+
+        self.assemble_candidates_after_normalizing_self_ty(goal, &mut candidates);
+
+        self.assemble_impl_candidates(goal, &mut candidates);
+
+        self.assemble_builtin_impl_candidates(goal, &mut candidates);
+
+        self.assemble_param_env_candidates(goal, &mut candidates);
+
+        self.assemble_alias_bound_candidates(goal, &mut candidates);
+
+        self.assemble_object_bound_candidates(goal, &mut candidates);
+
+        self.assemble_coherence_unknowable_candidates(goal, &mut candidates);
+
+        candidates
+    }
+
+    /// If the self type of a goal is a projection, computing the relevant candidates is difficult.
+    ///
+    /// To deal with this, we first try to normalize the self type and add the candidates for the normalized
+    /// self type to the list of candidates in case that succeeds. We also have to consider candidates with the
+    /// projection as a self type as well
+    #[instrument(level = "debug", skip_all)]
+    fn assemble_candidates_after_normalizing_self_ty<G: GoalKind<'tcx>>(
+        &mut self,
+        goal: Goal<'tcx, G>,
+        candidates: &mut Vec<Candidate<'tcx>>,
+    ) {
+        let tcx = self.tcx();
+        // FIXME: We also have to normalize opaque types, not sure where to best fit that in.
+        let &ty::Alias(ty::Projection, projection_ty) = goal.predicate.self_ty().kind() else {
+            return
+        };
+
+        let normalized_self_candidates: Result<_, NoSolution> = self.probe(|ecx| {
+            ecx.with_incremented_depth(
+                |ecx| {
+                    let result = ecx.evaluate_added_goals_and_make_canonical_response(
+                        Certainty::Maybe(MaybeCause::Overflow),
+                    )?;
+                    Ok(vec![Candidate { source: CandidateSource::BuiltinImpl, result }])
+                },
+                |ecx| {
+                    let normalized_ty = ecx.next_ty_infer();
+                    let normalizes_to_goal = goal.with(
+                        tcx,
+                        ty::Binder::dummy(ty::ProjectionPredicate {
+                            projection_ty,
+                            term: normalized_ty.into(),
+                        }),
+                    );
+                    ecx.add_goal(normalizes_to_goal);
+                    let _ = ecx.try_evaluate_added_goals()?;
+                    let normalized_ty = ecx.resolve_vars_if_possible(normalized_ty);
+                    // NOTE: Alternatively we could call `evaluate_goal` here and only
+                    // have a `Normalized` candidate. This doesn't work as long as we
+                    // use `CandidateSource` in winnowing.
+                    let goal = goal.with(tcx, goal.predicate.with_self_ty(tcx, normalized_ty));
+                    Ok(ecx.assemble_and_evaluate_candidates(goal))
+                },
+            )
+        });
+
+        if let Ok(normalized_self_candidates) = normalized_self_candidates {
+            candidates.extend(normalized_self_candidates);
+        }
+    }
+
+    #[instrument(level = "debug", skip_all)]
+    fn assemble_impl_candidates<G: GoalKind<'tcx>>(
+        &mut self,
+        goal: Goal<'tcx, G>,
+        candidates: &mut Vec<Candidate<'tcx>>,
+    ) {
+        let tcx = self.tcx();
+        tcx.for_each_relevant_impl_treating_projections(
+            goal.predicate.trait_def_id(tcx),
+            goal.predicate.self_ty(),
+            TreatProjections::NextSolverLookup,
+            |impl_def_id| match G::consider_impl_candidate(self, goal, impl_def_id) {
+                Ok(result) => candidates
+                    .push(Candidate { source: CandidateSource::Impl(impl_def_id), result }),
+                Err(NoSolution) => (),
+            },
+        );
+    }
+
+    #[instrument(level = "debug", skip_all)]
+    fn assemble_builtin_impl_candidates<G: GoalKind<'tcx>>(
+        &mut self,
+        goal: Goal<'tcx, G>,
+        candidates: &mut Vec<Candidate<'tcx>>,
+    ) {
+        let lang_items = self.tcx().lang_items();
+        let trait_def_id = goal.predicate.trait_def_id(self.tcx());
+
+        // N.B. When assembling built-in candidates for lang items that are also
+        // `auto` traits, then the auto trait candidate that is assembled in
+        // `consider_auto_trait_candidate` MUST be disqualified to remain sound.
+        //
+        // Instead of adding the logic here, it's a better idea to add it in
+        // `EvalCtxt::disqualify_auto_trait_candidate_due_to_possible_impl` in
+        // `solve::trait_goals` instead.
+        let result = if self.tcx().trait_is_auto(trait_def_id) {
+            G::consider_auto_trait_candidate(self, goal)
+        } else if self.tcx().trait_is_alias(trait_def_id) {
+            G::consider_trait_alias_candidate(self, goal)
+        } else if lang_items.sized_trait() == Some(trait_def_id) {
+            G::consider_builtin_sized_candidate(self, goal)
+        } else if lang_items.copy_trait() == Some(trait_def_id)
+            || lang_items.clone_trait() == Some(trait_def_id)
+        {
+            G::consider_builtin_copy_clone_candidate(self, goal)
+        } else if lang_items.pointer_like() == Some(trait_def_id) {
+            G::consider_builtin_pointer_like_candidate(self, goal)
+        } else if lang_items.fn_ptr_trait() == Some(trait_def_id) {
+            G::consider_builtin_fn_ptr_trait_candidate(self, goal)
+        } else if let Some(kind) = self.tcx().fn_trait_kind_from_def_id(trait_def_id) {
+            G::consider_builtin_fn_trait_candidates(self, goal, kind)
+        } else if lang_items.tuple_trait() == Some(trait_def_id) {
+            G::consider_builtin_tuple_candidate(self, goal)
+        } else if lang_items.pointee_trait() == Some(trait_def_id) {
+            G::consider_builtin_pointee_candidate(self, goal)
+        } else if lang_items.future_trait() == Some(trait_def_id) {
+            G::consider_builtin_future_candidate(self, goal)
+        } else if lang_items.gen_trait() == Some(trait_def_id) {
+            G::consider_builtin_generator_candidate(self, goal)
+        } else if lang_items.unsize_trait() == Some(trait_def_id) {
+            G::consider_builtin_unsize_candidate(self, goal)
+        } else if lang_items.discriminant_kind_trait() == Some(trait_def_id) {
+            G::consider_builtin_discriminant_kind_candidate(self, goal)
+        } else if lang_items.destruct_trait() == Some(trait_def_id) {
+            G::consider_builtin_destruct_candidate(self, goal)
+        } else if lang_items.transmute_trait() == Some(trait_def_id) {
+            G::consider_builtin_transmute_candidate(self, goal)
+        } else {
+            Err(NoSolution)
+        };
+
+        match result {
+            Ok(result) => {
+                candidates.push(Candidate { source: CandidateSource::BuiltinImpl, result })
+            }
+            Err(NoSolution) => (),
+        }
+
+        // There may be multiple unsize candidates for a trait with several supertraits:
+        // `trait Foo: Bar<A> + Bar<B>` and `dyn Foo: Unsize<dyn Bar<_>>`
+        if lang_items.unsize_trait() == Some(trait_def_id) {
+            for result in G::consider_builtin_dyn_upcast_candidates(self, goal) {
+                candidates.push(Candidate { source: CandidateSource::BuiltinImpl, result });
+            }
+        }
+    }
+
+    #[instrument(level = "debug", skip_all)]
+    fn assemble_param_env_candidates<G: GoalKind<'tcx>>(
+        &mut self,
+        goal: Goal<'tcx, G>,
+        candidates: &mut Vec<Candidate<'tcx>>,
+    ) {
+        for (i, assumption) in goal.param_env.caller_bounds().iter().enumerate() {
+            match G::consider_implied_clause(self, goal, assumption, []) {
+                Ok(result) => {
+                    candidates.push(Candidate { source: CandidateSource::ParamEnv(i), result })
+                }
+                Err(NoSolution) => (),
+            }
+        }
+    }
+
+    #[instrument(level = "debug", skip_all)]
+    fn assemble_alias_bound_candidates<G: GoalKind<'tcx>>(
+        &mut self,
+        goal: Goal<'tcx, G>,
+        candidates: &mut Vec<Candidate<'tcx>>,
+    ) {
+        let alias_ty = match goal.predicate.self_ty().kind() {
+            ty::Bool
+            | ty::Char
+            | ty::Int(_)
+            | ty::Uint(_)
+            | ty::Float(_)
+            | ty::Adt(_, _)
+            | ty::Foreign(_)
+            | ty::Str
+            | ty::Array(_, _)
+            | ty::Slice(_)
+            | ty::RawPtr(_)
+            | ty::Ref(_, _, _)
+            | ty::FnDef(_, _)
+            | ty::FnPtr(_)
+            | ty::Dynamic(..)
+            | ty::Closure(..)
+            | ty::Generator(..)
+            | ty::GeneratorWitness(_)
+            | ty::GeneratorWitnessMIR(..)
+            | ty::Never
+            | ty::Tuple(_)
+            | ty::Param(_)
+            | ty::Placeholder(..)
+            | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
+            | ty::Error(_) => return,
+            ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_))
+            | ty::Bound(..) => bug!("unexpected self type for `{goal:?}`"),
+            ty::Alias(_, alias_ty) => alias_ty,
+        };
+
+        for assumption in self.tcx().item_bounds(alias_ty.def_id).subst(self.tcx(), alias_ty.substs)
+        {
+            match G::consider_implied_clause(self, goal, assumption, []) {
+                Ok(result) => {
+                    candidates.push(Candidate { source: CandidateSource::AliasBound, result })
+                }
+                Err(NoSolution) => (),
+            }
+        }
+    }
+
+    #[instrument(level = "debug", skip_all)]
+    fn assemble_object_bound_candidates<G: GoalKind<'tcx>>(
+        &mut self,
+        goal: Goal<'tcx, G>,
+        candidates: &mut Vec<Candidate<'tcx>>,
+    ) {
+        let self_ty = goal.predicate.self_ty();
+        let bounds = match *self_ty.kind() {
+            ty::Bool
+            | ty::Char
+            | ty::Int(_)
+            | ty::Uint(_)
+            | ty::Float(_)
+            | ty::Adt(_, _)
+            | ty::Foreign(_)
+            | ty::Str
+            | ty::Array(_, _)
+            | ty::Slice(_)
+            | ty::RawPtr(_)
+            | ty::Ref(_, _, _)
+            | ty::FnDef(_, _)
+            | ty::FnPtr(_)
+            | ty::Alias(..)
+            | ty::Closure(..)
+            | ty::Generator(..)
+            | ty::GeneratorWitness(_)
+            | ty::GeneratorWitnessMIR(..)
+            | ty::Never
+            | ty::Tuple(_)
+            | ty::Param(_)
+            | ty::Placeholder(..)
+            | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
+            | ty::Error(_) => return,
+            ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_))
+            | ty::Bound(..) => bug!("unexpected self type for `{goal:?}`"),
+            ty::Dynamic(bounds, ..) => bounds,
+        };
+
+        let tcx = self.tcx();
+        let own_bounds: FxIndexSet<_> =
+            bounds.iter().map(|bound| bound.with_self_ty(tcx, self_ty)).collect();
+        for assumption in elaborate(tcx, own_bounds.iter().copied())
+            // we only care about bounds that match the `Self` type
+            .filter_only_self()
+        {
+            // FIXME: Predicates are fully elaborated in the object type's existential bounds
+            // list. We want to only consider these pre-elaborated projections, and not other
+            // projection predicates that we reach by elaborating the principal trait ref,
+            // since that'll cause ambiguity.
+            //
+            // We can remove this when we have implemented intersections in responses.
+            if assumption.to_opt_poly_projection_pred().is_some()
+                && !own_bounds.contains(&assumption)
+            {
+                continue;
+            }
+
+            match G::consider_object_bound_candidate(self, goal, assumption) {
+                Ok(result) => {
+                    candidates.push(Candidate { source: CandidateSource::BuiltinImpl, result })
+                }
+                Err(NoSolution) => (),
+            }
+        }
+    }
+
+    #[instrument(level = "debug", skip_all)]
+    fn assemble_coherence_unknowable_candidates<G: GoalKind<'tcx>>(
+        &mut self,
+        goal: Goal<'tcx, G>,
+        candidates: &mut Vec<Candidate<'tcx>>,
+    ) {
+        match self.solver_mode() {
+            SolverMode::Normal => return,
+            SolverMode::Coherence => {
+                let trait_ref = goal.predicate.trait_ref(self.tcx());
+                match coherence::trait_ref_is_knowable(self.tcx(), trait_ref) {
+                    Ok(()) => {}
+                    Err(_) => match self
+                        .evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS)
+                    {
+                        Ok(result) => candidates
+                            .push(Candidate { source: CandidateSource::BuiltinImpl, result }),
+                        // FIXME: This will be reachable at some point if we're in
+                        // `assemble_candidates_after_normalizing_self_ty` and we get a
+                        // universe error. We'll deal with it at this point.
+                        Err(NoSolution) => bug!("coherence candidate resulted in NoSolution"),
+                    },
+                }
+            }
+        }
+    }
+
+    /// If there are multiple ways to prove a trait or projection goal, we have
+    /// to somehow try to merge the candidates into one. If that fails, we return
+    /// ambiguity.
+    #[instrument(level = "debug", skip(self), ret)]
+    pub(super) fn merge_candidates(
+        &mut self,
+        mut candidates: Vec<Candidate<'tcx>>,
+    ) -> QueryResult<'tcx> {
+        // First try merging all candidates. This is complete and fully sound.
+        let responses = candidates.iter().map(|c| c.result).collect::<Vec<_>>();
+        if let Some(result) = self.try_merge_responses(&responses) {
+            return Ok(result);
+        }
+
+        // We then check whether we should prioritize `ParamEnv` candidates.
+        //
+        // Doing so is incomplete and would therefore be unsound during coherence.
+        match self.solver_mode() {
+            SolverMode::Coherence => (),
+            // Prioritize `ParamEnv` candidates only if they do not guide inference.
+            //
+            // This is still incomplete as we may add incorrect region bounds.
+            SolverMode::Normal => {
+                let param_env_responses = candidates
+                    .iter()
+                    .filter(|c| matches!(c.source, CandidateSource::ParamEnv(_)))
+                    .map(|c| c.result)
+                    .collect::<Vec<_>>();
+                if let Some(result) = self.try_merge_responses(&param_env_responses) {
+                    if result.has_only_region_constraints() {
+                        return Ok(result);
+                    }
+                }
+            }
+        }
+        self.flounder(&responses)
+    }
+}