]> git.proxmox.com Git - rustc.git/blobdiff - compiler/rustc_trait_selection/src/solve/project_goals.rs
New upstream version 1.68.2+dfsg1
[rustc.git] / compiler / rustc_trait_selection / src / solve / project_goals.rs
diff --git a/compiler/rustc_trait_selection/src/solve/project_goals.rs b/compiler/rustc_trait_selection/src/solve/project_goals.rs
new file mode 100644 (file)
index 0000000..e39fa05
--- /dev/null
@@ -0,0 +1,430 @@
+use crate::traits::{specialization_graph, translate_substs};
+
+use super::assembly::{self, Candidate, CandidateSource};
+use super::infcx_ext::InferCtxtExt;
+use super::trait_goals::structural_traits;
+use super::{Certainty, EvalCtxt, Goal, MaybeCause, QueryResult};
+use rustc_errors::ErrorGuaranteed;
+use rustc_hir::def::DefKind;
+use rustc_hir::def_id::DefId;
+use rustc_infer::infer::InferCtxt;
+use rustc_infer::traits::query::NoSolution;
+use rustc_infer::traits::specialization_graph::LeafDef;
+use rustc_infer::traits::Reveal;
+use rustc_middle::ty::fast_reject::{DeepRejectCtxt, TreatParams};
+use rustc_middle::ty::{self, Ty, TyCtxt};
+use rustc_middle::ty::{ProjectionPredicate, TypeSuperVisitable, TypeVisitor};
+use rustc_middle::ty::{ToPredicate, TypeVisitable};
+use rustc_span::DUMMY_SP;
+use std::iter;
+use std::ops::ControlFlow;
+
+impl<'tcx> EvalCtxt<'_, 'tcx> {
+    pub(super) fn compute_projection_goal(
+        &mut self,
+        goal: Goal<'tcx, ProjectionPredicate<'tcx>>,
+    ) -> QueryResult<'tcx> {
+        // To only compute normalization once for each projection we only
+        // normalize if the expected term is an unconstrained inference variable.
+        //
+        // E.g. for `<T as Trait>::Assoc = u32` we recursively compute the goal
+        // `exists<U> <T as Trait>::Assoc = U` and then take the resulting type for
+        // `U` and equate it with `u32`. This means that we don't need a separate
+        // projection cache in the solver.
+        if self.term_is_fully_unconstrained(goal) {
+            let candidates = self.assemble_and_evaluate_candidates(goal);
+            self.merge_project_candidates(candidates)
+        } else {
+            let predicate = goal.predicate;
+            let unconstrained_rhs = match predicate.term.unpack() {
+                ty::TermKind::Ty(_) => self.infcx.next_ty_infer().into(),
+                ty::TermKind::Const(ct) => self.infcx.next_const_infer(ct.ty()).into(),
+            };
+            let unconstrained_predicate = ty::Clause::Projection(ProjectionPredicate {
+                projection_ty: goal.predicate.projection_ty,
+                term: unconstrained_rhs,
+            });
+            let (_has_changed, normalize_certainty) =
+                self.evaluate_goal(goal.with(self.tcx(), unconstrained_predicate))?;
+
+            let nested_eq_goals =
+                self.infcx.eq(goal.param_env, unconstrained_rhs, predicate.term)?;
+            let eval_certainty = self.evaluate_all(nested_eq_goals)?;
+            self.make_canonical_response(normalize_certainty.unify_and(eval_certainty))
+        }
+    }
+
+    /// Is the projection predicate is of the form `exists<T> <Ty as Trait>::Assoc = T`.
+    ///
+    /// This is the case if the `term` is an inference variable in the innermost universe
+    /// and does not occur in any other part of the predicate.
+    fn term_is_fully_unconstrained(&self, goal: Goal<'tcx, ProjectionPredicate<'tcx>>) -> bool {
+        let infcx = self.infcx;
+        let term_is_infer = match goal.predicate.term.unpack() {
+            ty::TermKind::Ty(ty) => {
+                if let &ty::Infer(ty::TyVar(vid)) = ty.kind() {
+                    match infcx.probe_ty_var(vid) {
+                        Ok(value) => bug!("resolved var in query: {goal:?} {value:?}"),
+                        Err(universe) => universe == infcx.universe(),
+                    }
+                } else {
+                    false
+                }
+            }
+            ty::TermKind::Const(ct) => {
+                if let ty::ConstKind::Infer(ty::InferConst::Var(vid)) = ct.kind() {
+                    match self.infcx.probe_const_var(vid) {
+                        Ok(value) => bug!("resolved var in query: {goal:?} {value:?}"),
+                        Err(universe) => universe == infcx.universe(),
+                    }
+                } else {
+                    false
+                }
+            }
+        };
+
+        // Guard against `<T as Trait<?0>>::Assoc = ?0>`.
+        struct ContainsTerm<'tcx> {
+            term: ty::Term<'tcx>,
+        }
+        impl<'tcx> TypeVisitor<'tcx> for ContainsTerm<'tcx> {
+            type BreakTy = ();
+            fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
+                if t.needs_infer() {
+                    if ty::Term::from(t) == self.term {
+                        ControlFlow::BREAK
+                    } else {
+                        t.super_visit_with(self)
+                    }
+                } else {
+                    ControlFlow::CONTINUE
+                }
+            }
+
+            fn visit_const(&mut self, c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
+                if c.needs_infer() {
+                    if ty::Term::from(c) == self.term {
+                        ControlFlow::BREAK
+                    } else {
+                        c.super_visit_with(self)
+                    }
+                } else {
+                    ControlFlow::CONTINUE
+                }
+            }
+        }
+
+        let mut visitor = ContainsTerm { term: goal.predicate.term };
+
+        term_is_infer
+            && goal.predicate.projection_ty.visit_with(&mut visitor).is_continue()
+            && goal.param_env.visit_with(&mut visitor).is_continue()
+    }
+
+    fn merge_project_candidates(
+        &mut self,
+        mut candidates: Vec<Candidate<'tcx>>,
+    ) -> QueryResult<'tcx> {
+        match candidates.len() {
+            0 => return Err(NoSolution),
+            1 => return Ok(candidates.pop().unwrap().result),
+            _ => {}
+        }
+
+        if candidates.len() > 1 {
+            let mut i = 0;
+            'outer: while i < candidates.len() {
+                for j in (0..candidates.len()).filter(|&j| i != j) {
+                    if self.project_candidate_should_be_dropped_in_favor_of(
+                        &candidates[i],
+                        &candidates[j],
+                    ) {
+                        debug!(candidate = ?candidates[i], "Dropping candidate #{}/{}", i, candidates.len());
+                        candidates.swap_remove(i);
+                        continue 'outer;
+                    }
+                }
+
+                debug!(candidate = ?candidates[i], "Retaining candidate #{}/{}", i, candidates.len());
+                // If there are *STILL* multiple candidates, give up
+                // and report ambiguity.
+                i += 1;
+                if i > 1 {
+                    debug!("multiple matches, ambig");
+                    // FIXME: return overflow if all candidates overflow, otherwise return ambiguity.
+                    unimplemented!();
+                }
+            }
+        }
+
+        Ok(candidates.pop().unwrap().result)
+    }
+
+    fn project_candidate_should_be_dropped_in_favor_of(
+        &self,
+        candidate: &Candidate<'tcx>,
+        other: &Candidate<'tcx>,
+    ) -> bool {
+        // FIXME: implement this
+        match (candidate.source, other.source) {
+            (CandidateSource::Impl(_), _)
+            | (CandidateSource::ParamEnv(_), _)
+            | (CandidateSource::BuiltinImpl, _)
+            | (CandidateSource::AliasBound(_), _) => unimplemented!(),
+        }
+    }
+}
+
+impl<'tcx> assembly::GoalKind<'tcx> for ProjectionPredicate<'tcx> {
+    fn self_ty(self) -> Ty<'tcx> {
+        self.self_ty()
+    }
+
+    fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> Self {
+        self.with_self_ty(tcx, self_ty)
+    }
+
+    fn trait_def_id(self, tcx: TyCtxt<'tcx>) -> DefId {
+        self.trait_def_id(tcx)
+    }
+
+    fn consider_impl_candidate(
+        ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, ProjectionPredicate<'tcx>>,
+        impl_def_id: DefId,
+    ) -> QueryResult<'tcx> {
+        let tcx = ecx.tcx();
+
+        let goal_trait_ref = goal.predicate.projection_ty.trait_ref(tcx);
+        let impl_trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
+        let drcx = DeepRejectCtxt { treat_obligation_params: TreatParams::AsPlaceholder };
+        if iter::zip(goal_trait_ref.substs, impl_trait_ref.skip_binder().substs)
+            .any(|(goal, imp)| !drcx.generic_args_may_unify(goal, imp))
+        {
+            return Err(NoSolution);
+        }
+
+        ecx.infcx.probe(|_| {
+            let impl_substs = ecx.infcx.fresh_substs_for_item(DUMMY_SP, impl_def_id);
+            let impl_trait_ref = impl_trait_ref.subst(tcx, impl_substs);
+
+            let mut nested_goals = ecx.infcx.eq(goal.param_env, goal_trait_ref, impl_trait_ref)?;
+            let where_clause_bounds = tcx
+                .predicates_of(impl_def_id)
+                .instantiate(tcx, impl_substs)
+                .predicates
+                .into_iter()
+                .map(|pred| goal.with(tcx, pred));
+
+            nested_goals.extend(where_clause_bounds);
+            let trait_ref_certainty = ecx.evaluate_all(nested_goals)?;
+
+            // In case the associated item is hidden due to specialization, we have to
+            // return ambiguity this would otherwise be incomplete, resulting in
+            // unsoundness during coherence (#105782).
+            let Some(assoc_def) = fetch_eligible_assoc_item_def(
+                ecx.infcx,
+                goal.param_env,
+                goal_trait_ref,
+                goal.predicate.def_id(),
+                impl_def_id
+            )? else {
+                let certainty = Certainty::Maybe(MaybeCause::Ambiguity);
+                return ecx.make_canonical_response(trait_ref_certainty.unify_and(certainty));
+            };
+
+            if !assoc_def.item.defaultness(tcx).has_value() {
+                tcx.sess.delay_span_bug(
+                    tcx.def_span(assoc_def.item.def_id),
+                    "missing value for assoc item in impl",
+                );
+            }
+
+            // Getting the right substitutions here is complex, e.g. given:
+            // - a goal `<Vec<u32> as Trait<i32>>::Assoc<u64>`
+            // - the applicable impl `impl<T> Trait<i32> for Vec<T>`
+            // - and the impl which defines `Assoc` being `impl<T, U> Trait<U> for Vec<T>`
+            //
+            // We first rebase the goal substs onto the impl, going from `[Vec<u32>, i32, u64]`
+            // to `[u32, u64]`.
+            //
+            // And then map these substs to the substs of the defining impl of `Assoc`, going
+            // from `[u32, u64]` to `[u32, i32, u64]`.
+            let impl_substs_with_gat = goal.predicate.projection_ty.substs.rebase_onto(
+                tcx,
+                goal_trait_ref.def_id,
+                impl_substs,
+            );
+            let substs = translate_substs(
+                ecx.infcx,
+                goal.param_env,
+                impl_def_id,
+                impl_substs_with_gat,
+                assoc_def.defining_node,
+            );
+
+            // Finally we construct the actual value of the associated type.
+            let is_const = matches!(tcx.def_kind(assoc_def.item.def_id), DefKind::AssocConst);
+            let ty = tcx.bound_type_of(assoc_def.item.def_id);
+            let term: ty::EarlyBinder<ty::Term<'tcx>> = if is_const {
+                let identity_substs =
+                    ty::InternalSubsts::identity_for_item(tcx, assoc_def.item.def_id);
+                let did = ty::WithOptConstParam::unknown(assoc_def.item.def_id);
+                let kind =
+                    ty::ConstKind::Unevaluated(ty::UnevaluatedConst::new(did, identity_substs));
+                ty.map_bound(|ty| tcx.mk_const(kind, ty).into())
+            } else {
+                ty.map_bound(|ty| ty.into())
+            };
+
+            // The term of our goal should be fully unconstrained, so this should never fail.
+            //
+            // It can however be ambiguous when the resolved type is a projection.
+            let nested_goals = ecx
+                .infcx
+                .eq(goal.param_env, goal.predicate.term, term.subst(tcx, substs))
+                .expect("failed to unify with unconstrained term");
+            let rhs_certainty =
+                ecx.evaluate_all(nested_goals).expect("failed to unify with unconstrained term");
+
+            ecx.make_canonical_response(trait_ref_certainty.unify_and(rhs_certainty))
+        })
+    }
+
+    fn consider_assumption(
+        ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+        assumption: ty::Predicate<'tcx>,
+    ) -> QueryResult<'tcx> {
+        if let Some(poly_projection_pred) = assumption.to_opt_poly_projection_pred() {
+            ecx.infcx.probe(|_| {
+                let assumption_projection_pred =
+                    ecx.infcx.instantiate_bound_vars_with_infer(poly_projection_pred);
+                let nested_goals = ecx.infcx.eq(
+                    goal.param_env,
+                    goal.predicate.projection_ty,
+                    assumption_projection_pred.projection_ty,
+                )?;
+                let subst_certainty = ecx.evaluate_all(nested_goals)?;
+
+                // The term of our goal should be fully unconstrained, so this should never fail.
+                //
+                // It can however be ambiguous when the resolved type is a projection.
+                let nested_goals = ecx
+                    .infcx
+                    .eq(goal.param_env, goal.predicate.term, assumption_projection_pred.term)
+                    .expect("failed to unify with unconstrained term");
+                let rhs_certainty = ecx
+                    .evaluate_all(nested_goals)
+                    .expect("failed to unify with unconstrained term");
+
+                ecx.make_canonical_response(subst_certainty.unify_and(rhs_certainty))
+            })
+        } else {
+            Err(NoSolution)
+        }
+    }
+
+    fn consider_auto_trait_candidate(
+        _ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+    ) -> QueryResult<'tcx> {
+        bug!("auto traits do not have associated types: {:?}", goal);
+    }
+
+    fn consider_trait_alias_candidate(
+        _ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+    ) -> QueryResult<'tcx> {
+        bug!("trait aliases do not have associated types: {:?}", goal);
+    }
+
+    fn consider_builtin_sized_candidate(
+        _ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+    ) -> QueryResult<'tcx> {
+        bug!("`Sized` does not have an associated type: {:?}", goal);
+    }
+
+    fn consider_builtin_copy_clone_candidate(
+        _ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+    ) -> QueryResult<'tcx> {
+        bug!("`Copy`/`Clone` does not have an associated type: {:?}", goal);
+    }
+
+    fn consider_builtin_pointer_sized_candidate(
+        _ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+    ) -> QueryResult<'tcx> {
+        bug!("`PointerSized` does not have an associated type: {:?}", goal);
+    }
+
+    fn consider_builtin_fn_trait_candidates(
+        ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+        goal_kind: ty::ClosureKind,
+    ) -> QueryResult<'tcx> {
+        if let Some(tupled_inputs_and_output) =
+            structural_traits::extract_tupled_inputs_and_output_from_callable(
+                ecx.tcx(),
+                goal.predicate.self_ty(),
+                goal_kind,
+            )?
+        {
+            let pred = tupled_inputs_and_output
+                .map_bound(|(inputs, output)| ty::ProjectionPredicate {
+                    projection_ty: ecx
+                        .tcx()
+                        .mk_alias_ty(goal.predicate.def_id(), [goal.predicate.self_ty(), inputs]),
+                    term: output.into(),
+                })
+                .to_predicate(ecx.tcx());
+            Self::consider_assumption(ecx, goal, pred)
+        } else {
+            ecx.make_canonical_response(Certainty::Maybe(MaybeCause::Ambiguity))
+        }
+    }
+
+    fn consider_builtin_tuple_candidate(
+        _ecx: &mut EvalCtxt<'_, 'tcx>,
+        goal: Goal<'tcx, Self>,
+    ) -> QueryResult<'tcx> {
+        bug!("`Tuple` does not have an associated type: {:?}", goal);
+    }
+}
+
+/// This behavior is also implemented in `rustc_ty_utils` and in the old `project` code.
+///
+/// FIXME: We should merge these 3 implementations as it's likely that they otherwise
+/// diverge.
+#[instrument(level = "debug", skip(infcx, param_env), ret)]
+fn fetch_eligible_assoc_item_def<'tcx>(
+    infcx: &InferCtxt<'tcx>,
+    param_env: ty::ParamEnv<'tcx>,
+    goal_trait_ref: ty::TraitRef<'tcx>,
+    trait_assoc_def_id: DefId,
+    impl_def_id: DefId,
+) -> Result<Option<LeafDef>, NoSolution> {
+    let node_item = specialization_graph::assoc_def(infcx.tcx, impl_def_id, trait_assoc_def_id)
+        .map_err(|ErrorGuaranteed { .. }| NoSolution)?;
+
+    let eligible = if node_item.is_final() {
+        // Non-specializable items are always projectable.
+        true
+    } else {
+        // Only reveal a specializable default if we're past type-checking
+        // and the obligation is monomorphic, otherwise passes such as
+        // transmute checking and polymorphic MIR optimizations could
+        // get a result which isn't correct for all monomorphizations.
+        if param_env.reveal() == Reveal::All {
+            let poly_trait_ref = infcx.resolve_vars_if_possible(goal_trait_ref);
+            !poly_trait_ref.still_further_specializable()
+        } else {
+            debug!(?node_item.item.def_id, "not eligible due to default");
+            false
+        }
+    };
+
+    if eligible { Ok(Some(node_item)) } else { Ok(None) }
+}