]> git.proxmox.com Git - mirror_qemu.git/blobdiff - exec.c
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[mirror_qemu.git] / exec.c
diff --git a/exec.c b/exec.c
index 3380836748a439ede115d665da80e5bd39ec784d..c97ef4a8da44f80a00b307779ca85d185fa93a1e 100644 (file)
--- a/exec.c
+++ b/exec.c
  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  */
 #include "qemu/osdep.h"
+#include "qapi/error.h"
 #ifndef _WIN32
-#include <sys/mman.h>
 #endif
 
-#include "qemu-common.h"
+#include "qemu/cutils.h"
 #include "cpu.h"
+#include "exec/exec-all.h"
 #include "tcg.h"
-#include "hw/hw.h"
+#include "hw/qdev-core.h"
 #if !defined(CONFIG_USER_ONLY)
 #include "hw/boards.h"
+#include "hw/xen/xen.h"
 #endif
-#include "hw/qdev.h"
 #include "sysemu/kvm.h"
 #include "sysemu/sysemu.h"
-#include "hw/xen/xen.h"
 #include "qemu/timer.h"
 #include "qemu/config-file.h"
 #include "qemu/error-report.h"
+#if defined(CONFIG_USER_ONLY)
+#include "qemu.h"
+#else /* !CONFIG_USER_ONLY */
+#include "hw/hw.h"
 #include "exec/memory.h"
+#include "exec/ioport.h"
 #include "sysemu/dma.h"
+#include "sysemu/numa.h"
+#include "sysemu/hw_accel.h"
 #include "exec/address-spaces.h"
-#if defined(CONFIG_USER_ONLY)
-#include <qemu.h>
-#else /* !CONFIG_USER_ONLY */
 #include "sysemu/xen-mapcache.h"
-#include "trace.h"
+#include "trace-root.h"
+
+#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
+#include <fcntl.h>
+#include <linux/falloc.h>
+#endif
+
 #endif
 #include "exec/cpu-all.h"
 #include "qemu/rcu_queue.h"
@@ -54,6 +64,8 @@
 #include "exec/ram_addr.h"
 #include "exec/log.h"
 
+#include "migration/vmstate.h"
+
 #include "qemu/range.h"
 #ifndef _WIN32
 #include "qemu/mmap-alloc.h"
@@ -89,6 +101,11 @@ static MemoryRegion io_mem_unassigned;
 
 #endif
 
+#ifdef TARGET_PAGE_BITS_VARY
+int target_page_bits;
+bool target_page_bits_decided;
+#endif
+
 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
 /* current CPU in the current thread. It is only valid inside
    cpu_exec() */
@@ -98,8 +115,37 @@ __thread CPUState *current_cpu;
    2 = Adaptive rate instruction counting.  */
 int use_icount;
 
+bool set_preferred_target_page_bits(int bits)
+{
+    /* The target page size is the lowest common denominator for all
+     * the CPUs in the system, so we can only make it smaller, never
+     * larger. And we can't make it smaller once we've committed to
+     * a particular size.
+     */
+#ifdef TARGET_PAGE_BITS_VARY
+    assert(bits >= TARGET_PAGE_BITS_MIN);
+    if (target_page_bits == 0 || target_page_bits > bits) {
+        if (target_page_bits_decided) {
+            return false;
+        }
+        target_page_bits = bits;
+    }
+#endif
+    return true;
+}
+
 #if !defined(CONFIG_USER_ONLY)
 
+static void finalize_target_page_bits(void)
+{
+#ifdef TARGET_PAGE_BITS_VARY
+    if (target_page_bits == 0) {
+        target_page_bits = TARGET_PAGE_BITS_MIN;
+    }
+    target_page_bits_decided = true;
+#endif
+}
+
 typedef struct PhysPageEntry PhysPageEntry;
 
 struct PhysPageEntry {
@@ -149,7 +195,7 @@ typedef struct subpage_t {
     MemoryRegion iomem;
     AddressSpace *as;
     hwaddr base;
-    uint16_t sub_section[TARGET_PAGE_SIZE];
+    uint16_t sub_section[];
 } subpage_t;
 
 #define PHYS_SECTION_UNASSIGNED 0
@@ -183,10 +229,12 @@ struct CPUAddressSpace {
 
 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
 {
+    static unsigned alloc_hint = 16;
     if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
-        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
+        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
         map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
         map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
+        alloc_hint = map->nodes_nb_alloc;
     }
 }
 
@@ -249,7 +297,7 @@ static void phys_page_set(AddressSpaceDispatch *d,
 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
  * and update our entry so we can skip it and go directly to the destination.
  */
-static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
+static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
 {
     unsigned valid_ptr = P_L2_SIZE;
     int valid = 0;
@@ -269,7 +317,7 @@ static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *com
         valid_ptr = i;
         valid++;
         if (p[i].skip) {
-            phys_page_compact(&p[i], nodes, compacted);
+            phys_page_compact(&p[i], nodes);
         }
     }
 
@@ -301,10 +349,8 @@ static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *com
 
 static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
 {
-    DECLARE_BITMAP(compacted, nodes_nb);
-
     if (d->phys_map.skip) {
-        phys_page_compact(&d->phys_map, d->map.nodes, compacted);
+        phys_page_compact(&d->phys_map, d->map.nodes);
     }
 }
 
@@ -314,9 +360,9 @@ static inline bool section_covers_addr(const MemoryRegionSection *section,
     /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
      * the section must cover the entire address space.
      */
-    return section->size.hi ||
+    return int128_gethi(section->size) ||
            range_covers_byte(section->offset_within_address_space,
-                             section->size.lo, addr);
+                             int128_getlo(section->size), addr);
 }
 
 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
@@ -410,6 +456,39 @@ address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *x
     return section;
 }
 
+/* Called from RCU critical section */
+IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
+                                            bool is_write)
+{
+    IOMMUTLBEntry iotlb = {0};
+    MemoryRegionSection *section;
+    MemoryRegion *mr;
+
+    for (;;) {
+        AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
+        section = address_space_lookup_region(d, addr, false);
+        addr = addr - section->offset_within_address_space
+               + section->offset_within_region;
+        mr = section->mr;
+
+        if (!mr->iommu_ops) {
+            break;
+        }
+
+        iotlb = mr->iommu_ops->translate(mr, addr, is_write);
+        if (!(iotlb.perm & (1 << is_write))) {
+            iotlb.target_as = NULL;
+            break;
+        }
+
+        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
+                | (addr & iotlb.addr_mask));
+        as = iotlb.target_as;
+    }
+
+    return iotlb;
+}
+
 /* Called from RCU critical section */
 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
                                       hwaddr *xlat, hwaddr *plen,
@@ -455,7 +534,7 @@ address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
                                   hwaddr *xlat, hwaddr *plen)
 {
     MemoryRegionSection *section;
-    AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
+    AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
 
     section = address_space_translate_internal(d, addr, xlat, plen, false);
 
@@ -473,7 +552,7 @@ static int cpu_common_post_load(void *opaque, int version_id)
     /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
        version_id is increased. */
     cpu->interrupt_request &= ~0x01;
-    tlb_flush(cpu, 1);
+    tlb_flush(cpu);
 
     return 0;
 }
@@ -592,57 +671,22 @@ AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
 }
 #endif
 
-#ifndef CONFIG_USER_ONLY
-static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS);
-
-static int cpu_get_free_index(Error **errp)
+void cpu_exec_unrealizefn(CPUState *cpu)
 {
-    int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS);
-
-    if (cpu >= MAX_CPUMASK_BITS) {
-        error_setg(errp, "Trying to use more CPUs than max of %d",
-                   MAX_CPUMASK_BITS);
-        return -1;
-    }
+    CPUClass *cc = CPU_GET_CLASS(cpu);
 
-    bitmap_set(cpu_index_map, cpu, 1);
-    return cpu;
-}
+    cpu_list_remove(cpu);
 
-void cpu_exec_exit(CPUState *cpu)
-{
-    if (cpu->cpu_index == -1) {
-        /* cpu_index was never allocated by this @cpu or was already freed. */
-        return;
+    if (cc->vmsd != NULL) {
+        vmstate_unregister(NULL, cc->vmsd, cpu);
     }
-
-    bitmap_clear(cpu_index_map, cpu->cpu_index, 1);
-    cpu->cpu_index = -1;
-}
-#else
-
-static int cpu_get_free_index(Error **errp)
-{
-    CPUState *some_cpu;
-    int cpu_index = 0;
-
-    CPU_FOREACH(some_cpu) {
-        cpu_index++;
+    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
+        vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
     }
-    return cpu_index;
-}
-
-void cpu_exec_exit(CPUState *cpu)
-{
 }
-#endif
 
-void cpu_exec_init(CPUState *cpu, Error **errp)
+void cpu_exec_initfn(CPUState *cpu)
 {
-    CPUClass *cc = CPU_GET_CLASS(cpu);
-    int cpu_index;
-    Error *local_err = NULL;
-
     cpu->as = NULL;
     cpu->num_ases = 0;
 
@@ -663,47 +707,33 @@ void cpu_exec_init(CPUState *cpu, Error **errp)
     cpu->memory = system_memory;
     object_ref(OBJECT(cpu->memory));
 #endif
+}
 
-#if defined(CONFIG_USER_ONLY)
-    cpu_list_lock();
-#endif
-    cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err);
-    if (local_err) {
-        error_propagate(errp, local_err);
-#if defined(CONFIG_USER_ONLY)
-        cpu_list_unlock();
-#endif
-        return;
-    }
-    QTAILQ_INSERT_TAIL(&cpus, cpu, node);
-#if defined(CONFIG_USER_ONLY)
-    cpu_list_unlock();
-#endif
+void cpu_exec_realizefn(CPUState *cpu, Error **errp)
+{
+    CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
+
+    cpu_list_add(cpu);
+
+#ifndef CONFIG_USER_ONLY
     if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
-        vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
+        vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
     }
     if (cc->vmsd != NULL) {
-        vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
+        vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
     }
+#endif
 }
 
-#if defined(CONFIG_USER_ONLY)
-static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
-{
-    tb_invalidate_phys_page_range(pc, pc + 1, 0);
-}
-#else
 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
 {
-    MemTxAttrs attrs;
-    hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
-    int asidx = cpu_asidx_from_attrs(cpu, attrs);
-    if (phys != -1) {
-        tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
-                                phys | (pc & ~TARGET_PAGE_MASK));
-    }
+    /* Flush the whole TB as this will not have race conditions
+     * even if we don't have proper locking yet.
+     * Ideally we would just invalidate the TBs for the
+     * specified PC.
+     */
+    tb_flush(cpu);
 }
-#endif
 
 #if defined(CONFIG_USER_ONLY)
 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
@@ -909,11 +939,13 @@ void cpu_abort(CPUState *cpu, const char *fmt, ...)
     fprintf(stderr, "\n");
     cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
     if (qemu_log_separate()) {
+        qemu_log_lock();
         qemu_log("qemu: fatal: ");
         qemu_log_vprintf(fmt, ap2);
         qemu_log("\n");
         log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
         qemu_log_flush();
+        qemu_log_unlock();
         qemu_log_close();
     }
     va_end(ap2);
@@ -1042,8 +1074,7 @@ hwaddr memory_region_section_get_iotlb(CPUState *cpu,
 
     if (memory_region_is_ram(section->mr)) {
         /* Normal RAM.  */
-        iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
-            + xlat;
+        iotlb = memory_region_get_ram_addr(section->mr) + xlat;
         if (!section->readonly) {
             iotlb |= PHYS_SECTION_NOTDIRTY;
         } else {
@@ -1228,25 +1259,94 @@ void qemu_mutex_unlock_ramlist(void)
 }
 
 #ifdef __linux__
+/*
+ * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
+ * may or may not name the same files / on the same filesystem now as
+ * when we actually open and map them.  Iterate over the file
+ * descriptors instead, and use qemu_fd_getpagesize().
+ */
+static int find_max_supported_pagesize(Object *obj, void *opaque)
+{
+    char *mem_path;
+    long *hpsize_min = opaque;
 
-#include <sys/vfs.h>
+    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
+        mem_path = object_property_get_str(obj, "mem-path", NULL);
+        if (mem_path) {
+            long hpsize = qemu_mempath_getpagesize(mem_path);
+            if (hpsize < *hpsize_min) {
+                *hpsize_min = hpsize;
+            }
+        } else {
+            *hpsize_min = getpagesize();
+        }
+    }
 
-#define HUGETLBFS_MAGIC       0x958458f6
+    return 0;
+}
 
-static long gethugepagesize(int fd)
+long qemu_getrampagesize(void)
 {
-    struct statfs fs;
-    int ret;
+    long hpsize = LONG_MAX;
+    long mainrampagesize;
+    Object *memdev_root;
 
-    do {
-        ret = fstatfs(fd, &fs);
-    } while (ret != 0 && errno == EINTR);
+    if (mem_path) {
+        mainrampagesize = qemu_mempath_getpagesize(mem_path);
+    } else {
+        mainrampagesize = getpagesize();
+    }
+
+    /* it's possible we have memory-backend objects with
+     * hugepage-backed RAM. these may get mapped into system
+     * address space via -numa parameters or memory hotplug
+     * hooks. we want to take these into account, but we
+     * also want to make sure these supported hugepage
+     * sizes are applicable across the entire range of memory
+     * we may boot from, so we take the min across all
+     * backends, and assume normal pages in cases where a
+     * backend isn't backed by hugepages.
+     */
+    memdev_root = object_resolve_path("/objects", NULL);
+    if (memdev_root) {
+        object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
+    }
+    if (hpsize == LONG_MAX) {
+        /* No additional memory regions found ==> Report main RAM page size */
+        return mainrampagesize;
+    }
 
-    if (ret != 0) {
-        return -1;
+    /* If NUMA is disabled or the NUMA nodes are not backed with a
+     * memory-backend, then there is at least one node using "normal" RAM,
+     * so if its page size is smaller we have got to report that size instead.
+     */
+    if (hpsize > mainrampagesize &&
+        (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
+        static bool warned;
+        if (!warned) {
+            error_report("Huge page support disabled (n/a for main memory).");
+            warned = true;
+        }
+        return mainrampagesize;
     }
 
-    return fs.f_bsize;
+    return hpsize;
+}
+#else
+long qemu_getrampagesize(void)
+{
+    return getpagesize();
+}
+#endif
+
+#ifdef __linux__
+static int64_t get_file_size(int fd)
+{
+    int64_t size = lseek(fd, 0, SEEK_END);
+    if (size < 0) {
+        return -errno;
+    }
+    return size;
 }
 
 static void *file_ram_alloc(RAMBlock *block,
@@ -1258,9 +1358,9 @@ static void *file_ram_alloc(RAMBlock *block,
     char *filename;
     char *sanitized_name;
     char *c;
-    void *area;
-    int fd;
-    int64_t hpagesize;
+    void *area = MAP_FAILED;
+    int fd = -1;
+    int64_t file_size;
 
     if (kvm_enabled() && !kvm_has_sync_mmu()) {
         error_setg(errp,
@@ -1315,53 +1415,78 @@ static void *file_ram_alloc(RAMBlock *block,
          */
     }
 
-    hpagesize = gethugepagesize(fd);
-    if (hpagesize < 0) {
-        error_setg_errno(errp, errno, "can't get page size for %s",
-                         path);
-        goto error;
+    block->page_size = qemu_fd_getpagesize(fd);
+    block->mr->align = block->page_size;
+#if defined(__s390x__)
+    if (kvm_enabled()) {
+        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
     }
-    block->mr->align = hpagesize;
+#endif
+
+    file_size = get_file_size(fd);
 
-    if (memory < hpagesize) {
+    if (memory < block->page_size) {
         error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
-                   "or larger than page size 0x%" PRIx64,
-                   memory, hpagesize);
+                   "or larger than page size 0x%zx",
+                   memory, block->page_size);
         goto error;
     }
 
-    memory = ROUND_UP(memory, hpagesize);
+    if (file_size > 0 && file_size < memory) {
+        error_setg(errp, "backing store %s size 0x%" PRIx64
+                   " does not match 'size' option 0x" RAM_ADDR_FMT,
+                   path, file_size, memory);
+        goto error;
+    }
+
+    memory = ROUND_UP(memory, block->page_size);
 
     /*
      * ftruncate is not supported by hugetlbfs in older
      * hosts, so don't bother bailing out on errors.
      * If anything goes wrong with it under other filesystems,
      * mmap will fail.
+     *
+     * Do not truncate the non-empty backend file to avoid corrupting
+     * the existing data in the file. Disabling shrinking is not
+     * enough. For example, the current vNVDIMM implementation stores
+     * the guest NVDIMM labels at the end of the backend file. If the
+     * backend file is later extended, QEMU will not be able to find
+     * those labels. Therefore, extending the non-empty backend file
+     * is disabled as well.
      */
-    if (ftruncate(fd, memory)) {
+    if (!file_size && ftruncate(fd, memory)) {
         perror("ftruncate");
     }
 
-    area = qemu_ram_mmap(fd, memory, hpagesize, block->flags & RAM_SHARED);
+    area = qemu_ram_mmap(fd, memory, block->mr->align,
+                         block->flags & RAM_SHARED);
     if (area == MAP_FAILED) {
         error_setg_errno(errp, errno,
                          "unable to map backing store for guest RAM");
-        close(fd);
         goto error;
     }
 
     if (mem_prealloc) {
-        os_mem_prealloc(fd, area, memory);
+        os_mem_prealloc(fd, area, memory, smp_cpus, errp);
+        if (errp && *errp) {
+            goto error;
+        }
     }
 
     block->fd = fd;
     return area;
 
 error:
+    if (area != MAP_FAILED) {
+        qemu_ram_munmap(area, memory);
+    }
     if (unlink_on_error) {
         unlink(path);
     }
-    close(fd);
+    if (fd != -1) {
+        close(fd);
+    }
     return NULL;
 }
 #endif
@@ -1431,34 +1556,21 @@ static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
     }
 }
 
-/* Called within an RCU critical section, or while the ramlist lock
- * is held.
- */
-static RAMBlock *find_ram_block(ram_addr_t addr)
+const char *qemu_ram_get_idstr(RAMBlock *rb)
 {
-    RAMBlock *block;
-
-    QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
-        if (block->offset == addr) {
-            return block;
-        }
-    }
-
-    return NULL;
+    return rb->idstr;
 }
 
-const char *qemu_ram_get_idstr(RAMBlock *rb)
+bool qemu_ram_is_shared(RAMBlock *rb)
 {
-    return rb->idstr;
+    return rb->flags & RAM_SHARED;
 }
 
 /* Called with iothread lock held.  */
-void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
+void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
 {
-    RAMBlock *new_block, *block;
+    RAMBlock *block;
 
-    rcu_read_lock();
-    new_block = find_ram_block(addr);
     assert(new_block);
     assert(!new_block->idstr[0]);
 
@@ -1471,8 +1583,10 @@ void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
     }
     pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
 
+    rcu_read_lock();
     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
-        if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
+        if (block != new_block &&
+            !strcmp(block->idstr, new_block->idstr)) {
             fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
                     new_block->idstr);
             abort();
@@ -1482,21 +1596,33 @@ void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
 }
 
 /* Called with iothread lock held.  */
-void qemu_ram_unset_idstr(ram_addr_t addr)
+void qemu_ram_unset_idstr(RAMBlock *block)
 {
-    RAMBlock *block;
-
     /* FIXME: arch_init.c assumes that this is not called throughout
      * migration.  Ignore the problem since hot-unplug during migration
      * does not work anyway.
      */
-
-    rcu_read_lock();
-    block = find_ram_block(addr);
     if (block) {
         memset(block->idstr, 0, sizeof(block->idstr));
     }
-    rcu_read_unlock();
+}
+
+size_t qemu_ram_pagesize(RAMBlock *rb)
+{
+    return rb->page_size;
+}
+
+/* Returns the largest size of page in use */
+size_t qemu_ram_pagesize_largest(void)
+{
+    RAMBlock *block;
+    size_t largest = 0;
+
+    QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
+        largest = MAX(largest, qemu_ram_pagesize(block));
+    }
+
+    return largest;
 }
 
 static int memory_try_enable_merging(void *addr, size_t len)
@@ -1516,10 +1642,8 @@ static int memory_try_enable_merging(void *addr, size_t len)
  * resize callback to update device state and/or add assertions to detect
  * misuse, if necessary.
  */
-int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp)
+int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
 {
-    RAMBlock *block = find_ram_block(base);
-
     assert(block);
 
     newsize = HOST_PAGE_ALIGN(newsize);
@@ -1615,6 +1739,7 @@ static void ram_block_add(RAMBlock *new_block, Error **errp)
             if (err) {
                 error_propagate(errp, err);
                 qemu_mutex_unlock_ramlist();
+                return;
             }
         } else {
             new_block->host = phys_mem_alloc(new_block->max_length,
@@ -1624,6 +1749,7 @@ static void ram_block_add(RAMBlock *new_block, Error **errp)
                                  "cannot set up guest memory '%s'",
                                  memory_region_name(new_block->mr));
                 qemu_mutex_unlock_ramlist();
+                return;
             }
             memory_try_enable_merging(new_block->host, new_block->max_length);
         }
@@ -1666,10 +1792,9 @@ static void ram_block_add(RAMBlock *new_block, Error **errp)
     if (new_block->host) {
         qemu_ram_setup_dump(new_block->host, new_block->max_length);
         qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
+        /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
         qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
-        if (kvm_enabled()) {
-            kvm_setup_guest_memory(new_block->host, new_block->max_length);
-        }
+        ram_block_notify_add(new_block->host, new_block->max_length);
     }
 }
 
@@ -1740,6 +1865,7 @@ RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
     new_block->max_length = max_size;
     assert(max_size >= size);
     new_block->fd = -1;
+    new_block->page_size = getpagesize();
     new_block->host = host;
     if (host) {
         new_block->flags |= RAM_PREALLOC;
@@ -1795,6 +1921,14 @@ static void reclaim_ramblock(RAMBlock *block)
 
 void qemu_ram_free(RAMBlock *block)
 {
+    if (!block) {
+        return;
+    }
+
+    if (block->host) {
+        ram_block_notify_remove(block->host, block->max_length);
+    }
+
     qemu_mutex_lock_ramlist();
     QLIST_REMOVE_RCU(block, next);
     ram_list.mru_block = NULL;
@@ -1854,40 +1988,6 @@ void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
 }
 #endif /* !_WIN32 */
 
-int qemu_get_ram_fd(ram_addr_t addr)
-{
-    RAMBlock *block;
-    int fd;
-
-    rcu_read_lock();
-    block = qemu_get_ram_block(addr);
-    fd = block->fd;
-    rcu_read_unlock();
-    return fd;
-}
-
-void qemu_set_ram_fd(ram_addr_t addr, int fd)
-{
-    RAMBlock *block;
-
-    rcu_read_lock();
-    block = qemu_get_ram_block(addr);
-    block->fd = fd;
-    rcu_read_unlock();
-}
-
-void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
-{
-    RAMBlock *block;
-    void *ptr;
-
-    rcu_read_lock();
-    block = qemu_get_ram_block(addr);
-    ptr = ramblock_ptr(block, 0);
-    rcu_read_unlock();
-    return ptr;
-}
-
 /* Return a host pointer to ram allocated with qemu_ram_alloc.
  * This should not be used for general purpose DMA.  Use address_space_map
  * or address_space_rw instead. For local memory (e.g. video ram) that the
@@ -1895,12 +1995,13 @@ void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
  *
  * Called within RCU critical section.
  */
-void *qemu_get_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
+void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
 {
     RAMBlock *block = ram_block;
 
     if (block == NULL) {
         block = qemu_get_ram_block(addr);
+        addr -= block->offset;
     }
 
     if (xen_enabled() && block->host == NULL) {
@@ -1914,10 +2015,10 @@ void *qemu_get_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
 
         block->host = xen_map_cache(block->offset, block->max_length, 1);
     }
-    return ramblock_ptr(block, addr - block->offset);
+    return ramblock_ptr(block, addr);
 }
 
-/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
+/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
  * but takes a size argument.
  *
  * Called within RCU critical section.
@@ -1926,16 +2027,15 @@ static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
                                  hwaddr *size)
 {
     RAMBlock *block = ram_block;
-    ram_addr_t offset_inside_block;
     if (*size == 0) {
         return NULL;
     }
 
     if (block == NULL) {
         block = qemu_get_ram_block(addr);
+        addr -= block->offset;
     }
-    offset_inside_block = addr - block->offset;
-    *size = MIN(*size, block->max_length - offset_inside_block);
+    *size = MIN(*size, block->max_length - addr);
 
     if (xen_enabled() && block->host == NULL) {
         /* We need to check if the requested address is in the RAM
@@ -1949,7 +2049,7 @@ static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
         block->host = xen_map_cache(block->offset, block->max_length, 1);
     }
 
-    return ramblock_ptr(block, offset_inside_block);
+    return ramblock_ptr(block, addr);
 }
 
 /*
@@ -1970,18 +2070,18 @@ static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
  * ram_addr_t.
  */
 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
-                                   ram_addr_t *ram_addr,
                                    ram_addr_t *offset)
 {
     RAMBlock *block;
     uint8_t *host = ptr;
 
     if (xen_enabled()) {
+        ram_addr_t ram_addr;
         rcu_read_lock();
-        *ram_addr = xen_ram_addr_from_mapcache(ptr);
-        block = qemu_get_ram_block(*ram_addr);
+        ram_addr = xen_ram_addr_from_mapcache(ptr);
+        block = qemu_get_ram_block(ram_addr);
         if (block) {
-            *offset = (host - block->host);
+            *offset = ram_addr - block->offset;
         }
         rcu_read_unlock();
         return block;
@@ -2011,7 +2111,6 @@ found:
     if (round_offset) {
         *offset &= TARGET_PAGE_MASK;
     }
-    *ram_addr = block->offset + *offset;
     rcu_read_unlock();
     return block;
 }
@@ -2038,40 +2137,48 @@ RAMBlock *qemu_ram_block_by_name(const char *name)
 
 /* Some of the softmmu routines need to translate from a host pointer
    (typically a TLB entry) back to a ram offset.  */
-MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
+ram_addr_t qemu_ram_addr_from_host(void *ptr)
 {
     RAMBlock *block;
-    ram_addr_t offset; /* Not used */
-
-    block = qemu_ram_block_from_host(ptr, false, ram_addr, &offset);
+    ram_addr_t offset;
 
+    block = qemu_ram_block_from_host(ptr, false, &offset);
     if (!block) {
-        return NULL;
+        return RAM_ADDR_INVALID;
     }
 
-    return block->mr;
+    return block->offset + offset;
 }
 
 /* Called within RCU critical section.  */
 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
                                uint64_t val, unsigned size)
 {
+    bool locked = false;
+
     if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
+        locked = true;
+        tb_lock();
         tb_invalidate_phys_page_fast(ram_addr, size);
     }
     switch (size) {
     case 1:
-        stb_p(qemu_get_ram_ptr(NULL, ram_addr), val);
+        stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
         break;
     case 2:
-        stw_p(qemu_get_ram_ptr(NULL, ram_addr), val);
+        stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
         break;
     case 4:
-        stl_p(qemu_get_ram_ptr(NULL, ram_addr), val);
+        stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
         break;
     default:
         abort();
     }
+
+    if (locked) {
+        tb_unlock();
+    }
+
     /* Set both VGA and migration bits for simplicity and to remove
      * the notdirty callback faster.
      */
@@ -2105,7 +2212,7 @@ static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
     target_ulong pc, cs_base;
     target_ulong vaddr;
     CPUWatchpoint *wp;
-    int cpu_flags;
+    uint32_t cpu_flags;
 
     if (cpu->watchpoint_hit) {
         /* We re-entered the check after replacing the TB. Now raise
@@ -2115,6 +2222,7 @@ static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
         return;
     }
     vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
+    vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
     QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
         if (cpu_watchpoint_address_matches(wp, vaddr, len)
             && (wp->flags & flags)) {
@@ -2132,6 +2240,12 @@ static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
                     continue;
                 }
                 cpu->watchpoint_hit = wp;
+
+                /* Both tb_lock and iothread_mutex will be reset when
+                 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
+                 * back into the cpu_exec main loop.
+                 */
+                tb_lock();
                 tb_check_watchpoint(cpu);
                 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
                     cpu->exception_index = EXCP_DEBUG;
@@ -2139,7 +2253,7 @@ static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
                 } else {
                     cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
                     tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
-                    cpu_resume_from_signal(cpu, NULL);
+                    cpu_loop_exit_noexc(cpu);
                 }
             }
         } else {
@@ -2319,8 +2433,7 @@ static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
 {
     subpage_t *mmio;
 
-    mmio = g_malloc0(sizeof(subpage_t));
-
+    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
     mmio->as = as;
     mmio->base = base;
     memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
@@ -2365,8 +2478,14 @@ static void io_mem_init(void)
     memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
     memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
                           NULL, UINT64_MAX);
+
+    /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
+     * which can be called without the iothread mutex.
+     */
     memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
                           NULL, UINT64_MAX);
+    memory_region_clear_global_locking(&io_mem_notdirty);
+
     memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
                           NULL, UINT64_MAX);
 }
@@ -2425,8 +2544,8 @@ static void tcg_commit(MemoryListener *listener)
      * may have split the RCU critical section.
      */
     d = atomic_rcu_read(&cpuas->as->dispatch);
-    cpuas->memory_dispatch = d;
-    tlb_flush(cpuas->cpu, 1);
+    atomic_rcu_set(&cpuas->memory_dispatch, d);
+    tlb_flush(cpuas->cpu);
 }
 
 void address_space_init_dispatch(AddressSpace *as)
@@ -2529,6 +2648,8 @@ static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
                                      hwaddr length)
 {
     uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
+    addr += memory_region_get_ram_addr(mr);
+
     /* No early return if dirty_log_mask is or becomes 0, because
      * cpu_physical_memory_set_dirty_range will still call
      * xen_modified_memory.
@@ -2538,7 +2659,9 @@ static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
             cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
     }
     if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
+        tb_lock();
         tb_invalidate_phys_range(addr, addr + length);
+        tb_unlock();
         dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
     }
     cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
@@ -2621,7 +2744,7 @@ static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
                 break;
             case 4:
                 /* 32 bit write access */
-                val = ldl_p(buf);
+                val = (uint32_t)ldl_p(buf);
                 result |= memory_region_dispatch_write(mr, addr1, val, 4,
                                                        attrs);
                 break;
@@ -2641,9 +2764,8 @@ static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
                 abort();
             }
         } else {
-            addr1 += memory_region_get_ram_addr(mr);
             /* RAM case */
-            ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
+            ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
             memcpy(ptr, buf, l);
             invalidate_and_set_dirty(mr, addr1, l);
         }
@@ -2734,8 +2856,7 @@ MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
             }
         } else {
             /* RAM case */
-            ptr = qemu_get_ram_ptr(mr->ram_block,
-                                   memory_region_get_ram_addr(mr) + addr1);
+            ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
             memcpy(buf, ptr, l);
         }
 
@@ -2818,9 +2939,8 @@ static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
               memory_region_is_romd(mr))) {
             l = memory_access_size(mr, l, addr1);
         } else {
-            addr1 += memory_region_get_ram_addr(mr);
             /* ROM/RAM case */
-            ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
+            ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
             switch (type) {
             case WRITE_DATA:
                 memcpy(ptr, buf, l);
@@ -2913,6 +3033,14 @@ void cpu_register_map_client(QEMUBH *bh)
 void cpu_exec_init_all(void)
 {
     qemu_mutex_init(&ram_list.mutex);
+    /* The data structures we set up here depend on knowing the page size,
+     * so no more changes can be made after this point.
+     * In an ideal world, nothing we did before we had finished the
+     * machine setup would care about the target page size, and we could
+     * do this much later, rather than requiring board models to state
+     * up front what their requirements are.
+     */
+    finalize_target_page_bits();
     io_mem_init();
     memory_map_init();
     qemu_mutex_init(&map_client_list_lock);
@@ -2951,6 +3079,7 @@ bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_
         if (!memory_access_is_direct(mr, is_write)) {
             l = memory_access_size(mr, l, addr);
             if (!memory_region_access_valid(mr, xlat, l, is_write)) {
+                rcu_read_unlock();
                 return false;
             }
         }
@@ -2962,6 +3091,31 @@ bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_
     return true;
 }
 
+static hwaddr
+address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len,
+                                 MemoryRegion *mr, hwaddr base, hwaddr len,
+                                 bool is_write)
+{
+    hwaddr done = 0;
+    hwaddr xlat;
+    MemoryRegion *this_mr;
+
+    for (;;) {
+        target_len -= len;
+        addr += len;
+        done += len;
+        if (target_len == 0) {
+            return done;
+        }
+
+        len = target_len;
+        this_mr = address_space_translate(as, addr, &xlat, &len, is_write);
+        if (this_mr != mr || xlat != base + done) {
+            return done;
+        }
+    }
+}
+
 /* Map a physical memory region into a host virtual address.
  * May map a subset of the requested range, given by and returned in *plen.
  * May return NULL if resources needed to perform the mapping are exhausted.
@@ -2975,10 +3129,8 @@ void *address_space_map(AddressSpace *as,
                         bool is_write)
 {
     hwaddr len = *plen;
-    hwaddr done = 0;
-    hwaddr l, xlat, base;
-    MemoryRegion *mr, *this_mr;
-    ram_addr_t raddr;
+    hwaddr l, xlat;
+    MemoryRegion *mr;
     void *ptr;
 
     if (len == 0) {
@@ -3012,27 +3164,10 @@ void *address_space_map(AddressSpace *as,
         return bounce.buffer;
     }
 
-    base = xlat;
-    raddr = memory_region_get_ram_addr(mr);
-
-    for (;;) {
-        len -= l;
-        addr += l;
-        done += l;
-        if (len == 0) {
-            break;
-        }
-
-        l = len;
-        this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
-        if (this_mr != mr || xlat != base + done) {
-            break;
-        }
-    }
 
     memory_region_ref(mr);
-    *plen = done;
-    ptr = qemu_ram_ptr_length(mr->ram_block, raddr + base, plen);
+    *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
+    ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen);
     rcu_read_unlock();
 
     return ptr;
@@ -3049,7 +3184,7 @@ void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
         MemoryRegion *mr;
         ram_addr_t addr1;
 
-        mr = qemu_ram_addr_from_host(buffer, &addr1);
+        mr = memory_region_from_host(buffer, &addr1);
         assert(mr != NULL);
         if (is_write) {
             invalidate_and_set_dirty(mr, addr1, access_len);
@@ -3084,608 +3219,51 @@ void cpu_physical_memory_unmap(void *buffer, hwaddr len,
     return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
 }
 
-/* warning: addr must be aligned */
-static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
-                                                  MemTxAttrs attrs,
-                                                  MemTxResult *result,
-                                                  enum device_endian endian)
-{
-    uint8_t *ptr;
-    uint64_t val;
-    MemoryRegion *mr;
-    hwaddr l = 4;
-    hwaddr addr1;
-    MemTxResult r;
-    bool release_lock = false;
+#define ARG1_DECL                AddressSpace *as
+#define ARG1                     as
+#define SUFFIX
+#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
+#define IS_DIRECT(mr, is_write)  memory_access_is_direct(mr, is_write)
+#define MAP_RAM(mr, ofs)         qemu_map_ram_ptr((mr)->ram_block, ofs)
+#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
+#define RCU_READ_LOCK(...)       rcu_read_lock()
+#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
+#include "memory_ldst.inc.c"
 
-    rcu_read_lock();
-    mr = address_space_translate(as, addr, &addr1, &l, false);
-    if (l < 4 || !memory_access_is_direct(mr, false)) {
-        release_lock |= prepare_mmio_access(mr);
+int64_t address_space_cache_init(MemoryRegionCache *cache,
+                                 AddressSpace *as,
+                                 hwaddr addr,
+                                 hwaddr len,
+                                 bool is_write)
+{
+    cache->len = len;
+    cache->as = as;
+    cache->xlat = addr;
+    return len;
+}
 
-        /* I/O case */
-        r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
-#if defined(TARGET_WORDS_BIGENDIAN)
-        if (endian == DEVICE_LITTLE_ENDIAN) {
-            val = bswap32(val);
-        }
-#else
-        if (endian == DEVICE_BIG_ENDIAN) {
-            val = bswap32(val);
-        }
-#endif
-    } else {
-        /* RAM case */
-        ptr = qemu_get_ram_ptr(mr->ram_block,
-                               (memory_region_get_ram_addr(mr)
-                                & TARGET_PAGE_MASK)
-                               + addr1);
-        switch (endian) {
-        case DEVICE_LITTLE_ENDIAN:
-            val = ldl_le_p(ptr);
-            break;
-        case DEVICE_BIG_ENDIAN:
-            val = ldl_be_p(ptr);
-            break;
-        default:
-            val = ldl_p(ptr);
-            break;
-        }
-        r = MEMTX_OK;
-    }
-    if (result) {
-        *result = r;
-    }
-    if (release_lock) {
-        qemu_mutex_unlock_iothread();
-    }
-    rcu_read_unlock();
-    return val;
-}
-
-uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
-                           MemTxAttrs attrs, MemTxResult *result)
-{
-    return address_space_ldl_internal(as, addr, attrs, result,
-                                      DEVICE_NATIVE_ENDIAN);
-}
-
-uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
-                              MemTxAttrs attrs, MemTxResult *result)
-{
-    return address_space_ldl_internal(as, addr, attrs, result,
-                                      DEVICE_LITTLE_ENDIAN);
-}
-
-uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
-                              MemTxAttrs attrs, MemTxResult *result)
-{
-    return address_space_ldl_internal(as, addr, attrs, result,
-                                      DEVICE_BIG_ENDIAN);
-}
-
-uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
-{
-    return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
-{
-    return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
-{
-    return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-/* warning: addr must be aligned */
-static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
-                                                  MemTxAttrs attrs,
-                                                  MemTxResult *result,
-                                                  enum device_endian endian)
-{
-    uint8_t *ptr;
-    uint64_t val;
-    MemoryRegion *mr;
-    hwaddr l = 8;
-    hwaddr addr1;
-    MemTxResult r;
-    bool release_lock = false;
-
-    rcu_read_lock();
-    mr = address_space_translate(as, addr, &addr1, &l,
-                                 false);
-    if (l < 8 || !memory_access_is_direct(mr, false)) {
-        release_lock |= prepare_mmio_access(mr);
-
-        /* I/O case */
-        r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
-#if defined(TARGET_WORDS_BIGENDIAN)
-        if (endian == DEVICE_LITTLE_ENDIAN) {
-            val = bswap64(val);
-        }
-#else
-        if (endian == DEVICE_BIG_ENDIAN) {
-            val = bswap64(val);
-        }
-#endif
-    } else {
-        /* RAM case */
-        ptr = qemu_get_ram_ptr(mr->ram_block,
-                               (memory_region_get_ram_addr(mr)
-                                & TARGET_PAGE_MASK)
-                               + addr1);
-        switch (endian) {
-        case DEVICE_LITTLE_ENDIAN:
-            val = ldq_le_p(ptr);
-            break;
-        case DEVICE_BIG_ENDIAN:
-            val = ldq_be_p(ptr);
-            break;
-        default:
-            val = ldq_p(ptr);
-            break;
-        }
-        r = MEMTX_OK;
-    }
-    if (result) {
-        *result = r;
-    }
-    if (release_lock) {
-        qemu_mutex_unlock_iothread();
-    }
-    rcu_read_unlock();
-    return val;
-}
-
-uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
-                           MemTxAttrs attrs, MemTxResult *result)
-{
-    return address_space_ldq_internal(as, addr, attrs, result,
-                                      DEVICE_NATIVE_ENDIAN);
-}
-
-uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
-                           MemTxAttrs attrs, MemTxResult *result)
+void address_space_cache_invalidate(MemoryRegionCache *cache,
+                                    hwaddr addr,
+                                    hwaddr access_len)
 {
-    return address_space_ldq_internal(as, addr, attrs, result,
-                                      DEVICE_LITTLE_ENDIAN);
 }
 
-uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
-                           MemTxAttrs attrs, MemTxResult *result)
+void address_space_cache_destroy(MemoryRegionCache *cache)
 {
-    return address_space_ldq_internal(as, addr, attrs, result,
-                                      DEVICE_BIG_ENDIAN);
+    cache->as = NULL;
 }
 
-uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
-{
-    return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
-{
-    return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
-{
-    return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-/* XXX: optimize */
-uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
-                            MemTxAttrs attrs, MemTxResult *result)
-{
-    uint8_t val;
-    MemTxResult r;
-
-    r = address_space_rw(as, addr, attrs, &val, 1, 0);
-    if (result) {
-        *result = r;
-    }
-    return val;
-}
-
-uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
-{
-    return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-/* warning: addr must be aligned */
-static inline uint32_t address_space_lduw_internal(AddressSpace *as,
-                                                   hwaddr addr,
-                                                   MemTxAttrs attrs,
-                                                   MemTxResult *result,
-                                                   enum device_endian endian)
-{
-    uint8_t *ptr;
-    uint64_t val;
-    MemoryRegion *mr;
-    hwaddr l = 2;
-    hwaddr addr1;
-    MemTxResult r;
-    bool release_lock = false;
-
-    rcu_read_lock();
-    mr = address_space_translate(as, addr, &addr1, &l,
-                                 false);
-    if (l < 2 || !memory_access_is_direct(mr, false)) {
-        release_lock |= prepare_mmio_access(mr);
-
-        /* I/O case */
-        r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
-#if defined(TARGET_WORDS_BIGENDIAN)
-        if (endian == DEVICE_LITTLE_ENDIAN) {
-            val = bswap16(val);
-        }
-#else
-        if (endian == DEVICE_BIG_ENDIAN) {
-            val = bswap16(val);
-        }
-#endif
-    } else {
-        /* RAM case */
-        ptr = qemu_get_ram_ptr(mr->ram_block,
-                               (memory_region_get_ram_addr(mr)
-                                & TARGET_PAGE_MASK)
-                               + addr1);
-        switch (endian) {
-        case DEVICE_LITTLE_ENDIAN:
-            val = lduw_le_p(ptr);
-            break;
-        case DEVICE_BIG_ENDIAN:
-            val = lduw_be_p(ptr);
-            break;
-        default:
-            val = lduw_p(ptr);
-            break;
-        }
-        r = MEMTX_OK;
-    }
-    if (result) {
-        *result = r;
-    }
-    if (release_lock) {
-        qemu_mutex_unlock_iothread();
-    }
-    rcu_read_unlock();
-    return val;
-}
-
-uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
-                           MemTxAttrs attrs, MemTxResult *result)
-{
-    return address_space_lduw_internal(as, addr, attrs, result,
-                                       DEVICE_NATIVE_ENDIAN);
-}
-
-uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
-                           MemTxAttrs attrs, MemTxResult *result)
-{
-    return address_space_lduw_internal(as, addr, attrs, result,
-                                       DEVICE_LITTLE_ENDIAN);
-}
-
-uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
-                           MemTxAttrs attrs, MemTxResult *result)
-{
-    return address_space_lduw_internal(as, addr, attrs, result,
-                                       DEVICE_BIG_ENDIAN);
-}
-
-uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
-{
-    return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
-{
-    return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
-{
-    return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-/* warning: addr must be aligned. The ram page is not masked as dirty
-   and the code inside is not invalidated. It is useful if the dirty
-   bits are used to track modified PTEs */
-void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
-                                MemTxAttrs attrs, MemTxResult *result)
-{
-    uint8_t *ptr;
-    MemoryRegion *mr;
-    hwaddr l = 4;
-    hwaddr addr1;
-    MemTxResult r;
-    uint8_t dirty_log_mask;
-    bool release_lock = false;
-
-    rcu_read_lock();
-    mr = address_space_translate(as, addr, &addr1, &l,
-                                 true);
-    if (l < 4 || !memory_access_is_direct(mr, true)) {
-        release_lock |= prepare_mmio_access(mr);
-
-        r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
-    } else {
-        addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
-        ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
-        stl_p(ptr, val);
-
-        dirty_log_mask = memory_region_get_dirty_log_mask(mr);
-        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
-        cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask);
-        r = MEMTX_OK;
-    }
-    if (result) {
-        *result = r;
-    }
-    if (release_lock) {
-        qemu_mutex_unlock_iothread();
-    }
-    rcu_read_unlock();
-}
-
-void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
-{
-    address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-/* warning: addr must be aligned */
-static inline void address_space_stl_internal(AddressSpace *as,
-                                              hwaddr addr, uint32_t val,
-                                              MemTxAttrs attrs,
-                                              MemTxResult *result,
-                                              enum device_endian endian)
-{
-    uint8_t *ptr;
-    MemoryRegion *mr;
-    hwaddr l = 4;
-    hwaddr addr1;
-    MemTxResult r;
-    bool release_lock = false;
-
-    rcu_read_lock();
-    mr = address_space_translate(as, addr, &addr1, &l,
-                                 true);
-    if (l < 4 || !memory_access_is_direct(mr, true)) {
-        release_lock |= prepare_mmio_access(mr);
-
-#if defined(TARGET_WORDS_BIGENDIAN)
-        if (endian == DEVICE_LITTLE_ENDIAN) {
-            val = bswap32(val);
-        }
-#else
-        if (endian == DEVICE_BIG_ENDIAN) {
-            val = bswap32(val);
-        }
-#endif
-        r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
-    } else {
-        /* RAM case */
-        addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
-        ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
-        switch (endian) {
-        case DEVICE_LITTLE_ENDIAN:
-            stl_le_p(ptr, val);
-            break;
-        case DEVICE_BIG_ENDIAN:
-            stl_be_p(ptr, val);
-            break;
-        default:
-            stl_p(ptr, val);
-            break;
-        }
-        invalidate_and_set_dirty(mr, addr1, 4);
-        r = MEMTX_OK;
-    }
-    if (result) {
-        *result = r;
-    }
-    if (release_lock) {
-        qemu_mutex_unlock_iothread();
-    }
-    rcu_read_unlock();
-}
-
-void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
-                       MemTxAttrs attrs, MemTxResult *result)
-{
-    address_space_stl_internal(as, addr, val, attrs, result,
-                               DEVICE_NATIVE_ENDIAN);
-}
-
-void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
-                       MemTxAttrs attrs, MemTxResult *result)
-{
-    address_space_stl_internal(as, addr, val, attrs, result,
-                               DEVICE_LITTLE_ENDIAN);
-}
-
-void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
-                       MemTxAttrs attrs, MemTxResult *result)
-{
-    address_space_stl_internal(as, addr, val, attrs, result,
-                               DEVICE_BIG_ENDIAN);
-}
-
-void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
-{
-    address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
-{
-    address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
-{
-    address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-/* XXX: optimize */
-void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
-                       MemTxAttrs attrs, MemTxResult *result)
-{
-    uint8_t v = val;
-    MemTxResult r;
-
-    r = address_space_rw(as, addr, attrs, &v, 1, 1);
-    if (result) {
-        *result = r;
-    }
-}
-
-void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
-{
-    address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-/* warning: addr must be aligned */
-static inline void address_space_stw_internal(AddressSpace *as,
-                                              hwaddr addr, uint32_t val,
-                                              MemTxAttrs attrs,
-                                              MemTxResult *result,
-                                              enum device_endian endian)
-{
-    uint8_t *ptr;
-    MemoryRegion *mr;
-    hwaddr l = 2;
-    hwaddr addr1;
-    MemTxResult r;
-    bool release_lock = false;
-
-    rcu_read_lock();
-    mr = address_space_translate(as, addr, &addr1, &l, true);
-    if (l < 2 || !memory_access_is_direct(mr, true)) {
-        release_lock |= prepare_mmio_access(mr);
-
-#if defined(TARGET_WORDS_BIGENDIAN)
-        if (endian == DEVICE_LITTLE_ENDIAN) {
-            val = bswap16(val);
-        }
-#else
-        if (endian == DEVICE_BIG_ENDIAN) {
-            val = bswap16(val);
-        }
-#endif
-        r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
-    } else {
-        /* RAM case */
-        addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
-        ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
-        switch (endian) {
-        case DEVICE_LITTLE_ENDIAN:
-            stw_le_p(ptr, val);
-            break;
-        case DEVICE_BIG_ENDIAN:
-            stw_be_p(ptr, val);
-            break;
-        default:
-            stw_p(ptr, val);
-            break;
-        }
-        invalidate_and_set_dirty(mr, addr1, 2);
-        r = MEMTX_OK;
-    }
-    if (result) {
-        *result = r;
-    }
-    if (release_lock) {
-        qemu_mutex_unlock_iothread();
-    }
-    rcu_read_unlock();
-}
-
-void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
-                       MemTxAttrs attrs, MemTxResult *result)
-{
-    address_space_stw_internal(as, addr, val, attrs, result,
-                               DEVICE_NATIVE_ENDIAN);
-}
-
-void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
-                       MemTxAttrs attrs, MemTxResult *result)
-{
-    address_space_stw_internal(as, addr, val, attrs, result,
-                               DEVICE_LITTLE_ENDIAN);
-}
-
-void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
-                       MemTxAttrs attrs, MemTxResult *result)
-{
-    address_space_stw_internal(as, addr, val, attrs, result,
-                               DEVICE_BIG_ENDIAN);
-}
-
-void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
-{
-    address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
-{
-    address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
-{
-    address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-/* XXX: optimize */
-void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
-                       MemTxAttrs attrs, MemTxResult *result)
-{
-    MemTxResult r;
-    val = tswap64(val);
-    r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
-    if (result) {
-        *result = r;
-    }
-}
-
-void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
-                       MemTxAttrs attrs, MemTxResult *result)
-{
-    MemTxResult r;
-    val = cpu_to_le64(val);
-    r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
-    if (result) {
-        *result = r;
-    }
-}
-void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
-                       MemTxAttrs attrs, MemTxResult *result)
-{
-    MemTxResult r;
-    val = cpu_to_be64(val);
-    r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
-    if (result) {
-        *result = r;
-    }
-}
-
-void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
-{
-    address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
-{
-    address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
-}
-
-void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
-{
-    address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
-}
+#define ARG1_DECL                MemoryRegionCache *cache
+#define ARG1                     cache
+#define SUFFIX                   _cached
+#define TRANSLATE(addr, ...)     \
+    address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
+#define IS_DIRECT(mr, is_write)  true
+#define MAP_RAM(mr, ofs)         qemu_map_ram_ptr((mr)->ram_block, ofs)
+#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
+#define RCU_READ_LOCK()          rcu_read_lock()
+#define RCU_READ_UNLOCK()        rcu_read_unlock()
+#include "memory_ldst.inc.c"
 
 /* virtual memory access for debug (includes writing to ROM) */
 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
@@ -3695,6 +3273,7 @@ int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
     hwaddr phys_addr;
     target_ulong page;
 
+    cpu_synchronize_state(cpu);
     while (len > 0) {
         int asidx;
         MemTxAttrs attrs;
@@ -3781,4 +3360,68 @@ int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
     rcu_read_unlock();
     return ret;
 }
+
+/*
+ * Unmap pages of memory from start to start+length such that
+ * they a) read as 0, b) Trigger whatever fault mechanism
+ * the OS provides for postcopy.
+ * The pages must be unmapped by the end of the function.
+ * Returns: 0 on success, none-0 on failure
+ *
+ */
+int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
+{
+    int ret = -1;
+
+    uint8_t *host_startaddr = rb->host + start;
+
+    if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
+        error_report("ram_block_discard_range: Unaligned start address: %p",
+                     host_startaddr);
+        goto err;
+    }
+
+    if ((start + length) <= rb->used_length) {
+        uint8_t *host_endaddr = host_startaddr + length;
+        if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
+            error_report("ram_block_discard_range: Unaligned end address: %p",
+                         host_endaddr);
+            goto err;
+        }
+
+        errno = ENOTSUP; /* If we are missing MADVISE etc */
+
+        if (rb->page_size == qemu_host_page_size) {
+#if defined(CONFIG_MADVISE)
+            /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
+             * freeing the page.
+             */
+            ret = madvise(host_startaddr, length, MADV_DONTNEED);
+#endif
+        } else {
+            /* Huge page case  - unfortunately it can't do DONTNEED, but
+             * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
+             * huge page file.
+             */
+#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
+            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
+                            start, length);
+#endif
+        }
+        if (ret) {
+            ret = -errno;
+            error_report("ram_block_discard_range: Failed to discard range "
+                         "%s:%" PRIx64 " +%zx (%d)",
+                         rb->idstr, start, length, ret);
+        }
+    } else {
+        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
+                     "/%zx/" RAM_ADDR_FMT")",
+                     rb->idstr, start, length, rb->used_length);
+    }
+
+err:
+    return ret;
+}
+
 #endif