]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blobdiff - spl/module/spl/spl-generic.c
UBUNTU: [Packaging] dkms -- drop zfs/spl source code from kernel
[mirror_ubuntu-bionic-kernel.git] / spl / module / spl / spl-generic.c
diff --git a/spl/module/spl/spl-generic.c b/spl/module/spl/spl-generic.c
deleted file mode 100644 (file)
index f6782da..0000000
+++ /dev/null
@@ -1,759 +0,0 @@
-/*****************************************************************************\
- *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
- *  Copyright (C) 2007 The Regents of the University of California.
- *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
- *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
- *  UCRL-CODE-235197
- *
- *  This file is part of the SPL, Solaris Porting Layer.
- *  For details, see <http://zfsonlinux.org/>.
- *
- *  The SPL is free software; you can redistribute it and/or modify it
- *  under the terms of the GNU General Public License as published by the
- *  Free Software Foundation; either version 2 of the License, or (at your
- *  option) any later version.
- *
- *  The SPL is distributed in the hope that it will be useful, but WITHOUT
- *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- *  for more details.
- *
- *  You should have received a copy of the GNU General Public License along
- *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
- *****************************************************************************
- *  Solaris Porting Layer (SPL) Generic Implementation.
-\*****************************************************************************/
-
-#include <sys/sysmacros.h>
-#include <sys/systeminfo.h>
-#include <sys/vmsystm.h>
-#include <sys/kobj.h>
-#include <sys/kmem.h>
-#include <sys/kmem_cache.h>
-#include <sys/vmem.h>
-#include <sys/mutex.h>
-#include <sys/rwlock.h>
-#include <sys/taskq.h>
-#include <sys/tsd.h>
-#include <sys/zmod.h>
-#include <sys/debug.h>
-#include <sys/proc.h>
-#include <sys/kstat.h>
-#include <sys/file.h>
-#include <linux/ctype.h>
-#include <sys/disp.h>
-#include <sys/random.h>
-#include <linux/kmod.h>
-#include <linux/math64_compat.h>
-#include <linux/proc_compat.h>
-
-char spl_version[32] = "SPL v" SPL_META_VERSION "-" SPL_META_RELEASE;
-EXPORT_SYMBOL(spl_version);
-
-unsigned long spl_hostid = 0;
-EXPORT_SYMBOL(spl_hostid);
-module_param(spl_hostid, ulong, 0644);
-MODULE_PARM_DESC(spl_hostid, "The system hostid.");
-
-proc_t p0;
-EXPORT_SYMBOL(p0);
-
-/*
- * Xorshift Pseudo Random Number Generator based on work by Sebastiano Vigna
- *
- * "Further scramblings of Marsaglia's xorshift generators"
- * http://vigna.di.unimi.it/ftp/papers/xorshiftplus.pdf
- *
- * random_get_pseudo_bytes() is an API function on Illumos whose sole purpose
- * is to provide bytes containing random numbers. It is mapped to /dev/urandom
- * on Illumos, which uses a "FIPS 186-2 algorithm". No user of the SPL's
- * random_get_pseudo_bytes() needs bytes that are of cryptographic quality, so
- * we can implement it using a fast PRNG that we seed using Linux' actual
- * equivalent to random_get_pseudo_bytes(). We do this by providing each CPU
- * with an independent seed so that all calls to random_get_pseudo_bytes() are
- * free of atomic instructions.
- *
- * A consequence of using a fast PRNG is that using random_get_pseudo_bytes()
- * to generate words larger than 128 bits will paradoxically be limited to
- * `2^128 - 1` possibilities. This is because we have a sequence of `2^128 - 1`
- * 128-bit words and selecting the first will implicitly select the second. If
- * a caller finds this behavior undesireable, random_get_bytes() should be used
- * instead.
- *
- * XXX: Linux interrupt handlers that trigger within the critical section
- * formed by `s[1] = xp[1];` and `xp[0] = s[0];` and call this function will
- * see the same numbers. Nothing in the code currently calls this in an
- * interrupt handler, so this is considered to be okay. If that becomes a
- * problem, we could create a set of per-cpu variables for interrupt handlers
- * and use them when in_interrupt() from linux/preempt_mask.h evaluates to
- * true.
- */
-static DEFINE_PER_CPU(uint64_t[2], spl_pseudo_entropy);
-
-/*
- * spl_rand_next()/spl_rand_jump() are copied from the following CC-0 licensed
- * file:
- *
- * http://xorshift.di.unimi.it/xorshift128plus.c
- */
-
-static inline uint64_t
-spl_rand_next(uint64_t *s) {
-       uint64_t s1 = s[0];
-       const uint64_t s0 = s[1];
-       s[0] = s0;
-       s1 ^= s1 << 23; // a
-       s[1] = s1 ^ s0 ^ (s1 >> 18) ^ (s0 >> 5); // b, c
-       return (s[1] + s0);
-}
-
-static inline void
-spl_rand_jump(uint64_t *s) {
-       static const uint64_t JUMP[] = { 0x8a5cd789635d2dff, 0x121fd2155c472f96 };
-
-       uint64_t s0 = 0;
-       uint64_t s1 = 0;
-       int i, b;
-       for(i = 0; i < sizeof JUMP / sizeof *JUMP; i++)
-               for(b = 0; b < 64; b++) {
-                       if (JUMP[i] & 1ULL << b) {
-                               s0 ^= s[0];
-                               s1 ^= s[1];
-                       }
-                       (void) spl_rand_next(s);
-               }
-
-       s[0] = s0;
-       s[1] = s1;
-}
-
-int
-random_get_pseudo_bytes(uint8_t *ptr, size_t len)
-{
-       uint64_t *xp, s[2];
-
-       ASSERT(ptr);
-
-       xp = get_cpu_var(spl_pseudo_entropy);
-
-       s[0] = xp[0];
-       s[1] = xp[1];
-
-       while (len) {
-               union {
-                       uint64_t ui64;
-                       uint8_t byte[sizeof (uint64_t)];
-               }entropy;
-               int i = MIN(len, sizeof (uint64_t));
-
-               len -= i;
-               entropy.ui64 = spl_rand_next(s);
-
-               while (i--)
-                       *ptr++ = entropy.byte[i];
-       }
-
-       xp[0] = s[0];
-       xp[1] = s[1];
-
-       put_cpu_var(spl_pseudo_entropy);
-
-       return (0);
-}
-
-
-EXPORT_SYMBOL(random_get_pseudo_bytes);
-
-#if BITS_PER_LONG == 32
-/*
- * Support 64/64 => 64 division on a 32-bit platform.  While the kernel
- * provides a div64_u64() function for this we do not use it because the
- * implementation is flawed.  There are cases which return incorrect
- * results as late as linux-2.6.35.  Until this is fixed upstream the
- * spl must provide its own implementation.
- *
- * This implementation is a slightly modified version of the algorithm
- * proposed by the book 'Hacker's Delight'.  The original source can be
- * found here and is available for use without restriction.
- *
- * http://www.hackersdelight.org/HDcode/newCode/divDouble.c
- */
-
-/*
- * Calculate number of leading of zeros for a 64-bit value.
- */
-static int
-nlz64(uint64_t x) {
-       register int n = 0;
-
-       if (x == 0)
-               return 64;
-
-       if (x <= 0x00000000FFFFFFFFULL) {n = n + 32; x = x << 32;}
-       if (x <= 0x0000FFFFFFFFFFFFULL) {n = n + 16; x = x << 16;}
-       if (x <= 0x00FFFFFFFFFFFFFFULL) {n = n +  8; x = x <<  8;}
-       if (x <= 0x0FFFFFFFFFFFFFFFULL) {n = n +  4; x = x <<  4;}
-       if (x <= 0x3FFFFFFFFFFFFFFFULL) {n = n +  2; x = x <<  2;}
-       if (x <= 0x7FFFFFFFFFFFFFFFULL) {n = n +  1;}
-
-       return n;
-}
-
-/*
- * Newer kernels have a div_u64() function but we define our own
- * to simplify portibility between kernel versions.
- */
-static inline uint64_t
-__div_u64(uint64_t u, uint32_t v)
-{
-       (void) do_div(u, v);
-       return u;
-}
-
-/*
- * Implementation of 64-bit unsigned division for 32-bit machines.
- *
- * First the procedure takes care of the case in which the divisor is a
- * 32-bit quantity. There are two subcases: (1) If the left half of the
- * dividend is less than the divisor, one execution of do_div() is all that
- * is required (overflow is not possible). (2) Otherwise it does two
- * divisions, using the grade school method.
- */
-uint64_t
-__udivdi3(uint64_t u, uint64_t v)
-{
-       uint64_t u0, u1, v1, q0, q1, k;
-       int n;
-
-       if (v >> 32 == 0) {                     // If v < 2**32:
-               if (u >> 32 < v) {              // If u/v cannot overflow,
-                       return __div_u64(u, v); // just do one division.
-               } else {                        // If u/v would overflow:
-                       u1 = u >> 32;           // Break u into two halves.
-                       u0 = u & 0xFFFFFFFF;
-                       q1 = __div_u64(u1, v);  // First quotient digit.
-                       k  = u1 - q1 * v;       // First remainder, < v.
-                       u0 += (k << 32);
-                       q0 = __div_u64(u0, v);  // Seconds quotient digit.
-                       return (q1 << 32) + q0;
-               }
-       } else {                                // If v >= 2**32:
-               n = nlz64(v);                   // 0 <= n <= 31.
-               v1 = (v << n) >> 32;            // Normalize divisor, MSB is 1.
-               u1 = u >> 1;                    // To ensure no overflow.
-               q1 = __div_u64(u1, v1);         // Get quotient from
-               q0 = (q1 << n) >> 31;           // Undo normalization and
-                                               // division of u by 2.
-               if (q0 != 0)                    // Make q0 correct or
-                       q0 = q0 - 1;            // too small by 1.
-               if ((u - q0 * v) >= v)
-                       q0 = q0 + 1;            // Now q0 is correct.
-
-               return q0;
-       }
-}
-EXPORT_SYMBOL(__udivdi3);
-
-/*
- * Implementation of 64-bit signed division for 32-bit machines.
- */
-int64_t
-__divdi3(int64_t u, int64_t v)
-{
-       int64_t q, t;
-       q = __udivdi3(abs64(u), abs64(v));
-       t = (u ^ v) >> 63;      // If u, v have different
-       return (q ^ t) - t;     // signs, negate q.
-}
-EXPORT_SYMBOL(__divdi3);
-
-/*
- * Implementation of 64-bit unsigned modulo for 32-bit machines.
- */
-uint64_t
-__umoddi3(uint64_t dividend, uint64_t divisor)
-{
-       return (dividend - (divisor * __udivdi3(dividend, divisor)));
-}
-EXPORT_SYMBOL(__umoddi3);
-
-/*
- * Implementation of 64-bit unsigned division/modulo for 32-bit machines.
- */
-uint64_t
-__udivmoddi4(uint64_t n, uint64_t d, uint64_t *r)
-{
-       uint64_t q = __udivdi3(n, d);
-       if (r)
-               *r = n - d * q;
-       return (q);
-}
-EXPORT_SYMBOL(__udivmoddi4);
-
-/*
- * Implementation of 64-bit signed division/modulo for 32-bit machines.
- */
-int64_t
-__divmoddi4(int64_t n, int64_t d, int64_t *r)
-{
-       int64_t q, rr;
-       boolean_t nn = B_FALSE;
-       boolean_t nd = B_FALSE;
-       if (n < 0) {
-               nn = B_TRUE;
-               n = -n;
-       }
-       if (d < 0) {
-               nd = B_TRUE;
-               d = -d;
-       }
-
-       q = __udivmoddi4(n, d, (uint64_t *)&rr);
-
-       if (nn != nd)
-               q = -q;
-       if (nn)
-               rr = -rr;
-       if (r)
-               *r = rr;
-       return (q);
-}
-EXPORT_SYMBOL(__divmoddi4);
-
-#if defined(__arm) || defined(__arm__)
-/*
- * Implementation of 64-bit (un)signed division for 32-bit arm machines.
- *
- * Run-time ABI for the ARM Architecture (page 20).  A pair of (unsigned)
- * long longs is returned in {{r0, r1}, {r2,r3}}, the quotient in {r0, r1},
- * and the remainder in {r2, r3}.  The return type is specifically left
- * set to 'void' to ensure the compiler does not overwrite these registers
- * during the return.  All results are in registers as per ABI
- */
-void
-__aeabi_uldivmod(uint64_t u, uint64_t v)
-{
-       uint64_t res;
-       uint64_t mod;
-
-       res = __udivdi3(u, v);
-       mod = __umoddi3(u, v);
-       {
-               register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
-               register uint32_t r1 asm("r1") = (res >> 32);
-               register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
-               register uint32_t r3 asm("r3") = (mod >> 32);
-
-               asm volatile(""
-                   : "+r"(r0), "+r"(r1), "+r"(r2),"+r"(r3)  /* output */
-                   : "r"(r0), "r"(r1), "r"(r2), "r"(r3));   /* input */
-
-               return; /* r0; */
-       }
-}
-EXPORT_SYMBOL(__aeabi_uldivmod);
-
-void
-__aeabi_ldivmod(int64_t u, int64_t v)
-{
-       int64_t res;
-       uint64_t mod;
-
-       res =  __divdi3(u, v);
-       mod = __umoddi3(u, v);
-       {
-               register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
-               register uint32_t r1 asm("r1") = (res >> 32);
-               register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
-               register uint32_t r3 asm("r3") = (mod >> 32);
-
-               asm volatile(""
-                   : "+r"(r0), "+r"(r1), "+r"(r2),"+r"(r3)  /* output */
-                   : "r"(r0), "r"(r1), "r"(r2), "r"(r3));   /* input */
-
-               return; /* r0; */
-       }
-}
-EXPORT_SYMBOL(__aeabi_ldivmod);
-#endif /* __arm || __arm__ */
-#endif /* BITS_PER_LONG */
-
-/* NOTE: The strtoxx behavior is solely based on my reading of the Solaris
- * ddi_strtol(9F) man page.  I have not verified the behavior of these
- * functions against their Solaris counterparts.  It is possible that I
- * may have misinterpreted the man page or the man page is incorrect.
- */
-int ddi_strtoul(const char *, char **, int, unsigned long *);
-int ddi_strtol(const char *, char **, int, long *);
-int ddi_strtoull(const char *, char **, int, unsigned long long *);
-int ddi_strtoll(const char *, char **, int, long long *);
-
-#define define_ddi_strtoux(type, valtype)                              \
-int ddi_strtou##type(const char *str, char **endptr,                   \
-                    int base, valtype *result)                         \
-{                                                                      \
-       valtype last_value, value = 0;                                  \
-       char *ptr = (char *)str;                                        \
-       int flag = 1, digit;                                            \
-                                                                       \
-       if (strlen(ptr) == 0)                                           \
-               return EINVAL;                                          \
-                                                                       \
-       /* Auto-detect base based on prefix */                          \
-       if (!base) {                                                    \
-               if (str[0] == '0') {                                    \
-                       if (tolower(str[1])=='x' && isxdigit(str[2])) { \
-                               base = 16; /* hex */                    \
-                               ptr += 2;                               \
-                       } else if (str[1] >= '0' && str[1] < 8) {       \
-                               base = 8; /* octal */                   \
-                               ptr += 1;                               \
-                       } else {                                        \
-                               return EINVAL;                          \
-                       }                                               \
-               } else {                                                \
-                       base = 10; /* decimal */                        \
-               }                                                       \
-       }                                                               \
-                                                                       \
-       while (1) {                                                     \
-               if (isdigit(*ptr))                                      \
-                       digit = *ptr - '0';                             \
-               else if (isalpha(*ptr))                                 \
-                       digit = tolower(*ptr) - 'a' + 10;               \
-               else                                                    \
-                       break;                                          \
-                                                                       \
-               if (digit >= base)                                      \
-                       break;                                          \
-                                                                       \
-               last_value = value;                                     \
-               value = value * base + digit;                           \
-               if (last_value > value) /* Overflow */                  \
-                       return ERANGE;                                  \
-                                                                       \
-               flag = 1;                                               \
-               ptr++;                                                  \
-       }                                                               \
-                                                                       \
-       if (flag)                                                       \
-               *result = value;                                        \
-                                                                       \
-       if (endptr)                                                     \
-               *endptr = (char *)(flag ? ptr : str);                   \
-                                                                       \
-       return 0;                                                       \
-}                                                                      \
-
-#define define_ddi_strtox(type, valtype)                               \
-int ddi_strto##type(const char *str, char **endptr,                    \
-                      int base, valtype *result)                       \
-{                                                                      \
-       int rc;                                                         \
-                                                                       \
-       if (*str == '-') {                                              \
-               rc = ddi_strtou##type(str + 1, endptr, base, result);   \
-               if (!rc) {                                              \
-                       if (*endptr == str + 1)                         \
-                               *endptr = (char *)str;                  \
-                       else                                            \
-                               *result = -*result;                     \
-               }                                                       \
-       } else {                                                        \
-               rc = ddi_strtou##type(str, endptr, base, result);       \
-       }                                                               \
-                                                                       \
-       return rc;                                                      \
-}
-
-define_ddi_strtoux(l, unsigned long)
-define_ddi_strtox(l, long)
-define_ddi_strtoux(ll, unsigned long long)
-define_ddi_strtox(ll, long long)
-
-EXPORT_SYMBOL(ddi_strtoul);
-EXPORT_SYMBOL(ddi_strtol);
-EXPORT_SYMBOL(ddi_strtoll);
-EXPORT_SYMBOL(ddi_strtoull);
-
-int
-ddi_copyin(const void *from, void *to, size_t len, int flags)
-{
-       /* Fake ioctl() issued by kernel, 'from' is a kernel address */
-       if (flags & FKIOCTL) {
-               memcpy(to, from, len);
-               return 0;
-       }
-
-       return copyin(from, to, len);
-}
-EXPORT_SYMBOL(ddi_copyin);
-
-int
-ddi_copyout(const void *from, void *to, size_t len, int flags)
-{
-       /* Fake ioctl() issued by kernel, 'from' is a kernel address */
-       if (flags & FKIOCTL) {
-               memcpy(to, from, len);
-               return 0;
-       }
-
-       return copyout(from, to, len);
-}
-EXPORT_SYMBOL(ddi_copyout);
-
-/*
- * Read the unique system identifier from the /etc/hostid file.
- *
- * The behavior of /usr/bin/hostid on Linux systems with the
- * regular eglibc and coreutils is:
- *
- *   1. Generate the value if the /etc/hostid file does not exist
- *      or if the /etc/hostid file is less than four bytes in size.
- *
- *   2. If the /etc/hostid file is at least 4 bytes, then return
- *      the first four bytes [0..3] in native endian order.
- *
- *   3. Always ignore bytes [4..] if they exist in the file.
- *
- * Only the first four bytes are significant, even on systems that
- * have a 64-bit word size.
- *
- * See:
- *
- *   eglibc: sysdeps/unix/sysv/linux/gethostid.c
- *   coreutils: src/hostid.c
- *
- * Notes:
- *
- * The /etc/hostid file on Solaris is a text file that often reads:
- *
- *   # DO NOT EDIT
- *   "0123456789"
- *
- * Directly copying this file to Linux results in a constant
- * hostid of 4f442023 because the default comment constitutes
- * the first four bytes of the file.
- *
- */
-
-char *spl_hostid_path = HW_HOSTID_PATH;
-module_param(spl_hostid_path, charp, 0444);
-MODULE_PARM_DESC(spl_hostid_path, "The system hostid file (/etc/hostid)");
-
-static int
-hostid_read(uint32_t *hostid)
-{
-       uint64_t size;
-       struct _buf *file;
-       uint32_t value = 0;
-       int error;
-
-       file = kobj_open_file(spl_hostid_path);
-       if (file == (struct _buf *)-1)
-               return (ENOENT);
-
-       error = kobj_get_filesize(file, &size);
-       if (error) {
-               kobj_close_file(file);
-               return (error);
-       }
-
-       if (size < sizeof(HW_HOSTID_MASK)) {
-               kobj_close_file(file);
-               return (EINVAL);
-       }
-
-       /*
-        * Read directly into the variable like eglibc does.
-        * Short reads are okay; native behavior is preserved.
-        */
-       error = kobj_read_file(file, (char *)&value, sizeof(value), 0);
-       if (error < 0) {
-               kobj_close_file(file);
-               return (EIO);
-       }
-
-       /* Mask down to 32 bits like coreutils does. */
-       *hostid = (value & HW_HOSTID_MASK);
-       kobj_close_file(file);
-
-       return 0;
-}
-
-/*
- * Return the system hostid.  Preferentially use the spl_hostid module option
- * when set, otherwise use the value in the /etc/hostid file.
- */
-uint32_t
-zone_get_hostid(void *zone)
-{
-       uint32_t hostid;
-
-       ASSERT3P(zone, ==, NULL);
-
-       if (spl_hostid != 0)
-               return ((uint32_t)(spl_hostid & HW_HOSTID_MASK));
-
-       if (hostid_read(&hostid) == 0)
-               return (hostid);
-
-       return (0);
-}
-EXPORT_SYMBOL(zone_get_hostid);
-
-static int
-spl_kvmem_init(void)
-{
-       int rc = 0;
-
-       rc = spl_kmem_init();
-       if (rc)
-               return (rc);
-
-       rc = spl_vmem_init();
-       if (rc) {
-               spl_kmem_fini();
-               return (rc);
-       }
-
-       return (rc);
-}
-
-/*
- * We initialize the random number generator with 128 bits of entropy from the
- * system random number generator. In the improbable case that we have a zero
- * seed, we fallback to the system jiffies, unless it is also zero, in which
- * situation we use a preprogrammed seed. We step forward by 2^64 iterations to
- * initialize each of the per-cpu seeds so that the sequences generated on each
- * CPU are guaranteed to never overlap in practice.
- */
-static void __init
-spl_random_init(void)
-{
-       uint64_t s[2];
-       int i;
-
-       get_random_bytes(s, sizeof (s));
-
-       if (s[0] == 0 && s[1] == 0) {
-               if (jiffies != 0) {
-                       s[0] = jiffies;
-                       s[1] = ~0 - jiffies;
-               } else {
-                       (void) memcpy(s, "improbable seed", sizeof (s));
-               }
-               printk("SPL: get_random_bytes() returned 0 "
-                   "when generating random seed. Setting initial seed to "
-                   "0x%016llx%016llx.", cpu_to_be64(s[0]), cpu_to_be64(s[1]));
-       }
-
-       for_each_possible_cpu(i) {
-               uint64_t *wordp = per_cpu(spl_pseudo_entropy, i);
-
-               spl_rand_jump(s);
-
-               wordp[0] = s[0];
-               wordp[1] = s[1];
-       }
-}
-
-static void
-spl_kvmem_fini(void)
-{
-       spl_vmem_fini();
-       spl_kmem_fini();
-}
-
-static int __init
-spl_init(void)
-{
-       int rc = 0;
-
-       bzero(&p0, sizeof (proc_t));
-       spl_random_init();
-
-       if ((rc = spl_kvmem_init()))
-               goto out1;
-
-       if ((rc = spl_mutex_init()))
-               goto out2;
-
-       if ((rc = spl_rw_init()))
-               goto out3;
-
-       if ((rc = spl_tsd_init()))
-               goto out4;
-
-       if ((rc = spl_taskq_init()))
-               goto out5;
-
-       if ((rc = spl_kmem_cache_init()))
-               goto out6;
-
-       if ((rc = spl_vn_init()))
-               goto out7;
-
-       if ((rc = spl_proc_init()))
-               goto out8;
-
-       if ((rc = spl_kstat_init()))
-               goto out9;
-
-       if ((rc = spl_zlib_init()))
-               goto out10;
-
-       printk(KERN_NOTICE "SPL: Loaded module v%s-%s%s\n", SPL_META_VERSION,
-              SPL_META_RELEASE, SPL_DEBUG_STR);
-       return (rc);
-
-out10:
-       spl_kstat_fini();
-out9:
-       spl_proc_fini();
-out8:
-       spl_vn_fini();
-out7:
-       spl_kmem_cache_fini();
-out6:
-       spl_taskq_fini();
-out5:
-       spl_tsd_fini();
-out4:
-       spl_rw_fini();
-out3:
-       spl_mutex_fini();
-out2:
-       spl_kvmem_fini();
-out1:
-       printk(KERN_NOTICE "SPL: Failed to Load Solaris Porting Layer "
-              "v%s-%s%s, rc = %d\n", SPL_META_VERSION, SPL_META_RELEASE,
-              SPL_DEBUG_STR, rc);
-
-       return (rc);
-}
-
-static void __exit
-spl_fini(void)
-{
-       printk(KERN_NOTICE "SPL: Unloaded module v%s-%s%s\n",
-              SPL_META_VERSION, SPL_META_RELEASE, SPL_DEBUG_STR);
-       spl_zlib_fini();
-       spl_kstat_fini();
-       spl_proc_fini();
-       spl_vn_fini();
-       spl_kmem_cache_fini();
-       spl_taskq_fini();
-       spl_tsd_fini();
-       spl_rw_fini();
-       spl_mutex_fini();
-       spl_kvmem_fini();
-}
-
-module_init(spl_init);
-module_exit(spl_fini);
-
-MODULE_DESCRIPTION("Solaris Porting Layer");
-MODULE_AUTHOR(SPL_META_AUTHOR);
-MODULE_LICENSE(SPL_META_LICENSE);
-MODULE_VERSION(SPL_META_VERSION "-" SPL_META_RELEASE);