]> git.proxmox.com Git - rustc.git/blobdiff - src/librustc_typeck/check/closure.rs
New upstream version 1.41.1+dfsg1
[rustc.git] / src / librustc_typeck / check / closure.rs
index f041db43e16d757c1e80bddceea92e1cba623fbb..30cb0d4f96766925203bac150276f09279a7087a 100644 (file)
@@ -1,37 +1,51 @@
-// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
-// file at the top-level directory of this distribution and at
-// http://rust-lang.org/COPYRIGHT.
-//
-// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
-// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
-// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
-// option. This file may not be copied, modified, or distributed
-// except according to those terms.
-
 //! Code for type-checking closure expressions.
 
-use super::{check_fn, Expectation, FnCtxt};
-
-use astconv::AstConv;
-use rustc::infer::type_variable::TypeVariableOrigin;
-use rustc::ty::{self, ToPolyTraitRef, Ty};
-use rustc::ty::subst::Substs;
+use super::{check_fn, Expectation, FnCtxt, GeneratorTypes};
+
+use crate::astconv::AstConv;
+use crate::middle::{lang_items, region};
+use rustc::hir::def_id::DefId;
+use rustc::infer::{InferOk, InferResult};
+use rustc::infer::LateBoundRegionConversionTime;
+use rustc::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
+use rustc::traits::Obligation;
+use rustc::traits::error_reporting::ArgKind;
+use rustc::ty::{self, Ty, GenericParamDefKind};
+use rustc::ty::fold::TypeFoldable;
+use rustc::ty::subst::InternalSubsts;
 use std::cmp;
 use std::iter;
-use syntax::abi::Abi;
+use rustc_target::spec::abi::Abi;
+use syntax::source_map::Span;
 use rustc::hir;
 
-impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
-    pub fn check_expr_closure(&self,
-                              expr: &hir::Expr,
-                              _capture: hir::CaptureClause,
-                              decl: &'gcx hir::FnDecl,
-                              body_id: hir::BodyId,
-                              expected: Expectation<'tcx>)
-                              -> Ty<'tcx> {
-        debug!("check_expr_closure(expr={:?},expected={:?})",
-               expr,
-               expected);
+/// What signature do we *expect* the closure to have from context?
+#[derive(Debug)]
+struct ExpectedSig<'tcx> {
+    /// Span that gave us this expectation, if we know that.
+    cause_span: Option<Span>,
+    sig: ty::FnSig<'tcx>,
+}
+
+struct ClosureSignatures<'tcx> {
+    bound_sig: ty::PolyFnSig<'tcx>,
+    liberated_sig: ty::FnSig<'tcx>,
+}
+
+impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
+    pub fn check_expr_closure(
+        &self,
+        expr: &hir::Expr,
+        _capture: hir::CaptureBy,
+        decl: &'tcx hir::FnDecl,
+        body_id: hir::BodyId,
+        gen: Option<hir::Movability>,
+        expected: Expectation<'tcx>,
+    ) -> Ty<'tcx> {
+        debug!(
+            "check_expr_closure(expr={:?},expected={:?})",
+            expr, expected
+        );
 
         // It's always helpful for inference if we know the kind of
         // closure sooner rather than later, so first examine the expected
@@ -40,222 +54,754 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
             Some(ty) => self.deduce_expectations_from_expected_type(ty),
             None => (None, None),
         };
-        let body = self.tcx.hir.body(body_id);
-        self.check_closure(expr, expected_kind, decl, body, expected_sig)
+        let body = self.tcx.hir().body(body_id);
+        self.check_closure(expr, expected_kind, decl, body, gen, expected_sig)
     }
 
-    fn check_closure(&self,
-                     expr: &hir::Expr,
-                     opt_kind: Option<ty::ClosureKind>,
-                     decl: &'gcx hir::FnDecl,
-                     body: &'gcx hir::Body,
-                     expected_sig: Option<ty::FnSig<'tcx>>)
-                     -> Ty<'tcx> {
-        debug!("check_closure opt_kind={:?} expected_sig={:?}",
-               opt_kind,
-               expected_sig);
-
-        let expr_def_id = self.tcx.hir.local_def_id(expr.id);
-        let sig = AstConv::ty_of_closure(self,
-                                         hir::Unsafety::Normal,
-                                         decl,
-                                         Abi::RustCall,
-                                         expected_sig);
-        // `deduce_expectations_from_expected_type` introduces late-bound
-        // lifetimes defined elsewhere, which we need to anonymize away.
-        let sig = self.tcx.anonymize_late_bound_regions(&sig);
+    fn check_closure(
+        &self,
+        expr: &hir::Expr,
+        opt_kind: Option<ty::ClosureKind>,
+        decl: &'tcx hir::FnDecl,
+        body: &'tcx hir::Body,
+        gen: Option<hir::Movability>,
+        expected_sig: Option<ExpectedSig<'tcx>>,
+    ) -> Ty<'tcx> {
+        debug!(
+            "check_closure(opt_kind={:?}, expected_sig={:?})",
+            opt_kind, expected_sig
+        );
+
+        let expr_def_id = self.tcx.hir().local_def_id(expr.hir_id);
+
+        let ClosureSignatures {
+            bound_sig,
+            liberated_sig,
+        } = self.sig_of_closure(expr_def_id, decl, body, expected_sig);
+
+        debug!("check_closure: ty_of_closure returns {:?}", liberated_sig);
+
+        let generator_types = check_fn(
+            self,
+            self.param_env,
+            liberated_sig,
+            decl,
+            expr.hir_id,
+            body,
+            gen,
+        ).1;
 
         // Create type variables (for now) to represent the transformed
         // types of upvars. These will be unified during the upvar
         // inference phase (`upvar.rs`).
-        let base_substs = Substs::identity_for_item(self.tcx,
-            self.tcx.closure_base_def_id(expr_def_id));
-        let closure_type = self.tcx.mk_closure(expr_def_id,
-            base_substs.extend_to(self.tcx, expr_def_id,
-                |_, _| span_bug!(expr.span, "closure has region param"),
-                |_, _| self.infcx.next_ty_var(TypeVariableOrigin::TransformedUpvar(expr.span))
-            )
-        );
-
-        debug!("check_closure: expr.id={:?} closure_type={:?}", expr.id, closure_type);
+        let base_substs =
+            InternalSubsts::identity_for_item(self.tcx, self.tcx.closure_base_def_id(expr_def_id));
+        let substs = base_substs.extend_to(self.tcx,expr_def_id, |param, _| {
+            match param.kind {
+                GenericParamDefKind::Lifetime => {
+                    span_bug!(expr.span, "closure has lifetime param")
+                }
+                GenericParamDefKind::Type { .. } => {
+                    self.infcx.next_ty_var(TypeVariableOrigin {
+                        kind: TypeVariableOriginKind::ClosureSynthetic,
+                        span: expr.span,
+                    }).into()
+                }
+                GenericParamDefKind::Const => {
+                    span_bug!(expr.span, "closure has const param")
+                }
+            }
+        });
+        if let Some(GeneratorTypes { yield_ty, interior, movability }) = generator_types {
+            let generator_substs = substs.as_generator();
+            self.demand_eqtype(
+                expr.span,
+                yield_ty,
+                generator_substs.yield_ty(expr_def_id, self.tcx),
+            );
+            self.demand_eqtype(
+                expr.span,
+                liberated_sig.output(),
+                generator_substs.return_ty(expr_def_id, self.tcx),
+            );
+            self.demand_eqtype(
+                expr.span,
+                interior,
+                generator_substs.witness(expr_def_id, self.tcx),
+            );
+            return self.tcx.mk_generator(expr_def_id, substs, movability);
+        }
 
-        let fn_sig = self.liberate_late_bound_regions(expr_def_id, &sig);
-        let fn_sig = self.inh.normalize_associated_types_in(body.value.span,
-                                                            body.value.id,
-                                                            self.param_env,
-                                                            &fn_sig);
+        let closure_type = self.tcx.mk_closure(expr_def_id, substs);
 
-        check_fn(self, self.param_env, fn_sig, decl, expr.id, body);
+        debug!(
+            "check_closure: expr.hir_id={:?} closure_type={:?}",
+            expr.hir_id, closure_type
+        );
 
         // Tuple up the arguments and insert the resulting function type into
         // the `closures` table.
-        let sig = sig.map_bound(|sig| self.tcx.mk_fn_sig(
-            iter::once(self.tcx.intern_tup(sig.inputs(), false)),
-            sig.output(),
-            sig.variadic,
-            sig.unsafety,
-            sig.abi
-        ));
+        let sig = bound_sig.map_bound(|sig| {
+            self.tcx.mk_fn_sig(
+                iter::once(self.tcx.intern_tup(sig.inputs())),
+                sig.output(),
+                sig.c_variadic,
+                sig.unsafety,
+                sig.abi,
+            )
+        });
 
-        debug!("closure for {:?} --> sig={:?} opt_kind={:?}",
-               expr_def_id,
-               sig,
-               opt_kind);
+        debug!(
+            "check_closure: expr_def_id={:?}, sig={:?}, opt_kind={:?}",
+            expr_def_id, sig, opt_kind
+        );
 
-        self.tables.borrow_mut().closure_tys.insert(expr.id, sig);
-        match opt_kind {
-            Some(kind) => {
-                self.tables.borrow_mut().closure_kinds.insert(expr.id, (kind, None));
-            }
-            None => {}
+        let sig_fn_ptr_ty = self.tcx.mk_fn_ptr(sig);
+        self.demand_eqtype(
+            expr.span,
+            sig_fn_ptr_ty,
+            substs.as_closure().sig_ty(expr_def_id, self.tcx),
+        );
+
+        if let Some(kind) = opt_kind {
+            self.demand_eqtype(
+                expr.span,
+                kind.to_ty(self.tcx),
+                substs.as_closure().kind_ty(expr_def_id, self.tcx),
+            );
         }
 
         closure_type
     }
 
-    fn deduce_expectations_from_expected_type
-        (&self,
-         expected_ty: Ty<'tcx>)
-         -> (Option<ty::FnSig<'tcx>>, Option<ty::ClosureKind>) {
-        debug!("deduce_expectations_from_expected_type(expected_ty={:?})",
-               expected_ty);
+    /// Given the expected type, figures out what it can about this closure we
+    /// are about to type check:
+    fn deduce_expectations_from_expected_type(
+        &self,
+        expected_ty: Ty<'tcx>,
+    ) -> (Option<ExpectedSig<'tcx>>, Option<ty::ClosureKind>) {
+        debug!(
+            "deduce_expectations_from_expected_type(expected_ty={:?})",
+            expected_ty
+        );
 
-        match expected_ty.sty {
-            ty::TyDynamic(ref object_type, ..) => {
-                let sig = object_type.projection_bounds()
+        match expected_ty.kind {
+            ty::Dynamic(ref object_type, ..) => {
+                let sig = object_type
+                    .projection_bounds()
                     .filter_map(|pb| {
                         let pb = pb.with_self_ty(self.tcx, self.tcx.types.err);
-                        self.deduce_sig_from_projection(&pb)
+                        self.deduce_sig_from_projection(None, &pb)
                     })
                     .next();
-                let kind = object_type.principal()
-                    .and_then(|p| self.tcx.lang_items.fn_trait_kind(p.def_id()));
+                let kind = object_type.principal_def_id().and_then(|did| {
+                    self.tcx.lang_items().fn_trait_kind(did)
+                });
                 (sig, kind)
             }
-            ty::TyInfer(ty::TyVar(vid)) => self.deduce_expectations_from_obligations(vid),
-            ty::TyFnPtr(sig) => (Some(sig.skip_binder().clone()), Some(ty::ClosureKind::Fn)),
+            ty::Infer(ty::TyVar(vid)) => self.deduce_expectations_from_obligations(vid),
+            ty::FnPtr(sig) => {
+                let expected_sig = ExpectedSig {
+                    cause_span: None,
+                    sig: sig.skip_binder().clone(),
+                };
+                (Some(expected_sig), Some(ty::ClosureKind::Fn))
+            }
             _ => (None, None),
         }
     }
 
-    fn deduce_expectations_from_obligations
-        (&self,
-         expected_vid: ty::TyVid)
-         -> (Option<ty::FnSig<'tcx>>, Option<ty::ClosureKind>) {
-        let fulfillment_cx = self.fulfillment_cx.borrow();
-        // Here `expected_ty` is known to be a type inference variable.
-
-        let expected_sig = fulfillment_cx.pending_obligations()
-            .iter()
-            .map(|obligation| &obligation.obligation)
-            .filter_map(|obligation| {
-                debug!("deduce_expectations_from_obligations: obligation.predicate={:?}",
-                       obligation.predicate);
-
-                match obligation.predicate {
+    fn deduce_expectations_from_obligations(
+        &self,
+        expected_vid: ty::TyVid,
+    ) -> (Option<ExpectedSig<'tcx>>, Option<ty::ClosureKind>) {
+        let expected_sig = self.obligations_for_self_ty(expected_vid)
+            .find_map(|(_, obligation)| {
+                debug!(
+                    "deduce_expectations_from_obligations: obligation.predicate={:?}",
+                    obligation.predicate
+                );
+
+                if let ty::Predicate::Projection(ref proj_predicate) = obligation.predicate {
                     // Given a Projection predicate, we can potentially infer
                     // the complete signature.
-                    ty::Predicate::Projection(ref proj_predicate) => {
-                        let trait_ref = proj_predicate.to_poly_trait_ref();
-                        self.self_type_matches_expected_vid(trait_ref, expected_vid)
-                            .and_then(|_| self.deduce_sig_from_projection(proj_predicate))
-                    }
-                    _ => None,
+                    self.deduce_sig_from_projection(
+                        Some(obligation.cause.span),
+                        proj_predicate
+                    )
+                } else {
+                    None
                 }
-            })
-            .next();
+            });
 
         // Even if we can't infer the full signature, we may be able to
         // infer the kind. This can occur if there is a trait-reference
         // like `F : Fn<A>`. Note that due to subtyping we could encounter
         // many viable options, so pick the most restrictive.
-        let expected_kind = fulfillment_cx.pending_obligations()
-            .iter()
-            .map(|obligation| &obligation.obligation)
-            .filter_map(|obligation| {
-                let opt_trait_ref = match obligation.predicate {
-                    ty::Predicate::Projection(ref data) => Some(data.to_poly_trait_ref()),
-                    ty::Predicate::Trait(ref data) => Some(data.to_poly_trait_ref()),
-                    ty::Predicate::Equate(..) => None,
-                    ty::Predicate::Subtype(..) => None,
-                    ty::Predicate::RegionOutlives(..) => None,
-                    ty::Predicate::TypeOutlives(..) => None,
-                    ty::Predicate::WellFormed(..) => None,
-                    ty::Predicate::ObjectSafe(..) => None,
-
-                    // NB: This predicate is created by breaking down a
-                    // `ClosureType: FnFoo()` predicate, where
-                    // `ClosureType` represents some `TyClosure`. It can't
-                    // possibly be referring to the current closure,
-                    // because we haven't produced the `TyClosure` for
-                    // this closure yet; this is exactly why the other
-                    // code is looking for a self type of a unresolved
-                    // inference variable.
-                    ty::Predicate::ClosureKind(..) => None,
-                };
-                opt_trait_ref.and_then(|tr| self.self_type_matches_expected_vid(tr, expected_vid))
-                    .and_then(|tr| self.tcx.lang_items.fn_trait_kind(tr.def_id()))
-            })
-            .fold(None,
-                  |best, cur| Some(best.map_or(cur, |best| cmp::min(best, cur))));
+        let expected_kind = self.obligations_for_self_ty(expected_vid)
+            .filter_map(|(tr, _)| self.tcx.lang_items().fn_trait_kind(tr.def_id()))
+            .fold(None, |best, cur| {
+                Some(best.map_or(cur, |best| cmp::min(best, cur)))
+            });
 
         (expected_sig, expected_kind)
     }
 
     /// Given a projection like "<F as Fn(X)>::Result == Y", we can deduce
-    /// everything we need to know about a closure.
-    fn deduce_sig_from_projection(&self,
-                                  projection: &ty::PolyProjectionPredicate<'tcx>)
-                                  -> Option<ty::FnSig<'tcx>> {
+    /// everything we need to know about a closure or generator.
+    ///
+    /// The `cause_span` should be the span that caused us to
+    /// have this expected signature, or `None` if we can't readily
+    /// know that.
+    fn deduce_sig_from_projection(
+        &self,
+        cause_span: Option<Span>,
+        projection: &ty::PolyProjectionPredicate<'tcx>,
+    ) -> Option<ExpectedSig<'tcx>> {
         let tcx = self.tcx;
 
         debug!("deduce_sig_from_projection({:?})", projection);
 
-        let trait_ref = projection.to_poly_trait_ref();
+        let trait_ref = projection.to_poly_trait_ref(tcx);
 
-        if tcx.lang_items.fn_trait_kind(trait_ref.def_id()).is_none() {
+        let is_fn = tcx.lang_items().fn_trait_kind(trait_ref.def_id()).is_some();
+        let gen_trait = tcx.require_lang_item(lang_items::GeneratorTraitLangItem, cause_span);
+        let is_gen = gen_trait == trait_ref.def_id();
+        if !is_fn && !is_gen {
+            debug!("deduce_sig_from_projection: not fn or generator");
             return None;
         }
 
-        let arg_param_ty = trait_ref.substs().type_at(1);
-        let arg_param_ty = self.resolve_type_vars_if_possible(&arg_param_ty);
-        debug!("deduce_sig_from_projection: arg_param_ty {:?}",
-               arg_param_ty);
-
-        let input_tys = match arg_param_ty.sty {
-            ty::TyTuple(tys, _) => tys.into_iter(),
-            _ => {
+        if is_gen {
+            // Check that we deduce the signature from the `<_ as std::ops::Generator>::Return`
+            // associated item and not yield.
+            let return_assoc_item = self.tcx.associated_items(gen_trait).nth(1).unwrap().def_id;
+            if return_assoc_item != projection.projection_def_id() {
+                debug!("deduce_sig_from_projection: not return assoc item of generator");
                 return None;
             }
+        }
+
+        let input_tys = if is_fn {
+            let arg_param_ty = trait_ref.skip_binder().substs.type_at(1);
+            let arg_param_ty = self.resolve_vars_if_possible(&arg_param_ty);
+            debug!("deduce_sig_from_projection: arg_param_ty={:?}", arg_param_ty);
+
+            match arg_param_ty.kind {
+                ty::Tuple(tys) => tys.into_iter().map(|k| k.expect_ty()).collect::<Vec<_>>(),
+                _ => return None,
+            }
+        } else {
+            // Generators cannot have explicit arguments.
+            vec![]
         };
 
-        let ret_param_ty = projection.0.ty;
-        let ret_param_ty = self.resolve_type_vars_if_possible(&ret_param_ty);
-        debug!("deduce_sig_from_projection: ret_param_ty {:?}", ret_param_ty);
+        let ret_param_ty = projection.skip_binder().ty;
+        let ret_param_ty = self.resolve_vars_if_possible(&ret_param_ty);
+        debug!("deduce_sig_from_projection: ret_param_ty={:?}", ret_param_ty);
 
-        let fn_sig = self.tcx.mk_fn_sig(
-            input_tys.cloned(),
-            ret_param_ty,
+        let sig = self.tcx.mk_fn_sig(
+            input_tys.iter(),
+            &ret_param_ty,
             false,
             hir::Unsafety::Normal,
-            Abi::Rust
+            Abi::Rust,
+        );
+        debug!("deduce_sig_from_projection: sig={:?}", sig);
+
+        Some(ExpectedSig { cause_span, sig })
+    }
+
+    fn sig_of_closure(
+        &self,
+        expr_def_id: DefId,
+        decl: &hir::FnDecl,
+        body: &hir::Body,
+        expected_sig: Option<ExpectedSig<'tcx>>,
+    ) -> ClosureSignatures<'tcx> {
+        if let Some(e) = expected_sig {
+            self.sig_of_closure_with_expectation(expr_def_id, decl, body, e)
+        } else {
+            self.sig_of_closure_no_expectation(expr_def_id, decl, body)
+        }
+    }
+
+    /// If there is no expected signature, then we will convert the
+    /// types that the user gave into a signature.
+    fn sig_of_closure_no_expectation(
+        &self,
+        expr_def_id: DefId,
+        decl: &hir::FnDecl,
+        body: &hir::Body,
+    ) -> ClosureSignatures<'tcx> {
+        debug!("sig_of_closure_no_expectation()");
+
+        let bound_sig = self.supplied_sig_of_closure(expr_def_id, decl, body);
+
+        self.closure_sigs(expr_def_id, body, bound_sig)
+    }
+
+    /// Invoked to compute the signature of a closure expression. This
+    /// combines any user-provided type annotations (e.g., `|x: u32|
+    /// -> u32 { .. }`) with the expected signature.
+    ///
+    /// The approach is as follows:
+    ///
+    /// - Let `S` be the (higher-ranked) signature that we derive from the user's annotations.
+    /// - Let `E` be the (higher-ranked) signature that we derive from the expectations, if any.
+    ///   - If we have no expectation `E`, then the signature of the closure is `S`.
+    ///   - Otherwise, the signature of the closure is E. Moreover:
+    ///     - Skolemize the late-bound regions in `E`, yielding `E'`.
+    ///     - Instantiate all the late-bound regions bound in the closure within `S`
+    ///       with fresh (existential) variables, yielding `S'`
+    ///     - Require that `E' = S'`
+    ///       - We could use some kind of subtyping relationship here,
+    ///         I imagine, but equality is easier and works fine for
+    ///         our purposes.
+    ///
+    /// The key intuition here is that the user's types must be valid
+    /// from "the inside" of the closure, but the expectation
+    /// ultimately drives the overall signature.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// fn with_closure<F>(_: F)
+    ///   where F: Fn(&u32) -> &u32 { .. }
+    ///
+    /// with_closure(|x: &u32| { ... })
+    /// ```
+    ///
+    /// Here:
+    /// - E would be `fn(&u32) -> &u32`.
+    /// - S would be `fn(&u32) ->
+    /// - E' is `&'!0 u32 -> &'!0 u32`
+    /// - S' is `&'?0 u32 -> ?T`
+    ///
+    /// S' can be unified with E' with `['?0 = '!0, ?T = &'!10 u32]`.
+    ///
+    /// # Arguments
+    ///
+    /// - `expr_def_id`: the `DefId` of the closure expression
+    /// - `decl`: the HIR declaration of the closure
+    /// - `body`: the body of the closure
+    /// - `expected_sig`: the expected signature (if any). Note that
+    ///   this is missing a binder: that is, there may be late-bound
+    ///   regions with depth 1, which are bound then by the closure.
+    fn sig_of_closure_with_expectation(
+        &self,
+        expr_def_id: DefId,
+        decl: &hir::FnDecl,
+        body: &hir::Body,
+        expected_sig: ExpectedSig<'tcx>,
+    ) -> ClosureSignatures<'tcx> {
+        debug!(
+            "sig_of_closure_with_expectation(expected_sig={:?})",
+            expected_sig
+        );
+
+        // Watch out for some surprises and just ignore the
+        // expectation if things don't see to match up with what we
+        // expect.
+        if expected_sig.sig.c_variadic != decl.c_variadic {
+            return self.sig_of_closure_no_expectation(expr_def_id, decl, body);
+        } else if expected_sig.sig.inputs_and_output.len() != decl.inputs.len() + 1 {
+            return self.sig_of_closure_with_mismatched_number_of_arguments(
+                expr_def_id,
+                decl,
+                body,
+                expected_sig,
+            );
+        }
+
+        // Create a `PolyFnSig`. Note the oddity that late bound
+        // regions appearing free in `expected_sig` are now bound up
+        // in this binder we are creating.
+        assert!(!expected_sig.sig.has_vars_bound_above(ty::INNERMOST));
+        let bound_sig = ty::Binder::bind(self.tcx.mk_fn_sig(
+            expected_sig.sig.inputs().iter().cloned(),
+            expected_sig.sig.output(),
+            decl.c_variadic,
+            hir::Unsafety::Normal,
+            Abi::RustCall,
+        ));
+
+        // `deduce_expectations_from_expected_type` introduces
+        // late-bound lifetimes defined elsewhere, which we now
+        // anonymize away, so as not to confuse the user.
+        let bound_sig = self.tcx.anonymize_late_bound_regions(&bound_sig);
+
+        let closure_sigs = self.closure_sigs(expr_def_id, body, bound_sig);
+
+        // Up till this point, we have ignored the annotations that the user
+        // gave. This function will check that they unify successfully.
+        // Along the way, it also writes out entries for types that the user
+        // wrote into our tables, which are then later used by the privacy
+        // check.
+        match self.check_supplied_sig_against_expectation(expr_def_id, decl, body, &closure_sigs) {
+            Ok(infer_ok) => self.register_infer_ok_obligations(infer_ok),
+            Err(_) => return self.sig_of_closure_no_expectation(expr_def_id, decl, body),
+        }
+
+        closure_sigs
+    }
+
+    fn sig_of_closure_with_mismatched_number_of_arguments(
+        &self,
+        expr_def_id: DefId,
+        decl: &hir::FnDecl,
+        body: &hir::Body,
+        expected_sig: ExpectedSig<'tcx>,
+    ) -> ClosureSignatures<'tcx> {
+        let expr_map_node = self.tcx.hir().get_if_local(expr_def_id).unwrap();
+        let expected_args: Vec<_> = expected_sig
+            .sig
+            .inputs()
+            .iter()
+            .map(|ty| ArgKind::from_expected_ty(ty, None))
+            .collect();
+        let (closure_span, found_args) = self.get_fn_like_arguments(expr_map_node);
+        let expected_span = expected_sig.cause_span.unwrap_or(closure_span);
+        self.report_arg_count_mismatch(
+            expected_span,
+            Some(closure_span),
+            expected_args,
+            found_args,
+            true,
+        ).emit();
+
+        let error_sig = self.error_sig_of_closure(decl);
+
+        self.closure_sigs(expr_def_id, body, error_sig)
+    }
+
+    /// Enforce the user's types against the expectation. See
+    /// `sig_of_closure_with_expectation` for details on the overall
+    /// strategy.
+    fn check_supplied_sig_against_expectation(
+        &self,
+        expr_def_id: DefId,
+        decl: &hir::FnDecl,
+        body: &hir::Body,
+        expected_sigs: &ClosureSignatures<'tcx>,
+    ) -> InferResult<'tcx, ()> {
+        // Get the signature S that the user gave.
+        //
+        // (See comment on `sig_of_closure_with_expectation` for the
+        // meaning of these letters.)
+        let supplied_sig = self.supplied_sig_of_closure(expr_def_id, decl, body);
+
+        debug!(
+            "check_supplied_sig_against_expectation: supplied_sig={:?}",
+            supplied_sig
         );
-        debug!("deduce_sig_from_projection: fn_sig {:?}", fn_sig);
 
-        Some(fn_sig)
+        // FIXME(#45727): As discussed in [this comment][c1], naively
+        // forcing equality here actually results in suboptimal error
+        // messages in some cases.  For now, if there would have been
+        // an obvious error, we fallback to declaring the type of the
+        // closure to be the one the user gave, which allows other
+        // error message code to trigger.
+        //
+        // However, I think [there is potential to do even better
+        // here][c2], since in *this* code we have the precise span of
+        // the type parameter in question in hand when we report the
+        // error.
+        //
+        // [c1]: https://github.com/rust-lang/rust/pull/45072#issuecomment-341089706
+        // [c2]: https://github.com/rust-lang/rust/pull/45072#issuecomment-341096796
+        self.infcx.commit_if_ok(|_| {
+            let mut all_obligations = vec![];
+
+            // The liberated version of this signature should be a subtype
+            // of the liberated form of the expectation.
+            for ((hir_ty, &supplied_ty), expected_ty) in decl.inputs.iter()
+               .zip(*supplied_sig.inputs().skip_binder()) // binder moved to (*) below
+               .zip(expected_sigs.liberated_sig.inputs())
+            // `liberated_sig` is E'.
+            {
+                // Instantiate (this part of..) S to S', i.e., with fresh variables.
+                let (supplied_ty, _) = self.infcx.replace_bound_vars_with_fresh_vars(
+                    hir_ty.span,
+                    LateBoundRegionConversionTime::FnCall,
+                    &ty::Binder::bind(supplied_ty),
+                ); // recreated from (*) above
+
+                // Check that E' = S'.
+                let cause = self.misc(hir_ty.span);
+                let InferOk {
+                    value: (),
+                    obligations,
+                } = self.at(&cause, self.param_env)
+                    .eq(*expected_ty, supplied_ty)?;
+                all_obligations.extend(obligations);
+
+                // Also, require that the supplied type must outlive
+                // the closure body.
+                let closure_body_region = self.tcx.mk_region(
+                    ty::ReScope(
+                        region::Scope {
+                            id: body.value.hir_id.local_id,
+                            data: region::ScopeData::Node,
+                        },
+                    ),
+                );
+                all_obligations.push(
+                    Obligation::new(
+                        cause,
+                        self.param_env,
+                        ty::Predicate::TypeOutlives(
+                            ty::Binder::dummy(
+                                ty::OutlivesPredicate(
+                                    supplied_ty,
+                                    closure_body_region,
+                                ),
+                            ),
+                        ),
+                    ),
+                );
+            }
+
+            let (supplied_output_ty, _) = self.infcx.replace_bound_vars_with_fresh_vars(
+                decl.output.span(),
+                LateBoundRegionConversionTime::FnCall,
+                &supplied_sig.output(),
+            );
+            let cause = &self.misc(decl.output.span());
+            let InferOk {
+                value: (),
+                obligations,
+            } = self.at(cause, self.param_env)
+                .eq(expected_sigs.liberated_sig.output(), supplied_output_ty)?;
+            all_obligations.extend(obligations);
+
+            Ok(InferOk {
+                value: (),
+                obligations: all_obligations,
+            })
+        })
+    }
+
+    /// If there is no expected signature, then we will convert the
+    /// types that the user gave into a signature.
+    ///
+    /// Also, record this closure signature for later.
+    fn supplied_sig_of_closure(
+        &self,
+        expr_def_id: DefId,
+        decl: &hir::FnDecl,
+        body: &hir::Body,
+    ) -> ty::PolyFnSig<'tcx> {
+        let astconv: &dyn AstConv<'_> = self;
+
+        debug!(
+            "supplied_sig_of_closure(decl={:?}, body.generator_kind={:?})",
+            decl,
+            body.generator_kind,
+        );
+
+        // First, convert the types that the user supplied (if any).
+        let supplied_arguments = decl.inputs.iter().map(|a| astconv.ast_ty_to_ty(a));
+        let supplied_return = match decl.output {
+            hir::Return(ref output) => astconv.ast_ty_to_ty(&output),
+            hir::DefaultReturn(_) => match body.generator_kind {
+                // In the case of the async block that we create for a function body,
+                // we expect the return type of the block to match that of the enclosing
+                // function.
+                Some(hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Fn)) => {
+                    debug!("supplied_sig_of_closure: closure is async fn body");
+                    self.deduce_future_output_from_obligations(expr_def_id)
+                        .unwrap_or_else(|| {
+                            // AFAIK, deducing the future output
+                            // always succeeds *except* in error cases
+                            // like #65159. I'd like to return Error
+                            // here, but I can't because I can't
+                            // easily (and locally) prove that we
+                            // *have* reported an
+                            // error. --nikomatsakis
+                            astconv.ty_infer(None, decl.output.span())
+                        })
+                }
+
+                _ => astconv.ty_infer(None, decl.output.span()),
+            }
+        };
+
+        let result = ty::Binder::bind(self.tcx.mk_fn_sig(
+            supplied_arguments,
+            supplied_return,
+            decl.c_variadic,
+            hir::Unsafety::Normal,
+            Abi::RustCall,
+        ));
+
+        debug!("supplied_sig_of_closure: result={:?}", result);
+
+        let c_result = self.inh.infcx.canonicalize_response(&result);
+        self.tables.borrow_mut().user_provided_sigs.insert(
+            expr_def_id,
+            c_result,
+        );
+
+        result
+    }
+
+    /// Invoked when we are translating the generator that results
+    /// from desugaring an `async fn`. Returns the "sugared" return
+    /// type of the `async fn` -- that is, the return type that the
+    /// user specified. The "desugared" return type is a `impl
+    /// Future<Output = T>`, so we do this by searching through the
+    /// obligations to extract the `T`.
+    fn deduce_future_output_from_obligations(
+        &self,
+        expr_def_id: DefId,
+    ) -> Option<Ty<'tcx>> {
+        debug!("deduce_future_output_from_obligations(expr_def_id={:?})", expr_def_id);
+
+        let ret_coercion =
+            self.ret_coercion
+            .as_ref()
+            .unwrap_or_else(|| span_bug!(
+                self.tcx.def_span(expr_def_id),
+                "async fn generator outside of a fn"
+            ));
+
+        // In practice, the return type of the surrounding function is
+        // always a (not yet resolved) inference variable, because it
+        // is the hidden type for an `impl Trait` that we are going to
+        // be inferring.
+        let ret_ty = ret_coercion.borrow().expected_ty();
+        let ret_ty = self.inh.infcx.shallow_resolve(ret_ty);
+        let ret_vid = match ret_ty.kind {
+            ty::Infer(ty::TyVar(ret_vid)) => ret_vid,
+            _ => {
+                span_bug!(
+                    self.tcx.def_span(expr_def_id),
+                    "async fn generator return type not an inference variable"
+                )
+            }
+        };
+
+        // Search for a pending obligation like
+        //
+        // `<R as Future>::Output = T`
+        //
+        // where R is the return type we are expecting. This type `T`
+        // will be our output.
+        let output_ty = self.obligations_for_self_ty(ret_vid)
+            .find_map(|(_, obligation)| {
+                if let ty::Predicate::Projection(ref proj_predicate) = obligation.predicate {
+                    self.deduce_future_output_from_projection(
+                        obligation.cause.span,
+                        proj_predicate
+                    )
+                } else {
+                    None
+                }
+            });
+
+        debug!("deduce_future_output_from_obligations: output_ty={:?}", output_ty);
+        output_ty
     }
 
-    fn self_type_matches_expected_vid(&self,
-                                      trait_ref: ty::PolyTraitRef<'tcx>,
-                                      expected_vid: ty::TyVid)
-                                      -> Option<ty::PolyTraitRef<'tcx>> {
-        let self_ty = self.shallow_resolve(trait_ref.self_ty());
-        debug!("self_type_matches_expected_vid(trait_ref={:?}, self_ty={:?})",
-               trait_ref,
-               self_ty);
-        match self_ty.sty {
-            ty::TyInfer(ty::TyVar(v)) if expected_vid == v => Some(trait_ref),
-            _ => None,
+    /// Given a projection like
+    ///
+    /// `<X as Future>::Output = T`
+    ///
+    /// where `X` is some type that has no late-bound regions, returns
+    /// `Some(T)`. If the projection is for some other trait, returns
+    /// `None`.
+    fn deduce_future_output_from_projection(
+        &self,
+        cause_span: Span,
+        predicate: &ty::PolyProjectionPredicate<'tcx>,
+    ) -> Option<Ty<'tcx>> {
+        debug!("deduce_future_output_from_projection(predicate={:?})", predicate);
+
+        // We do not expect any bound regions in our predicate, so
+        // skip past the bound vars.
+        let predicate = match predicate.no_bound_vars() {
+            Some(p) => p,
+            None => {
+                debug!("deduce_future_output_from_projection: has late-bound regions");
+                return None;
+            }
+        };
+
+        // Check that this is a projection from the `Future` trait.
+        let trait_ref = predicate.projection_ty.trait_ref(self.tcx);
+        let future_trait = self.tcx.lang_items().future_trait().unwrap();
+        if trait_ref.def_id != future_trait {
+            debug!("deduce_future_output_from_projection: not a future");
+            return None;
+        }
+
+        // The `Future` trait has only one associted item, `Output`,
+        // so check that this is what we see.
+        let output_assoc_item = self.tcx.associated_items(future_trait).nth(0).unwrap().def_id;
+        if output_assoc_item != predicate.projection_ty.item_def_id {
+            span_bug!(
+                cause_span,
+                "projecting associated item `{:?}` from future, which is not Output `{:?}`",
+                predicate.projection_ty.item_def_id,
+                output_assoc_item,
+            );
+        }
+
+        // Extract the type from the projection. Note that there can
+        // be no bound variables in this type because the "self type"
+        // does not have any regions in it.
+        let output_ty = self.resolve_vars_if_possible(&predicate.ty);
+        debug!("deduce_future_output_from_projection: output_ty={:?}", output_ty);
+        Some(output_ty)
+    }
+
+    /// Converts the types that the user supplied, in case that doing
+    /// so should yield an error, but returns back a signature where
+    /// all parameters are of type `TyErr`.
+    fn error_sig_of_closure(&self, decl: &hir::FnDecl) -> ty::PolyFnSig<'tcx> {
+        let astconv: &dyn AstConv<'_> = self;
+
+        let supplied_arguments = decl.inputs.iter().map(|a| {
+            // Convert the types that the user supplied (if any), but ignore them.
+            astconv.ast_ty_to_ty(a);
+            self.tcx.types.err
+        });
+
+        if let hir::Return(ref output) = decl.output {
+            astconv.ast_ty_to_ty(&output);
+        }
+
+        let result = ty::Binder::bind(self.tcx.mk_fn_sig(
+            supplied_arguments,
+            self.tcx.types.err,
+            decl.c_variadic,
+            hir::Unsafety::Normal,
+            Abi::RustCall,
+        ));
+
+        debug!("supplied_sig_of_closure: result={:?}", result);
+
+        result
+    }
+
+    fn closure_sigs(
+        &self,
+        expr_def_id: DefId,
+        body: &hir::Body,
+        bound_sig: ty::PolyFnSig<'tcx>,
+    ) -> ClosureSignatures<'tcx> {
+        let liberated_sig = self.tcx()
+            .liberate_late_bound_regions(expr_def_id, &bound_sig);
+        let liberated_sig = self.inh.normalize_associated_types_in(
+            body.value.span,
+            body.value.hir_id,
+            self.param_env,
+            &liberated_sig,
+        );
+        ClosureSignatures {
+            bound_sig,
+            liberated_sig,
         }
     }
 }