]> git.proxmox.com Git - rustc.git/blobdiff - src/tools/clippy/clippy_lints/src/unnested_or_patterns.rs
New upstream version 1.52.1+dfsg1
[rustc.git] / src / tools / clippy / clippy_lints / src / unnested_or_patterns.rs
diff --git a/src/tools/clippy/clippy_lints/src/unnested_or_patterns.rs b/src/tools/clippy/clippy_lints/src/unnested_or_patterns.rs
new file mode 100644 (file)
index 0000000..fa613bb
--- /dev/null
@@ -0,0 +1,408 @@
+#![allow(clippy::wildcard_imports, clippy::enum_glob_use)]
+
+use crate::utils::ast_utils::{eq_field_pat, eq_id, eq_pat, eq_path};
+use crate::utils::{over, span_lint_and_then};
+use rustc_ast::mut_visit::*;
+use rustc_ast::ptr::P;
+use rustc_ast::{self as ast, Pat, PatKind, PatKind::*, DUMMY_NODE_ID};
+use rustc_ast_pretty::pprust;
+use rustc_errors::Applicability;
+use rustc_lint::{EarlyContext, EarlyLintPass};
+use rustc_session::{declare_lint_pass, declare_tool_lint};
+use rustc_span::DUMMY_SP;
+
+use std::cell::Cell;
+use std::mem;
+
+declare_clippy_lint! {
+    /// **What it does:**
+    ///
+    /// Checks for unnested or-patterns, e.g., `Some(0) | Some(2)` and
+    /// suggests replacing the pattern with a nested one, `Some(0 | 2)`.
+    ///
+    /// Another way to think of this is that it rewrites patterns in
+    /// *disjunctive normal form (DNF)* into *conjunctive normal form (CNF)*.
+    ///
+    /// **Why is this bad?**
+    ///
+    /// In the example above, `Some` is repeated, which unncessarily complicates the pattern.
+    ///
+    /// **Known problems:** None.
+    ///
+    /// **Example:**
+    ///
+    /// ```rust
+    /// fn main() {
+    ///     if let Some(0) | Some(2) = Some(0) {}
+    /// }
+    /// ```
+    /// Use instead:
+    /// ```rust
+    /// #![feature(or_patterns)]
+    ///
+    /// fn main() {
+    ///     if let Some(0 | 2) = Some(0) {}
+    /// }
+    /// ```
+    pub UNNESTED_OR_PATTERNS,
+    pedantic,
+    "unnested or-patterns, e.g., `Foo(Bar) | Foo(Baz) instead of `Foo(Bar | Baz)`"
+}
+
+declare_lint_pass!(UnnestedOrPatterns => [UNNESTED_OR_PATTERNS]);
+
+impl EarlyLintPass for UnnestedOrPatterns {
+    fn check_arm(&mut self, cx: &EarlyContext<'_>, a: &ast::Arm) {
+        lint_unnested_or_patterns(cx, &a.pat);
+    }
+
+    fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
+        if let ast::ExprKind::Let(pat, _) = &e.kind {
+            lint_unnested_or_patterns(cx, pat);
+        }
+    }
+
+    fn check_param(&mut self, cx: &EarlyContext<'_>, p: &ast::Param) {
+        lint_unnested_or_patterns(cx, &p.pat);
+    }
+
+    fn check_local(&mut self, cx: &EarlyContext<'_>, l: &ast::Local) {
+        lint_unnested_or_patterns(cx, &l.pat);
+    }
+}
+
+fn lint_unnested_or_patterns(cx: &EarlyContext<'_>, pat: &Pat) {
+    if !cx.sess.features_untracked().or_patterns {
+        // Do not suggest nesting the patterns if the feature `or_patterns` is not enabled.
+        return;
+    }
+
+    if let Ident(.., None) | Lit(_) | Wild | Path(..) | Range(..) | Rest | MacCall(_) = pat.kind {
+        // This is a leaf pattern, so cloning is unprofitable.
+        return;
+    }
+
+    let mut pat = P(pat.clone());
+
+    // Nix all the paren patterns everywhere so that they aren't in our way.
+    remove_all_parens(&mut pat);
+
+    // Transform all unnested or-patterns into nested ones, and if there were none, quit.
+    if !unnest_or_patterns(&mut pat) {
+        return;
+    }
+
+    span_lint_and_then(cx, UNNESTED_OR_PATTERNS, pat.span, "unnested or-patterns", |db| {
+        insert_necessary_parens(&mut pat);
+        db.span_suggestion_verbose(
+            pat.span,
+            "nest the patterns",
+            pprust::pat_to_string(&pat),
+            Applicability::MachineApplicable,
+        );
+    });
+}
+
+/// Remove all `(p)` patterns in `pat`.
+fn remove_all_parens(pat: &mut P<Pat>) {
+    struct Visitor;
+    impl MutVisitor for Visitor {
+        fn visit_pat(&mut self, pat: &mut P<Pat>) {
+            noop_visit_pat(pat, self);
+            let inner = match &mut pat.kind {
+                Paren(i) => mem::replace(&mut i.kind, Wild),
+                _ => return,
+            };
+            pat.kind = inner;
+        }
+    }
+    Visitor.visit_pat(pat);
+}
+
+/// Insert parens where necessary according to Rust's precedence rules for patterns.
+fn insert_necessary_parens(pat: &mut P<Pat>) {
+    struct Visitor;
+    impl MutVisitor for Visitor {
+        fn visit_pat(&mut self, pat: &mut P<Pat>) {
+            use ast::{BindingMode::*, Mutability::*};
+            noop_visit_pat(pat, self);
+            let target = match &mut pat.kind {
+                // `i @ a | b`, `box a | b`, and `& mut? a | b`.
+                Ident(.., Some(p)) | Box(p) | Ref(p, _) if matches!(&p.kind, Or(ps) if ps.len() > 1) => p,
+                Ref(p, Not) if matches!(p.kind, Ident(ByValue(Mut), ..)) => p, // `&(mut x)`
+                _ => return,
+            };
+            target.kind = Paren(P(take_pat(target)));
+        }
+    }
+    Visitor.visit_pat(pat);
+}
+
+/// Unnest or-patterns `p0 | ... | p1` in the pattern `pat`.
+/// For example, this would transform `Some(0) | FOO | Some(2)` into `Some(0 | 2) | FOO`.
+fn unnest_or_patterns(pat: &mut P<Pat>) -> bool {
+    struct Visitor {
+        changed: bool,
+    }
+    impl MutVisitor for Visitor {
+        fn visit_pat(&mut self, p: &mut P<Pat>) {
+            // This is a bottom up transformation, so recurse first.
+            noop_visit_pat(p, self);
+
+            // Don't have an or-pattern? Just quit early on.
+            let alternatives = match &mut p.kind {
+                Or(ps) => ps,
+                _ => return,
+            };
+
+            // Collapse or-patterns directly nested in or-patterns.
+            let mut idx = 0;
+            let mut this_level_changed = false;
+            while idx < alternatives.len() {
+                let inner = if let Or(ps) = &mut alternatives[idx].kind {
+                    mem::take(ps)
+                } else {
+                    idx += 1;
+                    continue;
+                };
+                this_level_changed = true;
+                alternatives.splice(idx..=idx, inner);
+            }
+
+            // Focus on `p_n` and then try to transform all `p_i` where `i > n`.
+            let mut focus_idx = 0;
+            while focus_idx < alternatives.len() {
+                this_level_changed |= transform_with_focus_on_idx(alternatives, focus_idx);
+                focus_idx += 1;
+            }
+            self.changed |= this_level_changed;
+
+            // Deal with `Some(Some(0)) | Some(Some(1))`.
+            if this_level_changed {
+                noop_visit_pat(p, self);
+            }
+        }
+    }
+
+    let mut visitor = Visitor { changed: false };
+    visitor.visit_pat(pat);
+    visitor.changed
+}
+
+/// Match `$scrutinee` against `$pat` and extract `$then` from it.
+/// Panics if there is no match.
+macro_rules! always_pat {
+    ($scrutinee:expr, $pat:pat => $then:expr) => {
+        match $scrutinee {
+            $pat => $then,
+            _ => unreachable!(),
+        }
+    };
+}
+
+/// Focus on `focus_idx` in `alternatives`,
+/// attempting to extend it with elements of the same constructor `C`
+/// in `alternatives[focus_idx + 1..]`.
+fn transform_with_focus_on_idx(alternatives: &mut Vec<P<Pat>>, focus_idx: usize) -> bool {
+    // Extract the kind; we'll need to make some changes in it.
+    let mut focus_kind = mem::replace(&mut alternatives[focus_idx].kind, PatKind::Wild);
+    // We'll focus on `alternatives[focus_idx]`,
+    // so we're draining from `alternatives[focus_idx + 1..]`.
+    let start = focus_idx + 1;
+
+    // We're trying to find whatever kind (~"constructor") we found in `alternatives[start..]`.
+    let changed = match &mut focus_kind {
+        // These pattern forms are "leafs" and do not have sub-patterns.
+        // Therefore they are not some form of constructor `C`,
+        // with which a pattern `C(p_0)` may be formed,
+        // which we would want to join with other `C(p_j)`s.
+        Ident(.., None) | Lit(_) | Wild | Path(..) | Range(..) | Rest | MacCall(_)
+        // Dealt with elsewhere.
+        | Or(_) | Paren(_) => false,
+        // Transform `box x | ... | box y` into `box (x | y)`.
+        //
+        // The cases below until `Slice(...)` deal with *singleton* products.
+        // These patterns have the shape `C(p)`, and not e.g., `C(p0, ..., pn)`.
+        Box(target) => extend_with_matching(
+            target, start, alternatives,
+            |k| matches!(k, Box(_)),
+            |k| always_pat!(k, Box(p) => p),
+        ),
+        // Transform `&m x | ... | &m y` into `&m (x | y)`.
+        Ref(target, m1) => extend_with_matching(
+            target, start, alternatives,
+            |k| matches!(k, Ref(_, m2) if m1 == m2), // Mutabilities must match.
+            |k| always_pat!(k, Ref(p, _) => p),
+        ),
+        // Transform `b @ p0 | ... b @ p1` into `b @ (p0 | p1)`.
+        Ident(b1, i1, Some(target)) => extend_with_matching(
+            target, start, alternatives,
+            // Binding names must match.
+            |k| matches!(k, Ident(b2, i2, Some(_)) if b1 == b2 && eq_id(*i1, *i2)),
+            |k| always_pat!(k, Ident(_, _, Some(p)) => p),
+        ),
+        // Transform `[pre, x, post] | ... | [pre, y, post]` into `[pre, x | y, post]`.
+        Slice(ps1) => extend_with_matching_product(
+            ps1, start, alternatives,
+            |k, ps1, idx| matches!(k, Slice(ps2) if eq_pre_post(ps1, ps2, idx)),
+            |k| always_pat!(k, Slice(ps) => ps),
+        ),
+        // Transform `(pre, x, post) | ... | (pre, y, post)` into `(pre, x | y, post)`.
+        Tuple(ps1) => extend_with_matching_product(
+            ps1, start, alternatives,
+            |k, ps1, idx| matches!(k, Tuple(ps2) if eq_pre_post(ps1, ps2, idx)),
+            |k| always_pat!(k, Tuple(ps) => ps),
+        ),
+        // Transform `S(pre, x, post) | ... | S(pre, y, post)` into `S(pre, x | y, post)`.
+        TupleStruct(path1, ps1) => extend_with_matching_product(
+            ps1, start, alternatives,
+            |k, ps1, idx| matches!(
+                k,
+                TupleStruct(path2, ps2) if eq_path(path1, path2) && eq_pre_post(ps1, ps2, idx)
+            ),
+            |k| always_pat!(k, TupleStruct(_, ps) => ps),
+        ),
+        // Transform a record pattern `S { fp_0, ..., fp_n }`.
+        Struct(path1, fps1, rest1) => extend_with_struct_pat(path1, fps1, *rest1, start, alternatives),
+    };
+
+    alternatives[focus_idx].kind = focus_kind;
+    changed
+}
+
+/// Here we focusing on a record pattern `S { fp_0, ..., fp_n }`.
+/// In particular, for a record pattern, the order in which the field patterns is irrelevant.
+/// So when we fixate on some `ident_k: pat_k`, we try to find `ident_k` in the other pattern
+/// and check that all `fp_i` where `i ∈ ((0...n) \ k)` between two patterns are equal.
+fn extend_with_struct_pat(
+    path1: &ast::Path,
+    fps1: &mut Vec<ast::PatField>,
+    rest1: bool,
+    start: usize,
+    alternatives: &mut Vec<P<Pat>>,
+) -> bool {
+    (0..fps1.len()).any(|idx| {
+        let pos_in_2 = Cell::new(None); // The element `k`.
+        let tail_or = drain_matching(
+            start,
+            alternatives,
+            |k| {
+                matches!(k, Struct(path2, fps2, rest2)
+                if rest1 == *rest2 // If one struct pattern has `..` so must the other.
+                && eq_path(path1, path2)
+                && fps1.len() == fps2.len()
+                && fps1.iter().enumerate().all(|(idx_1, fp1)| {
+                    if idx_1 == idx {
+                        // In the case of `k`, we merely require identical field names
+                        // so that we will transform into `ident_k: p1_k | p2_k`.
+                        let pos = fps2.iter().position(|fp2| eq_id(fp1.ident, fp2.ident));
+                        pos_in_2.set(pos);
+                        pos.is_some()
+                    } else {
+                        fps2.iter().any(|fp2| eq_field_pat(fp1, fp2))
+                    }
+                }))
+            },
+            // Extract `p2_k`.
+            |k| always_pat!(k, Struct(_, mut fps, _) => fps.swap_remove(pos_in_2.take().unwrap()).pat),
+        );
+        extend_with_tail_or(&mut fps1[idx].pat, tail_or)
+    })
+}
+
+/// Like `extend_with_matching` but for products with > 1 factor, e.g., `C(p_0, ..., p_n)`.
+/// Here, the idea is that we fixate on some `p_k` in `C`,
+/// allowing it to vary between two `targets` and `ps2` (returned by `extract`),
+/// while also requiring `ps1[..n] ~ ps2[..n]` (pre) and `ps1[n + 1..] ~ ps2[n + 1..]` (post),
+/// where `~` denotes semantic equality.
+fn extend_with_matching_product(
+    targets: &mut Vec<P<Pat>>,
+    start: usize,
+    alternatives: &mut Vec<P<Pat>>,
+    predicate: impl Fn(&PatKind, &[P<Pat>], usize) -> bool,
+    extract: impl Fn(PatKind) -> Vec<P<Pat>>,
+) -> bool {
+    (0..targets.len()).any(|idx| {
+        let tail_or = drain_matching(
+            start,
+            alternatives,
+            |k| predicate(k, targets, idx),
+            |k| extract(k).swap_remove(idx),
+        );
+        extend_with_tail_or(&mut targets[idx], tail_or)
+    })
+}
+
+/// Extract the pattern from the given one and replace it with `Wild`.
+/// This is meant for temporarily swapping out the pattern for manipulation.
+fn take_pat(from: &mut Pat) -> Pat {
+    let dummy = Pat {
+        id: DUMMY_NODE_ID,
+        kind: Wild,
+        span: DUMMY_SP,
+        tokens: None,
+    };
+    mem::replace(from, dummy)
+}
+
+/// Extend `target` as an or-pattern with the alternatives
+/// in `tail_or` if there are any and return if there were.
+fn extend_with_tail_or(target: &mut Pat, tail_or: Vec<P<Pat>>) -> bool {
+    fn extend(target: &mut Pat, mut tail_or: Vec<P<Pat>>) {
+        match target {
+            // On an existing or-pattern in the target, append to it.
+            Pat { kind: Or(ps), .. } => ps.append(&mut tail_or),
+            // Otherwise convert the target to an or-pattern.
+            target => {
+                let mut init_or = vec![P(take_pat(target))];
+                init_or.append(&mut tail_or);
+                target.kind = Or(init_or);
+            },
+        }
+    }
+
+    let changed = !tail_or.is_empty();
+    if changed {
+        // Extend the target.
+        extend(target, tail_or);
+    }
+    changed
+}
+
+// Extract all inner patterns in `alternatives` matching our `predicate`.
+// Only elements beginning with `start` are considered for extraction.
+fn drain_matching(
+    start: usize,
+    alternatives: &mut Vec<P<Pat>>,
+    predicate: impl Fn(&PatKind) -> bool,
+    extract: impl Fn(PatKind) -> P<Pat>,
+) -> Vec<P<Pat>> {
+    let mut tail_or = vec![];
+    let mut idx = 0;
+    for pat in alternatives.drain_filter(|p| {
+        // Check if we should extract, but only if `idx >= start`.
+        idx += 1;
+        idx > start && predicate(&p.kind)
+    }) {
+        tail_or.push(extract(pat.into_inner().kind));
+    }
+    tail_or
+}
+
+fn extend_with_matching(
+    target: &mut Pat,
+    start: usize,
+    alternatives: &mut Vec<P<Pat>>,
+    predicate: impl Fn(&PatKind) -> bool,
+    extract: impl Fn(PatKind) -> P<Pat>,
+) -> bool {
+    extend_with_tail_or(target, drain_matching(start, alternatives, predicate, extract))
+}
+
+/// Are the patterns in `ps1` and `ps2` equal save for `ps1[idx]` compared to `ps2[idx]`?
+fn eq_pre_post(ps1: &[P<Pat>], ps2: &[P<Pat>], idx: usize) -> bool {
+    ps1.len() == ps2.len()
+        && ps1[idx].is_rest() == ps2[idx].is_rest() // Avoid `[x, ..] | [x, 0]` => `[x, .. | 0]`.
+        && over(&ps1[..idx], &ps2[..idx], |l, r| eq_pat(l, r))
+        && over(&ps1[idx + 1..], &ps2[idx + 1..], |l, r| eq_pat(l, r))
+}