]> git.proxmox.com Git - rustc.git/blobdiff - vendor/rand-0.7.3/src/distributions/gamma.rs
Merge tag 'debian/1.52.1+dfsg1-1_exp2' into proxmox/buster
[rustc.git] / vendor / rand-0.7.3 / src / distributions / gamma.rs
diff --git a/vendor/rand-0.7.3/src/distributions/gamma.rs b/vendor/rand-0.7.3/src/distributions/gamma.rs
new file mode 100644 (file)
index 0000000..f19738d
--- /dev/null
@@ -0,0 +1,373 @@
+// Copyright 2018 Developers of the Rand project.
+// Copyright 2013 The Rust Project Developers.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! The Gamma and derived distributions.
+#![allow(deprecated)]
+
+use self::ChiSquaredRepr::*;
+use self::GammaRepr::*;
+
+use crate::distributions::normal::StandardNormal;
+use crate::distributions::{Distribution, Exp, Open01};
+use crate::Rng;
+
+/// The Gamma distribution `Gamma(shape, scale)` distribution.
+///
+/// The density function of this distribution is
+///
+/// ```text
+/// f(x) =  x^(k - 1) * exp(-x / θ) / (Γ(k) * θ^k)
+/// ```
+///
+/// where `Γ` is the Gamma function, `k` is the shape and `θ` is the
+/// scale and both `k` and `θ` are strictly positive.
+///
+/// The algorithm used is that described by Marsaglia & Tsang 2000[^1],
+/// falling back to directly sampling from an Exponential for `shape
+/// == 1`, and using the boosting technique described in that paper for
+/// `shape < 1`.
+///
+/// [^1]: George Marsaglia and Wai Wan Tsang. 2000. "A Simple Method for
+///       Generating Gamma Variables" *ACM Trans. Math. Softw.* 26, 3
+///       (September 2000), 363-372.
+///       DOI:[10.1145/358407.358414](https://doi.acm.org/10.1145/358407.358414)
+#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")]
+#[derive(Clone, Copy, Debug)]
+pub struct Gamma {
+    repr: GammaRepr,
+}
+
+#[derive(Clone, Copy, Debug)]
+enum GammaRepr {
+    Large(GammaLargeShape),
+    One(Exp),
+    Small(GammaSmallShape),
+}
+
+// These two helpers could be made public, but saving the
+// match-on-Gamma-enum branch from using them directly (e.g. if one
+// knows that the shape is always > 1) doesn't appear to be much
+// faster.
+
+/// Gamma distribution where the shape parameter is less than 1.
+///
+/// Note, samples from this require a compulsory floating-point `pow`
+/// call, which makes it significantly slower than sampling from a
+/// gamma distribution where the shape parameter is greater than or
+/// equal to 1.
+///
+/// See `Gamma` for sampling from a Gamma distribution with general
+/// shape parameters.
+#[derive(Clone, Copy, Debug)]
+struct GammaSmallShape {
+    inv_shape: f64,
+    large_shape: GammaLargeShape,
+}
+
+/// Gamma distribution where the shape parameter is larger than 1.
+///
+/// See `Gamma` for sampling from a Gamma distribution with general
+/// shape parameters.
+#[derive(Clone, Copy, Debug)]
+struct GammaLargeShape {
+    scale: f64,
+    c: f64,
+    d: f64,
+}
+
+impl Gamma {
+    /// Construct an object representing the `Gamma(shape, scale)`
+    /// distribution.
+    ///
+    /// Panics if `shape <= 0` or `scale <= 0`.
+    #[inline]
+    pub fn new(shape: f64, scale: f64) -> Gamma {
+        assert!(shape > 0.0, "Gamma::new called with shape <= 0");
+        assert!(scale > 0.0, "Gamma::new called with scale <= 0");
+
+        let repr = if shape == 1.0 {
+            One(Exp::new(1.0 / scale))
+        } else if shape < 1.0 {
+            Small(GammaSmallShape::new_raw(shape, scale))
+        } else {
+            Large(GammaLargeShape::new_raw(shape, scale))
+        };
+        Gamma { repr }
+    }
+}
+
+impl GammaSmallShape {
+    fn new_raw(shape: f64, scale: f64) -> GammaSmallShape {
+        GammaSmallShape {
+            inv_shape: 1. / shape,
+            large_shape: GammaLargeShape::new_raw(shape + 1.0, scale),
+        }
+    }
+}
+
+impl GammaLargeShape {
+    fn new_raw(shape: f64, scale: f64) -> GammaLargeShape {
+        let d = shape - 1. / 3.;
+        GammaLargeShape {
+            scale,
+            c: 1. / (9. * d).sqrt(),
+            d,
+        }
+    }
+}
+
+impl Distribution<f64> for Gamma {
+    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
+        match self.repr {
+            Small(ref g) => g.sample(rng),
+            One(ref g) => g.sample(rng),
+            Large(ref g) => g.sample(rng),
+        }
+    }
+}
+impl Distribution<f64> for GammaSmallShape {
+    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
+        let u: f64 = rng.sample(Open01);
+
+        self.large_shape.sample(rng) * u.powf(self.inv_shape)
+    }
+}
+impl Distribution<f64> for GammaLargeShape {
+    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
+        loop {
+            let x = rng.sample(StandardNormal);
+            let v_cbrt = 1.0 + self.c * x;
+            if v_cbrt <= 0.0 {
+                // a^3 <= 0 iff a <= 0
+                continue;
+            }
+
+            let v = v_cbrt * v_cbrt * v_cbrt;
+            let u: f64 = rng.sample(Open01);
+
+            let x_sqr = x * x;
+            if u < 1.0 - 0.0331 * x_sqr * x_sqr
+                || u.ln() < 0.5 * x_sqr + self.d * (1.0 - v + v.ln())
+            {
+                return self.d * v * self.scale;
+            }
+        }
+    }
+}
+
+/// The chi-squared distribution `χ²(k)`, where `k` is the degrees of
+/// freedom.
+///
+/// For `k > 0` integral, this distribution is the sum of the squares
+/// of `k` independent standard normal random variables. For other
+/// `k`, this uses the equivalent characterisation
+/// `χ²(k) = Gamma(k/2, 2)`.
+#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")]
+#[derive(Clone, Copy, Debug)]
+pub struct ChiSquared {
+    repr: ChiSquaredRepr,
+}
+
+#[derive(Clone, Copy, Debug)]
+enum ChiSquaredRepr {
+    // k == 1, Gamma(alpha, ..) is particularly slow for alpha < 1,
+    // e.g. when alpha = 1/2 as it would be for this case, so special-
+    // casing and using the definition of N(0,1)^2 is faster.
+    DoFExactlyOne,
+    DoFAnythingElse(Gamma),
+}
+
+impl ChiSquared {
+    /// Create a new chi-squared distribution with degrees-of-freedom
+    /// `k`. Panics if `k < 0`.
+    pub fn new(k: f64) -> ChiSquared {
+        let repr = if k == 1.0 {
+            DoFExactlyOne
+        } else {
+            assert!(k > 0.0, "ChiSquared::new called with `k` < 0");
+            DoFAnythingElse(Gamma::new(0.5 * k, 2.0))
+        };
+        ChiSquared { repr }
+    }
+}
+impl Distribution<f64> for ChiSquared {
+    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
+        match self.repr {
+            DoFExactlyOne => {
+                // k == 1 => N(0,1)^2
+                let norm = rng.sample(StandardNormal);
+                norm * norm
+            }
+            DoFAnythingElse(ref g) => g.sample(rng),
+        }
+    }
+}
+
+/// The Fisher F distribution `F(m, n)`.
+///
+/// This distribution is equivalent to the ratio of two normalised
+/// chi-squared distributions, that is, `F(m,n) = (χ²(m)/m) /
+/// (χ²(n)/n)`.
+#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")]
+#[derive(Clone, Copy, Debug)]
+pub struct FisherF {
+    numer: ChiSquared,
+    denom: ChiSquared,
+    // denom_dof / numer_dof so that this can just be a straight
+    // multiplication, rather than a division.
+    dof_ratio: f64,
+}
+
+impl FisherF {
+    /// Create a new `FisherF` distribution, with the given
+    /// parameter. Panics if either `m` or `n` are not positive.
+    pub fn new(m: f64, n: f64) -> FisherF {
+        assert!(m > 0.0, "FisherF::new called with `m < 0`");
+        assert!(n > 0.0, "FisherF::new called with `n < 0`");
+
+        FisherF {
+            numer: ChiSquared::new(m),
+            denom: ChiSquared::new(n),
+            dof_ratio: n / m,
+        }
+    }
+}
+impl Distribution<f64> for FisherF {
+    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
+        self.numer.sample(rng) / self.denom.sample(rng) * self.dof_ratio
+    }
+}
+
+/// The Student t distribution, `t(nu)`, where `nu` is the degrees of
+/// freedom.
+#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")]
+#[derive(Clone, Copy, Debug)]
+pub struct StudentT {
+    chi: ChiSquared,
+    dof: f64,
+}
+
+impl StudentT {
+    /// Create a new Student t distribution with `n` degrees of
+    /// freedom. Panics if `n <= 0`.
+    pub fn new(n: f64) -> StudentT {
+        assert!(n > 0.0, "StudentT::new called with `n <= 0`");
+        StudentT {
+            chi: ChiSquared::new(n),
+            dof: n,
+        }
+    }
+}
+impl Distribution<f64> for StudentT {
+    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
+        let norm = rng.sample(StandardNormal);
+        norm * (self.dof / self.chi.sample(rng)).sqrt()
+    }
+}
+
+/// The Beta distribution with shape parameters `alpha` and `beta`.
+#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")]
+#[derive(Clone, Copy, Debug)]
+pub struct Beta {
+    gamma_a: Gamma,
+    gamma_b: Gamma,
+}
+
+impl Beta {
+    /// Construct an object representing the `Beta(alpha, beta)`
+    /// distribution.
+    ///
+    /// Panics if `shape <= 0` or `scale <= 0`.
+    pub fn new(alpha: f64, beta: f64) -> Beta {
+        assert!((alpha > 0.) & (beta > 0.));
+        Beta {
+            gamma_a: Gamma::new(alpha, 1.),
+            gamma_b: Gamma::new(beta, 1.),
+        }
+    }
+}
+
+impl Distribution<f64> for Beta {
+    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
+        let x = self.gamma_a.sample(rng);
+        let y = self.gamma_b.sample(rng);
+        x / (x + y)
+    }
+}
+
+#[cfg(test)]
+mod test {
+    use super::{Beta, ChiSquared, FisherF, StudentT};
+    use crate::distributions::Distribution;
+
+    const N: u32 = 100;
+
+    #[test]
+    fn test_chi_squared_one() {
+        let chi = ChiSquared::new(1.0);
+        let mut rng = crate::test::rng(201);
+        for _ in 0..N {
+            chi.sample(&mut rng);
+        }
+    }
+    #[test]
+    fn test_chi_squared_small() {
+        let chi = ChiSquared::new(0.5);
+        let mut rng = crate::test::rng(202);
+        for _ in 0..N {
+            chi.sample(&mut rng);
+        }
+    }
+    #[test]
+    fn test_chi_squared_large() {
+        let chi = ChiSquared::new(30.0);
+        let mut rng = crate::test::rng(203);
+        for _ in 0..N {
+            chi.sample(&mut rng);
+        }
+    }
+    #[test]
+    #[should_panic]
+    fn test_chi_squared_invalid_dof() {
+        ChiSquared::new(-1.0);
+    }
+
+    #[test]
+    fn test_f() {
+        let f = FisherF::new(2.0, 32.0);
+        let mut rng = crate::test::rng(204);
+        for _ in 0..N {
+            f.sample(&mut rng);
+        }
+    }
+
+    #[test]
+    fn test_t() {
+        let t = StudentT::new(11.0);
+        let mut rng = crate::test::rng(205);
+        for _ in 0..N {
+            t.sample(&mut rng);
+        }
+    }
+
+    #[test]
+    fn test_beta() {
+        let beta = Beta::new(1.0, 2.0);
+        let mut rng = crate::test::rng(201);
+        for _ in 0..N {
+            beta.sample(&mut rng);
+        }
+    }
+
+    #[test]
+    #[should_panic]
+    fn test_beta_invalid_dof() {
+        Beta::new(0., 0.);
+    }
+}