]> git.proxmox.com Git - rustc.git/blobdiff - vendor/rustc-ap-rustc_parse/src/parser/expr.rs
Update upstream source from tag 'upstream/1.52.1+dfsg1'
[rustc.git] / vendor / rustc-ap-rustc_parse / src / parser / expr.rs
diff --git a/vendor/rustc-ap-rustc_parse/src/parser/expr.rs b/vendor/rustc-ap-rustc_parse/src/parser/expr.rs
new file mode 100644 (file)
index 0000000..cfd7ad4
--- /dev/null
@@ -0,0 +1,2408 @@
+use super::pat::{GateOr, RecoverComma, PARAM_EXPECTED};
+use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
+use super::{BlockMode, Parser, PathStyle, Restrictions, TokenType};
+use super::{SemiColonMode, SeqSep, TokenExpectType};
+use crate::maybe_recover_from_interpolated_ty_qpath;
+
+use rustc_ast::ptr::P;
+use rustc_ast::token::{self, Token, TokenKind};
+use rustc_ast::tokenstream::Spacing;
+use rustc_ast::util::classify;
+use rustc_ast::util::literal::LitError;
+use rustc_ast::util::parser::{prec_let_scrutinee_needs_par, AssocOp, Fixity};
+use rustc_ast::{self as ast, AttrStyle, AttrVec, CaptureBy, Field, Lit, UnOp, DUMMY_NODE_ID};
+use rustc_ast::{AnonConst, BinOp, BinOpKind, FnDecl, FnRetTy, MacCall, Param, Ty, TyKind};
+use rustc_ast::{Arm, Async, BlockCheckMode, Expr, ExprKind, Label, Movability, RangeLimits};
+use rustc_ast_pretty::pprust;
+use rustc_errors::{Applicability, DiagnosticBuilder, PResult};
+use rustc_span::edition::LATEST_STABLE_EDITION;
+use rustc_span::source_map::{self, Span, Spanned};
+use rustc_span::symbol::{kw, sym, Ident, Symbol};
+use rustc_span::{BytePos, Pos};
+use std::mem;
+
+/// Possibly accepts an `token::Interpolated` expression (a pre-parsed expression
+/// dropped into the token stream, which happens while parsing the result of
+/// macro expansion). Placement of these is not as complex as I feared it would
+/// be. The important thing is to make sure that lookahead doesn't balk at
+/// `token::Interpolated` tokens.
+macro_rules! maybe_whole_expr {
+    ($p:expr) => {
+        if let token::Interpolated(nt) = &$p.token.kind {
+            match &**nt {
+                token::NtExpr(e) | token::NtLiteral(e) => {
+                    let e = e.clone();
+                    $p.bump();
+                    return Ok(e);
+                }
+                token::NtPath(path) => {
+                    let path = path.clone();
+                    $p.bump();
+                    return Ok($p.mk_expr(
+                        $p.token.span,
+                        ExprKind::Path(None, path),
+                        AttrVec::new(),
+                    ));
+                }
+                token::NtBlock(block) => {
+                    let block = block.clone();
+                    $p.bump();
+                    return Ok($p.mk_expr(
+                        $p.token.span,
+                        ExprKind::Block(block, None),
+                        AttrVec::new(),
+                    ));
+                }
+                _ => {}
+            };
+        }
+    };
+}
+
+#[derive(Debug)]
+pub(super) enum LhsExpr {
+    NotYetParsed,
+    AttributesParsed(AttrVec),
+    AlreadyParsed(P<Expr>),
+}
+
+impl From<Option<AttrVec>> for LhsExpr {
+    /// Converts `Some(attrs)` into `LhsExpr::AttributesParsed(attrs)`
+    /// and `None` into `LhsExpr::NotYetParsed`.
+    ///
+    /// This conversion does not allocate.
+    fn from(o: Option<AttrVec>) -> Self {
+        if let Some(attrs) = o { LhsExpr::AttributesParsed(attrs) } else { LhsExpr::NotYetParsed }
+    }
+}
+
+impl From<P<Expr>> for LhsExpr {
+    /// Converts the `expr: P<Expr>` into `LhsExpr::AlreadyParsed(expr)`.
+    ///
+    /// This conversion does not allocate.
+    fn from(expr: P<Expr>) -> Self {
+        LhsExpr::AlreadyParsed(expr)
+    }
+}
+
+impl<'a> Parser<'a> {
+    /// Parses an expression.
+    #[inline]
+    pub fn parse_expr(&mut self) -> PResult<'a, P<Expr>> {
+        self.parse_expr_res(Restrictions::empty(), None)
+    }
+
+    pub(super) fn parse_anon_const_expr(&mut self) -> PResult<'a, AnonConst> {
+        self.parse_expr().map(|value| AnonConst { id: DUMMY_NODE_ID, value })
+    }
+
+    fn parse_expr_catch_underscore(&mut self) -> PResult<'a, P<Expr>> {
+        match self.parse_expr() {
+            Ok(expr) => Ok(expr),
+            Err(mut err) => match self.token.ident() {
+                Some((Ident { name: kw::Underscore, .. }, false))
+                    if self.look_ahead(1, |t| t == &token::Comma) =>
+                {
+                    // Special-case handling of `foo(_, _, _)`
+                    err.emit();
+                    self.bump();
+                    Ok(self.mk_expr(self.prev_token.span, ExprKind::Err, AttrVec::new()))
+                }
+                _ => Err(err),
+            },
+        }
+    }
+
+    /// Parses a sequence of expressions delimited by parentheses.
+    fn parse_paren_expr_seq(&mut self) -> PResult<'a, Vec<P<Expr>>> {
+        self.parse_paren_comma_seq(|p| p.parse_expr_catch_underscore()).map(|(r, _)| r)
+    }
+
+    /// Parses an expression, subject to the given restrictions.
+    #[inline]
+    pub(super) fn parse_expr_res(
+        &mut self,
+        r: Restrictions,
+        already_parsed_attrs: Option<AttrVec>,
+    ) -> PResult<'a, P<Expr>> {
+        self.with_res(r, |this| this.parse_assoc_expr(already_parsed_attrs))
+    }
+
+    /// Parses an associative expression.
+    ///
+    /// This parses an expression accounting for associativity and precedence of the operators in
+    /// the expression.
+    #[inline]
+    fn parse_assoc_expr(&mut self, already_parsed_attrs: Option<AttrVec>) -> PResult<'a, P<Expr>> {
+        self.parse_assoc_expr_with(0, already_parsed_attrs.into())
+    }
+
+    /// Parses an associative expression with operators of at least `min_prec` precedence.
+    pub(super) fn parse_assoc_expr_with(
+        &mut self,
+        min_prec: usize,
+        lhs: LhsExpr,
+    ) -> PResult<'a, P<Expr>> {
+        let mut lhs = if let LhsExpr::AlreadyParsed(expr) = lhs {
+            expr
+        } else {
+            let attrs = match lhs {
+                LhsExpr::AttributesParsed(attrs) => Some(attrs),
+                _ => None,
+            };
+            if [token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind) {
+                return self.parse_prefix_range_expr(attrs);
+            } else {
+                self.parse_prefix_expr(attrs)?
+            }
+        };
+        let last_type_ascription_set = self.last_type_ascription.is_some();
+
+        if !self.should_continue_as_assoc_expr(&lhs) {
+            self.last_type_ascription = None;
+            return Ok(lhs);
+        }
+
+        self.expected_tokens.push(TokenType::Operator);
+        while let Some(op) = self.check_assoc_op() {
+            // Adjust the span for interpolated LHS to point to the `$lhs` token
+            // and not to what it refers to.
+            let lhs_span = match self.prev_token.kind {
+                TokenKind::Interpolated(..) => self.prev_token.span,
+                _ => lhs.span,
+            };
+
+            let cur_op_span = self.token.span;
+            let restrictions = if op.node.is_assign_like() {
+                self.restrictions & Restrictions::NO_STRUCT_LITERAL
+            } else {
+                self.restrictions
+            };
+            let prec = op.node.precedence();
+            if prec < min_prec {
+                break;
+            }
+            // Check for deprecated `...` syntax
+            if self.token == token::DotDotDot && op.node == AssocOp::DotDotEq {
+                self.err_dotdotdot_syntax(self.token.span);
+            }
+
+            if self.token == token::LArrow {
+                self.err_larrow_operator(self.token.span);
+            }
+
+            self.bump();
+            if op.node.is_comparison() {
+                if let Some(expr) = self.check_no_chained_comparison(&lhs, &op)? {
+                    return Ok(expr);
+                }
+            }
+
+            if (op.node == AssocOp::Equal || op.node == AssocOp::NotEqual)
+                && self.token.kind == token::Eq
+                && self.prev_token.span.hi() == self.token.span.lo()
+            {
+                // Look for JS' `===` and `!==` and recover ðŸ˜‡
+                let sp = op.span.to(self.token.span);
+                let sugg = match op.node {
+                    AssocOp::Equal => "==",
+                    AssocOp::NotEqual => "!=",
+                    _ => unreachable!(),
+                };
+                self.struct_span_err(sp, &format!("invalid comparison operator `{}=`", sugg))
+                    .span_suggestion_short(
+                        sp,
+                        &format!("`{s}=` is not a valid comparison operator, use `{s}`", s = sugg),
+                        sugg.to_string(),
+                        Applicability::MachineApplicable,
+                    )
+                    .emit();
+                self.bump();
+            }
+
+            let op = op.node;
+            // Special cases:
+            if op == AssocOp::As {
+                lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Cast)?;
+                continue;
+            } else if op == AssocOp::Colon {
+                lhs = self.parse_assoc_op_ascribe(lhs, lhs_span)?;
+                continue;
+            } else if op == AssocOp::DotDot || op == AssocOp::DotDotEq {
+                // If we didn’t have to handle `x..`/`x..=`, it would be pretty easy to
+                // generalise it to the Fixity::None code.
+                lhs = self.parse_range_expr(prec, lhs, op, cur_op_span)?;
+                break;
+            }
+
+            let fixity = op.fixity();
+            let prec_adjustment = match fixity {
+                Fixity::Right => 0,
+                Fixity::Left => 1,
+                // We currently have no non-associative operators that are not handled above by
+                // the special cases. The code is here only for future convenience.
+                Fixity::None => 1,
+            };
+            let rhs = self.with_res(restrictions - Restrictions::STMT_EXPR, |this| {
+                this.parse_assoc_expr_with(prec + prec_adjustment, LhsExpr::NotYetParsed)
+            })?;
+
+            let span = self.mk_expr_sp(&lhs, lhs_span, rhs.span);
+            lhs = match op {
+                AssocOp::Add
+                | AssocOp::Subtract
+                | AssocOp::Multiply
+                | AssocOp::Divide
+                | AssocOp::Modulus
+                | AssocOp::LAnd
+                | AssocOp::LOr
+                | AssocOp::BitXor
+                | AssocOp::BitAnd
+                | AssocOp::BitOr
+                | AssocOp::ShiftLeft
+                | AssocOp::ShiftRight
+                | AssocOp::Equal
+                | AssocOp::Less
+                | AssocOp::LessEqual
+                | AssocOp::NotEqual
+                | AssocOp::Greater
+                | AssocOp::GreaterEqual => {
+                    let ast_op = op.to_ast_binop().unwrap();
+                    let binary = self.mk_binary(source_map::respan(cur_op_span, ast_op), lhs, rhs);
+                    self.mk_expr(span, binary, AttrVec::new())
+                }
+                AssocOp::Assign => {
+                    self.mk_expr(span, ExprKind::Assign(lhs, rhs, cur_op_span), AttrVec::new())
+                }
+                AssocOp::AssignOp(k) => {
+                    let aop = match k {
+                        token::Plus => BinOpKind::Add,
+                        token::Minus => BinOpKind::Sub,
+                        token::Star => BinOpKind::Mul,
+                        token::Slash => BinOpKind::Div,
+                        token::Percent => BinOpKind::Rem,
+                        token::Caret => BinOpKind::BitXor,
+                        token::And => BinOpKind::BitAnd,
+                        token::Or => BinOpKind::BitOr,
+                        token::Shl => BinOpKind::Shl,
+                        token::Shr => BinOpKind::Shr,
+                    };
+                    let aopexpr = self.mk_assign_op(source_map::respan(cur_op_span, aop), lhs, rhs);
+                    self.mk_expr(span, aopexpr, AttrVec::new())
+                }
+                AssocOp::As | AssocOp::Colon | AssocOp::DotDot | AssocOp::DotDotEq => {
+                    self.span_bug(span, "AssocOp should have been handled by special case")
+                }
+            };
+
+            if let Fixity::None = fixity {
+                break;
+            }
+        }
+        if last_type_ascription_set {
+            self.last_type_ascription = None;
+        }
+        Ok(lhs)
+    }
+
+    fn should_continue_as_assoc_expr(&mut self, lhs: &Expr) -> bool {
+        match (self.expr_is_complete(lhs), AssocOp::from_token(&self.token)) {
+            // Semi-statement forms are odd:
+            // See https://github.com/rust-lang/rust/issues/29071
+            (true, None) => false,
+            (false, _) => true, // Continue parsing the expression.
+            // An exhaustive check is done in the following block, but these are checked first
+            // because they *are* ambiguous but also reasonable looking incorrect syntax, so we
+            // want to keep their span info to improve diagnostics in these cases in a later stage.
+            (true, Some(AssocOp::Multiply)) | // `{ 42 } *foo = bar;` or `{ 42 } * 3`
+            (true, Some(AssocOp::Subtract)) | // `{ 42 } -5`
+            (true, Some(AssocOp::Add)) // `{ 42 } + 42
+            // If the next token is a keyword, then the tokens above *are* unambiguously incorrect:
+            // `if x { a } else { b } && if y { c } else { d }`
+            if !self.look_ahead(1, |t| t.is_used_keyword()) => {
+                // These cases are ambiguous and can't be identified in the parser alone.
+                let sp = self.sess.source_map().start_point(self.token.span);
+                self.sess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
+                false
+            }
+            (true, Some(AssocOp::LAnd)) => {
+                // `{ 42 } &&x` (#61475) or `{ 42 } && if x { 1 } else { 0 }`. Separated from the
+                // above due to #74233.
+                // These cases are ambiguous and can't be identified in the parser alone.
+                let sp = self.sess.source_map().start_point(self.token.span);
+                self.sess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
+                false
+            }
+            (true, Some(ref op)) if !op.can_continue_expr_unambiguously() => false,
+            (true, Some(_)) => {
+                self.error_found_expr_would_be_stmt(lhs);
+                true
+            }
+        }
+    }
+
+    /// We've found an expression that would be parsed as a statement,
+    /// but the next token implies this should be parsed as an expression.
+    /// For example: `if let Some(x) = x { x } else { 0 } / 2`.
+    fn error_found_expr_would_be_stmt(&self, lhs: &Expr) {
+        let mut err = self.struct_span_err(
+            self.token.span,
+            &format!("expected expression, found `{}`", pprust::token_to_string(&self.token),),
+        );
+        err.span_label(self.token.span, "expected expression");
+        self.sess.expr_parentheses_needed(&mut err, lhs.span, Some(pprust::expr_to_string(&lhs)));
+        err.emit();
+    }
+
+    /// Possibly translate the current token to an associative operator.
+    /// The method does not advance the current token.
+    ///
+    /// Also performs recovery for `and` / `or` which are mistaken for `&&` and `||` respectively.
+    fn check_assoc_op(&self) -> Option<Spanned<AssocOp>> {
+        let (op, span) = match (AssocOp::from_token(&self.token), self.token.ident()) {
+            // When parsing const expressions, stop parsing when encountering `>`.
+            (
+                Some(
+                    AssocOp::ShiftRight
+                    | AssocOp::Greater
+                    | AssocOp::GreaterEqual
+                    | AssocOp::AssignOp(token::BinOpToken::Shr),
+                ),
+                _,
+            ) if self.restrictions.contains(Restrictions::CONST_EXPR) => {
+                return None;
+            }
+            (Some(op), _) => (op, self.token.span),
+            (None, Some((Ident { name: sym::and, span }, false))) => {
+                self.error_bad_logical_op("and", "&&", "conjunction");
+                (AssocOp::LAnd, span)
+            }
+            (None, Some((Ident { name: sym::or, span }, false))) => {
+                self.error_bad_logical_op("or", "||", "disjunction");
+                (AssocOp::LOr, span)
+            }
+            _ => return None,
+        };
+        Some(source_map::respan(span, op))
+    }
+
+    /// Error on `and` and `or` suggesting `&&` and `||` respectively.
+    fn error_bad_logical_op(&self, bad: &str, good: &str, english: &str) {
+        self.struct_span_err(self.token.span, &format!("`{}` is not a logical operator", bad))
+            .span_suggestion_short(
+                self.token.span,
+                &format!("use `{}` to perform logical {}", good, english),
+                good.to_string(),
+                Applicability::MachineApplicable,
+            )
+            .note("unlike in e.g., python and PHP, `&&` and `||` are used for logical operators")
+            .emit();
+    }
+
+    /// Checks if this expression is a successfully parsed statement.
+    fn expr_is_complete(&self, e: &Expr) -> bool {
+        self.restrictions.contains(Restrictions::STMT_EXPR)
+            && !classify::expr_requires_semi_to_be_stmt(e)
+    }
+
+    /// Parses `x..y`, `x..=y`, and `x..`/`x..=`.
+    /// The other two variants are handled in `parse_prefix_range_expr` below.
+    fn parse_range_expr(
+        &mut self,
+        prec: usize,
+        lhs: P<Expr>,
+        op: AssocOp,
+        cur_op_span: Span,
+    ) -> PResult<'a, P<Expr>> {
+        let rhs = if self.is_at_start_of_range_notation_rhs() {
+            Some(self.parse_assoc_expr_with(prec + 1, LhsExpr::NotYetParsed)?)
+        } else {
+            None
+        };
+        let rhs_span = rhs.as_ref().map_or(cur_op_span, |x| x.span);
+        let span = self.mk_expr_sp(&lhs, lhs.span, rhs_span);
+        let limits =
+            if op == AssocOp::DotDot { RangeLimits::HalfOpen } else { RangeLimits::Closed };
+        Ok(self.mk_expr(span, self.mk_range(Some(lhs), rhs, limits)?, AttrVec::new()))
+    }
+
+    fn is_at_start_of_range_notation_rhs(&self) -> bool {
+        if self.token.can_begin_expr() {
+            // Parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`.
+            if self.token == token::OpenDelim(token::Brace) {
+                return !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
+            }
+            true
+        } else {
+            false
+        }
+    }
+
+    /// Parses prefix-forms of range notation: `..expr`, `..`, `..=expr`.
+    fn parse_prefix_range_expr(&mut self, attrs: Option<AttrVec>) -> PResult<'a, P<Expr>> {
+        // Check for deprecated `...` syntax.
+        if self.token == token::DotDotDot {
+            self.err_dotdotdot_syntax(self.token.span);
+        }
+
+        debug_assert!(
+            [token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind),
+            "parse_prefix_range_expr: token {:?} is not DotDot/DotDotEq",
+            self.token
+        );
+
+        let limits = match self.token.kind {
+            token::DotDot => RangeLimits::HalfOpen,
+            _ => RangeLimits::Closed,
+        };
+        let op = AssocOp::from_token(&self.token);
+        let attrs = self.parse_or_use_outer_attributes(attrs)?;
+        let lo = self.token.span;
+        self.bump();
+        let (span, opt_end) = if self.is_at_start_of_range_notation_rhs() {
+            // RHS must be parsed with more associativity than the dots.
+            self.parse_assoc_expr_with(op.unwrap().precedence() + 1, LhsExpr::NotYetParsed)
+                .map(|x| (lo.to(x.span), Some(x)))?
+        } else {
+            (lo, None)
+        };
+        Ok(self.mk_expr(span, self.mk_range(None, opt_end, limits)?, attrs))
+    }
+
+    /// Parses a prefix-unary-operator expr.
+    fn parse_prefix_expr(&mut self, attrs: Option<AttrVec>) -> PResult<'a, P<Expr>> {
+        let attrs = self.parse_or_use_outer_attributes(attrs)?;
+        // FIXME: Use super::attr::maybe_needs_tokens(&attrs) once we come up
+        // with a good way of passing `force_tokens` through from `parse_nonterminal`.
+        // Checking !attrs.is_empty() is correct, but will cause us to unnecessarily
+        // capture tokens in some circumstances.
+        let needs_tokens = !attrs.is_empty();
+        let do_parse = |this: &mut Parser<'a>| {
+            let lo = this.token.span;
+            // Note: when adding new unary operators, don't forget to adjust TokenKind::can_begin_expr()
+            let (hi, ex) = match this.token.uninterpolate().kind {
+                token::Not => this.parse_unary_expr(lo, UnOp::Not), // `!expr`
+                token::Tilde => this.recover_tilde_expr(lo),        // `~expr`
+                token::BinOp(token::Minus) => this.parse_unary_expr(lo, UnOp::Neg), // `-expr`
+                token::BinOp(token::Star) => this.parse_unary_expr(lo, UnOp::Deref), // `*expr`
+                token::BinOp(token::And) | token::AndAnd => this.parse_borrow_expr(lo),
+                token::Ident(..) if this.token.is_keyword(kw::Box) => this.parse_box_expr(lo),
+                token::Ident(..) if this.is_mistaken_not_ident_negation() => {
+                    this.recover_not_expr(lo)
+                }
+                _ => return this.parse_dot_or_call_expr(Some(attrs)),
+            }?;
+            Ok(this.mk_expr(lo.to(hi), ex, attrs))
+        };
+        if needs_tokens { self.collect_tokens(do_parse) } else { do_parse(self) }
+    }
+
+    fn parse_prefix_expr_common(&mut self, lo: Span) -> PResult<'a, (Span, P<Expr>)> {
+        self.bump();
+        let expr = self.parse_prefix_expr(None);
+        let (span, expr) = self.interpolated_or_expr_span(expr)?;
+        Ok((lo.to(span), expr))
+    }
+
+    fn parse_unary_expr(&mut self, lo: Span, op: UnOp) -> PResult<'a, (Span, ExprKind)> {
+        let (span, expr) = self.parse_prefix_expr_common(lo)?;
+        Ok((span, self.mk_unary(op, expr)))
+    }
+
+    // Recover on `!` suggesting for bitwise negation instead.
+    fn recover_tilde_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
+        self.struct_span_err(lo, "`~` cannot be used as a unary operator")
+            .span_suggestion_short(
+                lo,
+                "use `!` to perform bitwise not",
+                "!".to_owned(),
+                Applicability::MachineApplicable,
+            )
+            .emit();
+
+        self.parse_unary_expr(lo, UnOp::Not)
+    }
+
+    /// Parse `box expr`.
+    fn parse_box_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
+        let (span, expr) = self.parse_prefix_expr_common(lo)?;
+        self.sess.gated_spans.gate(sym::box_syntax, span);
+        Ok((span, ExprKind::Box(expr)))
+    }
+
+    fn is_mistaken_not_ident_negation(&self) -> bool {
+        let token_cannot_continue_expr = |t: &Token| match t.uninterpolate().kind {
+            // These tokens can start an expression after `!`, but
+            // can't continue an expression after an ident
+            token::Ident(name, is_raw) => token::ident_can_begin_expr(name, t.span, is_raw),
+            token::Literal(..) | token::Pound => true,
+            _ => t.is_whole_expr(),
+        };
+        self.token.is_ident_named(sym::not) && self.look_ahead(1, token_cannot_continue_expr)
+    }
+
+    /// Recover on `not expr` in favor of `!expr`.
+    fn recover_not_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
+        // Emit the error...
+        let not_token = self.look_ahead(1, |t| t.clone());
+        self.struct_span_err(
+            not_token.span,
+            &format!("unexpected {} after identifier", super::token_descr(&not_token)),
+        )
+        .span_suggestion_short(
+            // Span the `not` plus trailing whitespace to avoid
+            // trailing whitespace after the `!` in our suggestion
+            self.sess.source_map().span_until_non_whitespace(lo.to(not_token.span)),
+            "use `!` to perform logical negation",
+            "!".to_owned(),
+            Applicability::MachineApplicable,
+        )
+        .emit();
+
+        // ...and recover!
+        self.parse_unary_expr(lo, UnOp::Not)
+    }
+
+    /// Returns the span of expr, if it was not interpolated or the span of the interpolated token.
+    fn interpolated_or_expr_span(
+        &self,
+        expr: PResult<'a, P<Expr>>,
+    ) -> PResult<'a, (Span, P<Expr>)> {
+        expr.map(|e| {
+            (
+                match self.prev_token.kind {
+                    TokenKind::Interpolated(..) => self.prev_token.span,
+                    _ => e.span,
+                },
+                e,
+            )
+        })
+    }
+
+    fn parse_assoc_op_cast(
+        &mut self,
+        lhs: P<Expr>,
+        lhs_span: Span,
+        expr_kind: fn(P<Expr>, P<Ty>) -> ExprKind,
+    ) -> PResult<'a, P<Expr>> {
+        let mk_expr = |this: &mut Self, lhs: P<Expr>, rhs: P<Ty>| {
+            this.mk_expr(
+                this.mk_expr_sp(&lhs, lhs_span, rhs.span),
+                expr_kind(lhs, rhs),
+                AttrVec::new(),
+            )
+        };
+
+        // Save the state of the parser before parsing type normally, in case there is a
+        // LessThan comparison after this cast.
+        let parser_snapshot_before_type = self.clone();
+        let cast_expr = match self.parse_ty_no_plus() {
+            Ok(rhs) => mk_expr(self, lhs, rhs),
+            Err(mut type_err) => {
+                // Rewind to before attempting to parse the type with generics, to recover
+                // from situations like `x as usize < y` in which we first tried to parse
+                // `usize < y` as a type with generic arguments.
+                let parser_snapshot_after_type = mem::replace(self, parser_snapshot_before_type);
+
+                // Check for typo of `'a: loop { break 'a }` with a missing `'`.
+                match (&lhs.kind, &self.token.kind) {
+                    (
+                        // `foo: `
+                        ExprKind::Path(None, ast::Path { segments, .. }),
+                        TokenKind::Ident(kw::For | kw::Loop | kw::While, false),
+                    ) if segments.len() == 1 => {
+                        let snapshot = self.clone();
+                        let label = Label {
+                            ident: Ident::from_str_and_span(
+                                &format!("'{}", segments[0].ident),
+                                segments[0].ident.span,
+                            ),
+                        };
+                        match self.parse_labeled_expr(label, AttrVec::new(), false) {
+                            Ok(expr) => {
+                                type_err.cancel();
+                                self.struct_span_err(label.ident.span, "malformed loop label")
+                                    .span_suggestion(
+                                        label.ident.span,
+                                        "use the correct loop label format",
+                                        label.ident.to_string(),
+                                        Applicability::MachineApplicable,
+                                    )
+                                    .emit();
+                                return Ok(expr);
+                            }
+                            Err(mut err) => {
+                                err.cancel();
+                                *self = snapshot;
+                            }
+                        }
+                    }
+                    _ => {}
+                }
+
+                match self.parse_path(PathStyle::Expr) {
+                    Ok(path) => {
+                        let (op_noun, op_verb) = match self.token.kind {
+                            token::Lt => ("comparison", "comparing"),
+                            token::BinOp(token::Shl) => ("shift", "shifting"),
+                            _ => {
+                                // We can end up here even without `<` being the next token, for
+                                // example because `parse_ty_no_plus` returns `Err` on keywords,
+                                // but `parse_path` returns `Ok` on them due to error recovery.
+                                // Return original error and parser state.
+                                *self = parser_snapshot_after_type;
+                                return Err(type_err);
+                            }
+                        };
+
+                        // Successfully parsed the type path leaving a `<` yet to parse.
+                        type_err.cancel();
+
+                        // Report non-fatal diagnostics, keep `x as usize` as an expression
+                        // in AST and continue parsing.
+                        let msg = format!(
+                            "`<` is interpreted as a start of generic arguments for `{}`, not a {}",
+                            pprust::path_to_string(&path),
+                            op_noun,
+                        );
+                        let span_after_type = parser_snapshot_after_type.token.span;
+                        let expr =
+                            mk_expr(self, lhs, self.mk_ty(path.span, TyKind::Path(None, path)));
+
+                        let expr_str = self
+                            .span_to_snippet(expr.span)
+                            .unwrap_or_else(|_| pprust::expr_to_string(&expr));
+
+                        self.struct_span_err(self.token.span, &msg)
+                            .span_label(
+                                self.look_ahead(1, |t| t.span).to(span_after_type),
+                                "interpreted as generic arguments",
+                            )
+                            .span_label(self.token.span, format!("not interpreted as {}", op_noun))
+                            .span_suggestion(
+                                expr.span,
+                                &format!("try {} the cast value", op_verb),
+                                format!("({})", expr_str),
+                                Applicability::MachineApplicable,
+                            )
+                            .emit();
+
+                        expr
+                    }
+                    Err(mut path_err) => {
+                        // Couldn't parse as a path, return original error and parser state.
+                        path_err.cancel();
+                        *self = parser_snapshot_after_type;
+                        return Err(type_err);
+                    }
+                }
+            }
+        };
+
+        self.parse_and_disallow_postfix_after_cast(cast_expr)
+    }
+
+    /// Parses a postfix operators such as `.`, `?`, or index (`[]`) after a cast,
+    /// then emits an error and returns the newly parsed tree.
+    /// The resulting parse tree for `&x as T[0]` has a precedence of `((&x) as T)[0]`.
+    fn parse_and_disallow_postfix_after_cast(
+        &mut self,
+        cast_expr: P<Expr>,
+    ) -> PResult<'a, P<Expr>> {
+        // Save the memory location of expr before parsing any following postfix operators.
+        // This will be compared with the memory location of the output expression.
+        // If they different we can assume we parsed another expression because the existing expression is not reallocated.
+        let addr_before = &*cast_expr as *const _ as usize;
+        let span = cast_expr.span;
+        let with_postfix = self.parse_dot_or_call_expr_with_(cast_expr, span)?;
+        let changed = addr_before != &*with_postfix as *const _ as usize;
+
+        // Check if an illegal postfix operator has been added after the cast.
+        // If the resulting expression is not a cast, or has a different memory location, it is an illegal postfix operator.
+        if !matches!(with_postfix.kind, ExprKind::Cast(_, _) | ExprKind::Type(_, _)) || changed {
+            let msg = format!(
+                "casts cannot be followed by {}",
+                match with_postfix.kind {
+                    ExprKind::Index(_, _) => "indexing",
+                    ExprKind::Try(_) => "?",
+                    ExprKind::Field(_, _) => "a field access",
+                    ExprKind::MethodCall(_, _, _) => "a method call",
+                    ExprKind::Call(_, _) => "a function call",
+                    ExprKind::Await(_) => "`.await`",
+                    ExprKind::Err => return Ok(with_postfix),
+                    _ => unreachable!("parse_dot_or_call_expr_with_ shouldn't produce this"),
+                }
+            );
+            let mut err = self.struct_span_err(span, &msg);
+            // If type ascription is "likely an error", the user will already be getting a useful
+            // help message, and doesn't need a second.
+            if self.last_type_ascription.map_or(false, |last_ascription| last_ascription.1) {
+                self.maybe_annotate_with_ascription(&mut err, false);
+            } else {
+                let suggestions = vec![
+                    (span.shrink_to_lo(), "(".to_string()),
+                    (span.shrink_to_hi(), ")".to_string()),
+                ];
+                err.multipart_suggestion(
+                    "try surrounding the expression in parentheses",
+                    suggestions,
+                    Applicability::MachineApplicable,
+                );
+            }
+            err.emit();
+        };
+        Ok(with_postfix)
+    }
+
+    fn parse_assoc_op_ascribe(&mut self, lhs: P<Expr>, lhs_span: Span) -> PResult<'a, P<Expr>> {
+        let maybe_path = self.could_ascription_be_path(&lhs.kind);
+        self.last_type_ascription = Some((self.prev_token.span, maybe_path));
+        let lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Type)?;
+        self.sess.gated_spans.gate(sym::type_ascription, lhs.span);
+        Ok(lhs)
+    }
+
+    /// Parse `& mut? <expr>` or `& raw [ const | mut ] <expr>`.
+    fn parse_borrow_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
+        self.expect_and()?;
+        let has_lifetime = self.token.is_lifetime() && self.look_ahead(1, |t| t != &token::Colon);
+        let lifetime = has_lifetime.then(|| self.expect_lifetime()); // For recovery, see below.
+        let (borrow_kind, mutbl) = self.parse_borrow_modifiers(lo);
+        let expr = self.parse_prefix_expr(None);
+        let (hi, expr) = self.interpolated_or_expr_span(expr)?;
+        let span = lo.to(hi);
+        if let Some(lt) = lifetime {
+            self.error_remove_borrow_lifetime(span, lt.ident.span);
+        }
+        Ok((span, ExprKind::AddrOf(borrow_kind, mutbl, expr)))
+    }
+
+    fn error_remove_borrow_lifetime(&self, span: Span, lt_span: Span) {
+        self.struct_span_err(span, "borrow expressions cannot be annotated with lifetimes")
+            .span_label(lt_span, "annotated with lifetime here")
+            .span_suggestion(
+                lt_span,
+                "remove the lifetime annotation",
+                String::new(),
+                Applicability::MachineApplicable,
+            )
+            .emit();
+    }
+
+    /// Parse `mut?` or `raw [ const | mut ]`.
+    fn parse_borrow_modifiers(&mut self, lo: Span) -> (ast::BorrowKind, ast::Mutability) {
+        if self.check_keyword(kw::Raw) && self.look_ahead(1, Token::is_mutability) {
+            // `raw [ const | mut ]`.
+            let found_raw = self.eat_keyword(kw::Raw);
+            assert!(found_raw);
+            let mutability = self.parse_const_or_mut().unwrap();
+            self.sess.gated_spans.gate(sym::raw_ref_op, lo.to(self.prev_token.span));
+            (ast::BorrowKind::Raw, mutability)
+        } else {
+            // `mut?`
+            (ast::BorrowKind::Ref, self.parse_mutability())
+        }
+    }
+
+    /// Parses `a.b` or `a(13)` or `a[4]` or just `a`.
+    fn parse_dot_or_call_expr(&mut self, attrs: Option<AttrVec>) -> PResult<'a, P<Expr>> {
+        let attrs = self.parse_or_use_outer_attributes(attrs)?;
+        let base = self.parse_bottom_expr();
+        let (span, base) = self.interpolated_or_expr_span(base)?;
+        self.parse_dot_or_call_expr_with(base, span, attrs)
+    }
+
+    pub(super) fn parse_dot_or_call_expr_with(
+        &mut self,
+        e0: P<Expr>,
+        lo: Span,
+        mut attrs: AttrVec,
+    ) -> PResult<'a, P<Expr>> {
+        // Stitch the list of outer attributes onto the return value.
+        // A little bit ugly, but the best way given the current code
+        // structure
+        self.parse_dot_or_call_expr_with_(e0, lo).map(|expr| {
+            expr.map(|mut expr| {
+                attrs.extend::<Vec<_>>(expr.attrs.into());
+                expr.attrs = attrs;
+                expr
+            })
+        })
+    }
+
+    fn parse_dot_or_call_expr_with_(&mut self, mut e: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
+        loop {
+            if self.eat(&token::Question) {
+                // `expr?`
+                e = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Try(e), AttrVec::new());
+                continue;
+            }
+            if self.eat(&token::Dot) {
+                // expr.f
+                e = self.parse_dot_suffix_expr(lo, e)?;
+                continue;
+            }
+            if self.expr_is_complete(&e) {
+                return Ok(e);
+            }
+            e = match self.token.kind {
+                token::OpenDelim(token::Paren) => self.parse_fn_call_expr(lo, e),
+                token::OpenDelim(token::Bracket) => self.parse_index_expr(lo, e)?,
+                _ => return Ok(e),
+            }
+        }
+    }
+
+    fn parse_dot_suffix_expr(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
+        match self.token.uninterpolate().kind {
+            token::Ident(..) => self.parse_dot_suffix(base, lo),
+            token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) => {
+                Ok(self.parse_tuple_field_access_expr(lo, base, symbol, suffix, None))
+            }
+            token::Literal(token::Lit { kind: token::Float, symbol, suffix }) => {
+                Ok(self.parse_tuple_field_access_expr_float(lo, base, symbol, suffix))
+            }
+            _ => {
+                self.error_unexpected_after_dot();
+                Ok(base)
+            }
+        }
+    }
+
+    fn error_unexpected_after_dot(&self) {
+        // FIXME Could factor this out into non_fatal_unexpected or something.
+        let actual = pprust::token_to_string(&self.token);
+        self.struct_span_err(self.token.span, &format!("unexpected token: `{}`", actual)).emit();
+    }
+
+    // We need an identifier or integer, but the next token is a float.
+    // Break the float into components to extract the identifier or integer.
+    // FIXME: With current `TokenCursor` it's hard to break tokens into more than 2
+    // parts unless those parts are processed immediately. `TokenCursor` should either
+    // support pushing "future tokens" (would be also helpful to `break_and_eat`), or
+    // we should break everything including floats into more basic proc-macro style
+    // tokens in the lexer (probably preferable).
+    fn parse_tuple_field_access_expr_float(
+        &mut self,
+        lo: Span,
+        base: P<Expr>,
+        float: Symbol,
+        suffix: Option<Symbol>,
+    ) -> P<Expr> {
+        #[derive(Debug)]
+        enum FloatComponent {
+            IdentLike(String),
+            Punct(char),
+        }
+        use FloatComponent::*;
+
+        let float_str = float.as_str();
+        let mut components = Vec::new();
+        let mut ident_like = String::new();
+        for c in float_str.chars() {
+            if c == '_' || c.is_ascii_alphanumeric() {
+                ident_like.push(c);
+            } else if matches!(c, '.' | '+' | '-') {
+                if !ident_like.is_empty() {
+                    components.push(IdentLike(mem::take(&mut ident_like)));
+                }
+                components.push(Punct(c));
+            } else {
+                panic!("unexpected character in a float token: {:?}", c)
+            }
+        }
+        if !ident_like.is_empty() {
+            components.push(IdentLike(ident_like));
+        }
+
+        // With proc macros the span can refer to anything, the source may be too short,
+        // or too long, or non-ASCII. It only makes sense to break our span into components
+        // if its underlying text is identical to our float literal.
+        let span = self.token.span;
+        let can_take_span_apart =
+            || self.span_to_snippet(span).as_deref() == Ok(float_str).as_deref();
+
+        match &*components {
+            // 1e2
+            [IdentLike(i)] => {
+                self.parse_tuple_field_access_expr(lo, base, Symbol::intern(&i), suffix, None)
+            }
+            // 1.
+            [IdentLike(i), Punct('.')] => {
+                let (ident_span, dot_span) = if can_take_span_apart() {
+                    let (span, ident_len) = (span.data(), BytePos::from_usize(i.len()));
+                    let ident_span = span.with_hi(span.lo + ident_len);
+                    let dot_span = span.with_lo(span.lo + ident_len);
+                    (ident_span, dot_span)
+                } else {
+                    (span, span)
+                };
+                assert!(suffix.is_none());
+                let symbol = Symbol::intern(&i);
+                self.token = Token::new(token::Ident(symbol, false), ident_span);
+                let next_token = (Token::new(token::Dot, dot_span), self.token_spacing);
+                self.parse_tuple_field_access_expr(lo, base, symbol, None, Some(next_token))
+            }
+            // 1.2 | 1.2e3
+            [IdentLike(i1), Punct('.'), IdentLike(i2)] => {
+                let (ident1_span, dot_span, ident2_span) = if can_take_span_apart() {
+                    let (span, ident1_len) = (span.data(), BytePos::from_usize(i1.len()));
+                    let ident1_span = span.with_hi(span.lo + ident1_len);
+                    let dot_span = span
+                        .with_lo(span.lo + ident1_len)
+                        .with_hi(span.lo + ident1_len + BytePos(1));
+                    let ident2_span = self.token.span.with_lo(span.lo + ident1_len + BytePos(1));
+                    (ident1_span, dot_span, ident2_span)
+                } else {
+                    (span, span, span)
+                };
+                let symbol1 = Symbol::intern(&i1);
+                self.token = Token::new(token::Ident(symbol1, false), ident1_span);
+                // This needs to be `Spacing::Alone` to prevent regressions.
+                // See issue #76399 and PR #76285 for more details
+                let next_token1 = (Token::new(token::Dot, dot_span), Spacing::Alone);
+                let base1 =
+                    self.parse_tuple_field_access_expr(lo, base, symbol1, None, Some(next_token1));
+                let symbol2 = Symbol::intern(&i2);
+                let next_token2 = Token::new(token::Ident(symbol2, false), ident2_span);
+                self.bump_with((next_token2, self.token_spacing)); // `.`
+                self.parse_tuple_field_access_expr(lo, base1, symbol2, suffix, None)
+            }
+            // 1e+ | 1e- (recovered)
+            [IdentLike(_), Punct('+' | '-')] |
+            // 1e+2 | 1e-2
+            [IdentLike(_), Punct('+' | '-'), IdentLike(_)] |
+            // 1.2e+3 | 1.2e-3
+            [IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-'), IdentLike(_)] => {
+                // See the FIXME about `TokenCursor` above.
+                self.error_unexpected_after_dot();
+                base
+            }
+            _ => panic!("unexpected components in a float token: {:?}", components),
+        }
+    }
+
+    fn parse_tuple_field_access_expr(
+        &mut self,
+        lo: Span,
+        base: P<Expr>,
+        field: Symbol,
+        suffix: Option<Symbol>,
+        next_token: Option<(Token, Spacing)>,
+    ) -> P<Expr> {
+        match next_token {
+            Some(next_token) => self.bump_with(next_token),
+            None => self.bump(),
+        }
+        let span = self.prev_token.span;
+        let field = ExprKind::Field(base, Ident::new(field, span));
+        self.expect_no_suffix(span, "a tuple index", suffix);
+        self.mk_expr(lo.to(span), field, AttrVec::new())
+    }
+
+    /// Parse a function call expression, `expr(...)`.
+    fn parse_fn_call_expr(&mut self, lo: Span, fun: P<Expr>) -> P<Expr> {
+        let seq = self.parse_paren_expr_seq().map(|args| {
+            self.mk_expr(lo.to(self.prev_token.span), self.mk_call(fun, args), AttrVec::new())
+        });
+        self.recover_seq_parse_error(token::Paren, lo, seq)
+    }
+
+    /// Parse an indexing expression `expr[...]`.
+    fn parse_index_expr(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
+        self.bump(); // `[`
+        let index = self.parse_expr()?;
+        self.expect(&token::CloseDelim(token::Bracket))?;
+        Ok(self.mk_expr(lo.to(self.prev_token.span), self.mk_index(base, index), AttrVec::new()))
+    }
+
+    /// Assuming we have just parsed `.`, continue parsing into an expression.
+    fn parse_dot_suffix(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
+        if self.token.uninterpolated_span().rust_2018() && self.eat_keyword(kw::Await) {
+            return self.mk_await_expr(self_arg, lo);
+        }
+
+        let fn_span_lo = self.token.span;
+        let mut segment = self.parse_path_segment(PathStyle::Expr)?;
+        self.check_trailing_angle_brackets(&segment, &[&token::OpenDelim(token::Paren)]);
+        self.check_turbofish_missing_angle_brackets(&mut segment);
+
+        if self.check(&token::OpenDelim(token::Paren)) {
+            // Method call `expr.f()`
+            let mut args = self.parse_paren_expr_seq()?;
+            args.insert(0, self_arg);
+
+            let fn_span = fn_span_lo.to(self.prev_token.span);
+            let span = lo.to(self.prev_token.span);
+            Ok(self.mk_expr(span, ExprKind::MethodCall(segment, args, fn_span), AttrVec::new()))
+        } else {
+            // Field access `expr.f`
+            if let Some(args) = segment.args {
+                self.struct_span_err(
+                    args.span(),
+                    "field expressions cannot have generic arguments",
+                )
+                .emit();
+            }
+
+            let span = lo.to(self.prev_token.span);
+            Ok(self.mk_expr(span, ExprKind::Field(self_arg, segment.ident), AttrVec::new()))
+        }
+    }
+
+    /// At the bottom (top?) of the precedence hierarchy,
+    /// Parses things like parenthesized exprs, macros, `return`, etc.
+    ///
+    /// N.B., this does not parse outer attributes, and is private because it only works
+    /// correctly if called from `parse_dot_or_call_expr()`.
+    fn parse_bottom_expr(&mut self) -> PResult<'a, P<Expr>> {
+        maybe_recover_from_interpolated_ty_qpath!(self, true);
+        maybe_whole_expr!(self);
+
+        // Outer attributes are already parsed and will be
+        // added to the return value after the fact.
+        //
+        // Therefore, prevent sub-parser from parsing
+        // attributes by giving them a empty "already-parsed" list.
+        let attrs = AttrVec::new();
+
+        // Note: when adding new syntax here, don't forget to adjust `TokenKind::can_begin_expr()`.
+        let lo = self.token.span;
+        if let token::Literal(_) = self.token.kind {
+            // This match arm is a special-case of the `_` match arm below and
+            // could be removed without changing functionality, but it's faster
+            // to have it here, especially for programs with large constants.
+            self.parse_lit_expr(attrs)
+        } else if self.check(&token::OpenDelim(token::Paren)) {
+            self.parse_tuple_parens_expr(attrs)
+        } else if self.check(&token::OpenDelim(token::Brace)) {
+            self.parse_block_expr(None, lo, BlockCheckMode::Default, attrs)
+        } else if self.check(&token::BinOp(token::Or)) || self.check(&token::OrOr) {
+            self.parse_closure_expr(attrs)
+        } else if self.check(&token::OpenDelim(token::Bracket)) {
+            self.parse_array_or_repeat_expr(attrs)
+        } else if self.eat_lt() {
+            let (qself, path) = self.parse_qpath(PathStyle::Expr)?;
+            Ok(self.mk_expr(lo.to(path.span), ExprKind::Path(Some(qself), path), attrs))
+        } else if self.check_path() {
+            self.parse_path_start_expr(attrs)
+        } else if self.check_keyword(kw::Move) || self.check_keyword(kw::Static) {
+            self.parse_closure_expr(attrs)
+        } else if self.eat_keyword(kw::If) {
+            self.parse_if_expr(attrs)
+        } else if self.check_keyword(kw::For) {
+            if self.choose_generics_over_qpath(1) {
+                // NOTE(Centril, eddyb): DO NOT REMOVE! Beyond providing parser recovery,
+                // this is an insurance policy in case we allow qpaths in (tuple-)struct patterns.
+                // When `for <Foo as Bar>::Proj in $expr $block` is wanted,
+                // you can disambiguate in favor of a pattern with `(...)`.
+                self.recover_quantified_closure_expr(attrs)
+            } else {
+                assert!(self.eat_keyword(kw::For));
+                self.parse_for_expr(None, self.prev_token.span, attrs)
+            }
+        } else if self.eat_keyword(kw::While) {
+            self.parse_while_expr(None, self.prev_token.span, attrs)
+        } else if let Some(label) = self.eat_label() {
+            self.parse_labeled_expr(label, attrs, true)
+        } else if self.eat_keyword(kw::Loop) {
+            self.parse_loop_expr(None, self.prev_token.span, attrs)
+        } else if self.eat_keyword(kw::Continue) {
+            let kind = ExprKind::Continue(self.eat_label());
+            Ok(self.mk_expr(lo.to(self.prev_token.span), kind, attrs))
+        } else if self.eat_keyword(kw::Match) {
+            let match_sp = self.prev_token.span;
+            self.parse_match_expr(attrs).map_err(|mut err| {
+                err.span_label(match_sp, "while parsing this match expression");
+                err
+            })
+        } else if self.eat_keyword(kw::Unsafe) {
+            self.parse_block_expr(None, lo, BlockCheckMode::Unsafe(ast::UserProvided), attrs)
+        } else if self.check_inline_const(0) {
+            self.parse_const_block(lo.to(self.token.span))
+        } else if self.is_do_catch_block() {
+            self.recover_do_catch(attrs)
+        } else if self.is_try_block() {
+            self.expect_keyword(kw::Try)?;
+            self.parse_try_block(lo, attrs)
+        } else if self.eat_keyword(kw::Return) {
+            self.parse_return_expr(attrs)
+        } else if self.eat_keyword(kw::Break) {
+            self.parse_break_expr(attrs)
+        } else if self.eat_keyword(kw::Yield) {
+            self.parse_yield_expr(attrs)
+        } else if self.eat_keyword(kw::Let) {
+            self.parse_let_expr(attrs)
+        } else if self.eat_keyword(kw::Underscore) {
+            self.sess.gated_spans.gate(sym::destructuring_assignment, self.prev_token.span);
+            Ok(self.mk_expr(self.prev_token.span, ExprKind::Underscore, attrs))
+        } else if !self.unclosed_delims.is_empty() && self.check(&token::Semi) {
+            // Don't complain about bare semicolons after unclosed braces
+            // recovery in order to keep the error count down. Fixing the
+            // delimiters will possibly also fix the bare semicolon found in
+            // expression context. For example, silence the following error:
+            //
+            //     error: expected expression, found `;`
+            //      --> file.rs:2:13
+            //       |
+            //     2 |     foo(bar(;
+            //       |             ^ expected expression
+            self.bump();
+            Ok(self.mk_expr_err(self.token.span))
+        } else if self.token.uninterpolated_span().rust_2018() {
+            // `Span::rust_2018()` is somewhat expensive; don't get it repeatedly.
+            if self.check_keyword(kw::Async) {
+                if self.is_async_block() {
+                    // Check for `async {` and `async move {`.
+                    self.parse_async_block(attrs)
+                } else {
+                    self.parse_closure_expr(attrs)
+                }
+            } else if self.eat_keyword(kw::Await) {
+                self.recover_incorrect_await_syntax(lo, self.prev_token.span, attrs)
+            } else {
+                self.parse_lit_expr(attrs)
+            }
+        } else {
+            self.parse_lit_expr(attrs)
+        }
+    }
+
+    fn parse_lit_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
+        let lo = self.token.span;
+        match self.parse_opt_lit() {
+            Some(literal) => {
+                let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Lit(literal), attrs);
+                self.maybe_recover_from_bad_qpath(expr, true)
+            }
+            None => self.try_macro_suggestion(),
+        }
+    }
+
+    fn parse_tuple_parens_expr(&mut self, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
+        let lo = self.token.span;
+        self.expect(&token::OpenDelim(token::Paren))?;
+        attrs.extend(self.parse_inner_attributes()?); // `(#![foo] a, b, ...)` is OK.
+        let (es, trailing_comma) = match self.parse_seq_to_end(
+            &token::CloseDelim(token::Paren),
+            SeqSep::trailing_allowed(token::Comma),
+            |p| p.parse_expr_catch_underscore(),
+        ) {
+            Ok(x) => x,
+            Err(err) => return Ok(self.recover_seq_parse_error(token::Paren, lo, Err(err))),
+        };
+        let kind = if es.len() == 1 && !trailing_comma {
+            // `(e)` is parenthesized `e`.
+            ExprKind::Paren(es.into_iter().next().unwrap())
+        } else {
+            // `(e,)` is a tuple with only one field, `e`.
+            ExprKind::Tup(es)
+        };
+        let expr = self.mk_expr(lo.to(self.prev_token.span), kind, attrs);
+        self.maybe_recover_from_bad_qpath(expr, true)
+    }
+
+    fn parse_array_or_repeat_expr(&mut self, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
+        let lo = self.token.span;
+        self.bump(); // `[`
+
+        attrs.extend(self.parse_inner_attributes()?);
+
+        let close = &token::CloseDelim(token::Bracket);
+        let kind = if self.eat(close) {
+            // Empty vector
+            ExprKind::Array(Vec::new())
+        } else {
+            // Non-empty vector
+            let first_expr = self.parse_expr()?;
+            if self.eat(&token::Semi) {
+                // Repeating array syntax: `[ 0; 512 ]`
+                let count = self.parse_anon_const_expr()?;
+                self.expect(close)?;
+                ExprKind::Repeat(first_expr, count)
+            } else if self.eat(&token::Comma) {
+                // Vector with two or more elements.
+                let sep = SeqSep::trailing_allowed(token::Comma);
+                let (remaining_exprs, _) = self.parse_seq_to_end(close, sep, |p| p.parse_expr())?;
+                let mut exprs = vec![first_expr];
+                exprs.extend(remaining_exprs);
+                ExprKind::Array(exprs)
+            } else {
+                // Vector with one element
+                self.expect(close)?;
+                ExprKind::Array(vec![first_expr])
+            }
+        };
+        let expr = self.mk_expr(lo.to(self.prev_token.span), kind, attrs);
+        self.maybe_recover_from_bad_qpath(expr, true)
+    }
+
+    fn parse_path_start_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
+        let path = self.parse_path(PathStyle::Expr)?;
+        let lo = path.span;
+
+        // `!`, as an operator, is prefix, so we know this isn't that.
+        let (hi, kind) = if self.eat(&token::Not) {
+            // MACRO INVOCATION expression
+            let mac = MacCall {
+                path,
+                args: self.parse_mac_args()?,
+                prior_type_ascription: self.last_type_ascription,
+            };
+            (self.prev_token.span, ExprKind::MacCall(mac))
+        } else if self.check(&token::OpenDelim(token::Brace)) {
+            if let Some(expr) = self.maybe_parse_struct_expr(&path, &attrs) {
+                return expr;
+            } else {
+                (path.span, ExprKind::Path(None, path))
+            }
+        } else {
+            (path.span, ExprKind::Path(None, path))
+        };
+
+        let expr = self.mk_expr(lo.to(hi), kind, attrs);
+        self.maybe_recover_from_bad_qpath(expr, true)
+    }
+
+    /// Parse `'label: $expr`. The label is already parsed.
+    fn parse_labeled_expr(
+        &mut self,
+        label: Label,
+        attrs: AttrVec,
+        consume_colon: bool,
+    ) -> PResult<'a, P<Expr>> {
+        let lo = label.ident.span;
+        let label = Some(label);
+        let ate_colon = self.eat(&token::Colon);
+        let expr = if self.eat_keyword(kw::While) {
+            self.parse_while_expr(label, lo, attrs)
+        } else if self.eat_keyword(kw::For) {
+            self.parse_for_expr(label, lo, attrs)
+        } else if self.eat_keyword(kw::Loop) {
+            self.parse_loop_expr(label, lo, attrs)
+        } else if self.check(&token::OpenDelim(token::Brace)) || self.token.is_whole_block() {
+            self.parse_block_expr(label, lo, BlockCheckMode::Default, attrs)
+        } else {
+            let msg = "expected `while`, `for`, `loop` or `{` after a label";
+            self.struct_span_err(self.token.span, msg).span_label(self.token.span, msg).emit();
+            // Continue as an expression in an effort to recover on `'label: non_block_expr`.
+            self.parse_expr()
+        }?;
+
+        if !ate_colon && consume_colon {
+            self.error_labeled_expr_must_be_followed_by_colon(lo, expr.span);
+        }
+
+        Ok(expr)
+    }
+
+    fn error_labeled_expr_must_be_followed_by_colon(&self, lo: Span, span: Span) {
+        self.struct_span_err(span, "labeled expression must be followed by `:`")
+            .span_label(lo, "the label")
+            .span_suggestion_short(
+                lo.shrink_to_hi(),
+                "add `:` after the label",
+                ": ".to_string(),
+                Applicability::MachineApplicable,
+            )
+            .note("labels are used before loops and blocks, allowing e.g., `break 'label` to them")
+            .emit();
+    }
+
+    /// Recover on the syntax `do catch { ... }` suggesting `try { ... }` instead.
+    fn recover_do_catch(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
+        let lo = self.token.span;
+
+        self.bump(); // `do`
+        self.bump(); // `catch`
+
+        let span_dc = lo.to(self.prev_token.span);
+        self.struct_span_err(span_dc, "found removed `do catch` syntax")
+            .span_suggestion(
+                span_dc,
+                "replace with the new syntax",
+                "try".to_string(),
+                Applicability::MachineApplicable,
+            )
+            .note("following RFC #2388, the new non-placeholder syntax is `try`")
+            .emit();
+
+        self.parse_try_block(lo, attrs)
+    }
+
+    /// Parse an expression if the token can begin one.
+    fn parse_expr_opt(&mut self) -> PResult<'a, Option<P<Expr>>> {
+        Ok(if self.token.can_begin_expr() { Some(self.parse_expr()?) } else { None })
+    }
+
+    /// Parse `"return" expr?`.
+    fn parse_return_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
+        let lo = self.prev_token.span;
+        let kind = ExprKind::Ret(self.parse_expr_opt()?);
+        let expr = self.mk_expr(lo.to(self.prev_token.span), kind, attrs);
+        self.maybe_recover_from_bad_qpath(expr, true)
+    }
+
+    /// Parse `"('label ":")? break expr?`.
+    fn parse_break_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
+        let lo = self.prev_token.span;
+        let label = self.eat_label();
+        let kind = if self.token != token::OpenDelim(token::Brace)
+            || !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
+        {
+            self.parse_expr_opt()?
+        } else {
+            None
+        };
+        let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Break(label, kind), attrs);
+        self.maybe_recover_from_bad_qpath(expr, true)
+    }
+
+    /// Parse `"yield" expr?`.
+    fn parse_yield_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
+        let lo = self.prev_token.span;
+        let kind = ExprKind::Yield(self.parse_expr_opt()?);
+        let span = lo.to(self.prev_token.span);
+        self.sess.gated_spans.gate(sym::generators, span);
+        let expr = self.mk_expr(span, kind, attrs);
+        self.maybe_recover_from_bad_qpath(expr, true)
+    }
+
+    /// Returns a string literal if the next token is a string literal.
+    /// In case of error returns `Some(lit)` if the next token is a literal with a wrong kind,
+    /// and returns `None` if the next token is not literal at all.
+    pub fn parse_str_lit(&mut self) -> Result<ast::StrLit, Option<Lit>> {
+        match self.parse_opt_lit() {
+            Some(lit) => match lit.kind {
+                ast::LitKind::Str(symbol_unescaped, style) => Ok(ast::StrLit {
+                    style,
+                    symbol: lit.token.symbol,
+                    suffix: lit.token.suffix,
+                    span: lit.span,
+                    symbol_unescaped,
+                }),
+                _ => Err(Some(lit)),
+            },
+            None => Err(None),
+        }
+    }
+
+    pub(super) fn parse_lit(&mut self) -> PResult<'a, Lit> {
+        self.parse_opt_lit().ok_or_else(|| {
+            let msg = format!("unexpected token: {}", super::token_descr(&self.token));
+            self.struct_span_err(self.token.span, &msg)
+        })
+    }
+
+    /// Matches `lit = true | false | token_lit`.
+    /// Returns `None` if the next token is not a literal.
+    pub(super) fn parse_opt_lit(&mut self) -> Option<Lit> {
+        let mut recovered = None;
+        if self.token == token::Dot {
+            // Attempt to recover `.4` as `0.4`. We don't currently have any syntax where
+            // dot would follow an optional literal, so we do this unconditionally.
+            recovered = self.look_ahead(1, |next_token| {
+                if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) =
+                    next_token.kind
+                {
+                    if self.token.span.hi() == next_token.span.lo() {
+                        let s = String::from("0.") + &symbol.as_str();
+                        let kind = TokenKind::lit(token::Float, Symbol::intern(&s), suffix);
+                        return Some(Token::new(kind, self.token.span.to(next_token.span)));
+                    }
+                }
+                None
+            });
+            if let Some(token) = &recovered {
+                self.bump();
+                self.error_float_lits_must_have_int_part(&token);
+            }
+        }
+
+        let token = recovered.as_ref().unwrap_or(&self.token);
+        match Lit::from_token(token) {
+            Ok(lit) => {
+                self.bump();
+                Some(lit)
+            }
+            Err(LitError::NotLiteral) => None,
+            Err(err) => {
+                let span = token.span;
+                let lit = match token.kind {
+                    token::Literal(lit) => lit,
+                    _ => unreachable!(),
+                };
+                self.bump();
+                self.report_lit_error(err, lit, span);
+                // Pack possible quotes and prefixes from the original literal into
+                // the error literal's symbol so they can be pretty-printed faithfully.
+                let suffixless_lit = token::Lit::new(lit.kind, lit.symbol, None);
+                let symbol = Symbol::intern(&suffixless_lit.to_string());
+                let lit = token::Lit::new(token::Err, symbol, lit.suffix);
+                Some(Lit::from_lit_token(lit, span).unwrap_or_else(|_| unreachable!()))
+            }
+        }
+    }
+
+    fn error_float_lits_must_have_int_part(&self, token: &Token) {
+        self.struct_span_err(token.span, "float literals must have an integer part")
+            .span_suggestion(
+                token.span,
+                "must have an integer part",
+                pprust::token_to_string(token),
+                Applicability::MachineApplicable,
+            )
+            .emit();
+    }
+
+    fn report_lit_error(&self, err: LitError, lit: token::Lit, span: Span) {
+        // Checks if `s` looks like i32 or u1234 etc.
+        fn looks_like_width_suffix(first_chars: &[char], s: &str) -> bool {
+            s.len() > 1 && s.starts_with(first_chars) && s[1..].chars().all(|c| c.is_ascii_digit())
+        }
+
+        let token::Lit { kind, suffix, .. } = lit;
+        match err {
+            // `NotLiteral` is not an error by itself, so we don't report
+            // it and give the parser opportunity to try something else.
+            LitError::NotLiteral => {}
+            // `LexerError` *is* an error, but it was already reported
+            // by lexer, so here we don't report it the second time.
+            LitError::LexerError => {}
+            LitError::InvalidSuffix => {
+                self.expect_no_suffix(
+                    span,
+                    &format!("{} {} literal", kind.article(), kind.descr()),
+                    suffix,
+                );
+            }
+            LitError::InvalidIntSuffix => {
+                let suf = suffix.expect("suffix error with no suffix").as_str();
+                if looks_like_width_suffix(&['i', 'u'], &suf) {
+                    // If it looks like a width, try to be helpful.
+                    let msg = format!("invalid width `{}` for integer literal", &suf[1..]);
+                    self.struct_span_err(span, &msg)
+                        .help("valid widths are 8, 16, 32, 64 and 128")
+                        .emit();
+                } else {
+                    let msg = format!("invalid suffix `{}` for number literal", suf);
+                    self.struct_span_err(span, &msg)
+                        .span_label(span, format!("invalid suffix `{}`", suf))
+                        .help("the suffix must be one of the numeric types (`u32`, `isize`, `f32`, etc.)")
+                        .emit();
+                }
+            }
+            LitError::InvalidFloatSuffix => {
+                let suf = suffix.expect("suffix error with no suffix").as_str();
+                if looks_like_width_suffix(&['f'], &suf) {
+                    // If it looks like a width, try to be helpful.
+                    let msg = format!("invalid width `{}` for float literal", &suf[1..]);
+                    self.struct_span_err(span, &msg).help("valid widths are 32 and 64").emit();
+                } else {
+                    let msg = format!("invalid suffix `{}` for float literal", suf);
+                    self.struct_span_err(span, &msg)
+                        .span_label(span, format!("invalid suffix `{}`", suf))
+                        .help("valid suffixes are `f32` and `f64`")
+                        .emit();
+                }
+            }
+            LitError::NonDecimalFloat(base) => {
+                let descr = match base {
+                    16 => "hexadecimal",
+                    8 => "octal",
+                    2 => "binary",
+                    _ => unreachable!(),
+                };
+                self.struct_span_err(span, &format!("{} float literal is not supported", descr))
+                    .span_label(span, "not supported")
+                    .emit();
+            }
+            LitError::IntTooLarge => {
+                self.struct_span_err(span, "integer literal is too large").emit();
+            }
+        }
+    }
+
+    pub(super) fn expect_no_suffix(&self, sp: Span, kind: &str, suffix: Option<Symbol>) {
+        if let Some(suf) = suffix {
+            let mut err = if kind == "a tuple index"
+                && [sym::i32, sym::u32, sym::isize, sym::usize].contains(&suf)
+            {
+                // #59553: warn instead of reject out of hand to allow the fix to percolate
+                // through the ecosystem when people fix their macros
+                let mut err = self
+                    .sess
+                    .span_diagnostic
+                    .struct_span_warn(sp, &format!("suffixes on {} are invalid", kind));
+                err.note(&format!(
+                    "`{}` is *temporarily* accepted on tuple index fields as it was \
+                        incorrectly accepted on stable for a few releases",
+                    suf,
+                ));
+                err.help(
+                    "on proc macros, you'll want to use `syn::Index::from` or \
+                        `proc_macro::Literal::*_unsuffixed` for code that will desugar \
+                        to tuple field access",
+                );
+                err.note(
+                    "see issue #60210 <https://github.com/rust-lang/rust/issues/60210> \
+                     for more information",
+                );
+                err
+            } else {
+                self.struct_span_err(sp, &format!("suffixes on {} are invalid", kind))
+            };
+            err.span_label(sp, format!("invalid suffix `{}`", suf));
+            err.emit();
+        }
+    }
+
+    /// Matches `'-' lit | lit` (cf. `ast_validation::AstValidator::check_expr_within_pat`).
+    /// Keep this in sync with `Token::can_begin_literal_maybe_minus`.
+    pub fn parse_literal_maybe_minus(&mut self) -> PResult<'a, P<Expr>> {
+        maybe_whole_expr!(self);
+
+        let lo = self.token.span;
+        let minus_present = self.eat(&token::BinOp(token::Minus));
+        let lit = self.parse_lit()?;
+        let expr = self.mk_expr(lit.span, ExprKind::Lit(lit), AttrVec::new());
+
+        if minus_present {
+            Ok(self.mk_expr(
+                lo.to(self.prev_token.span),
+                self.mk_unary(UnOp::Neg, expr),
+                AttrVec::new(),
+            ))
+        } else {
+            Ok(expr)
+        }
+    }
+
+    /// Parses a block or unsafe block.
+    pub(super) fn parse_block_expr(
+        &mut self,
+        opt_label: Option<Label>,
+        lo: Span,
+        blk_mode: BlockCheckMode,
+        mut attrs: AttrVec,
+    ) -> PResult<'a, P<Expr>> {
+        if let Some(label) = opt_label {
+            self.sess.gated_spans.gate(sym::label_break_value, label.ident.span);
+        }
+
+        if self.token.is_whole_block() {
+            self.struct_span_err(self.token.span, "cannot use a `block` macro fragment here")
+                .span_label(lo.to(self.token.span), "the `block` fragment is within this context")
+                .emit();
+        }
+
+        let (inner_attrs, blk) = self.parse_block_common(lo, blk_mode)?;
+        attrs.extend(inner_attrs);
+        Ok(self.mk_expr(blk.span, ExprKind::Block(blk, opt_label), attrs))
+    }
+
+    /// Recover on an explicitly quantified closure expression, e.g., `for<'a> |x: &'a u8| *x + 1`.
+    fn recover_quantified_closure_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
+        let lo = self.token.span;
+        let _ = self.parse_late_bound_lifetime_defs()?;
+        let span_for = lo.to(self.prev_token.span);
+        let closure = self.parse_closure_expr(attrs)?;
+
+        self.struct_span_err(span_for, "cannot introduce explicit parameters for a closure")
+            .span_label(closure.span, "the parameters are attached to this closure")
+            .span_suggestion(
+                span_for,
+                "remove the parameters",
+                String::new(),
+                Applicability::MachineApplicable,
+            )
+            .emit();
+
+        Ok(self.mk_expr_err(lo.to(closure.span)))
+    }
+
+    /// Parses a closure expression (e.g., `move |args| expr`).
+    fn parse_closure_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
+        let lo = self.token.span;
+
+        let movability =
+            if self.eat_keyword(kw::Static) { Movability::Static } else { Movability::Movable };
+
+        let asyncness = if self.token.uninterpolated_span().rust_2018() {
+            self.parse_asyncness()
+        } else {
+            Async::No
+        };
+
+        let capture_clause = self.parse_capture_clause()?;
+        let decl = self.parse_fn_block_decl()?;
+        let decl_hi = self.prev_token.span;
+        let body = match decl.output {
+            FnRetTy::Default(_) => {
+                let restrictions = self.restrictions - Restrictions::STMT_EXPR;
+                self.parse_expr_res(restrictions, None)?
+            }
+            _ => {
+                // If an explicit return type is given, require a block to appear (RFC 968).
+                let body_lo = self.token.span;
+                self.parse_block_expr(None, body_lo, BlockCheckMode::Default, AttrVec::new())?
+            }
+        };
+
+        if let Async::Yes { span, .. } = asyncness {
+            // Feature-gate `async ||` closures.
+            self.sess.gated_spans.gate(sym::async_closure, span);
+        }
+
+        Ok(self.mk_expr(
+            lo.to(body.span),
+            ExprKind::Closure(capture_clause, asyncness, movability, decl, body, lo.to(decl_hi)),
+            attrs,
+        ))
+    }
+
+    /// Parses an optional `move` prefix to a closure-like construct.
+    fn parse_capture_clause(&mut self) -> PResult<'a, CaptureBy> {
+        if self.eat_keyword(kw::Move) {
+            // Check for `move async` and recover
+            if self.check_keyword(kw::Async) {
+                let move_async_span = self.token.span.with_lo(self.prev_token.span.data().lo);
+                Err(self.incorrect_move_async_order_found(move_async_span))
+            } else {
+                Ok(CaptureBy::Value)
+            }
+        } else {
+            Ok(CaptureBy::Ref)
+        }
+    }
+
+    /// Parses the `|arg, arg|` header of a closure.
+    fn parse_fn_block_decl(&mut self) -> PResult<'a, P<FnDecl>> {
+        let inputs = if self.eat(&token::OrOr) {
+            Vec::new()
+        } else {
+            self.expect(&token::BinOp(token::Or))?;
+            let args = self
+                .parse_seq_to_before_tokens(
+                    &[&token::BinOp(token::Or), &token::OrOr],
+                    SeqSep::trailing_allowed(token::Comma),
+                    TokenExpectType::NoExpect,
+                    |p| p.parse_fn_block_param(),
+                )?
+                .0;
+            self.expect_or()?;
+            args
+        };
+        let output =
+            self.parse_ret_ty(AllowPlus::Yes, RecoverQPath::Yes, RecoverReturnSign::Yes)?;
+
+        Ok(P(FnDecl { inputs, output }))
+    }
+
+    /// Parses a parameter in a closure header (e.g., `|arg, arg|`).
+    fn parse_fn_block_param(&mut self) -> PResult<'a, Param> {
+        let lo = self.token.span;
+        let attrs = self.parse_outer_attributes()?;
+        let pat = self.parse_pat(PARAM_EXPECTED)?;
+        let ty = if self.eat(&token::Colon) {
+            self.parse_ty()?
+        } else {
+            self.mk_ty(self.prev_token.span, TyKind::Infer)
+        };
+        Ok(Param {
+            attrs: attrs.into(),
+            ty,
+            pat,
+            span: lo.to(self.token.span),
+            id: DUMMY_NODE_ID,
+            is_placeholder: false,
+        })
+    }
+
+    /// Parses an `if` expression (`if` token already eaten).
+    fn parse_if_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
+        let lo = self.prev_token.span;
+        let cond = self.parse_cond_expr()?;
+
+        // Verify that the parsed `if` condition makes sense as a condition. If it is a block, then
+        // verify that the last statement is either an implicit return (no `;`) or an explicit
+        // return. This won't catch blocks with an explicit `return`, but that would be caught by
+        // the dead code lint.
+        let thn = if self.eat_keyword(kw::Else) || !cond.returns() {
+            self.error_missing_if_cond(lo, cond.span)
+        } else {
+            let attrs = self.parse_outer_attributes()?; // For recovery.
+            let not_block = self.token != token::OpenDelim(token::Brace);
+            let block = self.parse_block().map_err(|mut err| {
+                if not_block {
+                    err.span_label(lo, "this `if` expression has a condition, but no block");
+                    if let ExprKind::Binary(_, _, ref right) = cond.kind {
+                        if let ExprKind::Block(_, _) = right.kind {
+                            err.help("maybe you forgot the right operand of the condition?");
+                        }
+                    }
+                }
+                err
+            })?;
+            self.error_on_if_block_attrs(lo, false, block.span, &attrs);
+            block
+        };
+        let els = if self.eat_keyword(kw::Else) { Some(self.parse_else_expr()?) } else { None };
+        Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::If(cond, thn, els), attrs))
+    }
+
+    fn error_missing_if_cond(&self, lo: Span, span: Span) -> P<ast::Block> {
+        let sp = self.sess.source_map().next_point(lo);
+        self.struct_span_err(sp, "missing condition for `if` expression")
+            .span_label(sp, "expected if condition here")
+            .emit();
+        self.mk_block_err(span)
+    }
+
+    /// Parses the condition of a `if` or `while` expression.
+    fn parse_cond_expr(&mut self) -> PResult<'a, P<Expr>> {
+        let cond = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
+
+        if let ExprKind::Let(..) = cond.kind {
+            // Remove the last feature gating of a `let` expression since it's stable.
+            self.sess.gated_spans.ungate_last(sym::let_chains, cond.span);
+        }
+
+        Ok(cond)
+    }
+
+    /// Parses a `let $pat = $expr` pseudo-expression.
+    /// The `let` token has already been eaten.
+    fn parse_let_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
+        let lo = self.prev_token.span;
+        let pat = self.parse_top_pat(GateOr::No, RecoverComma::Yes)?;
+        self.expect(&token::Eq)?;
+        let expr = self.with_res(self.restrictions | Restrictions::NO_STRUCT_LITERAL, |this| {
+            this.parse_assoc_expr_with(1 + prec_let_scrutinee_needs_par(), None.into())
+        })?;
+        let span = lo.to(expr.span);
+        self.sess.gated_spans.gate(sym::let_chains, span);
+        Ok(self.mk_expr(span, ExprKind::Let(pat, expr), attrs))
+    }
+
+    /// Parses an `else { ... }` expression (`else` token already eaten).
+    fn parse_else_expr(&mut self) -> PResult<'a, P<Expr>> {
+        let ctx_span = self.prev_token.span; // `else`
+        let attrs = self.parse_outer_attributes()?; // For recovery.
+        let expr = if self.eat_keyword(kw::If) {
+            self.parse_if_expr(AttrVec::new())?
+        } else {
+            let blk = self.parse_block()?;
+            self.mk_expr(blk.span, ExprKind::Block(blk, None), AttrVec::new())
+        };
+        self.error_on_if_block_attrs(ctx_span, true, expr.span, &attrs);
+        Ok(expr)
+    }
+
+    fn error_on_if_block_attrs(
+        &self,
+        ctx_span: Span,
+        is_ctx_else: bool,
+        branch_span: Span,
+        attrs: &[ast::Attribute],
+    ) {
+        let (span, last) = match attrs {
+            [] => return,
+            [x0 @ xn] | [x0, .., xn] => (x0.span.to(xn.span), xn.span),
+        };
+        let ctx = if is_ctx_else { "else" } else { "if" };
+        self.struct_span_err(last, "outer attributes are not allowed on `if` and `else` branches")
+            .span_label(branch_span, "the attributes are attached to this branch")
+            .span_label(ctx_span, format!("the branch belongs to this `{}`", ctx))
+            .span_suggestion(
+                span,
+                "remove the attributes",
+                String::new(),
+                Applicability::MachineApplicable,
+            )
+            .emit();
+    }
+
+    /// Parses `for <src_pat> in <src_expr> <src_loop_block>` (`for` token already eaten).
+    fn parse_for_expr(
+        &mut self,
+        opt_label: Option<Label>,
+        lo: Span,
+        mut attrs: AttrVec,
+    ) -> PResult<'a, P<Expr>> {
+        // Record whether we are about to parse `for (`.
+        // This is used below for recovery in case of `for ( $stuff ) $block`
+        // in which case we will suggest `for $stuff $block`.
+        let begin_paren = match self.token.kind {
+            token::OpenDelim(token::Paren) => Some(self.token.span),
+            _ => None,
+        };
+
+        let pat = self.parse_top_pat(GateOr::Yes, RecoverComma::Yes)?;
+        if !self.eat_keyword(kw::In) {
+            self.error_missing_in_for_loop();
+        }
+        self.check_for_for_in_in_typo(self.prev_token.span);
+        let expr = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
+
+        let pat = self.recover_parens_around_for_head(pat, &expr, begin_paren);
+
+        let (iattrs, loop_block) = self.parse_inner_attrs_and_block()?;
+        attrs.extend(iattrs);
+
+        let kind = ExprKind::ForLoop(pat, expr, loop_block, opt_label);
+        Ok(self.mk_expr(lo.to(self.prev_token.span), kind, attrs))
+    }
+
+    fn error_missing_in_for_loop(&mut self) {
+        let (span, msg, sugg) = if self.token.is_ident_named(sym::of) {
+            // Possibly using JS syntax (#75311).
+            let span = self.token.span;
+            self.bump();
+            (span, "try using `in` here instead", "in")
+        } else {
+            (self.prev_token.span.between(self.token.span), "try adding `in` here", " in ")
+        };
+        self.struct_span_err(span, "missing `in` in `for` loop")
+            .span_suggestion_short(
+                span,
+                msg,
+                sugg.into(),
+                // Has been misleading, at least in the past (closed Issue #48492).
+                Applicability::MaybeIncorrect,
+            )
+            .emit();
+    }
+
+    /// Parses a `while` or `while let` expression (`while` token already eaten).
+    fn parse_while_expr(
+        &mut self,
+        opt_label: Option<Label>,
+        lo: Span,
+        mut attrs: AttrVec,
+    ) -> PResult<'a, P<Expr>> {
+        let cond = self.parse_cond_expr()?;
+        let (iattrs, body) = self.parse_inner_attrs_and_block()?;
+        attrs.extend(iattrs);
+        Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::While(cond, body, opt_label), attrs))
+    }
+
+    /// Parses `loop { ... }` (`loop` token already eaten).
+    fn parse_loop_expr(
+        &mut self,
+        opt_label: Option<Label>,
+        lo: Span,
+        mut attrs: AttrVec,
+    ) -> PResult<'a, P<Expr>> {
+        let (iattrs, body) = self.parse_inner_attrs_and_block()?;
+        attrs.extend(iattrs);
+        Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::Loop(body, opt_label), attrs))
+    }
+
+    fn eat_label(&mut self) -> Option<Label> {
+        self.token.lifetime().map(|ident| {
+            self.bump();
+            Label { ident }
+        })
+    }
+
+    /// Parses a `match ... { ... }` expression (`match` token already eaten).
+    fn parse_match_expr(&mut self, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
+        let match_span = self.prev_token.span;
+        let lo = self.prev_token.span;
+        let scrutinee = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
+        if let Err(mut e) = self.expect(&token::OpenDelim(token::Brace)) {
+            if self.token == token::Semi {
+                e.span_suggestion_short(
+                    match_span,
+                    "try removing this `match`",
+                    String::new(),
+                    Applicability::MaybeIncorrect, // speculative
+                );
+            }
+            return Err(e);
+        }
+        attrs.extend(self.parse_inner_attributes()?);
+
+        let mut arms: Vec<Arm> = Vec::new();
+        while self.token != token::CloseDelim(token::Brace) {
+            match self.parse_arm() {
+                Ok(arm) => arms.push(arm),
+                Err(mut e) => {
+                    // Recover by skipping to the end of the block.
+                    e.emit();
+                    self.recover_stmt();
+                    let span = lo.to(self.token.span);
+                    if self.token == token::CloseDelim(token::Brace) {
+                        self.bump();
+                    }
+                    return Ok(self.mk_expr(span, ExprKind::Match(scrutinee, arms), attrs));
+                }
+            }
+        }
+        let hi = self.token.span;
+        self.bump();
+        Ok(self.mk_expr(lo.to(hi), ExprKind::Match(scrutinee, arms), attrs))
+    }
+
+    pub(super) fn parse_arm(&mut self) -> PResult<'a, Arm> {
+        let attrs = self.parse_outer_attributes()?;
+        let lo = self.token.span;
+        let pat = self.parse_top_pat(GateOr::No, RecoverComma::Yes)?;
+        let guard = if self.eat_keyword(kw::If) {
+            let if_span = self.prev_token.span;
+            let cond = self.parse_expr()?;
+            if let ExprKind::Let(..) = cond.kind {
+                // Remove the last feature gating of a `let` expression since it's stable.
+                self.sess.gated_spans.ungate_last(sym::let_chains, cond.span);
+                let span = if_span.to(cond.span);
+                self.sess.gated_spans.gate(sym::if_let_guard, span);
+            }
+            Some(cond)
+        } else {
+            None
+        };
+        let arrow_span = self.token.span;
+        self.expect(&token::FatArrow)?;
+        let arm_start_span = self.token.span;
+
+        let expr = self.parse_expr_res(Restrictions::STMT_EXPR, None).map_err(|mut err| {
+            err.span_label(arrow_span, "while parsing the `match` arm starting here");
+            err
+        })?;
+
+        let require_comma = classify::expr_requires_semi_to_be_stmt(&expr)
+            && self.token != token::CloseDelim(token::Brace);
+
+        let hi = self.prev_token.span;
+
+        if require_comma {
+            let sm = self.sess.source_map();
+            self.expect_one_of(&[token::Comma], &[token::CloseDelim(token::Brace)]).map_err(
+                |mut err| {
+                    match (sm.span_to_lines(expr.span), sm.span_to_lines(arm_start_span)) {
+                        (Ok(ref expr_lines), Ok(ref arm_start_lines))
+                            if arm_start_lines.lines[0].end_col == expr_lines.lines[0].end_col
+                                && expr_lines.lines.len() == 2
+                                && self.token == token::FatArrow =>
+                        {
+                            // We check whether there's any trailing code in the parse span,
+                            // if there isn't, we very likely have the following:
+                            //
+                            // X |     &Y => "y"
+                            //   |        --    - missing comma
+                            //   |        |
+                            //   |        arrow_span
+                            // X |     &X => "x"
+                            //   |      - ^^ self.token.span
+                            //   |      |
+                            //   |      parsed until here as `"y" & X`
+                            err.span_suggestion_short(
+                                arm_start_span.shrink_to_hi(),
+                                "missing a comma here to end this `match` arm",
+                                ",".to_owned(),
+                                Applicability::MachineApplicable,
+                            );
+                        }
+                        _ => {
+                            err.span_label(
+                                arrow_span,
+                                "while parsing the `match` arm starting here",
+                            );
+                        }
+                    }
+                    err
+                },
+            )?;
+        } else {
+            self.eat(&token::Comma);
+        }
+
+        Ok(ast::Arm {
+            attrs,
+            pat,
+            guard,
+            body: expr,
+            span: lo.to(hi),
+            id: DUMMY_NODE_ID,
+            is_placeholder: false,
+        })
+    }
+
+    /// Parses a `try {...}` expression (`try` token already eaten).
+    fn parse_try_block(&mut self, span_lo: Span, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
+        let (iattrs, body) = self.parse_inner_attrs_and_block()?;
+        attrs.extend(iattrs);
+        if self.eat_keyword(kw::Catch) {
+            let mut error = self.struct_span_err(
+                self.prev_token.span,
+                "keyword `catch` cannot follow a `try` block",
+            );
+            error.help("try using `match` on the result of the `try` block instead");
+            error.emit();
+            Err(error)
+        } else {
+            let span = span_lo.to(body.span);
+            self.sess.gated_spans.gate(sym::try_blocks, span);
+            Ok(self.mk_expr(span, ExprKind::TryBlock(body), attrs))
+        }
+    }
+
+    fn is_do_catch_block(&self) -> bool {
+        self.token.is_keyword(kw::Do)
+            && self.is_keyword_ahead(1, &[kw::Catch])
+            && self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))
+            && !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
+    }
+
+    fn is_try_block(&self) -> bool {
+        self.token.is_keyword(kw::Try)
+            && self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace))
+            && self.token.uninterpolated_span().rust_2018()
+    }
+
+    /// Parses an `async move? {...}` expression.
+    fn parse_async_block(&mut self, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
+        let lo = self.token.span;
+        self.expect_keyword(kw::Async)?;
+        let capture_clause = self.parse_capture_clause()?;
+        let (iattrs, body) = self.parse_inner_attrs_and_block()?;
+        attrs.extend(iattrs);
+        let kind = ExprKind::Async(capture_clause, DUMMY_NODE_ID, body);
+        Ok(self.mk_expr(lo.to(self.prev_token.span), kind, attrs))
+    }
+
+    fn is_async_block(&self) -> bool {
+        self.token.is_keyword(kw::Async)
+            && ((
+                // `async move {`
+                self.is_keyword_ahead(1, &[kw::Move])
+                    && self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))
+            ) || (
+                // `async {`
+                self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace))
+            ))
+    }
+
+    fn is_certainly_not_a_block(&self) -> bool {
+        self.look_ahead(1, |t| t.is_ident())
+            && (
+                // `{ ident, ` cannot start a block.
+                self.look_ahead(2, |t| t == &token::Comma)
+                    || self.look_ahead(2, |t| t == &token::Colon)
+                        && (
+                            // `{ ident: token, ` cannot start a block.
+                            self.look_ahead(4, |t| t == &token::Comma) ||
+                // `{ ident: ` cannot start a block unless it's a type ascription `ident: Type`.
+                self.look_ahead(3, |t| !t.can_begin_type())
+                        )
+            )
+    }
+
+    fn maybe_parse_struct_expr(
+        &mut self,
+        path: &ast::Path,
+        attrs: &AttrVec,
+    ) -> Option<PResult<'a, P<Expr>>> {
+        let struct_allowed = !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
+        if struct_allowed || self.is_certainly_not_a_block() {
+            if let Err(err) = self.expect(&token::OpenDelim(token::Brace)) {
+                return Some(Err(err));
+            }
+            let expr = self.parse_struct_expr(path.clone(), attrs.clone(), true);
+            if let (Ok(expr), false) = (&expr, struct_allowed) {
+                // This is a struct literal, but we don't can't accept them here.
+                self.error_struct_lit_not_allowed_here(path.span, expr.span);
+            }
+            return Some(expr);
+        }
+        None
+    }
+
+    fn error_struct_lit_not_allowed_here(&self, lo: Span, sp: Span) {
+        self.struct_span_err(sp, "struct literals are not allowed here")
+            .multipart_suggestion(
+                "surround the struct literal with parentheses",
+                vec![(lo.shrink_to_lo(), "(".to_string()), (sp.shrink_to_hi(), ")".to_string())],
+                Applicability::MachineApplicable,
+            )
+            .emit();
+    }
+
+    /// Precondition: already parsed the '{'.
+    pub(super) fn parse_struct_expr(
+        &mut self,
+        pth: ast::Path,
+        mut attrs: AttrVec,
+        recover: bool,
+    ) -> PResult<'a, P<Expr>> {
+        let mut fields = Vec::new();
+        let mut base = ast::StructRest::None;
+        let mut recover_async = false;
+
+        attrs.extend(self.parse_inner_attributes()?);
+
+        let mut async_block_err = |e: &mut DiagnosticBuilder<'_>, span: Span| {
+            recover_async = true;
+            e.span_label(span, "`async` blocks are only allowed in Rust 2018 or later");
+            e.help(&format!("set `edition = \"{}\"` in `Cargo.toml`", LATEST_STABLE_EDITION));
+            e.note("for more on editions, read https://doc.rust-lang.org/edition-guide");
+        };
+
+        while self.token != token::CloseDelim(token::Brace) {
+            if self.eat(&token::DotDot) {
+                let exp_span = self.prev_token.span;
+                // We permit `.. }` on the left-hand side of a destructuring assignment.
+                if self.check(&token::CloseDelim(token::Brace)) {
+                    self.sess.gated_spans.gate(sym::destructuring_assignment, self.prev_token.span);
+                    base = ast::StructRest::Rest(self.prev_token.span.shrink_to_hi());
+                    break;
+                }
+                match self.parse_expr() {
+                    Ok(e) => base = ast::StructRest::Base(e),
+                    Err(mut e) if recover => {
+                        e.emit();
+                        self.recover_stmt();
+                    }
+                    Err(e) => return Err(e),
+                }
+                self.recover_struct_comma_after_dotdot(exp_span);
+                break;
+            }
+
+            let recovery_field = self.find_struct_error_after_field_looking_code();
+            let parsed_field = match self.parse_field() {
+                Ok(f) => Some(f),
+                Err(mut e) => {
+                    if pth == kw::Async {
+                        async_block_err(&mut e, pth.span);
+                    } else {
+                        e.span_label(pth.span, "while parsing this struct");
+                    }
+                    e.emit();
+
+                    // If the next token is a comma, then try to parse
+                    // what comes next as additional fields, rather than
+                    // bailing out until next `}`.
+                    if self.token != token::Comma {
+                        self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
+                        if self.token != token::Comma {
+                            break;
+                        }
+                    }
+                    None
+                }
+            };
+
+            match self.expect_one_of(&[token::Comma], &[token::CloseDelim(token::Brace)]) {
+                Ok(_) => {
+                    if let Some(f) = parsed_field.or(recovery_field) {
+                        // Only include the field if there's no parse error for the field name.
+                        fields.push(f);
+                    }
+                }
+                Err(mut e) => {
+                    if pth == kw::Async {
+                        async_block_err(&mut e, pth.span);
+                    } else {
+                        e.span_label(pth.span, "while parsing this struct");
+                        if let Some(f) = recovery_field {
+                            fields.push(f);
+                            e.span_suggestion(
+                                self.prev_token.span.shrink_to_hi(),
+                                "try adding a comma",
+                                ",".into(),
+                                Applicability::MachineApplicable,
+                            );
+                        }
+                    }
+                    if !recover {
+                        return Err(e);
+                    }
+                    e.emit();
+                    self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
+                    self.eat(&token::Comma);
+                }
+            }
+        }
+
+        let span = pth.span.to(self.token.span);
+        self.expect(&token::CloseDelim(token::Brace))?;
+        let expr = if recover_async { ExprKind::Err } else { ExprKind::Struct(pth, fields, base) };
+        Ok(self.mk_expr(span, expr, attrs))
+    }
+
+    /// Use in case of error after field-looking code: `S { foo: () with a }`.
+    fn find_struct_error_after_field_looking_code(&self) -> Option<Field> {
+        match self.token.ident() {
+            Some((ident, is_raw))
+                if (is_raw || !ident.is_reserved())
+                    && self.look_ahead(1, |t| *t == token::Colon) =>
+            {
+                Some(ast::Field {
+                    ident,
+                    span: self.token.span,
+                    expr: self.mk_expr_err(self.token.span),
+                    is_shorthand: false,
+                    attrs: AttrVec::new(),
+                    id: DUMMY_NODE_ID,
+                    is_placeholder: false,
+                })
+            }
+            _ => None,
+        }
+    }
+
+    fn recover_struct_comma_after_dotdot(&mut self, span: Span) {
+        if self.token != token::Comma {
+            return;
+        }
+        self.struct_span_err(
+            span.to(self.prev_token.span),
+            "cannot use a comma after the base struct",
+        )
+        .span_suggestion_short(
+            self.token.span,
+            "remove this comma",
+            String::new(),
+            Applicability::MachineApplicable,
+        )
+        .note("the base struct must always be the last field")
+        .emit();
+        self.recover_stmt();
+    }
+
+    /// Parses `ident (COLON expr)?`.
+    fn parse_field(&mut self) -> PResult<'a, Field> {
+        let attrs = self.parse_outer_attributes()?.into();
+        let lo = self.token.span;
+
+        // Check if a colon exists one ahead. This means we're parsing a fieldname.
+        let is_shorthand = !self.look_ahead(1, |t| t == &token::Colon || t == &token::Eq);
+        let (ident, expr) = if is_shorthand {
+            // Mimic `x: x` for the `x` field shorthand.
+            let ident = self.parse_ident_common(false)?;
+            let path = ast::Path::from_ident(ident);
+            (ident, self.mk_expr(ident.span, ExprKind::Path(None, path), AttrVec::new()))
+        } else {
+            let ident = self.parse_field_name()?;
+            self.error_on_eq_field_init(ident);
+            self.bump(); // `:`
+            (ident, self.parse_expr()?)
+        };
+        Ok(ast::Field {
+            ident,
+            span: lo.to(expr.span),
+            expr,
+            is_shorthand,
+            attrs,
+            id: DUMMY_NODE_ID,
+            is_placeholder: false,
+        })
+    }
+
+    /// Check for `=`. This means the source incorrectly attempts to
+    /// initialize a field with an eq rather than a colon.
+    fn error_on_eq_field_init(&self, field_name: Ident) {
+        if self.token != token::Eq {
+            return;
+        }
+
+        self.struct_span_err(self.token.span, "expected `:`, found `=`")
+            .span_suggestion(
+                field_name.span.shrink_to_hi().to(self.token.span),
+                "replace equals symbol with a colon",
+                ":".to_string(),
+                Applicability::MachineApplicable,
+            )
+            .emit();
+    }
+
+    fn err_dotdotdot_syntax(&self, span: Span) {
+        self.struct_span_err(span, "unexpected token: `...`")
+            .span_suggestion(
+                span,
+                "use `..` for an exclusive range",
+                "..".to_owned(),
+                Applicability::MaybeIncorrect,
+            )
+            .span_suggestion(
+                span,
+                "or `..=` for an inclusive range",
+                "..=".to_owned(),
+                Applicability::MaybeIncorrect,
+            )
+            .emit();
+    }
+
+    fn err_larrow_operator(&self, span: Span) {
+        self.struct_span_err(span, "unexpected token: `<-`")
+            .span_suggestion(
+                span,
+                "if you meant to write a comparison against a negative value, add a \
+             space in between `<` and `-`",
+                "< -".to_string(),
+                Applicability::MaybeIncorrect,
+            )
+            .emit();
+    }
+
+    fn mk_assign_op(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
+        ExprKind::AssignOp(binop, lhs, rhs)
+    }
+
+    fn mk_range(
+        &self,
+        start: Option<P<Expr>>,
+        end: Option<P<Expr>>,
+        limits: RangeLimits,
+    ) -> PResult<'a, ExprKind> {
+        if end.is_none() && limits == RangeLimits::Closed {
+            self.error_inclusive_range_with_no_end(self.prev_token.span);
+            Ok(ExprKind::Err)
+        } else {
+            Ok(ExprKind::Range(start, end, limits))
+        }
+    }
+
+    fn mk_unary(&self, unop: UnOp, expr: P<Expr>) -> ExprKind {
+        ExprKind::Unary(unop, expr)
+    }
+
+    fn mk_binary(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
+        ExprKind::Binary(binop, lhs, rhs)
+    }
+
+    fn mk_index(&self, expr: P<Expr>, idx: P<Expr>) -> ExprKind {
+        ExprKind::Index(expr, idx)
+    }
+
+    fn mk_call(&self, f: P<Expr>, args: Vec<P<Expr>>) -> ExprKind {
+        ExprKind::Call(f, args)
+    }
+
+    fn mk_await_expr(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
+        let span = lo.to(self.prev_token.span);
+        let await_expr = self.mk_expr(span, ExprKind::Await(self_arg), AttrVec::new());
+        self.recover_from_await_method_call();
+        Ok(await_expr)
+    }
+
+    crate fn mk_expr(&self, span: Span, kind: ExprKind, attrs: AttrVec) -> P<Expr> {
+        P(Expr { kind, span, attrs, id: DUMMY_NODE_ID, tokens: None })
+    }
+
+    pub(super) fn mk_expr_err(&self, span: Span) -> P<Expr> {
+        self.mk_expr(span, ExprKind::Err, AttrVec::new())
+    }
+
+    /// Create expression span ensuring the span of the parent node
+    /// is larger than the span of lhs and rhs, including the attributes.
+    fn mk_expr_sp(&self, lhs: &P<Expr>, lhs_span: Span, rhs_span: Span) -> Span {
+        lhs.attrs
+            .iter()
+            .find(|a| a.style == AttrStyle::Outer)
+            .map_or(lhs_span, |a| a.span)
+            .to(rhs_span)
+    }
+}