]> git.proxmox.com Git - rustc.git/blobdiff - vendor/rustc-ap-rustc_span/src/analyze_source_file.rs
Update upstream source from tag 'upstream/1.52.1+dfsg1'
[rustc.git] / vendor / rustc-ap-rustc_span / src / analyze_source_file.rs
diff --git a/vendor/rustc-ap-rustc_span/src/analyze_source_file.rs b/vendor/rustc-ap-rustc_span/src/analyze_source_file.rs
new file mode 100644 (file)
index 0000000..5987fb2
--- /dev/null
@@ -0,0 +1,274 @@
+use super::*;
+use unicode_width::UnicodeWidthChar;
+
+#[cfg(test)]
+mod tests;
+
+/// Finds all newlines, multi-byte characters, and non-narrow characters in a
+/// SourceFile.
+///
+/// This function will use an SSE2 enhanced implementation if hardware support
+/// is detected at runtime.
+pub fn analyze_source_file(
+    src: &str,
+    source_file_start_pos: BytePos,
+) -> (Vec<BytePos>, Vec<MultiByteChar>, Vec<NonNarrowChar>) {
+    let mut lines = vec![source_file_start_pos];
+    let mut multi_byte_chars = vec![];
+    let mut non_narrow_chars = vec![];
+
+    // Calls the right implementation, depending on hardware support available.
+    analyze_source_file_dispatch(
+        src,
+        source_file_start_pos,
+        &mut lines,
+        &mut multi_byte_chars,
+        &mut non_narrow_chars,
+    );
+
+    // The code above optimistically registers a new line *after* each \n
+    // it encounters. If that point is already outside the source_file, remove
+    // it again.
+    if let Some(&last_line_start) = lines.last() {
+        let source_file_end = source_file_start_pos + BytePos::from_usize(src.len());
+        assert!(source_file_end >= last_line_start);
+        if last_line_start == source_file_end {
+            lines.pop();
+        }
+    }
+
+    (lines, multi_byte_chars, non_narrow_chars)
+}
+
+cfg_if::cfg_if! {
+    if #[cfg(all(any(target_arch = "x86", target_arch = "x86_64")))] {
+        fn analyze_source_file_dispatch(src: &str,
+                                    source_file_start_pos: BytePos,
+                                    lines: &mut Vec<BytePos>,
+                                    multi_byte_chars: &mut Vec<MultiByteChar>,
+                                    non_narrow_chars: &mut Vec<NonNarrowChar>) {
+            if is_x86_feature_detected!("sse2") {
+                unsafe {
+                    analyze_source_file_sse2(src,
+                                         source_file_start_pos,
+                                         lines,
+                                         multi_byte_chars,
+                                         non_narrow_chars);
+                }
+            } else {
+                analyze_source_file_generic(src,
+                                        src.len(),
+                                        source_file_start_pos,
+                                        lines,
+                                        multi_byte_chars,
+                                        non_narrow_chars);
+
+            }
+        }
+
+        /// Checks 16 byte chunks of text at a time. If the chunk contains
+        /// something other than printable ASCII characters and newlines, the
+        /// function falls back to the generic implementation. Otherwise it uses
+        /// SSE2 intrinsics to quickly find all newlines.
+        #[target_feature(enable = "sse2")]
+        unsafe fn analyze_source_file_sse2(src: &str,
+                                       output_offset: BytePos,
+                                       lines: &mut Vec<BytePos>,
+                                       multi_byte_chars: &mut Vec<MultiByteChar>,
+                                       non_narrow_chars: &mut Vec<NonNarrowChar>) {
+            #[cfg(target_arch = "x86")]
+            use std::arch::x86::*;
+            #[cfg(target_arch = "x86_64")]
+            use std::arch::x86_64::*;
+
+            const CHUNK_SIZE: usize = 16;
+
+            let src_bytes = src.as_bytes();
+
+            let chunk_count = src.len() / CHUNK_SIZE;
+
+            // This variable keeps track of where we should start decoding a
+            // chunk. If a multi-byte character spans across chunk boundaries,
+            // we need to skip that part in the next chunk because we already
+            // handled it.
+            let mut intra_chunk_offset = 0;
+
+            for chunk_index in 0 .. chunk_count {
+                let ptr = src_bytes.as_ptr() as *const __m128i;
+                // We don't know if the pointer is aligned to 16 bytes, so we
+                // use `loadu`, which supports unaligned loading.
+                let chunk = _mm_loadu_si128(ptr.add(chunk_index));
+
+                // For character in the chunk, see if its byte value is < 0, which
+                // indicates that it's part of a UTF-8 char.
+                let multibyte_test = _mm_cmplt_epi8(chunk, _mm_set1_epi8(0));
+                // Create a bit mask from the comparison results.
+                let multibyte_mask = _mm_movemask_epi8(multibyte_test);
+
+                // If the bit mask is all zero, we only have ASCII chars here:
+                if multibyte_mask == 0 {
+                    assert!(intra_chunk_offset == 0);
+
+                    // Check if there are any control characters in the chunk. All
+                    // control characters that we can encounter at this point have a
+                    // byte value less than 32 or ...
+                    let control_char_test0 = _mm_cmplt_epi8(chunk, _mm_set1_epi8(32));
+                    let control_char_mask0 = _mm_movemask_epi8(control_char_test0);
+
+                    // ... it's the ASCII 'DEL' character with a value of 127.
+                    let control_char_test1 = _mm_cmpeq_epi8(chunk, _mm_set1_epi8(127));
+                    let control_char_mask1 = _mm_movemask_epi8(control_char_test1);
+
+                    let control_char_mask = control_char_mask0 | control_char_mask1;
+
+                    if control_char_mask != 0 {
+                        // Check for newlines in the chunk
+                        let newlines_test = _mm_cmpeq_epi8(chunk, _mm_set1_epi8(b'\n' as i8));
+                        let newlines_mask = _mm_movemask_epi8(newlines_test);
+
+                        if control_char_mask == newlines_mask {
+                            // All control characters are newlines, record them
+                            let mut newlines_mask = 0xFFFF0000 | newlines_mask as u32;
+                            let output_offset = output_offset +
+                                BytePos::from_usize(chunk_index * CHUNK_SIZE + 1);
+
+                            loop {
+                                let index = newlines_mask.trailing_zeros();
+
+                                if index >= CHUNK_SIZE as u32 {
+                                    // We have arrived at the end of the chunk.
+                                    break
+                                }
+
+                                lines.push(BytePos(index) + output_offset);
+
+                                // Clear the bit, so we can find the next one.
+                                newlines_mask &= (!1) << index;
+                            }
+
+                            // We are done for this chunk. All control characters were
+                            // newlines and we took care of those.
+                            continue
+                        } else {
+                            // Some of the control characters are not newlines,
+                            // fall through to the slow path below.
+                        }
+                    } else {
+                        // No control characters, nothing to record for this chunk
+                        continue
+                    }
+                }
+
+                // The slow path.
+                // There are control chars in here, fallback to generic decoding.
+                let scan_start = chunk_index * CHUNK_SIZE + intra_chunk_offset;
+                intra_chunk_offset = analyze_source_file_generic(
+                    &src[scan_start .. ],
+                    CHUNK_SIZE - intra_chunk_offset,
+                    BytePos::from_usize(scan_start) + output_offset,
+                    lines,
+                    multi_byte_chars,
+                    non_narrow_chars
+                );
+            }
+
+            // There might still be a tail left to analyze
+            let tail_start = chunk_count * CHUNK_SIZE + intra_chunk_offset;
+            if tail_start < src.len() {
+                analyze_source_file_generic(&src[tail_start as usize ..],
+                                        src.len() - tail_start,
+                                        output_offset + BytePos::from_usize(tail_start),
+                                        lines,
+                                        multi_byte_chars,
+                                        non_narrow_chars);
+            }
+        }
+    } else {
+
+        // The target (or compiler version) does not support SSE2 ...
+        fn analyze_source_file_dispatch(src: &str,
+                                    source_file_start_pos: BytePos,
+                                    lines: &mut Vec<BytePos>,
+                                    multi_byte_chars: &mut Vec<MultiByteChar>,
+                                    non_narrow_chars: &mut Vec<NonNarrowChar>) {
+            analyze_source_file_generic(src,
+                                    src.len(),
+                                    source_file_start_pos,
+                                    lines,
+                                    multi_byte_chars,
+                                    non_narrow_chars);
+        }
+    }
+}
+
+// `scan_len` determines the number of bytes in `src` to scan. Note that the
+// function can read past `scan_len` if a multi-byte character start within the
+// range but extends past it. The overflow is returned by the function.
+fn analyze_source_file_generic(
+    src: &str,
+    scan_len: usize,
+    output_offset: BytePos,
+    lines: &mut Vec<BytePos>,
+    multi_byte_chars: &mut Vec<MultiByteChar>,
+    non_narrow_chars: &mut Vec<NonNarrowChar>,
+) -> usize {
+    assert!(src.len() >= scan_len);
+    let mut i = 0;
+    let src_bytes = src.as_bytes();
+
+    while i < scan_len {
+        let byte = unsafe {
+            // We verified that i < scan_len <= src.len()
+            *src_bytes.get_unchecked(i as usize)
+        };
+
+        // How much to advance in order to get to the next UTF-8 char in the
+        // string.
+        let mut char_len = 1;
+
+        if byte < 32 {
+            // This is an ASCII control character, it could be one of the cases
+            // that are interesting to us.
+
+            let pos = BytePos::from_usize(i) + output_offset;
+
+            match byte {
+                b'\n' => {
+                    lines.push(pos + BytePos(1));
+                }
+                b'\t' => {
+                    non_narrow_chars.push(NonNarrowChar::Tab(pos));
+                }
+                _ => {
+                    non_narrow_chars.push(NonNarrowChar::ZeroWidth(pos));
+                }
+            }
+        } else if byte >= 127 {
+            // The slow path:
+            // This is either ASCII control character "DEL" or the beginning of
+            // a multibyte char. Just decode to `char`.
+            let c = (&src[i..]).chars().next().unwrap();
+            char_len = c.len_utf8();
+
+            let pos = BytePos::from_usize(i) + output_offset;
+
+            if char_len > 1 {
+                assert!((2..=4).contains(&char_len));
+                let mbc = MultiByteChar { pos, bytes: char_len as u8 };
+                multi_byte_chars.push(mbc);
+            }
+
+            // Assume control characters are zero width.
+            // FIXME: How can we decide between `width` and `width_cjk`?
+            let char_width = UnicodeWidthChar::width(c).unwrap_or(0);
+
+            if char_width != 1 {
+                non_narrow_chars.push(NonNarrowChar::new(pos, char_width));
+            }
+        }
+
+        i += char_len;
+    }
+
+    i - scan_len
+}