]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blobdiff - zfs/module/zfs/vdev_raidz.c
UBUNTU: [Packaging] dkms -- drop zfs/spl source code from kernel
[mirror_ubuntu-bionic-kernel.git] / zfs / module / zfs / vdev_raidz.c
diff --git a/zfs/module/zfs/vdev_raidz.c b/zfs/module/zfs/vdev_raidz.c
deleted file mode 100644 (file)
index 3077e09..0000000
+++ /dev/null
@@ -1,2352 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License (the "License").
- * You may not use this file except in compliance with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-
-/*
- * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
- * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
- * Copyright (c) 2016 Gvozden Nešković. All rights reserved.
- */
-
-#include <sys/zfs_context.h>
-#include <sys/spa.h>
-#include <sys/vdev_impl.h>
-#include <sys/zio.h>
-#include <sys/zio_checksum.h>
-#include <sys/abd.h>
-#include <sys/fs/zfs.h>
-#include <sys/fm/fs/zfs.h>
-#include <sys/vdev_raidz.h>
-#include <sys/vdev_raidz_impl.h>
-
-/*
- * Virtual device vector for RAID-Z.
- *
- * This vdev supports single, double, and triple parity. For single parity,
- * we use a simple XOR of all the data columns. For double or triple parity,
- * we use a special case of Reed-Solomon coding. This extends the
- * technique described in "The mathematics of RAID-6" by H. Peter Anvin by
- * drawing on the system described in "A Tutorial on Reed-Solomon Coding for
- * Fault-Tolerance in RAID-like Systems" by James S. Plank on which the
- * former is also based. The latter is designed to provide higher performance
- * for writes.
- *
- * Note that the Plank paper claimed to support arbitrary N+M, but was then
- * amended six years later identifying a critical flaw that invalidates its
- * claims. Nevertheless, the technique can be adapted to work for up to
- * triple parity. For additional parity, the amendment "Note: Correction to
- * the 1997 Tutorial on Reed-Solomon Coding" by James S. Plank and Ying Ding
- * is viable, but the additional complexity means that write performance will
- * suffer.
- *
- * All of the methods above operate on a Galois field, defined over the
- * integers mod 2^N. In our case we choose N=8 for GF(8) so that all elements
- * can be expressed with a single byte. Briefly, the operations on the
- * field are defined as follows:
- *
- *   o addition (+) is represented by a bitwise XOR
- *   o subtraction (-) is therefore identical to addition: A + B = A - B
- *   o multiplication of A by 2 is defined by the following bitwise expression:
- *
- *     (A * 2)_7 = A_6
- *     (A * 2)_6 = A_5
- *     (A * 2)_5 = A_4
- *     (A * 2)_4 = A_3 + A_7
- *     (A * 2)_3 = A_2 + A_7
- *     (A * 2)_2 = A_1 + A_7
- *     (A * 2)_1 = A_0
- *     (A * 2)_0 = A_7
- *
- * In C, multiplying by 2 is therefore ((a << 1) ^ ((a & 0x80) ? 0x1d : 0)).
- * As an aside, this multiplication is derived from the error correcting
- * primitive polynomial x^8 + x^4 + x^3 + x^2 + 1.
- *
- * Observe that any number in the field (except for 0) can be expressed as a
- * power of 2 -- a generator for the field. We store a table of the powers of
- * 2 and logs base 2 for quick look ups, and exploit the fact that A * B can
- * be rewritten as 2^(log_2(A) + log_2(B)) (where '+' is normal addition rather
- * than field addition). The inverse of a field element A (A^-1) is therefore
- * A ^ (255 - 1) = A^254.
- *
- * The up-to-three parity columns, P, Q, R over several data columns,
- * D_0, ... D_n-1, can be expressed by field operations:
- *
- *     P = D_0 + D_1 + ... + D_n-2 + D_n-1
- *     Q = 2^n-1 * D_0 + 2^n-2 * D_1 + ... + 2^1 * D_n-2 + 2^0 * D_n-1
- *       = ((...((D_0) * 2 + D_1) * 2 + ...) * 2 + D_n-2) * 2 + D_n-1
- *     R = 4^n-1 * D_0 + 4^n-2 * D_1 + ... + 4^1 * D_n-2 + 4^0 * D_n-1
- *       = ((...((D_0) * 4 + D_1) * 4 + ...) * 4 + D_n-2) * 4 + D_n-1
- *
- * We chose 1, 2, and 4 as our generators because 1 corresponds to the trival
- * XOR operation, and 2 and 4 can be computed quickly and generate linearly-
- * independent coefficients. (There are no additional coefficients that have
- * this property which is why the uncorrected Plank method breaks down.)
- *
- * See the reconstruction code below for how P, Q and R can used individually
- * or in concert to recover missing data columns.
- */
-
-#define        VDEV_RAIDZ_P            0
-#define        VDEV_RAIDZ_Q            1
-#define        VDEV_RAIDZ_R            2
-
-#define        VDEV_RAIDZ_MUL_2(x)     (((x) << 1) ^ (((x) & 0x80) ? 0x1d : 0))
-#define        VDEV_RAIDZ_MUL_4(x)     (VDEV_RAIDZ_MUL_2(VDEV_RAIDZ_MUL_2(x)))
-
-/*
- * We provide a mechanism to perform the field multiplication operation on a
- * 64-bit value all at once rather than a byte at a time. This works by
- * creating a mask from the top bit in each byte and using that to
- * conditionally apply the XOR of 0x1d.
- */
-#define        VDEV_RAIDZ_64MUL_2(x, mask) \
-{ \
-       (mask) = (x) & 0x8080808080808080ULL; \
-       (mask) = ((mask) << 1) - ((mask) >> 7); \
-       (x) = (((x) << 1) & 0xfefefefefefefefeULL) ^ \
-           ((mask) & 0x1d1d1d1d1d1d1d1dULL); \
-}
-
-#define        VDEV_RAIDZ_64MUL_4(x, mask) \
-{ \
-       VDEV_RAIDZ_64MUL_2((x), mask); \
-       VDEV_RAIDZ_64MUL_2((x), mask); \
-}
-
-void
-vdev_raidz_map_free(raidz_map_t *rm)
-{
-       int c;
-
-       for (c = 0; c < rm->rm_firstdatacol; c++) {
-               abd_free(rm->rm_col[c].rc_abd);
-
-               if (rm->rm_col[c].rc_gdata != NULL)
-                       abd_free(rm->rm_col[c].rc_gdata);
-       }
-
-       for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++)
-               abd_put(rm->rm_col[c].rc_abd);
-
-       if (rm->rm_abd_copy != NULL)
-               abd_free(rm->rm_abd_copy);
-
-       kmem_free(rm, offsetof(raidz_map_t, rm_col[rm->rm_scols]));
-}
-
-static void
-vdev_raidz_map_free_vsd(zio_t *zio)
-{
-       raidz_map_t *rm = zio->io_vsd;
-
-       ASSERT0(rm->rm_freed);
-       rm->rm_freed = 1;
-
-       if (rm->rm_reports == 0)
-               vdev_raidz_map_free(rm);
-}
-
-/*ARGSUSED*/
-static void
-vdev_raidz_cksum_free(void *arg, size_t ignored)
-{
-       raidz_map_t *rm = arg;
-
-       ASSERT3U(rm->rm_reports, >, 0);
-
-       if (--rm->rm_reports == 0 && rm->rm_freed != 0)
-               vdev_raidz_map_free(rm);
-}
-
-static void
-vdev_raidz_cksum_finish(zio_cksum_report_t *zcr, const abd_t *good_data)
-{
-       raidz_map_t *rm = zcr->zcr_cbdata;
-       const size_t c = zcr->zcr_cbinfo;
-       size_t x, offset;
-
-       const abd_t *good = NULL;
-       const abd_t *bad = rm->rm_col[c].rc_abd;
-
-       if (good_data == NULL) {
-               zfs_ereport_finish_checksum(zcr, NULL, NULL, B_FALSE);
-               return;
-       }
-
-       if (c < rm->rm_firstdatacol) {
-               /*
-                * The first time through, calculate the parity blocks for
-                * the good data (this relies on the fact that the good
-                * data never changes for a given logical ZIO)
-                */
-               if (rm->rm_col[0].rc_gdata == NULL) {
-                       abd_t *bad_parity[VDEV_RAIDZ_MAXPARITY];
-
-                       /*
-                        * Set up the rm_col[]s to generate the parity for
-                        * good_data, first saving the parity bufs and
-                        * replacing them with buffers to hold the result.
-                        */
-                       for (x = 0; x < rm->rm_firstdatacol; x++) {
-                               bad_parity[x] = rm->rm_col[x].rc_abd;
-                               rm->rm_col[x].rc_abd =
-                                   rm->rm_col[x].rc_gdata =
-                                   abd_alloc_sametype(rm->rm_col[x].rc_abd,
-                                   rm->rm_col[x].rc_size);
-                       }
-
-                       /* fill in the data columns from good_data */
-                       offset = 0;
-                       for (; x < rm->rm_cols; x++) {
-                               abd_put(rm->rm_col[x].rc_abd);
-
-                               rm->rm_col[x].rc_abd =
-                                   abd_get_offset_size((abd_t *)good_data,
-                                   offset, rm->rm_col[x].rc_size);
-                               offset += rm->rm_col[x].rc_size;
-                       }
-
-                       /*
-                        * Construct the parity from the good data.
-                        */
-                       vdev_raidz_generate_parity(rm);
-
-                       /* restore everything back to its original state */
-                       for (x = 0; x < rm->rm_firstdatacol; x++)
-                               rm->rm_col[x].rc_abd = bad_parity[x];
-
-                       offset = 0;
-                       for (x = rm->rm_firstdatacol; x < rm->rm_cols; x++) {
-                               abd_put(rm->rm_col[x].rc_abd);
-                               rm->rm_col[x].rc_abd = abd_get_offset_size(
-                                   rm->rm_abd_copy, offset,
-                                   rm->rm_col[x].rc_size);
-                               offset += rm->rm_col[x].rc_size;
-                       }
-               }
-
-               ASSERT3P(rm->rm_col[c].rc_gdata, !=, NULL);
-               good = abd_get_offset_size(rm->rm_col[c].rc_gdata, 0,
-                   rm->rm_col[c].rc_size);
-       } else {
-               /* adjust good_data to point at the start of our column */
-               offset = 0;
-               for (x = rm->rm_firstdatacol; x < c; x++)
-                       offset += rm->rm_col[x].rc_size;
-
-               good = abd_get_offset_size((abd_t *)good_data, offset,
-                   rm->rm_col[c].rc_size);
-       }
-
-       /* we drop the ereport if it ends up that the data was good */
-       zfs_ereport_finish_checksum(zcr, good, bad, B_TRUE);
-       abd_put((abd_t *)good);
-}
-
-/*
- * Invoked indirectly by zfs_ereport_start_checksum(), called
- * below when our read operation fails completely.  The main point
- * is to keep a copy of everything we read from disk, so that at
- * vdev_raidz_cksum_finish() time we can compare it with the good data.
- */
-static void
-vdev_raidz_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *arg)
-{
-       size_t c = (size_t)(uintptr_t)arg;
-       size_t offset;
-
-       raidz_map_t *rm = zio->io_vsd;
-       size_t size;
-
-       /* set up the report and bump the refcount  */
-       zcr->zcr_cbdata = rm;
-       zcr->zcr_cbinfo = c;
-       zcr->zcr_finish = vdev_raidz_cksum_finish;
-       zcr->zcr_free = vdev_raidz_cksum_free;
-
-       rm->rm_reports++;
-       ASSERT3U(rm->rm_reports, >, 0);
-
-       if (rm->rm_abd_copy != NULL)
-               return;
-
-       /*
-        * It's the first time we're called for this raidz_map_t, so we need
-        * to copy the data aside; there's no guarantee that our zio's buffer
-        * won't be re-used for something else.
-        *
-        * Our parity data is already in separate buffers, so there's no need
-        * to copy them.
-        */
-
-       size = 0;
-       for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++)
-               size += rm->rm_col[c].rc_size;
-
-       rm->rm_abd_copy = abd_alloc_for_io(size, B_FALSE);
-
-       for (offset = 0, c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
-               raidz_col_t *col = &rm->rm_col[c];
-               abd_t *tmp = abd_get_offset_size(rm->rm_abd_copy, offset,
-                   col->rc_size);
-
-               abd_copy(tmp, col->rc_abd, col->rc_size);
-
-               abd_put(col->rc_abd);
-               col->rc_abd = tmp;
-
-               offset += col->rc_size;
-       }
-       ASSERT3U(offset, ==, size);
-}
-
-static const zio_vsd_ops_t vdev_raidz_vsd_ops = {
-       .vsd_free = vdev_raidz_map_free_vsd,
-       .vsd_cksum_report = vdev_raidz_cksum_report
-};
-
-/*
- * Divides the IO evenly across all child vdevs; usually, dcols is
- * the number of children in the target vdev.
- *
- * Avoid inlining the function to keep vdev_raidz_io_start(), which
- * is this functions only caller, as small as possible on the stack.
- */
-noinline raidz_map_t *
-vdev_raidz_map_alloc(zio_t *zio, uint64_t ashift, uint64_t dcols,
-    uint64_t nparity)
-{
-       raidz_map_t *rm;
-       /* The starting RAIDZ (parent) vdev sector of the block. */
-       uint64_t b = zio->io_offset >> ashift;
-       /* The zio's size in units of the vdev's minimum sector size. */
-       uint64_t s = zio->io_size >> ashift;
-       /* The first column for this stripe. */
-       uint64_t f = b % dcols;
-       /* The starting byte offset on each child vdev. */
-       uint64_t o = (b / dcols) << ashift;
-       uint64_t q, r, c, bc, col, acols, scols, coff, devidx, asize, tot;
-       uint64_t off = 0;
-
-       /*
-        * "Quotient": The number of data sectors for this stripe on all but
-        * the "big column" child vdevs that also contain "remainder" data.
-        */
-       q = s / (dcols - nparity);
-
-       /*
-        * "Remainder": The number of partial stripe data sectors in this I/O.
-        * This will add a sector to some, but not all, child vdevs.
-        */
-       r = s - q * (dcols - nparity);
-
-       /* The number of "big columns" - those which contain remainder data. */
-       bc = (r == 0 ? 0 : r + nparity);
-
-       /*
-        * The total number of data and parity sectors associated with
-        * this I/O.
-        */
-       tot = s + nparity * (q + (r == 0 ? 0 : 1));
-
-       /* acols: The columns that will be accessed. */
-       /* scols: The columns that will be accessed or skipped. */
-       if (q == 0) {
-               /* Our I/O request doesn't span all child vdevs. */
-               acols = bc;
-               scols = MIN(dcols, roundup(bc, nparity + 1));
-       } else {
-               acols = dcols;
-               scols = dcols;
-       }
-
-       ASSERT3U(acols, <=, scols);
-
-       rm = kmem_alloc(offsetof(raidz_map_t, rm_col[scols]), KM_SLEEP);
-
-       rm->rm_cols = acols;
-       rm->rm_scols = scols;
-       rm->rm_bigcols = bc;
-       rm->rm_skipstart = bc;
-       rm->rm_missingdata = 0;
-       rm->rm_missingparity = 0;
-       rm->rm_firstdatacol = nparity;
-       rm->rm_abd_copy = NULL;
-       rm->rm_reports = 0;
-       rm->rm_freed = 0;
-       rm->rm_ecksuminjected = 0;
-
-       asize = 0;
-
-       for (c = 0; c < scols; c++) {
-               col = f + c;
-               coff = o;
-               if (col >= dcols) {
-                       col -= dcols;
-                       coff += 1ULL << ashift;
-               }
-               rm->rm_col[c].rc_devidx = col;
-               rm->rm_col[c].rc_offset = coff;
-               rm->rm_col[c].rc_abd = NULL;
-               rm->rm_col[c].rc_gdata = NULL;
-               rm->rm_col[c].rc_error = 0;
-               rm->rm_col[c].rc_tried = 0;
-               rm->rm_col[c].rc_skipped = 0;
-
-               if (c >= acols)
-                       rm->rm_col[c].rc_size = 0;
-               else if (c < bc)
-                       rm->rm_col[c].rc_size = (q + 1) << ashift;
-               else
-                       rm->rm_col[c].rc_size = q << ashift;
-
-               asize += rm->rm_col[c].rc_size;
-       }
-
-       ASSERT3U(asize, ==, tot << ashift);
-       rm->rm_asize = roundup(asize, (nparity + 1) << ashift);
-       rm->rm_nskip = roundup(tot, nparity + 1) - tot;
-       ASSERT3U(rm->rm_asize - asize, ==, rm->rm_nskip << ashift);
-       ASSERT3U(rm->rm_nskip, <=, nparity);
-
-       for (c = 0; c < rm->rm_firstdatacol; c++)
-               rm->rm_col[c].rc_abd =
-                   abd_alloc_linear(rm->rm_col[c].rc_size, B_FALSE);
-
-       rm->rm_col[c].rc_abd = abd_get_offset_size(zio->io_abd, 0,
-           rm->rm_col[c].rc_size);
-       off = rm->rm_col[c].rc_size;
-
-       for (c = c + 1; c < acols; c++) {
-               rm->rm_col[c].rc_abd = abd_get_offset_size(zio->io_abd, off,
-                   rm->rm_col[c].rc_size);
-               off += rm->rm_col[c].rc_size;
-       }
-
-       /*
-        * If all data stored spans all columns, there's a danger that parity
-        * will always be on the same device and, since parity isn't read
-        * during normal operation, that that device's I/O bandwidth won't be
-        * used effectively. We therefore switch the parity every 1MB.
-        *
-        * ... at least that was, ostensibly, the theory. As a practical
-        * matter unless we juggle the parity between all devices evenly, we
-        * won't see any benefit. Further, occasional writes that aren't a
-        * multiple of the LCM of the number of children and the minimum
-        * stripe width are sufficient to avoid pessimal behavior.
-        * Unfortunately, this decision created an implicit on-disk format
-        * requirement that we need to support for all eternity, but only
-        * for single-parity RAID-Z.
-        *
-        * If we intend to skip a sector in the zeroth column for padding
-        * we must make sure to note this swap. We will never intend to
-        * skip the first column since at least one data and one parity
-        * column must appear in each row.
-        */
-       ASSERT(rm->rm_cols >= 2);
-       ASSERT(rm->rm_col[0].rc_size == rm->rm_col[1].rc_size);
-
-       if (rm->rm_firstdatacol == 1 && (zio->io_offset & (1ULL << 20))) {
-               devidx = rm->rm_col[0].rc_devidx;
-               o = rm->rm_col[0].rc_offset;
-               rm->rm_col[0].rc_devidx = rm->rm_col[1].rc_devidx;
-               rm->rm_col[0].rc_offset = rm->rm_col[1].rc_offset;
-               rm->rm_col[1].rc_devidx = devidx;
-               rm->rm_col[1].rc_offset = o;
-
-               if (rm->rm_skipstart == 0)
-                       rm->rm_skipstart = 1;
-       }
-
-       zio->io_vsd = rm;
-       zio->io_vsd_ops = &vdev_raidz_vsd_ops;
-
-       /* init RAIDZ parity ops */
-       rm->rm_ops = vdev_raidz_math_get_ops();
-
-       return (rm);
-}
-
-struct pqr_struct {
-       uint64_t *p;
-       uint64_t *q;
-       uint64_t *r;
-};
-
-static int
-vdev_raidz_p_func(void *buf, size_t size, void *private)
-{
-       struct pqr_struct *pqr = private;
-       const uint64_t *src = buf;
-       int i, cnt = size / sizeof (src[0]);
-
-       ASSERT(pqr->p && !pqr->q && !pqr->r);
-
-       for (i = 0; i < cnt; i++, src++, pqr->p++)
-               *pqr->p ^= *src;
-
-       return (0);
-}
-
-static int
-vdev_raidz_pq_func(void *buf, size_t size, void *private)
-{
-       struct pqr_struct *pqr = private;
-       const uint64_t *src = buf;
-       uint64_t mask;
-       int i, cnt = size / sizeof (src[0]);
-
-       ASSERT(pqr->p && pqr->q && !pqr->r);
-
-       for (i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++) {
-               *pqr->p ^= *src;
-               VDEV_RAIDZ_64MUL_2(*pqr->q, mask);
-               *pqr->q ^= *src;
-       }
-
-       return (0);
-}
-
-static int
-vdev_raidz_pqr_func(void *buf, size_t size, void *private)
-{
-       struct pqr_struct *pqr = private;
-       const uint64_t *src = buf;
-       uint64_t mask;
-       int i, cnt = size / sizeof (src[0]);
-
-       ASSERT(pqr->p && pqr->q && pqr->r);
-
-       for (i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++, pqr->r++) {
-               *pqr->p ^= *src;
-               VDEV_RAIDZ_64MUL_2(*pqr->q, mask);
-               *pqr->q ^= *src;
-               VDEV_RAIDZ_64MUL_4(*pqr->r, mask);
-               *pqr->r ^= *src;
-       }
-
-       return (0);
-}
-
-static void
-vdev_raidz_generate_parity_p(raidz_map_t *rm)
-{
-       uint64_t *p;
-       int c;
-       abd_t *src;
-
-       for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
-               src = rm->rm_col[c].rc_abd;
-               p = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
-
-               if (c == rm->rm_firstdatacol) {
-                       abd_copy_to_buf(p, src, rm->rm_col[c].rc_size);
-               } else {
-                       struct pqr_struct pqr = { p, NULL, NULL };
-                       (void) abd_iterate_func(src, 0, rm->rm_col[c].rc_size,
-                           vdev_raidz_p_func, &pqr);
-               }
-       }
-}
-
-static void
-vdev_raidz_generate_parity_pq(raidz_map_t *rm)
-{
-       uint64_t *p, *q, pcnt, ccnt, mask, i;
-       int c;
-       abd_t *src;
-
-       pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
-       ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
-           rm->rm_col[VDEV_RAIDZ_Q].rc_size);
-
-       for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
-               src = rm->rm_col[c].rc_abd;
-               p = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
-               q = abd_to_buf(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
-
-               ccnt = rm->rm_col[c].rc_size / sizeof (p[0]);
-
-               if (c == rm->rm_firstdatacol) {
-                       ASSERT(ccnt == pcnt || ccnt == 0);
-                       abd_copy_to_buf(p, src, rm->rm_col[c].rc_size);
-                       (void) memcpy(q, p, rm->rm_col[c].rc_size);
-
-                       for (i = ccnt; i < pcnt; i++) {
-                               p[i] = 0;
-                               q[i] = 0;
-                       }
-               } else {
-                       struct pqr_struct pqr = { p, q, NULL };
-
-                       ASSERT(ccnt <= pcnt);
-                       (void) abd_iterate_func(src, 0, rm->rm_col[c].rc_size,
-                           vdev_raidz_pq_func, &pqr);
-
-                       /*
-                        * Treat short columns as though they are full of 0s.
-                        * Note that there's therefore nothing needed for P.
-                        */
-                       for (i = ccnt; i < pcnt; i++) {
-                               VDEV_RAIDZ_64MUL_2(q[i], mask);
-                       }
-               }
-       }
-}
-
-static void
-vdev_raidz_generate_parity_pqr(raidz_map_t *rm)
-{
-       uint64_t *p, *q, *r, pcnt, ccnt, mask, i;
-       int c;
-       abd_t *src;
-
-       pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
-       ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
-           rm->rm_col[VDEV_RAIDZ_Q].rc_size);
-       ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
-           rm->rm_col[VDEV_RAIDZ_R].rc_size);
-
-       for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
-               src = rm->rm_col[c].rc_abd;
-               p = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
-               q = abd_to_buf(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
-               r = abd_to_buf(rm->rm_col[VDEV_RAIDZ_R].rc_abd);
-
-               ccnt = rm->rm_col[c].rc_size / sizeof (p[0]);
-
-               if (c == rm->rm_firstdatacol) {
-                       ASSERT(ccnt == pcnt || ccnt == 0);
-                       abd_copy_to_buf(p, src, rm->rm_col[c].rc_size);
-                       (void) memcpy(q, p, rm->rm_col[c].rc_size);
-                       (void) memcpy(r, p, rm->rm_col[c].rc_size);
-
-                       for (i = ccnt; i < pcnt; i++) {
-                               p[i] = 0;
-                               q[i] = 0;
-                               r[i] = 0;
-                       }
-               } else {
-                       struct pqr_struct pqr = { p, q, r };
-
-                       ASSERT(ccnt <= pcnt);
-                       (void) abd_iterate_func(src, 0, rm->rm_col[c].rc_size,
-                           vdev_raidz_pqr_func, &pqr);
-
-                       /*
-                        * Treat short columns as though they are full of 0s.
-                        * Note that there's therefore nothing needed for P.
-                        */
-                       for (i = ccnt; i < pcnt; i++) {
-                               VDEV_RAIDZ_64MUL_2(q[i], mask);
-                               VDEV_RAIDZ_64MUL_4(r[i], mask);
-                       }
-               }
-       }
-}
-
-/*
- * Generate RAID parity in the first virtual columns according to the number of
- * parity columns available.
- */
-void
-vdev_raidz_generate_parity(raidz_map_t *rm)
-{
-       /* Generate using the new math implementation */
-       if (vdev_raidz_math_generate(rm) != RAIDZ_ORIGINAL_IMPL)
-               return;
-
-       switch (rm->rm_firstdatacol) {
-       case 1:
-               vdev_raidz_generate_parity_p(rm);
-               break;
-       case 2:
-               vdev_raidz_generate_parity_pq(rm);
-               break;
-       case 3:
-               vdev_raidz_generate_parity_pqr(rm);
-               break;
-       default:
-               cmn_err(CE_PANIC, "invalid RAID-Z configuration");
-       }
-}
-
-/* ARGSUSED */
-static int
-vdev_raidz_reconst_p_func(void *dbuf, void *sbuf, size_t size, void *private)
-{
-       uint64_t *dst = dbuf;
-       uint64_t *src = sbuf;
-       int cnt = size / sizeof (src[0]);
-       int i;
-
-       for (i = 0; i < cnt; i++) {
-               dst[i] ^= src[i];
-       }
-
-       return (0);
-}
-
-/* ARGSUSED */
-static int
-vdev_raidz_reconst_q_pre_func(void *dbuf, void *sbuf, size_t size,
-    void *private)
-{
-       uint64_t *dst = dbuf;
-       uint64_t *src = sbuf;
-       uint64_t mask;
-       int cnt = size / sizeof (dst[0]);
-       int i;
-
-       for (i = 0; i < cnt; i++, dst++, src++) {
-               VDEV_RAIDZ_64MUL_2(*dst, mask);
-               *dst ^= *src;
-       }
-
-       return (0);
-}
-
-/* ARGSUSED */
-static int
-vdev_raidz_reconst_q_pre_tail_func(void *buf, size_t size, void *private)
-{
-       uint64_t *dst = buf;
-       uint64_t mask;
-       int cnt = size / sizeof (dst[0]);
-       int i;
-
-       for (i = 0; i < cnt; i++, dst++) {
-               /* same operation as vdev_raidz_reconst_q_pre_func() on dst */
-               VDEV_RAIDZ_64MUL_2(*dst, mask);
-       }
-
-       return (0);
-}
-
-struct reconst_q_struct {
-       uint64_t *q;
-       int exp;
-};
-
-static int
-vdev_raidz_reconst_q_post_func(void *buf, size_t size, void *private)
-{
-       struct reconst_q_struct *rq = private;
-       uint64_t *dst = buf;
-       int cnt = size / sizeof (dst[0]);
-       int i;
-
-       for (i = 0; i < cnt; i++, dst++, rq->q++) {
-               int j;
-               uint8_t *b;
-
-               *dst ^= *rq->q;
-               for (j = 0, b = (uint8_t *)dst; j < 8; j++, b++) {
-                       *b = vdev_raidz_exp2(*b, rq->exp);
-               }
-       }
-
-       return (0);
-}
-
-struct reconst_pq_struct {
-       uint8_t *p;
-       uint8_t *q;
-       uint8_t *pxy;
-       uint8_t *qxy;
-       int aexp;
-       int bexp;
-};
-
-static int
-vdev_raidz_reconst_pq_func(void *xbuf, void *ybuf, size_t size, void *private)
-{
-       struct reconst_pq_struct *rpq = private;
-       uint8_t *xd = xbuf;
-       uint8_t *yd = ybuf;
-       int i;
-
-       for (i = 0; i < size;
-           i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++, yd++) {
-               *xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^
-                   vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp);
-               *yd = *rpq->p ^ *rpq->pxy ^ *xd;
-       }
-
-       return (0);
-}
-
-static int
-vdev_raidz_reconst_pq_tail_func(void *xbuf, size_t size, void *private)
-{
-       struct reconst_pq_struct *rpq = private;
-       uint8_t *xd = xbuf;
-       int i;
-
-       for (i = 0; i < size;
-           i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++) {
-               /* same operation as vdev_raidz_reconst_pq_func() on xd */
-               *xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^
-                   vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp);
-       }
-
-       return (0);
-}
-
-static int
-vdev_raidz_reconstruct_p(raidz_map_t *rm, int *tgts, int ntgts)
-{
-       int x = tgts[0];
-       int c;
-       abd_t *dst, *src;
-
-       ASSERT(ntgts == 1);
-       ASSERT(x >= rm->rm_firstdatacol);
-       ASSERT(x < rm->rm_cols);
-
-       ASSERT(rm->rm_col[x].rc_size <= rm->rm_col[VDEV_RAIDZ_P].rc_size);
-       ASSERT(rm->rm_col[x].rc_size > 0);
-
-       src = rm->rm_col[VDEV_RAIDZ_P].rc_abd;
-       dst = rm->rm_col[x].rc_abd;
-
-       abd_copy_from_buf(dst, abd_to_buf(src), rm->rm_col[x].rc_size);
-
-       for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
-               uint64_t size = MIN(rm->rm_col[x].rc_size,
-                   rm->rm_col[c].rc_size);
-
-               src = rm->rm_col[c].rc_abd;
-               dst = rm->rm_col[x].rc_abd;
-
-               if (c == x)
-                       continue;
-
-               (void) abd_iterate_func2(dst, src, 0, 0, size,
-                   vdev_raidz_reconst_p_func, NULL);
-       }
-
-       return (1 << VDEV_RAIDZ_P);
-}
-
-static int
-vdev_raidz_reconstruct_q(raidz_map_t *rm, int *tgts, int ntgts)
-{
-       int x = tgts[0];
-       int c, exp;
-       abd_t *dst, *src;
-       struct reconst_q_struct rq;
-
-       ASSERT(ntgts == 1);
-
-       ASSERT(rm->rm_col[x].rc_size <= rm->rm_col[VDEV_RAIDZ_Q].rc_size);
-
-       for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
-               uint64_t size = (c == x) ? 0 : MIN(rm->rm_col[x].rc_size,
-                   rm->rm_col[c].rc_size);
-
-               src = rm->rm_col[c].rc_abd;
-               dst = rm->rm_col[x].rc_abd;
-
-               if (c == rm->rm_firstdatacol) {
-                       abd_copy(dst, src, size);
-                       if (rm->rm_col[x].rc_size > size)
-                               abd_zero_off(dst, size,
-                                   rm->rm_col[x].rc_size - size);
-
-               } else {
-                       ASSERT3U(size, <=, rm->rm_col[x].rc_size);
-                       (void) abd_iterate_func2(dst, src, 0, 0, size,
-                           vdev_raidz_reconst_q_pre_func, NULL);
-                       (void) abd_iterate_func(dst,
-                           size, rm->rm_col[x].rc_size - size,
-                           vdev_raidz_reconst_q_pre_tail_func, NULL);
-               }
-       }
-
-       src = rm->rm_col[VDEV_RAIDZ_Q].rc_abd;
-       dst = rm->rm_col[x].rc_abd;
-       exp = 255 - (rm->rm_cols - 1 - x);
-       rq.q = abd_to_buf(src);
-       rq.exp = exp;
-
-       (void) abd_iterate_func(dst, 0, rm->rm_col[x].rc_size,
-           vdev_raidz_reconst_q_post_func, &rq);
-
-       return (1 << VDEV_RAIDZ_Q);
-}
-
-static int
-vdev_raidz_reconstruct_pq(raidz_map_t *rm, int *tgts, int ntgts)
-{
-       uint8_t *p, *q, *pxy, *qxy, tmp, a, b, aexp, bexp;
-       abd_t *pdata, *qdata;
-       uint64_t xsize, ysize;
-       int x = tgts[0];
-       int y = tgts[1];
-       abd_t *xd, *yd;
-       struct reconst_pq_struct rpq;
-
-       ASSERT(ntgts == 2);
-       ASSERT(x < y);
-       ASSERT(x >= rm->rm_firstdatacol);
-       ASSERT(y < rm->rm_cols);
-
-       ASSERT(rm->rm_col[x].rc_size >= rm->rm_col[y].rc_size);
-
-       /*
-        * Move the parity data aside -- we're going to compute parity as
-        * though columns x and y were full of zeros -- Pxy and Qxy. We want to
-        * reuse the parity generation mechanism without trashing the actual
-        * parity so we make those columns appear to be full of zeros by
-        * setting their lengths to zero.
-        */
-       pdata = rm->rm_col[VDEV_RAIDZ_P].rc_abd;
-       qdata = rm->rm_col[VDEV_RAIDZ_Q].rc_abd;
-       xsize = rm->rm_col[x].rc_size;
-       ysize = rm->rm_col[y].rc_size;
-
-       rm->rm_col[VDEV_RAIDZ_P].rc_abd =
-           abd_alloc_linear(rm->rm_col[VDEV_RAIDZ_P].rc_size, B_TRUE);
-       rm->rm_col[VDEV_RAIDZ_Q].rc_abd =
-           abd_alloc_linear(rm->rm_col[VDEV_RAIDZ_Q].rc_size, B_TRUE);
-       rm->rm_col[x].rc_size = 0;
-       rm->rm_col[y].rc_size = 0;
-
-       vdev_raidz_generate_parity_pq(rm);
-
-       rm->rm_col[x].rc_size = xsize;
-       rm->rm_col[y].rc_size = ysize;
-
-       p = abd_to_buf(pdata);
-       q = abd_to_buf(qdata);
-       pxy = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
-       qxy = abd_to_buf(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
-       xd = rm->rm_col[x].rc_abd;
-       yd = rm->rm_col[y].rc_abd;
-
-       /*
-        * We now have:
-        *      Pxy = P + D_x + D_y
-        *      Qxy = Q + 2^(ndevs - 1 - x) * D_x + 2^(ndevs - 1 - y) * D_y
-        *
-        * We can then solve for D_x:
-        *      D_x = A * (P + Pxy) + B * (Q + Qxy)
-        * where
-        *      A = 2^(x - y) * (2^(x - y) + 1)^-1
-        *      B = 2^(ndevs - 1 - x) * (2^(x - y) + 1)^-1
-        *
-        * With D_x in hand, we can easily solve for D_y:
-        *      D_y = P + Pxy + D_x
-        */
-
-       a = vdev_raidz_pow2[255 + x - y];
-       b = vdev_raidz_pow2[255 - (rm->rm_cols - 1 - x)];
-       tmp = 255 - vdev_raidz_log2[a ^ 1];
-
-       aexp = vdev_raidz_log2[vdev_raidz_exp2(a, tmp)];
-       bexp = vdev_raidz_log2[vdev_raidz_exp2(b, tmp)];
-
-       ASSERT3U(xsize, >=, ysize);
-       rpq.p = p;
-       rpq.q = q;
-       rpq.pxy = pxy;
-       rpq.qxy = qxy;
-       rpq.aexp = aexp;
-       rpq.bexp = bexp;
-
-       (void) abd_iterate_func2(xd, yd, 0, 0, ysize,
-           vdev_raidz_reconst_pq_func, &rpq);
-       (void) abd_iterate_func(xd, ysize, xsize - ysize,
-           vdev_raidz_reconst_pq_tail_func, &rpq);
-
-       abd_free(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
-       abd_free(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
-
-       /*
-        * Restore the saved parity data.
-        */
-       rm->rm_col[VDEV_RAIDZ_P].rc_abd = pdata;
-       rm->rm_col[VDEV_RAIDZ_Q].rc_abd = qdata;
-
-       return ((1 << VDEV_RAIDZ_P) | (1 << VDEV_RAIDZ_Q));
-}
-
-/* BEGIN CSTYLED */
-/*
- * In the general case of reconstruction, we must solve the system of linear
- * equations defined by the coeffecients used to generate parity as well as
- * the contents of the data and parity disks. This can be expressed with
- * vectors for the original data (D) and the actual data (d) and parity (p)
- * and a matrix composed of the identity matrix (I) and a dispersal matrix (V):
- *
- *            __   __                     __     __
- *            |     |         __     __   |  p_0  |
- *            |  V  |         |  D_0  |   | p_m-1 |
- *            |     |    x    |   :   | = |  d_0  |
- *            |  I  |         | D_n-1 |   |   :   |
- *            |     |         ~~     ~~   | d_n-1 |
- *            ~~   ~~                     ~~     ~~
- *
- * I is simply a square identity matrix of size n, and V is a vandermonde
- * matrix defined by the coeffecients we chose for the various parity columns
- * (1, 2, 4). Note that these values were chosen both for simplicity, speedy
- * computation as well as linear separability.
- *
- *      __               __               __     __
- *      |   1   ..  1 1 1 |               |  p_0  |
- *      | 2^n-1 ..  4 2 1 |   __     __   |   :   |
- *      | 4^n-1 .. 16 4 1 |   |  D_0  |   | p_m-1 |
- *      |   1   ..  0 0 0 |   |  D_1  |   |  d_0  |
- *      |   0   ..  0 0 0 | x |  D_2  | = |  d_1  |
- *      |   :       : : : |   |   :   |   |  d_2  |
- *      |   0   ..  1 0 0 |   | D_n-1 |   |   :   |
- *      |   0   ..  0 1 0 |   ~~     ~~   |   :   |
- *      |   0   ..  0 0 1 |               | d_n-1 |
- *      ~~               ~~               ~~     ~~
- *
- * Note that I, V, d, and p are known. To compute D, we must invert the
- * matrix and use the known data and parity values to reconstruct the unknown
- * data values. We begin by removing the rows in V|I and d|p that correspond
- * to failed or missing columns; we then make V|I square (n x n) and d|p
- * sized n by removing rows corresponding to unused parity from the bottom up
- * to generate (V|I)' and (d|p)'. We can then generate the inverse of (V|I)'
- * using Gauss-Jordan elimination. In the example below we use m=3 parity
- * columns, n=8 data columns, with errors in d_1, d_2, and p_1:
- *           __                               __
- *           |  1   1   1   1   1   1   1   1  |
- *           | 128  64  32  16  8   4   2   1  | <-----+-+-- missing disks
- *           |  19 205 116  29  64  16  4   1  |      / /
- *           |  1   0   0   0   0   0   0   0  |     / /
- *           |  0   1   0   0   0   0   0   0  | <--' /
- *  (V|I)  = |  0   0   1   0   0   0   0   0  | <---'
- *           |  0   0   0   1   0   0   0   0  |
- *           |  0   0   0   0   1   0   0   0  |
- *           |  0   0   0   0   0   1   0   0  |
- *           |  0   0   0   0   0   0   1   0  |
- *           |  0   0   0   0   0   0   0   1  |
- *           ~~                               ~~
- *           __                               __
- *           |  1   1   1   1   1   1   1   1  |
- *           | 128  64  32  16  8   4   2   1  |
- *           |  19 205 116  29  64  16  4   1  |
- *           |  1   0   0   0   0   0   0   0  |
- *           |  0   1   0   0   0   0   0   0  |
- *  (V|I)' = |  0   0   1   0   0   0   0   0  |
- *           |  0   0   0   1   0   0   0   0  |
- *           |  0   0   0   0   1   0   0   0  |
- *           |  0   0   0   0   0   1   0   0  |
- *           |  0   0   0   0   0   0   1   0  |
- *           |  0   0   0   0   0   0   0   1  |
- *           ~~                               ~~
- *
- * Here we employ Gauss-Jordan elimination to find the inverse of (V|I)'. We
- * have carefully chosen the seed values 1, 2, and 4 to ensure that this
- * matrix is not singular.
- * __                                                                 __
- * |  1   1   1   1   1   1   1   1     1   0   0   0   0   0   0   0  |
- * |  19 205 116  29  64  16  4   1     0   1   0   0   0   0   0   0  |
- * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
- * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
- * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
- * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
- * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
- * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
- * ~~                                                                 ~~
- * __                                                                 __
- * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
- * |  1   1   1   1   1   1   1   1     1   0   0   0   0   0   0   0  |
- * |  19 205 116  29  64  16  4   1     0   1   0   0   0   0   0   0  |
- * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
- * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
- * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
- * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
- * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
- * ~~                                                                 ~~
- * __                                                                 __
- * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
- * |  0   1   1   0   0   0   0   0     1   0   1   1   1   1   1   1  |
- * |  0  205 116  0   0   0   0   0     0   1   19  29  64  16  4   1  |
- * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
- * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
- * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
- * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
- * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
- * ~~                                                                 ~~
- * __                                                                 __
- * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
- * |  0   1   1   0   0   0   0   0     1   0   1   1   1   1   1   1  |
- * |  0   0  185  0   0   0   0   0    205  1  222 208 141 221 201 204 |
- * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
- * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
- * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
- * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
- * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
- * ~~                                                                 ~~
- * __                                                                 __
- * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
- * |  0   1   1   0   0   0   0   0     1   0   1   1   1   1   1   1  |
- * |  0   0   1   0   0   0   0   0    166 100  4   40 158 168 216 209 |
- * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
- * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
- * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
- * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
- * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
- * ~~                                                                 ~~
- * __                                                                 __
- * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
- * |  0   1   0   0   0   0   0   0    167 100  5   41 159 169 217 208 |
- * |  0   0   1   0   0   0   0   0    166 100  4   40 158 168 216 209 |
- * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
- * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
- * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
- * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
- * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
- * ~~                                                                 ~~
- *                   __                               __
- *                   |  0   0   1   0   0   0   0   0  |
- *                   | 167 100  5   41 159 169 217 208 |
- *                   | 166 100  4   40 158 168 216 209 |
- *       (V|I)'^-1 = |  0   0   0   1   0   0   0   0  |
- *                   |  0   0   0   0   1   0   0   0  |
- *                   |  0   0   0   0   0   1   0   0  |
- *                   |  0   0   0   0   0   0   1   0  |
- *                   |  0   0   0   0   0   0   0   1  |
- *                   ~~                               ~~
- *
- * We can then simply compute D = (V|I)'^-1 x (d|p)' to discover the values
- * of the missing data.
- *
- * As is apparent from the example above, the only non-trivial rows in the
- * inverse matrix correspond to the data disks that we're trying to
- * reconstruct. Indeed, those are the only rows we need as the others would
- * only be useful for reconstructing data known or assumed to be valid. For
- * that reason, we only build the coefficients in the rows that correspond to
- * targeted columns.
- */
-/* END CSTYLED */
-
-static void
-vdev_raidz_matrix_init(raidz_map_t *rm, int n, int nmap, int *map,
-    uint8_t **rows)
-{
-       int i, j;
-       int pow;
-
-       ASSERT(n == rm->rm_cols - rm->rm_firstdatacol);
-
-       /*
-        * Fill in the missing rows of interest.
-        */
-       for (i = 0; i < nmap; i++) {
-               ASSERT3S(0, <=, map[i]);
-               ASSERT3S(map[i], <=, 2);
-
-               pow = map[i] * n;
-               if (pow > 255)
-                       pow -= 255;
-               ASSERT(pow <= 255);
-
-               for (j = 0; j < n; j++) {
-                       pow -= map[i];
-                       if (pow < 0)
-                               pow += 255;
-                       rows[i][j] = vdev_raidz_pow2[pow];
-               }
-       }
-}
-
-static void
-vdev_raidz_matrix_invert(raidz_map_t *rm, int n, int nmissing, int *missing,
-    uint8_t **rows, uint8_t **invrows, const uint8_t *used)
-{
-       int i, j, ii, jj;
-       uint8_t log;
-
-       /*
-        * Assert that the first nmissing entries from the array of used
-        * columns correspond to parity columns and that subsequent entries
-        * correspond to data columns.
-        */
-       for (i = 0; i < nmissing; i++) {
-               ASSERT3S(used[i], <, rm->rm_firstdatacol);
-       }
-       for (; i < n; i++) {
-               ASSERT3S(used[i], >=, rm->rm_firstdatacol);
-       }
-
-       /*
-        * First initialize the storage where we'll compute the inverse rows.
-        */
-       for (i = 0; i < nmissing; i++) {
-               for (j = 0; j < n; j++) {
-                       invrows[i][j] = (i == j) ? 1 : 0;
-               }
-       }
-
-       /*
-        * Subtract all trivial rows from the rows of consequence.
-        */
-       for (i = 0; i < nmissing; i++) {
-               for (j = nmissing; j < n; j++) {
-                       ASSERT3U(used[j], >=, rm->rm_firstdatacol);
-                       jj = used[j] - rm->rm_firstdatacol;
-                       ASSERT3S(jj, <, n);
-                       invrows[i][j] = rows[i][jj];
-                       rows[i][jj] = 0;
-               }
-       }
-
-       /*
-        * For each of the rows of interest, we must normalize it and subtract
-        * a multiple of it from the other rows.
-        */
-       for (i = 0; i < nmissing; i++) {
-               for (j = 0; j < missing[i]; j++) {
-                       ASSERT0(rows[i][j]);
-               }
-               ASSERT3U(rows[i][missing[i]], !=, 0);
-
-               /*
-                * Compute the inverse of the first element and multiply each
-                * element in the row by that value.
-                */
-               log = 255 - vdev_raidz_log2[rows[i][missing[i]]];
-
-               for (j = 0; j < n; j++) {
-                       rows[i][j] = vdev_raidz_exp2(rows[i][j], log);
-                       invrows[i][j] = vdev_raidz_exp2(invrows[i][j], log);
-               }
-
-               for (ii = 0; ii < nmissing; ii++) {
-                       if (i == ii)
-                               continue;
-
-                       ASSERT3U(rows[ii][missing[i]], !=, 0);
-
-                       log = vdev_raidz_log2[rows[ii][missing[i]]];
-
-                       for (j = 0; j < n; j++) {
-                               rows[ii][j] ^=
-                                   vdev_raidz_exp2(rows[i][j], log);
-                               invrows[ii][j] ^=
-                                   vdev_raidz_exp2(invrows[i][j], log);
-                       }
-               }
-       }
-
-       /*
-        * Verify that the data that is left in the rows are properly part of
-        * an identity matrix.
-        */
-       for (i = 0; i < nmissing; i++) {
-               for (j = 0; j < n; j++) {
-                       if (j == missing[i]) {
-                               ASSERT3U(rows[i][j], ==, 1);
-                       } else {
-                               ASSERT0(rows[i][j]);
-                       }
-               }
-       }
-}
-
-static void
-vdev_raidz_matrix_reconstruct(raidz_map_t *rm, int n, int nmissing,
-    int *missing, uint8_t **invrows, const uint8_t *used)
-{
-       int i, j, x, cc, c;
-       uint8_t *src;
-       uint64_t ccount;
-       uint8_t *dst[VDEV_RAIDZ_MAXPARITY] = { NULL };
-       uint64_t dcount[VDEV_RAIDZ_MAXPARITY] = { 0 };
-       uint8_t log = 0;
-       uint8_t val;
-       int ll;
-       uint8_t *invlog[VDEV_RAIDZ_MAXPARITY];
-       uint8_t *p, *pp;
-       size_t psize;
-
-       psize = sizeof (invlog[0][0]) * n * nmissing;
-       p = kmem_alloc(psize, KM_SLEEP);
-
-       for (pp = p, i = 0; i < nmissing; i++) {
-               invlog[i] = pp;
-               pp += n;
-       }
-
-       for (i = 0; i < nmissing; i++) {
-               for (j = 0; j < n; j++) {
-                       ASSERT3U(invrows[i][j], !=, 0);
-                       invlog[i][j] = vdev_raidz_log2[invrows[i][j]];
-               }
-       }
-
-       for (i = 0; i < n; i++) {
-               c = used[i];
-               ASSERT3U(c, <, rm->rm_cols);
-
-               src = abd_to_buf(rm->rm_col[c].rc_abd);
-               ccount = rm->rm_col[c].rc_size;
-               for (j = 0; j < nmissing; j++) {
-                       cc = missing[j] + rm->rm_firstdatacol;
-                       ASSERT3U(cc, >=, rm->rm_firstdatacol);
-                       ASSERT3U(cc, <, rm->rm_cols);
-                       ASSERT3U(cc, !=, c);
-
-                       dst[j] = abd_to_buf(rm->rm_col[cc].rc_abd);
-                       dcount[j] = rm->rm_col[cc].rc_size;
-               }
-
-               ASSERT(ccount >= rm->rm_col[missing[0]].rc_size || i > 0);
-
-               for (x = 0; x < ccount; x++, src++) {
-                       if (*src != 0)
-                               log = vdev_raidz_log2[*src];
-
-                       for (cc = 0; cc < nmissing; cc++) {
-                               if (x >= dcount[cc])
-                                       continue;
-
-                               if (*src == 0) {
-                                       val = 0;
-                               } else {
-                                       if ((ll = log + invlog[cc][i]) >= 255)
-                                               ll -= 255;
-                                       val = vdev_raidz_pow2[ll];
-                               }
-
-                               if (i == 0)
-                                       dst[cc][x] = val;
-                               else
-                                       dst[cc][x] ^= val;
-                       }
-               }
-       }
-
-       kmem_free(p, psize);
-}
-
-static int
-vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts)
-{
-       int n, i, c, t, tt;
-       int nmissing_rows;
-       int missing_rows[VDEV_RAIDZ_MAXPARITY];
-       int parity_map[VDEV_RAIDZ_MAXPARITY];
-
-       uint8_t *p, *pp;
-       size_t psize;
-
-       uint8_t *rows[VDEV_RAIDZ_MAXPARITY];
-       uint8_t *invrows[VDEV_RAIDZ_MAXPARITY];
-       uint8_t *used;
-
-       abd_t **bufs = NULL;
-
-       int code = 0;
-
-       /*
-        * Matrix reconstruction can't use scatter ABDs yet, so we allocate
-        * temporary linear ABDs.
-        */
-       if (!abd_is_linear(rm->rm_col[rm->rm_firstdatacol].rc_abd)) {
-               bufs = kmem_alloc(rm->rm_cols * sizeof (abd_t *), KM_PUSHPAGE);
-
-               for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
-                       raidz_col_t *col = &rm->rm_col[c];
-
-                       bufs[c] = col->rc_abd;
-                       col->rc_abd = abd_alloc_linear(col->rc_size, B_TRUE);
-                       abd_copy(col->rc_abd, bufs[c], col->rc_size);
-               }
-       }
-
-       n = rm->rm_cols - rm->rm_firstdatacol;
-
-       /*
-        * Figure out which data columns are missing.
-        */
-       nmissing_rows = 0;
-       for (t = 0; t < ntgts; t++) {
-               if (tgts[t] >= rm->rm_firstdatacol) {
-                       missing_rows[nmissing_rows++] =
-                           tgts[t] - rm->rm_firstdatacol;
-               }
-       }
-
-       /*
-        * Figure out which parity columns to use to help generate the missing
-        * data columns.
-        */
-       for (tt = 0, c = 0, i = 0; i < nmissing_rows; c++) {
-               ASSERT(tt < ntgts);
-               ASSERT(c < rm->rm_firstdatacol);
-
-               /*
-                * Skip any targeted parity columns.
-                */
-               if (c == tgts[tt]) {
-                       tt++;
-                       continue;
-               }
-
-               code |= 1 << c;
-
-               parity_map[i] = c;
-               i++;
-       }
-
-       ASSERT(code != 0);
-       ASSERT3U(code, <, 1 << VDEV_RAIDZ_MAXPARITY);
-
-       psize = (sizeof (rows[0][0]) + sizeof (invrows[0][0])) *
-           nmissing_rows * n + sizeof (used[0]) * n;
-       p = kmem_alloc(psize, KM_SLEEP);
-
-       for (pp = p, i = 0; i < nmissing_rows; i++) {
-               rows[i] = pp;
-               pp += n;
-               invrows[i] = pp;
-               pp += n;
-       }
-       used = pp;
-
-       for (i = 0; i < nmissing_rows; i++) {
-               used[i] = parity_map[i];
-       }
-
-       for (tt = 0, c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
-               if (tt < nmissing_rows &&
-                   c == missing_rows[tt] + rm->rm_firstdatacol) {
-                       tt++;
-                       continue;
-               }
-
-               ASSERT3S(i, <, n);
-               used[i] = c;
-               i++;
-       }
-
-       /*
-        * Initialize the interesting rows of the matrix.
-        */
-       vdev_raidz_matrix_init(rm, n, nmissing_rows, parity_map, rows);
-
-       /*
-        * Invert the matrix.
-        */
-       vdev_raidz_matrix_invert(rm, n, nmissing_rows, missing_rows, rows,
-           invrows, used);
-
-       /*
-        * Reconstruct the missing data using the generated matrix.
-        */
-       vdev_raidz_matrix_reconstruct(rm, n, nmissing_rows, missing_rows,
-           invrows, used);
-
-       kmem_free(p, psize);
-
-       /*
-        * copy back from temporary linear abds and free them
-        */
-       if (bufs) {
-               for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
-                       raidz_col_t *col = &rm->rm_col[c];
-
-                       abd_copy(bufs[c], col->rc_abd, col->rc_size);
-                       abd_free(col->rc_abd);
-                       col->rc_abd = bufs[c];
-               }
-               kmem_free(bufs, rm->rm_cols * sizeof (abd_t *));
-       }
-
-       return (code);
-}
-
-int
-vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt)
-{
-       int tgts[VDEV_RAIDZ_MAXPARITY], *dt;
-       int ntgts;
-       int i, c, ret;
-       int code;
-       int nbadparity, nbaddata;
-       int parity_valid[VDEV_RAIDZ_MAXPARITY];
-
-       /*
-        * The tgts list must already be sorted.
-        */
-       for (i = 1; i < nt; i++) {
-               ASSERT(t[i] > t[i - 1]);
-       }
-
-       nbadparity = rm->rm_firstdatacol;
-       nbaddata = rm->rm_cols - nbadparity;
-       ntgts = 0;
-       for (i = 0, c = 0; c < rm->rm_cols; c++) {
-               if (c < rm->rm_firstdatacol)
-                       parity_valid[c] = B_FALSE;
-
-               if (i < nt && c == t[i]) {
-                       tgts[ntgts++] = c;
-                       i++;
-               } else if (rm->rm_col[c].rc_error != 0) {
-                       tgts[ntgts++] = c;
-               } else if (c >= rm->rm_firstdatacol) {
-                       nbaddata--;
-               } else {
-                       parity_valid[c] = B_TRUE;
-                       nbadparity--;
-               }
-       }
-
-       ASSERT(ntgts >= nt);
-       ASSERT(nbaddata >= 0);
-       ASSERT(nbaddata + nbadparity == ntgts);
-
-       dt = &tgts[nbadparity];
-
-       /* Reconstruct using the new math implementation */
-       ret = vdev_raidz_math_reconstruct(rm, parity_valid, dt, nbaddata);
-       if (ret != RAIDZ_ORIGINAL_IMPL)
-               return (ret);
-
-       /*
-        * See if we can use any of our optimized reconstruction routines.
-        */
-       switch (nbaddata) {
-       case 1:
-               if (parity_valid[VDEV_RAIDZ_P])
-                       return (vdev_raidz_reconstruct_p(rm, dt, 1));
-
-               ASSERT(rm->rm_firstdatacol > 1);
-
-               if (parity_valid[VDEV_RAIDZ_Q])
-                       return (vdev_raidz_reconstruct_q(rm, dt, 1));
-
-               ASSERT(rm->rm_firstdatacol > 2);
-               break;
-
-       case 2:
-               ASSERT(rm->rm_firstdatacol > 1);
-
-               if (parity_valid[VDEV_RAIDZ_P] &&
-                   parity_valid[VDEV_RAIDZ_Q])
-                       return (vdev_raidz_reconstruct_pq(rm, dt, 2));
-
-               ASSERT(rm->rm_firstdatacol > 2);
-
-               break;
-       }
-
-       code = vdev_raidz_reconstruct_general(rm, tgts, ntgts);
-       ASSERT(code < (1 << VDEV_RAIDZ_MAXPARITY));
-       ASSERT(code > 0);
-       return (code);
-}
-
-static int
-vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
-    uint64_t *ashift)
-{
-       vdev_t *cvd;
-       uint64_t nparity = vd->vdev_nparity;
-       int c;
-       int lasterror = 0;
-       int numerrors = 0;
-
-       ASSERT(nparity > 0);
-
-       if (nparity > VDEV_RAIDZ_MAXPARITY ||
-           vd->vdev_children < nparity + 1) {
-               vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
-               return (SET_ERROR(EINVAL));
-       }
-
-       vdev_open_children(vd);
-
-       for (c = 0; c < vd->vdev_children; c++) {
-               cvd = vd->vdev_child[c];
-
-               if (cvd->vdev_open_error != 0) {
-                       lasterror = cvd->vdev_open_error;
-                       numerrors++;
-                       continue;
-               }
-
-               *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
-               *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
-               *ashift = MAX(*ashift, cvd->vdev_ashift);
-       }
-
-       *asize *= vd->vdev_children;
-       *max_asize *= vd->vdev_children;
-
-       if (numerrors > nparity) {
-               vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
-               return (lasterror);
-       }
-
-       return (0);
-}
-
-static void
-vdev_raidz_close(vdev_t *vd)
-{
-       int c;
-
-       for (c = 0; c < vd->vdev_children; c++)
-               vdev_close(vd->vdev_child[c]);
-}
-
-static uint64_t
-vdev_raidz_asize(vdev_t *vd, uint64_t psize)
-{
-       uint64_t asize;
-       uint64_t ashift = vd->vdev_top->vdev_ashift;
-       uint64_t cols = vd->vdev_children;
-       uint64_t nparity = vd->vdev_nparity;
-
-       asize = ((psize - 1) >> ashift) + 1;
-       asize += nparity * ((asize + cols - nparity - 1) / (cols - nparity));
-       asize = roundup(asize, nparity + 1) << ashift;
-
-       return (asize);
-}
-
-static void
-vdev_raidz_child_done(zio_t *zio)
-{
-       raidz_col_t *rc = zio->io_private;
-
-       rc->rc_error = zio->io_error;
-       rc->rc_tried = 1;
-       rc->rc_skipped = 0;
-}
-
-/*
- * Start an IO operation on a RAIDZ VDev
- *
- * Outline:
- * - For write operations:
- *   1. Generate the parity data
- *   2. Create child zio write operations to each column's vdev, for both
- *      data and parity.
- *   3. If the column skips any sectors for padding, create optional dummy
- *      write zio children for those areas to improve aggregation continuity.
- * - For read operations:
- *   1. Create child zio read operations to each data column's vdev to read
- *      the range of data required for zio.
- *   2. If this is a scrub or resilver operation, or if any of the data
- *      vdevs have had errors, then create zio read operations to the parity
- *      columns' VDevs as well.
- */
-static void
-vdev_raidz_io_start(zio_t *zio)
-{
-       vdev_t *vd = zio->io_vd;
-       vdev_t *tvd = vd->vdev_top;
-       vdev_t *cvd;
-       raidz_map_t *rm;
-       raidz_col_t *rc;
-       int c, i;
-
-       rm = vdev_raidz_map_alloc(zio, tvd->vdev_ashift, vd->vdev_children,
-           vd->vdev_nparity);
-
-       ASSERT3U(rm->rm_asize, ==, vdev_psize_to_asize(vd, zio->io_size));
-
-       if (zio->io_type == ZIO_TYPE_WRITE) {
-               vdev_raidz_generate_parity(rm);
-
-               for (c = 0; c < rm->rm_cols; c++) {
-                       rc = &rm->rm_col[c];
-                       cvd = vd->vdev_child[rc->rc_devidx];
-                       zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
-                           rc->rc_offset, rc->rc_abd, rc->rc_size,
-                           zio->io_type, zio->io_priority, 0,
-                           vdev_raidz_child_done, rc));
-               }
-
-               /*
-                * Generate optional I/Os for any skipped sectors to improve
-                * aggregation contiguity.
-                */
-               for (c = rm->rm_skipstart, i = 0; i < rm->rm_nskip; c++, i++) {
-                       ASSERT(c <= rm->rm_scols);
-                       if (c == rm->rm_scols)
-                               c = 0;
-                       rc = &rm->rm_col[c];
-                       cvd = vd->vdev_child[rc->rc_devidx];
-                       zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
-                           rc->rc_offset + rc->rc_size, NULL,
-                           1 << tvd->vdev_ashift,
-                           zio->io_type, zio->io_priority,
-                           ZIO_FLAG_NODATA | ZIO_FLAG_OPTIONAL, NULL, NULL));
-               }
-
-               zio_execute(zio);
-               return;
-       }
-
-       ASSERT(zio->io_type == ZIO_TYPE_READ);
-
-       /*
-        * Iterate over the columns in reverse order so that we hit the parity
-        * last -- any errors along the way will force us to read the parity.
-        */
-       for (c = rm->rm_cols - 1; c >= 0; c--) {
-               rc = &rm->rm_col[c];
-               cvd = vd->vdev_child[rc->rc_devidx];
-               if (!vdev_readable(cvd)) {
-                       if (c >= rm->rm_firstdatacol)
-                               rm->rm_missingdata++;
-                       else
-                               rm->rm_missingparity++;
-                       rc->rc_error = SET_ERROR(ENXIO);
-                       rc->rc_tried = 1;       /* don't even try */
-                       rc->rc_skipped = 1;
-                       continue;
-               }
-               if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) {
-                       if (c >= rm->rm_firstdatacol)
-                               rm->rm_missingdata++;
-                       else
-                               rm->rm_missingparity++;
-                       rc->rc_error = SET_ERROR(ESTALE);
-                       rc->rc_skipped = 1;
-                       continue;
-               }
-               if (c >= rm->rm_firstdatacol || rm->rm_missingdata > 0 ||
-                   (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
-                       zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
-                           rc->rc_offset, rc->rc_abd, rc->rc_size,
-                           zio->io_type, zio->io_priority, 0,
-                           vdev_raidz_child_done, rc));
-               }
-       }
-
-       zio_execute(zio);
-}
-
-
-/*
- * Report a checksum error for a child of a RAID-Z device.
- */
-static void
-raidz_checksum_error(zio_t *zio, raidz_col_t *rc, abd_t *bad_data)
-{
-       vdev_t *vd = zio->io_vd->vdev_child[rc->rc_devidx];
-
-       if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
-               zio_bad_cksum_t zbc;
-               raidz_map_t *rm = zio->io_vsd;
-
-               mutex_enter(&vd->vdev_stat_lock);
-               vd->vdev_stat.vs_checksum_errors++;
-               mutex_exit(&vd->vdev_stat_lock);
-
-               zbc.zbc_has_cksum = 0;
-               zbc.zbc_injected = rm->rm_ecksuminjected;
-
-               zfs_ereport_post_checksum(zio->io_spa, vd, zio,
-                   rc->rc_offset, rc->rc_size, rc->rc_abd, bad_data,
-                   &zbc);
-       }
-}
-
-/*
- * We keep track of whether or not there were any injected errors, so that
- * any ereports we generate can note it.
- */
-static int
-raidz_checksum_verify(zio_t *zio)
-{
-       zio_bad_cksum_t zbc;
-       raidz_map_t *rm = zio->io_vsd;
-       int ret;
-
-       bzero(&zbc, sizeof (zio_bad_cksum_t));
-
-       ret = zio_checksum_error(zio, &zbc);
-       if (ret != 0 && zbc.zbc_injected != 0)
-               rm->rm_ecksuminjected = 1;
-
-       return (ret);
-}
-
-/*
- * Generate the parity from the data columns. If we tried and were able to
- * read the parity without error, verify that the generated parity matches the
- * data we read. If it doesn't, we fire off a checksum error. Return the
- * number such failures.
- */
-static int
-raidz_parity_verify(zio_t *zio, raidz_map_t *rm)
-{
-       abd_t *orig[VDEV_RAIDZ_MAXPARITY];
-       int c, ret = 0;
-       raidz_col_t *rc;
-
-       blkptr_t *bp = zio->io_bp;
-       enum zio_checksum checksum = (bp == NULL ? zio->io_prop.zp_checksum :
-           (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp)));
-
-       if (checksum == ZIO_CHECKSUM_NOPARITY)
-               return (ret);
-
-       for (c = 0; c < rm->rm_firstdatacol; c++) {
-               rc = &rm->rm_col[c];
-               if (!rc->rc_tried || rc->rc_error != 0)
-                       continue;
-
-               orig[c] = abd_alloc_sametype(rc->rc_abd, rc->rc_size);
-               abd_copy(orig[c], rc->rc_abd, rc->rc_size);
-       }
-
-       vdev_raidz_generate_parity(rm);
-
-       for (c = 0; c < rm->rm_firstdatacol; c++) {
-               rc = &rm->rm_col[c];
-               if (!rc->rc_tried || rc->rc_error != 0)
-                       continue;
-               if (abd_cmp(orig[c], rc->rc_abd) != 0) {
-                       raidz_checksum_error(zio, rc, orig[c]);
-                       rc->rc_error = SET_ERROR(ECKSUM);
-                       ret++;
-               }
-               abd_free(orig[c]);
-       }
-
-       return (ret);
-}
-
-static int
-vdev_raidz_worst_error(raidz_map_t *rm)
-{
-       int c, error = 0;
-
-       for (c = 0; c < rm->rm_cols; c++)
-               error = zio_worst_error(error, rm->rm_col[c].rc_error);
-
-       return (error);
-}
-
-/*
- * Iterate over all combinations of bad data and attempt a reconstruction.
- * Note that the algorithm below is non-optimal because it doesn't take into
- * account how reconstruction is actually performed. For example, with
- * triple-parity RAID-Z the reconstruction procedure is the same if column 4
- * is targeted as invalid as if columns 1 and 4 are targeted since in both
- * cases we'd only use parity information in column 0.
- */
-static int
-vdev_raidz_combrec(zio_t *zio, int total_errors, int data_errors)
-{
-       raidz_map_t *rm = zio->io_vsd;
-       raidz_col_t *rc;
-       abd_t *orig[VDEV_RAIDZ_MAXPARITY];
-       int tstore[VDEV_RAIDZ_MAXPARITY + 2];
-       int *tgts = &tstore[1];
-       int curr, next, i, c, n;
-       int code, ret = 0;
-
-       ASSERT(total_errors < rm->rm_firstdatacol);
-
-       /*
-        * This simplifies one edge condition.
-        */
-       tgts[-1] = -1;
-
-       for (n = 1; n <= rm->rm_firstdatacol - total_errors; n++) {
-               /*
-                * Initialize the targets array by finding the first n columns
-                * that contain no error.
-                *
-                * If there were no data errors, we need to ensure that we're
-                * always explicitly attempting to reconstruct at least one
-                * data column. To do this, we simply push the highest target
-                * up into the data columns.
-                */
-               for (c = 0, i = 0; i < n; i++) {
-                       if (i == n - 1 && data_errors == 0 &&
-                           c < rm->rm_firstdatacol) {
-                               c = rm->rm_firstdatacol;
-                       }
-
-                       while (rm->rm_col[c].rc_error != 0) {
-                               c++;
-                               ASSERT3S(c, <, rm->rm_cols);
-                       }
-
-                       tgts[i] = c++;
-               }
-
-               /*
-                * Setting tgts[n] simplifies the other edge condition.
-                */
-               tgts[n] = rm->rm_cols;
-
-               /*
-                * These buffers were allocated in previous iterations.
-                */
-               for (i = 0; i < n - 1; i++) {
-                       ASSERT(orig[i] != NULL);
-               }
-
-               orig[n - 1] = abd_alloc_sametype(rm->rm_col[0].rc_abd,
-                   rm->rm_col[0].rc_size);
-
-               curr = 0;
-               next = tgts[curr];
-
-               while (curr != n) {
-                       tgts[curr] = next;
-                       curr = 0;
-
-                       /*
-                        * Save off the original data that we're going to
-                        * attempt to reconstruct.
-                        */
-                       for (i = 0; i < n; i++) {
-                               ASSERT(orig[i] != NULL);
-                               c = tgts[i];
-                               ASSERT3S(c, >=, 0);
-                               ASSERT3S(c, <, rm->rm_cols);
-                               rc = &rm->rm_col[c];
-                               abd_copy(orig[i], rc->rc_abd, rc->rc_size);
-                       }
-
-                       /*
-                        * Attempt a reconstruction and exit the outer loop on
-                        * success.
-                        */
-                       code = vdev_raidz_reconstruct(rm, tgts, n);
-                       if (raidz_checksum_verify(zio) == 0) {
-
-                               for (i = 0; i < n; i++) {
-                                       c = tgts[i];
-                                       rc = &rm->rm_col[c];
-                                       ASSERT(rc->rc_error == 0);
-                                       if (rc->rc_tried)
-                                               raidz_checksum_error(zio, rc,
-                                                   orig[i]);
-                                       rc->rc_error = SET_ERROR(ECKSUM);
-                               }
-
-                               ret = code;
-                               goto done;
-                       }
-
-                       /*
-                        * Restore the original data.
-                        */
-                       for (i = 0; i < n; i++) {
-                               c = tgts[i];
-                               rc = &rm->rm_col[c];
-                               abd_copy(rc->rc_abd, orig[i], rc->rc_size);
-                       }
-
-                       do {
-                               /*
-                                * Find the next valid column after the curr
-                                * position..
-                                */
-                               for (next = tgts[curr] + 1;
-                                   next < rm->rm_cols &&
-                                   rm->rm_col[next].rc_error != 0; next++)
-                                       continue;
-
-                               ASSERT(next <= tgts[curr + 1]);
-
-                               /*
-                                * If that spot is available, we're done here.
-                                */
-                               if (next != tgts[curr + 1])
-                                       break;
-
-                               /*
-                                * Otherwise, find the next valid column after
-                                * the previous position.
-                                */
-                               for (c = tgts[curr - 1] + 1;
-                                   rm->rm_col[c].rc_error != 0; c++)
-                                       continue;
-
-                               tgts[curr] = c;
-                               curr++;
-
-                       } while (curr != n);
-               }
-       }
-       n--;
-done:
-       for (i = 0; i < n; i++)
-               abd_free(orig[i]);
-
-       return (ret);
-}
-
-/*
- * Complete an IO operation on a RAIDZ VDev
- *
- * Outline:
- * - For write operations:
- *   1. Check for errors on the child IOs.
- *   2. Return, setting an error code if too few child VDevs were written
- *      to reconstruct the data later.  Note that partial writes are
- *      considered successful if they can be reconstructed at all.
- * - For read operations:
- *   1. Check for errors on the child IOs.
- *   2. If data errors occurred:
- *      a. Try to reassemble the data from the parity available.
- *      b. If we haven't yet read the parity drives, read them now.
- *      c. If all parity drives have been read but the data still doesn't
- *         reassemble with a correct checksum, then try combinatorial
- *         reconstruction.
- *      d. If that doesn't work, return an error.
- *   3. If there were unexpected errors or this is a resilver operation,
- *      rewrite the vdevs that had errors.
- */
-static void
-vdev_raidz_io_done(zio_t *zio)
-{
-       vdev_t *vd = zio->io_vd;
-       vdev_t *cvd;
-       raidz_map_t *rm = zio->io_vsd;
-       raidz_col_t *rc = NULL;
-       int unexpected_errors = 0;
-       int parity_errors = 0;
-       int parity_untried = 0;
-       int data_errors = 0;
-       int total_errors = 0;
-       int n, c;
-       int tgts[VDEV_RAIDZ_MAXPARITY];
-       int code;
-
-       ASSERT(zio->io_bp != NULL);  /* XXX need to add code to enforce this */
-
-       ASSERT(rm->rm_missingparity <= rm->rm_firstdatacol);
-       ASSERT(rm->rm_missingdata <= rm->rm_cols - rm->rm_firstdatacol);
-
-       for (c = 0; c < rm->rm_cols; c++) {
-               rc = &rm->rm_col[c];
-
-               if (rc->rc_error) {
-                       ASSERT(rc->rc_error != ECKSUM); /* child has no bp */
-
-                       if (c < rm->rm_firstdatacol)
-                               parity_errors++;
-                       else
-                               data_errors++;
-
-                       if (!rc->rc_skipped)
-                               unexpected_errors++;
-
-                       total_errors++;
-               } else if (c < rm->rm_firstdatacol && !rc->rc_tried) {
-                       parity_untried++;
-               }
-       }
-
-       if (zio->io_type == ZIO_TYPE_WRITE) {
-               /*
-                * XXX -- for now, treat partial writes as a success.
-                * (If we couldn't write enough columns to reconstruct
-                * the data, the I/O failed.  Otherwise, good enough.)
-                *
-                * Now that we support write reallocation, it would be better
-                * to treat partial failure as real failure unless there are
-                * no non-degraded top-level vdevs left, and not update DTLs
-                * if we intend to reallocate.
-                */
-               /* XXPOLICY */
-               if (total_errors > rm->rm_firstdatacol)
-                       zio->io_error = vdev_raidz_worst_error(rm);
-
-               return;
-       }
-
-       ASSERT(zio->io_type == ZIO_TYPE_READ);
-       /*
-        * There are three potential phases for a read:
-        *      1. produce valid data from the columns read
-        *      2. read all disks and try again
-        *      3. perform combinatorial reconstruction
-        *
-        * Each phase is progressively both more expensive and less likely to
-        * occur. If we encounter more errors than we can repair or all phases
-        * fail, we have no choice but to return an error.
-        */
-
-       /*
-        * If the number of errors we saw was correctable -- less than or equal
-        * to the number of parity disks read -- attempt to produce data that
-        * has a valid checksum. Naturally, this case applies in the absence of
-        * any errors.
-        */
-       if (total_errors <= rm->rm_firstdatacol - parity_untried) {
-               if (data_errors == 0) {
-                       if (raidz_checksum_verify(zio) == 0) {
-                               /*
-                                * If we read parity information (unnecessarily
-                                * as it happens since no reconstruction was
-                                * needed) regenerate and verify the parity.
-                                * We also regenerate parity when resilvering
-                                * so we can write it out to the failed device
-                                * later.
-                                */
-                               if (parity_errors + parity_untried <
-                                   rm->rm_firstdatacol ||
-                                   (zio->io_flags & ZIO_FLAG_RESILVER)) {
-                                       n = raidz_parity_verify(zio, rm);
-                                       unexpected_errors += n;
-                                       ASSERT(parity_errors + n <=
-                                           rm->rm_firstdatacol);
-                               }
-                               goto done;
-                       }
-               } else {
-                       /*
-                        * We either attempt to read all the parity columns or
-                        * none of them. If we didn't try to read parity, we
-                        * wouldn't be here in the correctable case. There must
-                        * also have been fewer parity errors than parity
-                        * columns or, again, we wouldn't be in this code path.
-                        */
-                       ASSERT(parity_untried == 0);
-                       ASSERT(parity_errors < rm->rm_firstdatacol);
-
-                       /*
-                        * Identify the data columns that reported an error.
-                        */
-                       n = 0;
-                       for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
-                               rc = &rm->rm_col[c];
-                               if (rc->rc_error != 0) {
-                                       ASSERT(n < VDEV_RAIDZ_MAXPARITY);
-                                       tgts[n++] = c;
-                               }
-                       }
-
-                       ASSERT(rm->rm_firstdatacol >= n);
-
-                       code = vdev_raidz_reconstruct(rm, tgts, n);
-
-                       if (raidz_checksum_verify(zio) == 0) {
-                               /*
-                                * If we read more parity disks than were used
-                                * for reconstruction, confirm that the other
-                                * parity disks produced correct data. This
-                                * routine is suboptimal in that it regenerates
-                                * the parity that we already used in addition
-                                * to the parity that we're attempting to
-                                * verify, but this should be a relatively
-                                * uncommon case, and can be optimized if it
-                                * becomes a problem. Note that we regenerate
-                                * parity when resilvering so we can write it
-                                * out to failed devices later.
-                                */
-                               if (parity_errors < rm->rm_firstdatacol - n ||
-                                   (zio->io_flags & ZIO_FLAG_RESILVER)) {
-                                       n = raidz_parity_verify(zio, rm);
-                                       unexpected_errors += n;
-                                       ASSERT(parity_errors + n <=
-                                           rm->rm_firstdatacol);
-                               }
-
-                               goto done;
-                       }
-               }
-       }
-
-       /*
-        * This isn't a typical situation -- either we got a read error or
-        * a child silently returned bad data. Read every block so we can
-        * try again with as much data and parity as we can track down. If
-        * we've already been through once before, all children will be marked
-        * as tried so we'll proceed to combinatorial reconstruction.
-        */
-       unexpected_errors = 1;
-       rm->rm_missingdata = 0;
-       rm->rm_missingparity = 0;
-
-       for (c = 0; c < rm->rm_cols; c++) {
-               if (rm->rm_col[c].rc_tried)
-                       continue;
-
-               zio_vdev_io_redone(zio);
-               do {
-                       rc = &rm->rm_col[c];
-                       if (rc->rc_tried)
-                               continue;
-                       zio_nowait(zio_vdev_child_io(zio, NULL,
-                           vd->vdev_child[rc->rc_devidx],
-                           rc->rc_offset, rc->rc_abd, rc->rc_size,
-                           zio->io_type, zio->io_priority, 0,
-                           vdev_raidz_child_done, rc));
-               } while (++c < rm->rm_cols);
-
-               return;
-       }
-
-       /*
-        * At this point we've attempted to reconstruct the data given the
-        * errors we detected, and we've attempted to read all columns. There
-        * must, therefore, be one or more additional problems -- silent errors
-        * resulting in invalid data rather than explicit I/O errors resulting
-        * in absent data. We check if there is enough additional data to
-        * possibly reconstruct the data and then perform combinatorial
-        * reconstruction over all possible combinations. If that fails,
-        * we're cooked.
-        */
-       if (total_errors > rm->rm_firstdatacol) {
-               zio->io_error = vdev_raidz_worst_error(rm);
-
-       } else if (total_errors < rm->rm_firstdatacol &&
-           (code = vdev_raidz_combrec(zio, total_errors, data_errors)) != 0) {
-               /*
-                * If we didn't use all the available parity for the
-                * combinatorial reconstruction, verify that the remaining
-                * parity is correct.
-                */
-               if (code != (1 << rm->rm_firstdatacol) - 1)
-                       (void) raidz_parity_verify(zio, rm);
-       } else {
-               /*
-                * We're here because either:
-                *
-                *      total_errors == rm_first_datacol, or
-                *      vdev_raidz_combrec() failed
-                *
-                * In either case, there is enough bad data to prevent
-                * reconstruction.
-                *
-                * Start checksum ereports for all children which haven't
-                * failed, and the IO wasn't speculative.
-                */
-               zio->io_error = SET_ERROR(ECKSUM);
-
-               if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
-                       for (c = 0; c < rm->rm_cols; c++) {
-                               rc = &rm->rm_col[c];
-                               if (rc->rc_error == 0) {
-                                       zio_bad_cksum_t zbc;
-                                       zbc.zbc_has_cksum = 0;
-                                       zbc.zbc_injected =
-                                           rm->rm_ecksuminjected;
-
-                                       zfs_ereport_start_checksum(
-                                           zio->io_spa,
-                                           vd->vdev_child[rc->rc_devidx],
-                                           zio, rc->rc_offset, rc->rc_size,
-                                           (void *)(uintptr_t)c, &zbc);
-                               }
-                       }
-               }
-       }
-
-done:
-       zio_checksum_verified(zio);
-
-       if (zio->io_error == 0 && spa_writeable(zio->io_spa) &&
-           (unexpected_errors || (zio->io_flags & ZIO_FLAG_RESILVER))) {
-               /*
-                * Use the good data we have in hand to repair damaged children.
-                */
-               for (c = 0; c < rm->rm_cols; c++) {
-                       rc = &rm->rm_col[c];
-                       cvd = vd->vdev_child[rc->rc_devidx];
-
-                       if (rc->rc_error == 0)
-                               continue;
-
-                       zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
-                           rc->rc_offset, rc->rc_abd, rc->rc_size,
-                           ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
-                           ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
-                           ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
-               }
-       }
-}
-
-static void
-vdev_raidz_state_change(vdev_t *vd, int faulted, int degraded)
-{
-       if (faulted > vd->vdev_nparity)
-               vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
-                   VDEV_AUX_NO_REPLICAS);
-       else if (degraded + faulted != 0)
-               vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
-       else
-               vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
-}
-
-/*
- * Determine if any portion of the provided block resides on a child vdev
- * with a dirty DTL and therefore needs to be resilvered.  The function
- * assumes that at least one DTL is dirty which imples that full stripe
- * width blocks must be resilvered.
- */
-static boolean_t
-vdev_raidz_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
-{
-       uint64_t dcols = vd->vdev_children;
-       uint64_t nparity = vd->vdev_nparity;
-       uint64_t ashift = vd->vdev_top->vdev_ashift;
-       /* The starting RAIDZ (parent) vdev sector of the block. */
-       uint64_t b = offset >> ashift;
-       /* The zio's size in units of the vdev's minimum sector size. */
-       uint64_t s = ((psize - 1) >> ashift) + 1;
-       /* The first column for this stripe. */
-       uint64_t f = b % dcols;
-
-       if (s + nparity >= dcols)
-               return (B_TRUE);
-
-       for (uint64_t c = 0; c < s + nparity; c++) {
-               uint64_t devidx = (f + c) % dcols;
-               vdev_t *cvd = vd->vdev_child[devidx];
-
-               /*
-                * dsl_scan_need_resilver() already checked vd with
-                * vdev_dtl_contains(). So here just check cvd with
-                * vdev_dtl_empty(), cheaper and a good approximation.
-                */
-               if (!vdev_dtl_empty(cvd, DTL_PARTIAL))
-                       return (B_TRUE);
-       }
-
-       return (B_FALSE);
-}
-
-vdev_ops_t vdev_raidz_ops = {
-       vdev_raidz_open,
-       vdev_raidz_close,
-       vdev_raidz_asize,
-       vdev_raidz_io_start,
-       vdev_raidz_io_done,
-       vdev_raidz_state_change,
-       vdev_raidz_need_resilver,
-       NULL,
-       NULL,
-       VDEV_TYPE_RAIDZ,        /* name of this vdev type */
-       B_FALSE                 /* not a leaf vdev */
-};