]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/commit
netfilter: nf_nat: add full port randomization support
authorDaniel Borkmann <dborkman@redhat.com>
Fri, 20 Dec 2013 21:40:29 +0000 (22:40 +0100)
committerPablo Neira Ayuso <pablo@netfilter.org>
Fri, 3 Jan 2014 22:41:26 +0000 (23:41 +0100)
commit34ce324019e76f6d93768d68343a0e78f464d754
treed364d3b2d0e1f7b17548ba303755de1f289b9ad4
parent9dcbe1b87c4a8e3ed62e95369c18709541a3dc8f
netfilter: nf_nat: add full port randomization support

We currently use prandom_u32() for allocation of ports in tcp bind(0)
and udp code. In case of plain SNAT we try to keep the ports as is
or increment on collision.

SNAT --random mode does use per-destination incrementing port
allocation. As a recent paper pointed out in [1] that this mode of
port allocation makes it possible to an attacker to find the randomly
allocated ports through a timing side-channel in a socket overloading
attack conducted through an off-path attacker.

So, NF_NAT_RANGE_PROTO_RANDOM actually weakens the port randomization
in regard to the attack described in this paper. As we need to keep
compatibility, add another flag called NF_NAT_RANGE_PROTO_RANDOM_FULLY
that would replace the NF_NAT_RANGE_PROTO_RANDOM hash-based port
selection algorithm with a simple prandom_u32() in order to mitigate
this attack vector. Note that the lfsr113's internal state is
periodically reseeded by the kernel through a local secure entropy
source.

More details can be found in [1], the basic idea is to send bursts
of packets to a socket to overflow its receive queue and measure
the latency to detect a possible retransmit when the port is found.
Because of increasing ports to given destination and port, further
allocations can be predicted. This information could then be used by
an attacker for e.g. for cache-poisoning, NS pinning, and degradation
of service attacks against DNS servers [1]:

  The best defense against the poisoning attacks is to properly
  deploy and validate DNSSEC; DNSSEC provides security not only
  against off-path attacker but even against MitM attacker. We hope
  that our results will help motivate administrators to adopt DNSSEC.
  However, full DNSSEC deployment make take significant time, and
  until that happens, we recommend short-term, non-cryptographic
  defenses. We recommend to support full port randomisation,
  according to practices recommended in [2], and to avoid
  per-destination sequential port allocation, which we show may be
  vulnerable to derandomisation attacks.

Joint work between Hannes Frederic Sowa and Daniel Borkmann.

 [1] https://sites.google.com/site/hayashulman/files/NIC-derandomisation.pdf
 [2] http://arxiv.org/pdf/1205.5190v1.pdf

Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
include/uapi/linux/netfilter/nf_nat.h
net/netfilter/nf_nat_core.c
net/netfilter/nf_nat_proto_common.c