/* - doubles as loopback port index */
static bool auto_connect = true; /* try to VIRT_CABLE to every peer */
static bool create_loop_dev = true; /* create a loopback device for each card */
-bool limit_bw; /* limit async bandwidth to 20% of max */
module_param_named(ttys, num_ttys, int, S_IRUGO | S_IWUSR);
module_param_named(auto, auto_connect, bool, S_IRUGO | S_IWUSR);
module_param_named(loop, create_loop_dev, bool, S_IRUGO | S_IWUSR);
-module_param(limit_bw, bool, S_IRUGO | S_IWUSR);
/*
* Threshold below which the tty is woken for writing
MODULE_PARM_DESC(ttys, "Number of ttys to create for each local firewire node");
MODULE_PARM_DESC(auto, "Auto-connect a tty to each firewire node discovered");
MODULE_PARM_DESC(loop, "Create a loopback device, fwloop<n>, with ttys");
-MODULE_PARM_DESC(limit_bw, "Limit bandwidth utilization to 20%.");
#define TTY_DEV_NAME "fwtty" /* ttyFW was taken */
static const char tty_dev_name[] = TTY_DEV_NAME;
static const char loop_dev_name[] = "fwloop";
-extern bool limit_bw;
struct tty_driver *fwtty_driver;
/*
* Returns the max send async payload size in bytes based on the unit device
- * link speed - if set to limit bandwidth to max 20%, use lookup table
+ * link speed. Self-limiting asynchronous bandwidth (via reducing the payload)
+ * is not necessary and does not work, because
+ * 1) asynchronous traffic will absorb all available bandwidth (less that
+ * being used for isochronous traffic)
+ * 2) isochronous arbitration always wins.
*/
static inline int link_speed_to_max_payload(unsigned speed)
{
- static const int max_async[] = { 307, 614, 1229, 2458, };
- BUILD_BUG_ON(ARRAY_SIZE(max_async) - 1 != SCODE_800);
-
speed = clamp(speed, (unsigned) SCODE_100, (unsigned) SCODE_800);
- if (limit_bw)
- return max_async[speed];
- else
- return 1 << (speed + 9);
+ return 1 << (speed + 9);
}
#endif /* _FIREWIRE_FWSERIAL_H */